xref: /llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 3c03a1510413e8f9171efdb86f554d33e3fa182f)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters. Constant parameters
10 // like function pointers and constant globals are propagated to the callee by
11 // specializing the function. The main benefit of this pass at the moment is
12 // that indirect calls are transformed into direct calls, which provides inline
13 // opportunities that the inliner would not have been able to achieve. That's
14 // why function specialisation is run before the inliner in the optimisation
15 // pipeline; that is by design. Otherwise, we would only benefit from constant
16 // passing, which is a valid use-case too, but hasn't been explored much in
17 // terms of performance uplifts, cost-model and compile-time impact.
18 //
19 // Current limitations:
20 // - It does not yet handle integer ranges. We do support "literal constants",
21 //   but that's off by default under an option.
22 // - The cost-model could be further looked into (it mainly focuses on inlining
23 //   benefits),
24 //
25 // Ideas:
26 // - With a function specialization attribute for arguments, we could have
27 //   a direct way to steer function specialization, avoiding the cost-model,
28 //   and thus control compile-times / code-size.
29 //
30 // Todos:
31 // - Specializing recursive functions relies on running the transformation a
32 //   number of times, which is controlled by option
33 //   `func-specialization-max-iters`. Thus, increasing this value and the
34 //   number of iterations, will linearly increase the number of times recursive
35 //   functions get specialized, see also the discussion in
36 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
37 //   compile-time friendlier way to control/limit the number of specialisations
38 //   for recursive functions.
39 // - Don't transform the function if function specialization does not trigger;
40 //   the SCCPSolver may make IR changes.
41 //
42 // References:
43 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
44 //   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/CodeMetrics.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/InlineCost.h"
53 #include "llvm/Analysis/InstructionSimplify.h"
54 #include "llvm/Analysis/TargetTransformInfo.h"
55 #include "llvm/Analysis/ValueLattice.h"
56 #include "llvm/Analysis/ValueLatticeUtils.h"
57 #include "llvm/Analysis/ValueTracking.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/Transforms/Scalar/SCCP.h"
60 #include "llvm/Transforms/Utils/Cloning.h"
61 #include "llvm/Transforms/Utils/SCCPSolver.h"
62 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include <cmath>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "function-specialization"
68 
69 STATISTIC(NumSpecsCreated, "Number of specializations created");
70 
71 static cl::opt<bool> ForceSpecialization(
72     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
73     "Force function specialization for every call site with a constant "
74     "argument"));
75 
76 static cl::opt<unsigned> MaxClones(
77     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
78     "The maximum number of clones allowed for a single function "
79     "specialization"));
80 
81 static cl::opt<unsigned> MaxIncomingPhiValues(
82     "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc(
83     "The maximum number of incoming values a PHI node can have to be "
84     "considered during the specialization bonus estimation"));
85 
86 static cl::opt<unsigned> MaxBlockPredecessors(
87     "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
88     "The maximum number of predecessors a basic block can have to be "
89     "considered during the estimation of dead code"));
90 
91 static cl::opt<unsigned> MinFunctionSize(
92     "funcspec-min-function-size", cl::init(300), cl::Hidden, cl::desc(
93     "Don't specialize functions that have less than this number of "
94     "instructions"));
95 
96 static cl::opt<unsigned> MinCodeSizeSavings(
97     "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc(
98     "Reject specializations whose codesize savings are less than this"
99     "much percent of the original function size"));
100 
101 static cl::opt<unsigned> MinLatencySavings(
102     "funcspec-min-latency-savings", cl::init(70), cl::Hidden, cl::desc(
103     "Reject specializations whose latency savings are less than this"
104     "much percent of the original function size"));
105 
106 static cl::opt<unsigned> MinInliningBonus(
107     "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc(
108     "Reject specializations whose inlining bonus is less than this"
109     "much percent of the original function size"));
110 
111 static cl::opt<bool> SpecializeOnAddress(
112     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
113     "Enable function specialization on the address of global values"));
114 
115 // Disabled by default as it can significantly increase compilation times.
116 //
117 // https://llvm-compile-time-tracker.com
118 // https://github.com/nikic/llvm-compile-time-tracker
119 static cl::opt<bool> SpecializeLiteralConstant(
120     "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
121     "Enable specialization of functions that take a literal constant as an "
122     "argument"));
123 
124 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ,
125                                          DenseSet<BasicBlock *> &DeadBlocks) {
126   unsigned I = 0;
127   return all_of(predecessors(Succ),
128     [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) {
129     return I++ < MaxBlockPredecessors &&
130       (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred));
131   });
132 }
133 
134 // Estimates the codesize savings due to dead code after constant propagation.
135 // \p WorkList represents the basic blocks of a specialization which will
136 // eventually become dead once we replace instructions that are known to be
137 // constants. The successors of such blocks are added to the list as long as
138 // the \p Solver found they were executable prior to specialization, and only
139 // if all their predecessors are dead.
140 Cost InstCostVisitor::estimateBasicBlocks(
141                           SmallVectorImpl<BasicBlock *> &WorkList) {
142   Cost CodeSize = 0;
143   // Accumulate the instruction cost of each basic block weighted by frequency.
144   while (!WorkList.empty()) {
145     BasicBlock *BB = WorkList.pop_back_val();
146 
147     // These blocks are considered dead as far as the InstCostVisitor
148     // is concerned. They haven't been proven dead yet by the Solver,
149     // but may become if we propagate the specialization arguments.
150     if (!DeadBlocks.insert(BB).second)
151       continue;
152 
153     for (Instruction &I : *BB) {
154       // Disregard SSA copies.
155       if (auto *II = dyn_cast<IntrinsicInst>(&I))
156         if (II->getIntrinsicID() == Intrinsic::ssa_copy)
157           continue;
158       // If it's a known constant we have already accounted for it.
159       if (KnownConstants.contains(&I))
160         continue;
161 
162       Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
163 
164       LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C
165                         << " for user " << I << "\n");
166       CodeSize += C;
167     }
168 
169     // Keep adding dead successors to the list as long as they are
170     // executable and only reachable from dead blocks.
171     for (BasicBlock *SuccBB : successors(BB))
172       if (isBlockExecutable(SuccBB) &&
173           canEliminateSuccessor(BB, SuccBB, DeadBlocks))
174         WorkList.push_back(SuccBB);
175   }
176   return CodeSize;
177 }
178 
179 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
180   if (auto *C = dyn_cast<Constant>(V))
181     return C;
182   return KnownConstants.lookup(V);
183 }
184 
185 Bonus InstCostVisitor::getBonusFromPendingPHIs() {
186   Bonus B;
187   while (!PendingPHIs.empty()) {
188     Instruction *Phi = PendingPHIs.pop_back_val();
189     // The pending PHIs could have been proven dead by now.
190     if (isBlockExecutable(Phi->getParent()))
191       B += getUserBonus(Phi);
192   }
193   return B;
194 }
195 
196 /// Compute a bonus for replacing argument \p A with constant \p C.
197 Bonus InstCostVisitor::getSpecializationBonus(Argument *A, Constant *C) {
198   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
199                     << C->getNameOrAsOperand() << "\n");
200   Bonus B;
201   for (auto *U : A->users())
202     if (auto *UI = dyn_cast<Instruction>(U))
203       if (isBlockExecutable(UI->getParent()))
204         B += getUserBonus(UI, A, C);
205 
206   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = "
207                     << B.CodeSize << ", Latency = " << B.Latency
208                     << "} for argument " << *A << "\n");
209   return B;
210 }
211 
212 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) {
213   // We have already propagated a constant for this user.
214   if (KnownConstants.contains(User))
215     return {0, 0};
216 
217   // Cache the iterator before visiting.
218   LastVisited = Use ? KnownConstants.insert({Use, C}).first
219                     : KnownConstants.end();
220 
221   Cost CodeSize = 0;
222   if (auto *I = dyn_cast<SwitchInst>(User)) {
223     CodeSize = estimateSwitchInst(*I);
224   } else if (auto *I = dyn_cast<BranchInst>(User)) {
225     CodeSize = estimateBranchInst(*I);
226   } else {
227     C = visit(*User);
228     if (!C)
229       return {0, 0};
230   }
231 
232   // Even though it doesn't make sense to bind switch and branch instructions
233   // with a constant, unlike any other instruction type, it prevents estimating
234   // their bonus multiple times.
235   KnownConstants.insert({User, C});
236 
237   CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
238 
239   uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() /
240                     BFI.getEntryFreq();
241 
242   Cost Latency = Weight *
243       TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency);
244 
245   LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize
246                     << ", Latency = " << Latency << "} for user "
247                     << *User << "\n");
248 
249   Bonus B(CodeSize, Latency);
250   for (auto *U : User->users())
251     if (auto *UI = dyn_cast<Instruction>(U))
252       if (UI != User && isBlockExecutable(UI->getParent()))
253         B += getUserBonus(UI, User, C);
254 
255   return B;
256 }
257 
258 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
259   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
260 
261   if (I.getCondition() != LastVisited->first)
262     return 0;
263 
264   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
265   if (!C)
266     return 0;
267 
268   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
269   // Initialize the worklist with the dead basic blocks. These are the
270   // destination labels which are different from the one corresponding
271   // to \p C. They should be executable and have a unique predecessor.
272   SmallVector<BasicBlock *> WorkList;
273   for (const auto &Case : I.cases()) {
274     BasicBlock *BB = Case.getCaseSuccessor();
275     if (BB != Succ && isBlockExecutable(BB) &&
276         canEliminateSuccessor(I.getParent(), BB, DeadBlocks))
277       WorkList.push_back(BB);
278   }
279 
280   return estimateBasicBlocks(WorkList);
281 }
282 
283 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
284   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
285 
286   if (I.getCondition() != LastVisited->first)
287     return 0;
288 
289   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
290   // Initialize the worklist with the dead successor as long as
291   // it is executable and has a unique predecessor.
292   SmallVector<BasicBlock *> WorkList;
293   if (isBlockExecutable(Succ) &&
294       canEliminateSuccessor(I.getParent(), Succ, DeadBlocks))
295     WorkList.push_back(Succ);
296 
297   return estimateBasicBlocks(WorkList);
298 }
299 
300 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
301   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
302     return nullptr;
303 
304   bool Inserted = VisitedPHIs.insert(&I).second;
305   Constant *Const = nullptr;
306 
307   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
308     Value *V = I.getIncomingValue(Idx);
309     if (auto *Inst = dyn_cast<Instruction>(V))
310       if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
311         continue;
312     Constant *C = findConstantFor(V, KnownConstants);
313     if (!C) {
314       if (Inserted)
315         PendingPHIs.push_back(&I);
316       return nullptr;
317     }
318     if (!Const)
319       Const = C;
320     else if (C != Const)
321       return nullptr;
322   }
323   return Const;
324 }
325 
326 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
327   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
328 
329   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
330     return LastVisited->second;
331   return nullptr;
332 }
333 
334 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
335   Function *F = I.getCalledFunction();
336   if (!F || !canConstantFoldCallTo(&I, F))
337     return nullptr;
338 
339   SmallVector<Constant *, 8> Operands;
340   Operands.reserve(I.getNumOperands());
341 
342   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
343     Value *V = I.getOperand(Idx);
344     Constant *C = findConstantFor(V, KnownConstants);
345     if (!C)
346       return nullptr;
347     Operands.push_back(C);
348   }
349 
350   auto Ops = ArrayRef(Operands.begin(), Operands.end());
351   return ConstantFoldCall(&I, F, Ops);
352 }
353 
354 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
355   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
356 
357   if (isa<ConstantPointerNull>(LastVisited->second))
358     return nullptr;
359   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
360 }
361 
362 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
363   SmallVector<Constant *, 8> Operands;
364   Operands.reserve(I.getNumOperands());
365 
366   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
367     Value *V = I.getOperand(Idx);
368     Constant *C = findConstantFor(V, KnownConstants);
369     if (!C)
370       return nullptr;
371     Operands.push_back(C);
372   }
373 
374   auto Ops = ArrayRef(Operands.begin(), Operands.end());
375   return ConstantFoldInstOperands(&I, Ops, DL);
376 }
377 
378 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
379   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
380 
381   if (I.getCondition() != LastVisited->first)
382     return nullptr;
383 
384   Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
385                                                 : I.getTrueValue();
386   Constant *C = findConstantFor(V, KnownConstants);
387   return C;
388 }
389 
390 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
391   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
392                                  I.getType(), DL);
393 }
394 
395 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
396   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
397 
398   bool Swap = I.getOperand(1) == LastVisited->first;
399   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
400   Constant *Other = findConstantFor(V, KnownConstants);
401   if (!Other)
402     return nullptr;
403 
404   Constant *Const = LastVisited->second;
405   return Swap ?
406         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
407       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
408 }
409 
410 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
411   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
412 
413   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
414 }
415 
416 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
417   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
418 
419   bool Swap = I.getOperand(1) == LastVisited->first;
420   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
421   Constant *Other = findConstantFor(V, KnownConstants);
422   if (!Other)
423     return nullptr;
424 
425   Constant *Const = LastVisited->second;
426   return dyn_cast_or_null<Constant>(Swap ?
427         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
428       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
429 }
430 
431 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
432                                                    CallInst *Call) {
433   Value *StoreValue = nullptr;
434   for (auto *User : Alloca->users()) {
435     // We can't use llvm::isAllocaPromotable() as that would fail because of
436     // the usage in the CallInst, which is what we check here.
437     if (User == Call)
438       continue;
439     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
440       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
441         return nullptr;
442       continue;
443     }
444 
445     if (auto *Store = dyn_cast<StoreInst>(User)) {
446       // This is a duplicate store, bail out.
447       if (StoreValue || Store->isVolatile())
448         return nullptr;
449       StoreValue = Store->getValueOperand();
450       continue;
451     }
452     // Bail if there is any other unknown usage.
453     return nullptr;
454   }
455 
456   if (!StoreValue)
457     return nullptr;
458 
459   return getCandidateConstant(StoreValue);
460 }
461 
462 // A constant stack value is an AllocaInst that has a single constant
463 // value stored to it. Return this constant if such an alloca stack value
464 // is a function argument.
465 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
466                                                      Value *Val) {
467   if (!Val)
468     return nullptr;
469   Val = Val->stripPointerCasts();
470   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
471     return ConstVal;
472   auto *Alloca = dyn_cast<AllocaInst>(Val);
473   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
474     return nullptr;
475   return getPromotableAlloca(Alloca, Call);
476 }
477 
478 // To support specializing recursive functions, it is important to propagate
479 // constant arguments because after a first iteration of specialisation, a
480 // reduced example may look like this:
481 //
482 //     define internal void @RecursiveFn(i32* arg1) {
483 //       %temp = alloca i32, align 4
484 //       store i32 2 i32* %temp, align 4
485 //       call void @RecursiveFn.1(i32* nonnull %temp)
486 //       ret void
487 //     }
488 //
489 // Before a next iteration, we need to propagate the constant like so
490 // which allows further specialization in next iterations.
491 //
492 //     @funcspec.arg = internal constant i32 2
493 //
494 //     define internal void @someFunc(i32* arg1) {
495 //       call void @otherFunc(i32* nonnull @funcspec.arg)
496 //       ret void
497 //     }
498 //
499 // See if there are any new constant values for the callers of \p F via
500 // stack variables and promote them to global variables.
501 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
502   for (User *U : F->users()) {
503 
504     auto *Call = dyn_cast<CallInst>(U);
505     if (!Call)
506       continue;
507 
508     if (!Solver.isBlockExecutable(Call->getParent()))
509       continue;
510 
511     for (const Use &U : Call->args()) {
512       unsigned Idx = Call->getArgOperandNo(&U);
513       Value *ArgOp = Call->getArgOperand(Idx);
514       Type *ArgOpType = ArgOp->getType();
515 
516       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
517         continue;
518 
519       auto *ConstVal = getConstantStackValue(Call, ArgOp);
520       if (!ConstVal)
521         continue;
522 
523       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
524                                      GlobalValue::InternalLinkage, ConstVal,
525                                      "funcspec.arg");
526       if (ArgOpType != ConstVal->getType())
527         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
528 
529       Call->setArgOperand(Idx, GV);
530     }
531   }
532 }
533 
534 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
535 // interfere with the promoteConstantStackValues() optimization.
536 static void removeSSACopy(Function &F) {
537   for (BasicBlock &BB : F) {
538     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
539       auto *II = dyn_cast<IntrinsicInst>(&Inst);
540       if (!II)
541         continue;
542       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
543         continue;
544       Inst.replaceAllUsesWith(II->getOperand(0));
545       Inst.eraseFromParent();
546     }
547   }
548 }
549 
550 /// Remove any ssa_copy intrinsics that may have been introduced.
551 void FunctionSpecializer::cleanUpSSA() {
552   for (Function *F : Specializations)
553     removeSSACopy(*F);
554 }
555 
556 
557 template <> struct llvm::DenseMapInfo<SpecSig> {
558   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
559 
560   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
561 
562   static unsigned getHashValue(const SpecSig &S) {
563     return static_cast<unsigned>(hash_value(S));
564   }
565 
566   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
567     return LHS == RHS;
568   }
569 };
570 
571 FunctionSpecializer::~FunctionSpecializer() {
572   LLVM_DEBUG(
573     if (NumSpecsCreated > 0)
574       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
575              << " specializations in module " << M.getName() << "\n");
576   // Eliminate dead code.
577   removeDeadFunctions();
578   cleanUpSSA();
579 }
580 
581 /// Attempt to specialize functions in the module to enable constant
582 /// propagation across function boundaries.
583 ///
584 /// \returns true if at least one function is specialized.
585 bool FunctionSpecializer::run() {
586   // Find possible specializations for each function.
587   SpecMap SM;
588   SmallVector<Spec, 32> AllSpecs;
589   unsigned NumCandidates = 0;
590   for (Function &F : M) {
591     if (!isCandidateFunction(&F))
592       continue;
593 
594     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
595     CodeMetrics &Metrics = It->second;
596     //Analyze the function.
597     if (Inserted) {
598       SmallPtrSet<const Value *, 32> EphValues;
599       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
600       for (BasicBlock &BB : F)
601         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
602     }
603 
604     // If the code metrics reveal that we shouldn't duplicate the function,
605     // or if the code size implies that this function is easy to get inlined,
606     // then we shouldn't specialize it.
607     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
608         (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) &&
609          Metrics.NumInsts < MinFunctionSize))
610       continue;
611 
612     // TODO: For now only consider recursive functions when running multiple
613     // times. This should change if specialization on literal constants gets
614     // enabled.
615     if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
616       continue;
617 
618     int64_t Sz = *Metrics.NumInsts.getValue();
619     assert(Sz > 0 && "CodeSize should be positive");
620     // It is safe to down cast from int64_t, NumInsts is always positive.
621     unsigned FuncSize = static_cast<unsigned>(Sz);
622 
623     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
624                       << F.getName() << " is " << FuncSize << "\n");
625 
626     if (Inserted && Metrics.isRecursive)
627       promoteConstantStackValues(&F);
628 
629     if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
630       LLVM_DEBUG(
631           dbgs() << "FnSpecialization: No possible specializations found for "
632                  << F.getName() << "\n");
633       continue;
634     }
635 
636     ++NumCandidates;
637   }
638 
639   if (!NumCandidates) {
640     LLVM_DEBUG(
641         dbgs()
642         << "FnSpecialization: No possible specializations found in module\n");
643     return false;
644   }
645 
646   // Choose the most profitable specialisations, which fit in the module
647   // specialization budget, which is derived from maximum number of
648   // specializations per specialization candidate function.
649   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
650     return AllSpecs[I].Score > AllSpecs[J].Score;
651   };
652   const unsigned NSpecs =
653       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
654   SmallVector<unsigned> BestSpecs(NSpecs + 1);
655   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
656   if (AllSpecs.size() > NSpecs) {
657     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
658                       << "the maximum number of clones threshold.\n"
659                       << "FnSpecialization: Specializing the "
660                       << NSpecs
661                       << " most profitable candidates.\n");
662     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
663     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
664       BestSpecs[NSpecs] = I;
665       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
666       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
667     }
668   }
669 
670   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
671              for (unsigned I = 0; I < NSpecs; ++I) {
672                const Spec &S = AllSpecs[BestSpecs[I]];
673                dbgs() << "FnSpecialization: Function " << S.F->getName()
674                       << " , score " << S.Score << "\n";
675                for (const ArgInfo &Arg : S.Sig.Args)
676                  dbgs() << "FnSpecialization:   FormalArg = "
677                         << Arg.Formal->getNameOrAsOperand()
678                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
679                         << "\n";
680              });
681 
682   // Create the chosen specializations.
683   SmallPtrSet<Function *, 8> OriginalFuncs;
684   SmallVector<Function *> Clones;
685   for (unsigned I = 0; I < NSpecs; ++I) {
686     Spec &S = AllSpecs[BestSpecs[I]];
687     S.Clone = createSpecialization(S.F, S.Sig);
688 
689     // Update the known call sites to call the clone.
690     for (CallBase *Call : S.CallSites) {
691       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
692                         << " to call " << S.Clone->getName() << "\n");
693       Call->setCalledFunction(S.Clone);
694     }
695 
696     Clones.push_back(S.Clone);
697     OriginalFuncs.insert(S.F);
698   }
699 
700   Solver.solveWhileResolvedUndefsIn(Clones);
701 
702   // Update the rest of the call sites - these are the recursive calls, calls
703   // to discarded specialisations and calls that may match a specialisation
704   // after the solver runs.
705   for (Function *F : OriginalFuncs) {
706     auto [Begin, End] = SM[F];
707     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
708   }
709 
710   for (Function *F : Clones) {
711     if (F->getReturnType()->isVoidTy())
712       continue;
713     if (F->getReturnType()->isStructTy()) {
714       auto *STy = cast<StructType>(F->getReturnType());
715       if (!Solver.isStructLatticeConstant(F, STy))
716         continue;
717     } else {
718       auto It = Solver.getTrackedRetVals().find(F);
719       assert(It != Solver.getTrackedRetVals().end() &&
720              "Return value ought to be tracked");
721       if (SCCPSolver::isOverdefined(It->second))
722         continue;
723     }
724     for (User *U : F->users()) {
725       if (auto *CS = dyn_cast<CallBase>(U)) {
726         //The user instruction does not call our function.
727         if (CS->getCalledFunction() != F)
728           continue;
729         Solver.resetLatticeValueFor(CS);
730       }
731     }
732   }
733 
734   // Rerun the solver to notify the users of the modified callsites.
735   Solver.solveWhileResolvedUndefs();
736 
737   for (Function *F : OriginalFuncs)
738     if (FunctionMetrics[F].isRecursive)
739       promoteConstantStackValues(F);
740 
741   return true;
742 }
743 
744 void FunctionSpecializer::removeDeadFunctions() {
745   for (Function *F : FullySpecialized) {
746     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
747                       << F->getName() << "\n");
748     if (FAM)
749       FAM->clear(*F, F->getName());
750     F->eraseFromParent();
751   }
752   FullySpecialized.clear();
753 }
754 
755 /// Clone the function \p F and remove the ssa_copy intrinsics added by
756 /// the SCCPSolver in the cloned version.
757 static Function *cloneCandidateFunction(Function *F) {
758   ValueToValueMapTy Mappings;
759   Function *Clone = CloneFunction(F, Mappings);
760   removeSSACopy(*Clone);
761   return Clone;
762 }
763 
764 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
765                                               SmallVectorImpl<Spec> &AllSpecs,
766                                               SpecMap &SM) {
767   // A mapping from a specialisation signature to the index of the respective
768   // entry in the all specialisation array. Used to ensure uniqueness of
769   // specialisations.
770   DenseMap<SpecSig, unsigned> UniqueSpecs;
771 
772   // Get a list of interesting arguments.
773   SmallVector<Argument *> Args;
774   for (Argument &Arg : F->args())
775     if (isArgumentInteresting(&Arg))
776       Args.push_back(&Arg);
777 
778   if (Args.empty())
779     return false;
780 
781   for (User *U : F->users()) {
782     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
783       continue;
784     auto &CS = *cast<CallBase>(U);
785 
786     // The user instruction does not call our function.
787     if (CS.getCalledFunction() != F)
788       continue;
789 
790     // If the call site has attribute minsize set, that callsite won't be
791     // specialized.
792     if (CS.hasFnAttr(Attribute::MinSize))
793       continue;
794 
795     // If the parent of the call site will never be executed, we don't need
796     // to worry about the passed value.
797     if (!Solver.isBlockExecutable(CS.getParent()))
798       continue;
799 
800     // Examine arguments and create a specialisation candidate from the
801     // constant operands of this call site.
802     SpecSig S;
803     for (Argument *A : Args) {
804       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
805       if (!C)
806         continue;
807       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
808                         << A->getName() << " : " << C->getNameOrAsOperand()
809                         << "\n");
810       S.Args.push_back({A, C});
811     }
812 
813     if (S.Args.empty())
814       continue;
815 
816     // Check if we have encountered the same specialisation already.
817     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
818       // Existing specialisation. Add the call to the list to rewrite, unless
819       // it's a recursive call. A specialisation, generated because of a
820       // recursive call may end up as not the best specialisation for all
821       // the cloned instances of this call, which result from specialising
822       // functions. Hence we don't rewrite the call directly, but match it with
823       // the best specialisation once all specialisations are known.
824       if (CS.getFunction() == F)
825         continue;
826       const unsigned Index = It->second;
827       AllSpecs[Index].CallSites.push_back(&CS);
828     } else {
829       // Calculate the specialisation gain.
830       Bonus B;
831       unsigned Score = 0;
832       InstCostVisitor Visitor = getInstCostVisitorFor(F);
833       for (ArgInfo &A : S.Args) {
834         B += Visitor.getSpecializationBonus(A.Formal, A.Actual);
835         Score += getInliningBonus(A.Formal, A.Actual);
836       }
837       B += Visitor.getBonusFromPendingPHIs();
838 
839 
840       LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
841                         << B.CodeSize << ", Latency = " << B.Latency
842                         << ", Inlining = " << Score << "}\n");
843 
844       auto IsProfitable = [&FuncSize](Bonus &B, unsigned Score) -> bool {
845         // No check required.
846         if (ForceSpecialization)
847           return true;
848         // Minimum inlining bonus.
849         if (Score > MinInliningBonus * FuncSize / 100)
850           return true;
851         // Minimum codesize savings.
852         if (B.CodeSize < MinCodeSizeSavings * FuncSize / 100)
853           return false;
854         // Minimum latency savings.
855         if (B.Latency < MinLatencySavings * FuncSize / 100)
856           return false;
857         return true;
858       };
859 
860       // Discard unprofitable specialisations.
861       if (!IsProfitable(B, Score))
862         continue;
863 
864       // Create a new specialisation entry.
865       Score += std::max(B.CodeSize, B.Latency);
866       auto &Spec = AllSpecs.emplace_back(F, S, Score);
867       if (CS.getFunction() != F)
868         Spec.CallSites.push_back(&CS);
869       const unsigned Index = AllSpecs.size() - 1;
870       UniqueSpecs[S] = Index;
871       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
872         It->second.second = Index + 1;
873     }
874   }
875 
876   return !UniqueSpecs.empty();
877 }
878 
879 bool FunctionSpecializer::isCandidateFunction(Function *F) {
880   if (F->isDeclaration() || F->arg_empty())
881     return false;
882 
883   if (F->hasFnAttribute(Attribute::NoDuplicate))
884     return false;
885 
886   // Do not specialize the cloned function again.
887   if (Specializations.contains(F))
888     return false;
889 
890   // If we're optimizing the function for size, we shouldn't specialize it.
891   if (F->hasOptSize() ||
892       shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
893     return false;
894 
895   // Exit if the function is not executable. There's no point in specializing
896   // a dead function.
897   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
898     return false;
899 
900   // It wastes time to specialize a function which would get inlined finally.
901   if (F->hasFnAttribute(Attribute::AlwaysInline))
902     return false;
903 
904   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
905                     << "\n");
906   return true;
907 }
908 
909 Function *FunctionSpecializer::createSpecialization(Function *F,
910                                                     const SpecSig &S) {
911   Function *Clone = cloneCandidateFunction(F);
912 
913   // The original function does not neccessarily have internal linkage, but the
914   // clone must.
915   Clone->setLinkage(GlobalValue::InternalLinkage);
916 
917   // Initialize the lattice state of the arguments of the function clone,
918   // marking the argument on which we specialized the function constant
919   // with the given value.
920   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
921   Solver.markBlockExecutable(&Clone->front());
922   Solver.addArgumentTrackedFunction(Clone);
923   Solver.addTrackedFunction(Clone);
924 
925   // Mark all the specialized functions
926   Specializations.insert(Clone);
927   ++NumSpecsCreated;
928 
929   return Clone;
930 }
931 
932 /// Compute the inlining bonus for replacing argument \p A with constant \p C.
933 /// The below heuristic is only concerned with exposing inlining
934 /// opportunities via indirect call promotion. If the argument is not a
935 /// (potentially casted) function pointer, give up.
936 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
937   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
938   if (!CalledFunction)
939     return 0;
940 
941   // Get TTI for the called function (used for the inline cost).
942   auto &CalleeTTI = (GetTTI)(*CalledFunction);
943 
944   // Look at all the call sites whose called value is the argument.
945   // Specializing the function on the argument would allow these indirect
946   // calls to be promoted to direct calls. If the indirect call promotion
947   // would likely enable the called function to be inlined, specializing is a
948   // good idea.
949   int InliningBonus = 0;
950   for (User *U : A->users()) {
951     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
952       continue;
953     auto *CS = cast<CallBase>(U);
954     if (CS->getCalledOperand() != A)
955       continue;
956     if (CS->getFunctionType() != CalledFunction->getFunctionType())
957       continue;
958 
959     // Get the cost of inlining the called function at this call site. Note
960     // that this is only an estimate. The called function may eventually
961     // change in a way that leads to it not being inlined here, even though
962     // inlining looks profitable now. For example, one of its called
963     // functions may be inlined into it, making the called function too large
964     // to be inlined into this call site.
965     //
966     // We apply a boost for performing indirect call promotion by increasing
967     // the default threshold by the threshold for indirect calls.
968     auto Params = getInlineParams();
969     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
970     InlineCost IC =
971         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
972 
973     // We clamp the bonus for this call to be between zero and the default
974     // threshold.
975     if (IC.isAlways())
976       InliningBonus += Params.DefaultThreshold;
977     else if (IC.isVariable() && IC.getCostDelta() > 0)
978       InliningBonus += IC.getCostDelta();
979 
980     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus
981                       << " for user " << *U << "\n");
982   }
983 
984   return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
985 }
986 
987 /// Determine if it is possible to specialise the function for constant values
988 /// of the formal parameter \p A.
989 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
990   // No point in specialization if the argument is unused.
991   if (A->user_empty())
992     return false;
993 
994   Type *Ty = A->getType();
995   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
996       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
997     return false;
998 
999   // SCCP solver does not record an argument that will be constructed on
1000   // stack.
1001   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
1002     return false;
1003 
1004   // For non-argument-tracked functions every argument is overdefined.
1005   if (!Solver.isArgumentTrackedFunction(A->getParent()))
1006     return true;
1007 
1008   // Check the lattice value and decide if we should attemt to specialize,
1009   // based on this argument. No point in specialization, if the lattice value
1010   // is already a constant.
1011   bool IsOverdefined = Ty->isStructTy()
1012     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
1013     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
1014 
1015   LLVM_DEBUG(
1016     if (IsOverdefined)
1017       dbgs() << "FnSpecialization: Found interesting parameter "
1018              << A->getNameOrAsOperand() << "\n";
1019     else
1020       dbgs() << "FnSpecialization: Nothing to do, parameter "
1021              << A->getNameOrAsOperand() << " is already constant\n";
1022   );
1023   return IsOverdefined;
1024 }
1025 
1026 /// Check if the value \p V  (an actual argument) is a constant or can only
1027 /// have a constant value. Return that constant.
1028 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
1029   if (isa<PoisonValue>(V))
1030     return nullptr;
1031 
1032   // Select for possible specialisation values that are constants or
1033   // are deduced to be constants or constant ranges with a single element.
1034   Constant *C = dyn_cast<Constant>(V);
1035   if (!C)
1036     C = Solver.getConstantOrNull(V);
1037 
1038   // Don't specialize on (anything derived from) the address of a non-constant
1039   // global variable, unless explicitly enabled.
1040   if (C && C->getType()->isPointerTy() && !C->isNullValue())
1041     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
1042         GV && !(GV->isConstant() || SpecializeOnAddress))
1043       return nullptr;
1044 
1045   return C;
1046 }
1047 
1048 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
1049                                           const Spec *End) {
1050   // Collect the call sites that need updating.
1051   SmallVector<CallBase *> ToUpdate;
1052   for (User *U : F->users())
1053     if (auto *CS = dyn_cast<CallBase>(U);
1054         CS && CS->getCalledFunction() == F &&
1055         Solver.isBlockExecutable(CS->getParent()))
1056       ToUpdate.push_back(CS);
1057 
1058   unsigned NCallsLeft = ToUpdate.size();
1059   for (CallBase *CS : ToUpdate) {
1060     bool ShouldDecrementCount = CS->getFunction() == F;
1061 
1062     // Find the best matching specialisation.
1063     const Spec *BestSpec = nullptr;
1064     for (const Spec &S : make_range(Begin, End)) {
1065       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1066         continue;
1067 
1068       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1069             unsigned ArgNo = Arg.Formal->getArgNo();
1070             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1071           }))
1072         continue;
1073 
1074       BestSpec = &S;
1075     }
1076 
1077     if (BestSpec) {
1078       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1079                         << " to call " << BestSpec->Clone->getName() << "\n");
1080       CS->setCalledFunction(BestSpec->Clone);
1081       ShouldDecrementCount = true;
1082     }
1083 
1084     if (ShouldDecrementCount)
1085       --NCallsLeft;
1086   }
1087 
1088   // If the function has been completely specialized, the original function
1089   // is no longer needed. Mark it unreachable.
1090   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1091     Solver.markFunctionUnreachable(F);
1092     FullySpecialized.insert(F);
1093   }
1094 }
1095