xref: /llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 06664fdc7680f7f9fa9b0a414a8fb8df2f913d48)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/Analysis/CodeMetrics.h"
12 #include "llvm/Analysis/ConstantFolding.h"
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueLattice.h"
17 #include "llvm/Analysis/ValueLatticeUtils.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/Transforms/Scalar/SCCP.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include "llvm/Transforms/Utils/SCCPSolver.h"
23 #include "llvm/Transforms/Utils/SizeOpts.h"
24 #include <cmath>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "function-specialization"
29 
30 STATISTIC(NumSpecsCreated, "Number of specializations created");
31 
32 static cl::opt<bool> ForceSpecialization(
33     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
34     "Force function specialization for every call site with a constant "
35     "argument"));
36 
37 static cl::opt<unsigned> MaxClones(
38     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
39     "The maximum number of clones allowed for a single function "
40     "specialization"));
41 
42 static cl::opt<unsigned>
43     MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100),
44                            cl::Hidden,
45                            cl::desc("The maximum number of iterations allowed "
46                                     "when searching for transitive "
47                                     "phis"));
48 
49 static cl::opt<unsigned> MaxIncomingPhiValues(
50     "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden,
51     cl::desc("The maximum number of incoming values a PHI node can have to be "
52              "considered during the specialization bonus estimation"));
53 
54 static cl::opt<unsigned> MaxBlockPredecessors(
55     "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
56     "The maximum number of predecessors a basic block can have to be "
57     "considered during the estimation of dead code"));
58 
59 static cl::opt<unsigned> MinFunctionSize(
60     "funcspec-min-function-size", cl::init(500), cl::Hidden,
61     cl::desc("Don't specialize functions that have less than this number of "
62              "instructions"));
63 
64 static cl::opt<unsigned> MaxCodeSizeGrowth(
65     "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc(
66     "Maximum codesize growth allowed per function"));
67 
68 static cl::opt<unsigned> MinCodeSizeSavings(
69     "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc(
70     "Reject specializations whose codesize savings are less than this"
71     "much percent of the original function size"));
72 
73 static cl::opt<unsigned> MinLatencySavings(
74     "funcspec-min-latency-savings", cl::init(40), cl::Hidden,
75     cl::desc("Reject specializations whose latency savings are less than this"
76              "much percent of the original function size"));
77 
78 static cl::opt<unsigned> MinInliningBonus(
79     "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc(
80     "Reject specializations whose inlining bonus is less than this"
81     "much percent of the original function size"));
82 
83 static cl::opt<bool> SpecializeOnAddress(
84     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
85     "Enable function specialization on the address of global values"));
86 
87 static cl::opt<bool> SpecializeLiteralConstant(
88     "funcspec-for-literal-constant", cl::init(true), cl::Hidden,
89     cl::desc(
90         "Enable specialization of functions that take a literal constant as an "
91         "argument"));
92 
93 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ,
94                                          DenseSet<BasicBlock *> &DeadBlocks) {
95   unsigned I = 0;
96   return all_of(predecessors(Succ),
97     [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) {
98     return I++ < MaxBlockPredecessors &&
99       (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred));
100   });
101 }
102 
103 // Estimates the codesize savings due to dead code after constant propagation.
104 // \p WorkList represents the basic blocks of a specialization which will
105 // eventually become dead once we replace instructions that are known to be
106 // constants. The successors of such blocks are added to the list as long as
107 // the \p Solver found they were executable prior to specialization, and only
108 // if all their predecessors are dead.
109 Cost InstCostVisitor::estimateBasicBlocks(
110                           SmallVectorImpl<BasicBlock *> &WorkList) {
111   Cost CodeSize = 0;
112   // Accumulate the codesize savings of each basic block.
113   while (!WorkList.empty()) {
114     BasicBlock *BB = WorkList.pop_back_val();
115 
116     // These blocks are considered dead as far as the InstCostVisitor
117     // is concerned. They haven't been proven dead yet by the Solver,
118     // but may become if we propagate the specialization arguments.
119     if (!DeadBlocks.insert(BB).second)
120       continue;
121 
122     for (Instruction &I : *BB) {
123       // Disregard SSA copies.
124       if (auto *II = dyn_cast<IntrinsicInst>(&I))
125         if (II->getIntrinsicID() == Intrinsic::ssa_copy)
126           continue;
127       // If it's a known constant we have already accounted for it.
128       if (KnownConstants.contains(&I))
129         continue;
130 
131       Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
132 
133       LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C
134                         << " for user " << I << "\n");
135       CodeSize += C;
136     }
137 
138     // Keep adding dead successors to the list as long as they are
139     // executable and only reachable from dead blocks.
140     for (BasicBlock *SuccBB : successors(BB))
141       if (isBlockExecutable(SuccBB) &&
142           canEliminateSuccessor(BB, SuccBB, DeadBlocks))
143         WorkList.push_back(SuccBB);
144   }
145   return CodeSize;
146 }
147 
148 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
149   if (auto *C = dyn_cast<Constant>(V))
150     return C;
151   return KnownConstants.lookup(V);
152 }
153 
154 Cost InstCostVisitor::getCodeSizeSavingsFromPendingPHIs() {
155   Cost CodeSize;
156   while (!PendingPHIs.empty()) {
157     Instruction *Phi = PendingPHIs.pop_back_val();
158     // The pending PHIs could have been proven dead by now.
159     if (isBlockExecutable(Phi->getParent()))
160       CodeSize += getCodeSizeSavingsForUser(Phi);
161   }
162   return CodeSize;
163 }
164 
165 /// Compute the codesize savings for replacing argument \p A with constant \p C.
166 Cost InstCostVisitor::getCodeSizeSavingsForArg(Argument *A, Constant *C) {
167   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
168                     << C->getNameOrAsOperand() << "\n");
169   Cost CodeSize;
170   for (auto *U : A->users())
171     if (auto *UI = dyn_cast<Instruction>(U))
172       if (isBlockExecutable(UI->getParent()))
173         CodeSize += getCodeSizeSavingsForUser(UI, A, C);
174 
175   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = "
176                     << CodeSize << "} for argument " << *A << "\n");
177   return CodeSize;
178 }
179 
180 /// Compute the latency savings from replacing all arguments with constants for
181 /// a specialization candidate. As this function computes the latency savings
182 /// for all Instructions in KnownConstants at once, it should be called only
183 /// after every instruction has been visited, i.e. after:
184 ///
185 /// * getCodeSizeSavingsForArg has been run for every constant argument of a
186 ///   specialization candidate
187 ///
188 /// * getCodeSizeSavingsFromPendingPHIs has been run
189 ///
190 /// to ensure that the latency savings are calculated for all Instructions we
191 /// have visited and found to be constant.
192 Cost InstCostVisitor::getLatencySavingsForKnownConstants() {
193   auto &BFI = GetBFI(*F);
194   Cost TotalLatency = 0;
195 
196   for (auto Pair : KnownConstants) {
197     Instruction *I = dyn_cast<Instruction>(Pair.first);
198     if (!I)
199       continue;
200 
201     uint64_t Weight = BFI.getBlockFreq(I->getParent()).getFrequency() /
202                       BFI.getEntryFreq().getFrequency();
203 
204     Cost Latency =
205         Weight * TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
206 
207     LLVM_DEBUG(dbgs() << "FnSpecialization:     {Latency = " << Latency
208                       << "} for instruction " << *I << "\n");
209 
210     TotalLatency += Latency;
211   }
212 
213   return TotalLatency;
214 }
215 
216 Cost InstCostVisitor::getCodeSizeSavingsForUser(Instruction *User, Value *Use,
217                                                 Constant *C) {
218   // We have already propagated a constant for this user.
219   if (KnownConstants.contains(User))
220     return 0;
221 
222   // Cache the iterator before visiting.
223   LastVisited = Use ? KnownConstants.insert({Use, C}).first
224                     : KnownConstants.end();
225 
226   Cost CodeSize = 0;
227   if (auto *I = dyn_cast<SwitchInst>(User)) {
228     CodeSize = estimateSwitchInst(*I);
229   } else if (auto *I = dyn_cast<BranchInst>(User)) {
230     CodeSize = estimateBranchInst(*I);
231   } else {
232     C = visit(*User);
233     if (!C)
234       return 0;
235   }
236 
237   // Even though it doesn't make sense to bind switch and branch instructions
238   // with a constant, unlike any other instruction type, it prevents estimating
239   // their bonus multiple times.
240   KnownConstants.insert({User, C});
241 
242   CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
243 
244   LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize
245                     << "} for user " << *User << "\n");
246 
247   for (auto *U : User->users())
248     if (auto *UI = dyn_cast<Instruction>(U))
249       if (UI != User && isBlockExecutable(UI->getParent()))
250         CodeSize += getCodeSizeSavingsForUser(UI, User, C);
251 
252   return CodeSize;
253 }
254 
255 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
256   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
257 
258   if (I.getCondition() != LastVisited->first)
259     return 0;
260 
261   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
262   if (!C)
263     return 0;
264 
265   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
266   // Initialize the worklist with the dead basic blocks. These are the
267   // destination labels which are different from the one corresponding
268   // to \p C. They should be executable and have a unique predecessor.
269   SmallVector<BasicBlock *> WorkList;
270   for (const auto &Case : I.cases()) {
271     BasicBlock *BB = Case.getCaseSuccessor();
272     if (BB != Succ && isBlockExecutable(BB) &&
273         canEliminateSuccessor(I.getParent(), BB, DeadBlocks))
274       WorkList.push_back(BB);
275   }
276 
277   return estimateBasicBlocks(WorkList);
278 }
279 
280 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
281   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
282 
283   if (I.getCondition() != LastVisited->first)
284     return 0;
285 
286   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
287   // Initialize the worklist with the dead successor as long as
288   // it is executable and has a unique predecessor.
289   SmallVector<BasicBlock *> WorkList;
290   if (isBlockExecutable(Succ) &&
291       canEliminateSuccessor(I.getParent(), Succ, DeadBlocks))
292     WorkList.push_back(Succ);
293 
294   return estimateBasicBlocks(WorkList);
295 }
296 
297 bool InstCostVisitor::discoverTransitivelyIncomingValues(
298     Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) {
299 
300   SmallVector<PHINode *, 64> WorkList;
301   WorkList.push_back(Root);
302   unsigned Iter = 0;
303 
304   while (!WorkList.empty()) {
305     PHINode *PN = WorkList.pop_back_val();
306 
307     if (++Iter > MaxDiscoveryIterations ||
308         PN->getNumIncomingValues() > MaxIncomingPhiValues)
309       return false;
310 
311     if (!TransitivePHIs.insert(PN).second)
312       continue;
313 
314     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
315       Value *V = PN->getIncomingValue(I);
316 
317       // Disregard self-references and dead incoming values.
318       if (auto *Inst = dyn_cast<Instruction>(V))
319         if (Inst == PN || DeadBlocks.contains(PN->getIncomingBlock(I)))
320           continue;
321 
322       if (Constant *C = findConstantFor(V, KnownConstants)) {
323         // Not all incoming values are the same constant. Bail immediately.
324         if (C != Const)
325           return false;
326         continue;
327       }
328 
329       if (auto *Phi = dyn_cast<PHINode>(V)) {
330         WorkList.push_back(Phi);
331         continue;
332       }
333 
334       // We can't reason about anything else.
335       return false;
336     }
337   }
338   return true;
339 }
340 
341 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
342   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
343     return nullptr;
344 
345   bool Inserted = VisitedPHIs.insert(&I).second;
346   Constant *Const = nullptr;
347   bool HaveSeenIncomingPHI = false;
348 
349   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
350     Value *V = I.getIncomingValue(Idx);
351 
352     // Disregard self-references and dead incoming values.
353     if (auto *Inst = dyn_cast<Instruction>(V))
354       if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
355         continue;
356 
357     if (Constant *C = findConstantFor(V, KnownConstants)) {
358       if (!Const)
359         Const = C;
360       // Not all incoming values are the same constant. Bail immediately.
361       if (C != Const)
362         return nullptr;
363       continue;
364     }
365 
366     if (Inserted) {
367       // First time we are seeing this phi. We will retry later, after
368       // all the constant arguments have been propagated. Bail for now.
369       PendingPHIs.push_back(&I);
370       return nullptr;
371     }
372 
373     if (isa<PHINode>(V)) {
374       // Perhaps it is a Transitive Phi. We will confirm later.
375       HaveSeenIncomingPHI = true;
376       continue;
377     }
378 
379     // We can't reason about anything else.
380     return nullptr;
381   }
382 
383   if (!Const)
384     return nullptr;
385 
386   if (!HaveSeenIncomingPHI)
387     return Const;
388 
389   DenseSet<PHINode *> TransitivePHIs;
390   if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs))
391     return nullptr;
392 
393   return Const;
394 }
395 
396 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
397   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
398 
399   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
400     return LastVisited->second;
401   return nullptr;
402 }
403 
404 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
405   Function *F = I.getCalledFunction();
406   if (!F || !canConstantFoldCallTo(&I, F))
407     return nullptr;
408 
409   SmallVector<Constant *, 8> Operands;
410   Operands.reserve(I.getNumOperands());
411 
412   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
413     Value *V = I.getOperand(Idx);
414     Constant *C = findConstantFor(V, KnownConstants);
415     if (!C)
416       return nullptr;
417     Operands.push_back(C);
418   }
419 
420   auto Ops = ArrayRef(Operands.begin(), Operands.end());
421   return ConstantFoldCall(&I, F, Ops);
422 }
423 
424 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
425   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
426 
427   if (isa<ConstantPointerNull>(LastVisited->second))
428     return nullptr;
429   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
430 }
431 
432 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
433   SmallVector<Constant *, 8> Operands;
434   Operands.reserve(I.getNumOperands());
435 
436   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
437     Value *V = I.getOperand(Idx);
438     Constant *C = findConstantFor(V, KnownConstants);
439     if (!C)
440       return nullptr;
441     Operands.push_back(C);
442   }
443 
444   auto Ops = ArrayRef(Operands.begin(), Operands.end());
445   return ConstantFoldInstOperands(&I, Ops, DL);
446 }
447 
448 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
449   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
450 
451   if (I.getCondition() == LastVisited->first) {
452     Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
453                                                   : I.getTrueValue();
454     return findConstantFor(V, KnownConstants);
455   }
456   if (Constant *Condition = findConstantFor(I.getCondition(), KnownConstants))
457     if ((I.getTrueValue() == LastVisited->first && Condition->isOneValue()) ||
458         (I.getFalseValue() == LastVisited->first && Condition->isZeroValue()))
459       return LastVisited->second;
460   return nullptr;
461 }
462 
463 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
464   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
465                                  I.getType(), DL);
466 }
467 
468 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
469   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
470 
471   bool Swap = I.getOperand(1) == LastVisited->first;
472   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
473   Constant *Other = findConstantFor(V, KnownConstants);
474   if (!Other)
475     return nullptr;
476 
477   Constant *Const = LastVisited->second;
478   return Swap ?
479         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
480       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
481 }
482 
483 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
484   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
485 
486   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
487 }
488 
489 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
490   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
491 
492   bool Swap = I.getOperand(1) == LastVisited->first;
493   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
494   Constant *Other = findConstantFor(V, KnownConstants);
495   if (!Other)
496     return nullptr;
497 
498   Constant *Const = LastVisited->second;
499   return dyn_cast_or_null<Constant>(Swap ?
500         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
501       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
502 }
503 
504 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
505                                                    CallInst *Call) {
506   Value *StoreValue = nullptr;
507   for (auto *User : Alloca->users()) {
508     // We can't use llvm::isAllocaPromotable() as that would fail because of
509     // the usage in the CallInst, which is what we check here.
510     if (User == Call)
511       continue;
512 
513     if (auto *Store = dyn_cast<StoreInst>(User)) {
514       // This is a duplicate store, bail out.
515       if (StoreValue || Store->isVolatile())
516         return nullptr;
517       StoreValue = Store->getValueOperand();
518       continue;
519     }
520     // Bail if there is any other unknown usage.
521     return nullptr;
522   }
523 
524   if (!StoreValue)
525     return nullptr;
526 
527   return getCandidateConstant(StoreValue);
528 }
529 
530 // A constant stack value is an AllocaInst that has a single constant
531 // value stored to it. Return this constant if such an alloca stack value
532 // is a function argument.
533 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
534                                                      Value *Val) {
535   if (!Val)
536     return nullptr;
537   Val = Val->stripPointerCasts();
538   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
539     return ConstVal;
540   auto *Alloca = dyn_cast<AllocaInst>(Val);
541   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
542     return nullptr;
543   return getPromotableAlloca(Alloca, Call);
544 }
545 
546 // To support specializing recursive functions, it is important to propagate
547 // constant arguments because after a first iteration of specialisation, a
548 // reduced example may look like this:
549 //
550 //     define internal void @RecursiveFn(i32* arg1) {
551 //       %temp = alloca i32, align 4
552 //       store i32 2 i32* %temp, align 4
553 //       call void @RecursiveFn.1(i32* nonnull %temp)
554 //       ret void
555 //     }
556 //
557 // Before a next iteration, we need to propagate the constant like so
558 // which allows further specialization in next iterations.
559 //
560 //     @funcspec.arg = internal constant i32 2
561 //
562 //     define internal void @someFunc(i32* arg1) {
563 //       call void @otherFunc(i32* nonnull @funcspec.arg)
564 //       ret void
565 //     }
566 //
567 // See if there are any new constant values for the callers of \p F via
568 // stack variables and promote them to global variables.
569 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
570   for (User *U : F->users()) {
571 
572     auto *Call = dyn_cast<CallInst>(U);
573     if (!Call)
574       continue;
575 
576     if (!Solver.isBlockExecutable(Call->getParent()))
577       continue;
578 
579     for (const Use &U : Call->args()) {
580       unsigned Idx = Call->getArgOperandNo(&U);
581       Value *ArgOp = Call->getArgOperand(Idx);
582       Type *ArgOpType = ArgOp->getType();
583 
584       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
585         continue;
586 
587       auto *ConstVal = getConstantStackValue(Call, ArgOp);
588       if (!ConstVal)
589         continue;
590 
591       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
592                                      GlobalValue::InternalLinkage, ConstVal,
593                                      "specialized.arg." + Twine(++NGlobals));
594       Call->setArgOperand(Idx, GV);
595     }
596   }
597 }
598 
599 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
600 // interfere with the promoteConstantStackValues() optimization.
601 static void removeSSACopy(Function &F) {
602   for (BasicBlock &BB : F) {
603     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
604       auto *II = dyn_cast<IntrinsicInst>(&Inst);
605       if (!II)
606         continue;
607       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
608         continue;
609       Inst.replaceAllUsesWith(II->getOperand(0));
610       Inst.eraseFromParent();
611     }
612   }
613 }
614 
615 /// Remove any ssa_copy intrinsics that may have been introduced.
616 void FunctionSpecializer::cleanUpSSA() {
617   for (Function *F : Specializations)
618     removeSSACopy(*F);
619 }
620 
621 
622 template <> struct llvm::DenseMapInfo<SpecSig> {
623   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
624 
625   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
626 
627   static unsigned getHashValue(const SpecSig &S) {
628     return static_cast<unsigned>(hash_value(S));
629   }
630 
631   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
632     return LHS == RHS;
633   }
634 };
635 
636 FunctionSpecializer::~FunctionSpecializer() {
637   LLVM_DEBUG(
638     if (NumSpecsCreated > 0)
639       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
640              << " specializations in module " << M.getName() << "\n");
641   // Eliminate dead code.
642   removeDeadFunctions();
643   cleanUpSSA();
644 }
645 
646 /// Attempt to specialize functions in the module to enable constant
647 /// propagation across function boundaries.
648 ///
649 /// \returns true if at least one function is specialized.
650 bool FunctionSpecializer::run() {
651   // Find possible specializations for each function.
652   SpecMap SM;
653   SmallVector<Spec, 32> AllSpecs;
654   unsigned NumCandidates = 0;
655   for (Function &F : M) {
656     if (!isCandidateFunction(&F))
657       continue;
658 
659     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
660     CodeMetrics &Metrics = It->second;
661     //Analyze the function.
662     if (Inserted) {
663       SmallPtrSet<const Value *, 32> EphValues;
664       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
665       for (BasicBlock &BB : F)
666         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
667     }
668 
669     // When specializing literal constants is enabled, always require functions
670     // to be larger than MinFunctionSize, to prevent excessive specialization.
671     const bool RequireMinSize =
672         !ForceSpecialization &&
673         (SpecializeLiteralConstant || !F.hasFnAttribute(Attribute::NoInline));
674 
675     // If the code metrics reveal that we shouldn't duplicate the function,
676     // or if the code size implies that this function is easy to get inlined,
677     // then we shouldn't specialize it.
678     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
679         (RequireMinSize && Metrics.NumInsts < MinFunctionSize))
680       continue;
681 
682     // When specialization on literal constants is disabled, only consider
683     // recursive functions when running multiple times to save wasted analysis,
684     // as we will not be able to specialize on any newly found literal constant
685     // return values.
686     if (!SpecializeLiteralConstant && !Inserted && !Metrics.isRecursive)
687       continue;
688 
689     int64_t Sz = *Metrics.NumInsts.getValue();
690     assert(Sz > 0 && "CodeSize should be positive");
691     // It is safe to down cast from int64_t, NumInsts is always positive.
692     unsigned FuncSize = static_cast<unsigned>(Sz);
693 
694     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
695                       << F.getName() << " is " << FuncSize << "\n");
696 
697     if (Inserted && Metrics.isRecursive)
698       promoteConstantStackValues(&F);
699 
700     if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
701       LLVM_DEBUG(
702           dbgs() << "FnSpecialization: No possible specializations found for "
703                  << F.getName() << "\n");
704       continue;
705     }
706 
707     ++NumCandidates;
708   }
709 
710   if (!NumCandidates) {
711     LLVM_DEBUG(
712         dbgs()
713         << "FnSpecialization: No possible specializations found in module\n");
714     return false;
715   }
716 
717   // Choose the most profitable specialisations, which fit in the module
718   // specialization budget, which is derived from maximum number of
719   // specializations per specialization candidate function.
720   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
721     if (AllSpecs[I].Score != AllSpecs[J].Score)
722       return AllSpecs[I].Score > AllSpecs[J].Score;
723     return I > J;
724   };
725   const unsigned NSpecs =
726       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
727   SmallVector<unsigned> BestSpecs(NSpecs + 1);
728   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
729   if (AllSpecs.size() > NSpecs) {
730     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
731                       << "the maximum number of clones threshold.\n"
732                       << "FnSpecialization: Specializing the "
733                       << NSpecs
734                       << " most profitable candidates.\n");
735     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
736     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
737       BestSpecs[NSpecs] = I;
738       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
739       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
740     }
741   }
742 
743   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
744              for (unsigned I = 0; I < NSpecs; ++I) {
745                const Spec &S = AllSpecs[BestSpecs[I]];
746                dbgs() << "FnSpecialization: Function " << S.F->getName()
747                       << " , score " << S.Score << "\n";
748                for (const ArgInfo &Arg : S.Sig.Args)
749                  dbgs() << "FnSpecialization:   FormalArg = "
750                         << Arg.Formal->getNameOrAsOperand()
751                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
752                         << "\n";
753              });
754 
755   // Create the chosen specializations.
756   SmallPtrSet<Function *, 8> OriginalFuncs;
757   SmallVector<Function *> Clones;
758   for (unsigned I = 0; I < NSpecs; ++I) {
759     Spec &S = AllSpecs[BestSpecs[I]];
760     S.Clone = createSpecialization(S.F, S.Sig);
761 
762     // Update the known call sites to call the clone.
763     for (CallBase *Call : S.CallSites) {
764       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
765                         << " to call " << S.Clone->getName() << "\n");
766       Call->setCalledFunction(S.Clone);
767     }
768 
769     Clones.push_back(S.Clone);
770     OriginalFuncs.insert(S.F);
771   }
772 
773   Solver.solveWhileResolvedUndefsIn(Clones);
774 
775   // Update the rest of the call sites - these are the recursive calls, calls
776   // to discarded specialisations and calls that may match a specialisation
777   // after the solver runs.
778   for (Function *F : OriginalFuncs) {
779     auto [Begin, End] = SM[F];
780     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
781   }
782 
783   for (Function *F : Clones) {
784     if (F->getReturnType()->isVoidTy())
785       continue;
786     if (F->getReturnType()->isStructTy()) {
787       auto *STy = cast<StructType>(F->getReturnType());
788       if (!Solver.isStructLatticeConstant(F, STy))
789         continue;
790     } else {
791       auto It = Solver.getTrackedRetVals().find(F);
792       assert(It != Solver.getTrackedRetVals().end() &&
793              "Return value ought to be tracked");
794       if (SCCPSolver::isOverdefined(It->second))
795         continue;
796     }
797     for (User *U : F->users()) {
798       if (auto *CS = dyn_cast<CallBase>(U)) {
799         //The user instruction does not call our function.
800         if (CS->getCalledFunction() != F)
801           continue;
802         Solver.resetLatticeValueFor(CS);
803       }
804     }
805   }
806 
807   // Rerun the solver to notify the users of the modified callsites.
808   Solver.solveWhileResolvedUndefs();
809 
810   for (Function *F : OriginalFuncs)
811     if (FunctionMetrics[F].isRecursive)
812       promoteConstantStackValues(F);
813 
814   return true;
815 }
816 
817 void FunctionSpecializer::removeDeadFunctions() {
818   for (Function *F : FullySpecialized) {
819     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
820                       << F->getName() << "\n");
821     if (FAM)
822       FAM->clear(*F, F->getName());
823     F->eraseFromParent();
824   }
825   FullySpecialized.clear();
826 }
827 
828 /// Clone the function \p F and remove the ssa_copy intrinsics added by
829 /// the SCCPSolver in the cloned version.
830 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) {
831   ValueToValueMapTy Mappings;
832   Function *Clone = CloneFunction(F, Mappings);
833   Clone->setName(F->getName() + ".specialized." + Twine(NSpecs));
834   removeSSACopy(*Clone);
835   return Clone;
836 }
837 
838 /// Get the unsigned Value of given Cost object. Assumes the Cost is always
839 /// non-negative, which is true for both TCK_CodeSize and TCK_Latency, and
840 /// always Valid.
841 static unsigned getCostValue(const Cost &C) {
842   int64_t Value = *C.getValue();
843 
844   assert(Value >= 0 && "CodeSize and Latency cannot be negative");
845   // It is safe to down cast since we know the arguments cannot be negative and
846   // Cost is of type int64_t.
847   return static_cast<unsigned>(Value);
848 }
849 
850 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
851                                               SmallVectorImpl<Spec> &AllSpecs,
852                                               SpecMap &SM) {
853   // A mapping from a specialisation signature to the index of the respective
854   // entry in the all specialisation array. Used to ensure uniqueness of
855   // specialisations.
856   DenseMap<SpecSig, unsigned> UniqueSpecs;
857 
858   // Get a list of interesting arguments.
859   SmallVector<Argument *> Args;
860   for (Argument &Arg : F->args())
861     if (isArgumentInteresting(&Arg))
862       Args.push_back(&Arg);
863 
864   if (Args.empty())
865     return false;
866 
867   for (User *U : F->users()) {
868     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
869       continue;
870     auto &CS = *cast<CallBase>(U);
871 
872     // The user instruction does not call our function.
873     if (CS.getCalledFunction() != F)
874       continue;
875 
876     // If the call site has attribute minsize set, that callsite won't be
877     // specialized.
878     if (CS.hasFnAttr(Attribute::MinSize))
879       continue;
880 
881     // If the parent of the call site will never be executed, we don't need
882     // to worry about the passed value.
883     if (!Solver.isBlockExecutable(CS.getParent()))
884       continue;
885 
886     // Examine arguments and create a specialisation candidate from the
887     // constant operands of this call site.
888     SpecSig S;
889     for (Argument *A : Args) {
890       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
891       if (!C)
892         continue;
893       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
894                         << A->getName() << " : " << C->getNameOrAsOperand()
895                         << "\n");
896       S.Args.push_back({A, C});
897     }
898 
899     if (S.Args.empty())
900       continue;
901 
902     // Check if we have encountered the same specialisation already.
903     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
904       // Existing specialisation. Add the call to the list to rewrite, unless
905       // it's a recursive call. A specialisation, generated because of a
906       // recursive call may end up as not the best specialisation for all
907       // the cloned instances of this call, which result from specialising
908       // functions. Hence we don't rewrite the call directly, but match it with
909       // the best specialisation once all specialisations are known.
910       if (CS.getFunction() == F)
911         continue;
912       const unsigned Index = It->second;
913       AllSpecs[Index].CallSites.push_back(&CS);
914     } else {
915       // Calculate the specialisation gain.
916       Cost CodeSize;
917       unsigned Score = 0;
918       InstCostVisitor Visitor = getInstCostVisitorFor(F);
919       for (ArgInfo &A : S.Args) {
920         CodeSize += Visitor.getCodeSizeSavingsForArg(A.Formal, A.Actual);
921         Score += getInliningBonus(A.Formal, A.Actual);
922       }
923       CodeSize += Visitor.getCodeSizeSavingsFromPendingPHIs();
924 
925       auto IsProfitable = [&]() -> bool {
926         // No check required.
927         if (ForceSpecialization)
928           return true;
929 
930         unsigned CodeSizeSavings = getCostValue(CodeSize);
931         // TODO: We should only accumulate codesize increase of specializations
932         // that are actually created.
933         FunctionGrowth[F] += FuncSize - CodeSizeSavings;
934 
935         LLVM_DEBUG(
936             dbgs() << "FnSpecialization: Specialization bonus {Inlining = "
937                    << Score << " (" << (Score * 100 / FuncSize) << "%)}\n");
938 
939         // Minimum inlining bonus.
940         if (Score > MinInliningBonus * FuncSize / 100)
941           return true;
942 
943         LLVM_DEBUG(
944             dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
945                    << CodeSizeSavings << " ("
946                    << (CodeSizeSavings * 100 / FuncSize) << "%)}\n");
947 
948         // Minimum codesize savings.
949         if (CodeSizeSavings < MinCodeSizeSavings * FuncSize / 100)
950           return false;
951 
952         // Lazily compute the Latency, to avoid unnecessarily computing BFI.
953         unsigned LatencySavings =
954             getCostValue(Visitor.getLatencySavingsForKnownConstants());
955 
956         LLVM_DEBUG(
957             dbgs() << "FnSpecialization: Specialization bonus {Latency = "
958                    << LatencySavings << " ("
959                    << (LatencySavings * 100 / FuncSize) << "%)}\n");
960 
961         // Minimum latency savings.
962         if (LatencySavings < MinLatencySavings * FuncSize / 100)
963           return false;
964         // Maximum codesize growth.
965         if (FunctionGrowth[F] / FuncSize > MaxCodeSizeGrowth)
966           return false;
967 
968         Score += std::max(CodeSizeSavings, LatencySavings);
969         return true;
970       };
971 
972       // Discard unprofitable specialisations.
973       if (!IsProfitable())
974         continue;
975 
976       // Create a new specialisation entry.
977       auto &Spec = AllSpecs.emplace_back(F, S, Score);
978       if (CS.getFunction() != F)
979         Spec.CallSites.push_back(&CS);
980       const unsigned Index = AllSpecs.size() - 1;
981       UniqueSpecs[S] = Index;
982       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
983         It->second.second = Index + 1;
984     }
985   }
986 
987   return !UniqueSpecs.empty();
988 }
989 
990 bool FunctionSpecializer::isCandidateFunction(Function *F) {
991   if (F->isDeclaration() || F->arg_empty())
992     return false;
993 
994   if (F->hasFnAttribute(Attribute::NoDuplicate))
995     return false;
996 
997   // Do not specialize the cloned function again.
998   if (Specializations.contains(F))
999     return false;
1000 
1001   // If we're optimizing the function for size, we shouldn't specialize it.
1002   if (shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
1003     return false;
1004 
1005   // Exit if the function is not executable. There's no point in specializing
1006   // a dead function.
1007   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
1008     return false;
1009 
1010   // It wastes time to specialize a function which would get inlined finally.
1011   if (F->hasFnAttribute(Attribute::AlwaysInline))
1012     return false;
1013 
1014   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
1015                     << "\n");
1016   return true;
1017 }
1018 
1019 Function *FunctionSpecializer::createSpecialization(Function *F,
1020                                                     const SpecSig &S) {
1021   Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1);
1022 
1023   // The original function does not neccessarily have internal linkage, but the
1024   // clone must.
1025   Clone->setLinkage(GlobalValue::InternalLinkage);
1026 
1027   // Initialize the lattice state of the arguments of the function clone,
1028   // marking the argument on which we specialized the function constant
1029   // with the given value.
1030   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
1031   Solver.markBlockExecutable(&Clone->front());
1032   Solver.addArgumentTrackedFunction(Clone);
1033   Solver.addTrackedFunction(Clone);
1034 
1035   // Mark all the specialized functions
1036   Specializations.insert(Clone);
1037   ++NumSpecsCreated;
1038 
1039   return Clone;
1040 }
1041 
1042 /// Compute the inlining bonus for replacing argument \p A with constant \p C.
1043 /// The below heuristic is only concerned with exposing inlining
1044 /// opportunities via indirect call promotion. If the argument is not a
1045 /// (potentially casted) function pointer, give up.
1046 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
1047   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
1048   if (!CalledFunction)
1049     return 0;
1050 
1051   // Get TTI for the called function (used for the inline cost).
1052   auto &CalleeTTI = (GetTTI)(*CalledFunction);
1053 
1054   // Look at all the call sites whose called value is the argument.
1055   // Specializing the function on the argument would allow these indirect
1056   // calls to be promoted to direct calls. If the indirect call promotion
1057   // would likely enable the called function to be inlined, specializing is a
1058   // good idea.
1059   int InliningBonus = 0;
1060   for (User *U : A->users()) {
1061     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
1062       continue;
1063     auto *CS = cast<CallBase>(U);
1064     if (CS->getCalledOperand() != A)
1065       continue;
1066     if (CS->getFunctionType() != CalledFunction->getFunctionType())
1067       continue;
1068 
1069     // Get the cost of inlining the called function at this call site. Note
1070     // that this is only an estimate. The called function may eventually
1071     // change in a way that leads to it not being inlined here, even though
1072     // inlining looks profitable now. For example, one of its called
1073     // functions may be inlined into it, making the called function too large
1074     // to be inlined into this call site.
1075     //
1076     // We apply a boost for performing indirect call promotion by increasing
1077     // the default threshold by the threshold for indirect calls.
1078     auto Params = getInlineParams();
1079     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
1080     InlineCost IC =
1081         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
1082 
1083     // We clamp the bonus for this call to be between zero and the default
1084     // threshold.
1085     if (IC.isAlways())
1086       InliningBonus += Params.DefaultThreshold;
1087     else if (IC.isVariable() && IC.getCostDelta() > 0)
1088       InliningBonus += IC.getCostDelta();
1089 
1090     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus
1091                       << " for user " << *U << "\n");
1092   }
1093 
1094   return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
1095 }
1096 
1097 /// Determine if it is possible to specialise the function for constant values
1098 /// of the formal parameter \p A.
1099 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
1100   // No point in specialization if the argument is unused.
1101   if (A->user_empty())
1102     return false;
1103 
1104   Type *Ty = A->getType();
1105   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
1106       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
1107     return false;
1108 
1109   // SCCP solver does not record an argument that will be constructed on
1110   // stack.
1111   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
1112     return false;
1113 
1114   // For non-argument-tracked functions every argument is overdefined.
1115   if (!Solver.isArgumentTrackedFunction(A->getParent()))
1116     return true;
1117 
1118   // Check the lattice value and decide if we should attemt to specialize,
1119   // based on this argument. No point in specialization, if the lattice value
1120   // is already a constant.
1121   bool IsOverdefined = Ty->isStructTy()
1122     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
1123     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
1124 
1125   LLVM_DEBUG(
1126     if (IsOverdefined)
1127       dbgs() << "FnSpecialization: Found interesting parameter "
1128              << A->getNameOrAsOperand() << "\n";
1129     else
1130       dbgs() << "FnSpecialization: Nothing to do, parameter "
1131              << A->getNameOrAsOperand() << " is already constant\n";
1132   );
1133   return IsOverdefined;
1134 }
1135 
1136 /// Check if the value \p V  (an actual argument) is a constant or can only
1137 /// have a constant value. Return that constant.
1138 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
1139   if (isa<PoisonValue>(V))
1140     return nullptr;
1141 
1142   // Select for possible specialisation values that are constants or
1143   // are deduced to be constants or constant ranges with a single element.
1144   Constant *C = dyn_cast<Constant>(V);
1145   if (!C)
1146     C = Solver.getConstantOrNull(V);
1147 
1148   // Don't specialize on (anything derived from) the address of a non-constant
1149   // global variable, unless explicitly enabled.
1150   if (C && C->getType()->isPointerTy() && !C->isNullValue())
1151     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
1152         GV && !(GV->isConstant() || SpecializeOnAddress))
1153       return nullptr;
1154 
1155   return C;
1156 }
1157 
1158 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
1159                                           const Spec *End) {
1160   // Collect the call sites that need updating.
1161   SmallVector<CallBase *> ToUpdate;
1162   for (User *U : F->users())
1163     if (auto *CS = dyn_cast<CallBase>(U);
1164         CS && CS->getCalledFunction() == F &&
1165         Solver.isBlockExecutable(CS->getParent()))
1166       ToUpdate.push_back(CS);
1167 
1168   unsigned NCallsLeft = ToUpdate.size();
1169   for (CallBase *CS : ToUpdate) {
1170     bool ShouldDecrementCount = CS->getFunction() == F;
1171 
1172     // Find the best matching specialisation.
1173     const Spec *BestSpec = nullptr;
1174     for (const Spec &S : make_range(Begin, End)) {
1175       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1176         continue;
1177 
1178       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1179             unsigned ArgNo = Arg.Formal->getArgNo();
1180             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1181           }))
1182         continue;
1183 
1184       BestSpec = &S;
1185     }
1186 
1187     if (BestSpec) {
1188       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1189                         << " to call " << BestSpec->Clone->getName() << "\n");
1190       CS->setCalledFunction(BestSpec->Clone);
1191       ShouldDecrementCount = true;
1192     }
1193 
1194     if (ShouldDecrementCount)
1195       --NCallsLeft;
1196   }
1197 
1198   // If the function has been completely specialized, the original function
1199   // is no longer needed. Mark it unreachable.
1200   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1201     Solver.markFunctionUnreachable(F);
1202     FullySpecialized.insert(F);
1203   }
1204 }
1205