xref: /llvm-project/llvm/lib/Target/X86/X86FloatingPoint.cpp (revision ea632e1b34e1878b977f8adc406a89e91aa98b7e)
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions.  This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
13 //
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
19 //
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveRegUnits.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86-codegen"
52 
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP  , "Number of floating point instructions");
55 
56 namespace {
57   const unsigned ScratchFPReg = 7;
58 
59   struct FPS : public MachineFunctionPass {
60     static char ID;
61     FPS() : MachineFunctionPass(ID) {
62       // This is really only to keep valgrind quiet.
63       // The logic in isLive() is too much for it.
64       memset(Stack, 0, sizeof(Stack));
65       memset(RegMap, 0, sizeof(RegMap));
66     }
67 
68     void getAnalysisUsage(AnalysisUsage &AU) const override {
69       AU.setPreservesCFG();
70       AU.addRequired<EdgeBundlesWrapperLegacy>();
71       AU.addPreservedID(MachineLoopInfoID);
72       AU.addPreservedID(MachineDominatorsID);
73       MachineFunctionPass::getAnalysisUsage(AU);
74     }
75 
76     bool runOnMachineFunction(MachineFunction &MF) override;
77 
78     MachineFunctionProperties getRequiredProperties() const override {
79       return MachineFunctionProperties().set(
80           MachineFunctionProperties::Property::NoVRegs);
81     }
82 
83     StringRef getPassName() const override { return "X86 FP Stackifier"; }
84 
85   private:
86     const TargetInstrInfo *TII = nullptr; // Machine instruction info.
87 
88     // Two CFG edges are related if they leave the same block, or enter the same
89     // block. The transitive closure of an edge under this relation is a
90     // LiveBundle. It represents a set of CFG edges where the live FP stack
91     // registers must be allocated identically in the x87 stack.
92     //
93     // A LiveBundle is usually all the edges leaving a block, or all the edges
94     // entering a block, but it can contain more edges if critical edges are
95     // present.
96     //
97     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
98     // but the exact mapping of FP registers to stack slots is fixed later.
99     struct LiveBundle {
100       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
101       unsigned Mask = 0;
102 
103       // Number of pre-assigned live registers in FixStack. This is 0 when the
104       // stack order has not yet been fixed.
105       unsigned FixCount = 0;
106 
107       // Assigned stack order for live-in registers.
108       // FixStack[i] == getStackEntry(i) for all i < FixCount.
109       unsigned char FixStack[8];
110 
111       LiveBundle() = default;
112 
113       // Have the live registers been assigned a stack order yet?
114       bool isFixed() const { return !Mask || FixCount; }
115     };
116 
117     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
118     // with no live FP registers.
119     SmallVector<LiveBundle, 8> LiveBundles;
120 
121     // The edge bundle analysis provides indices into the LiveBundles vector.
122     EdgeBundles *Bundles = nullptr;
123 
124     // Return a bitmask of FP registers in block's live-in list.
125     static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
126       unsigned Mask = 0;
127       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
128            I != MBB->livein_end(); ) {
129         MCPhysReg Reg = I->PhysReg;
130         static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
131         if (Reg >= X86::FP0 && Reg <= X86::FP6) {
132           Mask |= 1 << (Reg - X86::FP0);
133           if (RemoveFPs) {
134             I = MBB->removeLiveIn(I);
135             continue;
136           }
137         }
138         ++I;
139       }
140       return Mask;
141     }
142 
143     // Partition all the CFG edges into LiveBundles.
144     void bundleCFGRecomputeKillFlags(MachineFunction &MF);
145 
146     MachineBasicBlock *MBB = nullptr;     // Current basic block
147 
148     // The hardware keeps track of how many FP registers are live, so we have
149     // to model that exactly. Usually, each live register corresponds to an
150     // FP<n> register, but when dealing with calls, returns, and inline
151     // assembly, it is sometimes necessary to have live scratch registers.
152     unsigned Stack[8];          // FP<n> Registers in each stack slot...
153     unsigned StackTop = 0;      // The current top of the FP stack.
154 
155     enum {
156       NumFPRegs = 8             // Including scratch pseudo-registers.
157     };
158 
159     // For each live FP<n> register, point to its Stack[] entry.
160     // The first entries correspond to FP0-FP6, the rest are scratch registers
161     // used when we need slightly different live registers than what the
162     // register allocator thinks.
163     unsigned RegMap[NumFPRegs];
164 
165     // Set up our stack model to match the incoming registers to MBB.
166     void setupBlockStack();
167 
168     // Shuffle live registers to match the expectations of successor blocks.
169     void finishBlockStack();
170 
171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
172     void dumpStack() const {
173       dbgs() << "Stack contents:";
174       for (unsigned i = 0; i != StackTop; ++i) {
175         dbgs() << " FP" << Stack[i];
176         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
177       }
178     }
179 #endif
180 
181     /// getSlot - Return the stack slot number a particular register number is
182     /// in.
183     unsigned getSlot(unsigned RegNo) const {
184       assert(RegNo < NumFPRegs && "Regno out of range!");
185       return RegMap[RegNo];
186     }
187 
188     /// isLive - Is RegNo currently live in the stack?
189     bool isLive(unsigned RegNo) const {
190       unsigned Slot = getSlot(RegNo);
191       return Slot < StackTop && Stack[Slot] == RegNo;
192     }
193 
194     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
195     unsigned getStackEntry(unsigned STi) const {
196       if (STi >= StackTop)
197         report_fatal_error("Access past stack top!");
198       return Stack[StackTop-1-STi];
199     }
200 
201     /// getSTReg - Return the X86::ST(i) register which contains the specified
202     /// FP<RegNo> register.
203     unsigned getSTReg(unsigned RegNo) const {
204       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
205     }
206 
207     // pushReg - Push the specified FP<n> register onto the stack.
208     void pushReg(unsigned Reg) {
209       assert(Reg < NumFPRegs && "Register number out of range!");
210       if (StackTop >= 8)
211         report_fatal_error("Stack overflow!");
212       Stack[StackTop] = Reg;
213       RegMap[Reg] = StackTop++;
214     }
215 
216     // popReg - Pop a register from the stack.
217     void popReg() {
218       if (StackTop == 0)
219         report_fatal_error("Cannot pop empty stack!");
220       RegMap[Stack[--StackTop]] = ~0;     // Update state
221     }
222 
223     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
224     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
225       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
226       if (isAtTop(RegNo)) return;
227 
228       unsigned STReg = getSTReg(RegNo);
229       unsigned RegOnTop = getStackEntry(0);
230 
231       // Swap the slots the regs are in.
232       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
233 
234       // Swap stack slot contents.
235       if (RegMap[RegOnTop] >= StackTop)
236         report_fatal_error("Access past stack top!");
237       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
238 
239       // Emit an fxch to update the runtime processors version of the state.
240       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
241       ++NumFXCH;
242     }
243 
244     void duplicateToTop(unsigned RegNo, unsigned AsReg,
245                         MachineBasicBlock::iterator I) {
246       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
247       unsigned STReg = getSTReg(RegNo);
248       pushReg(AsReg);   // New register on top of stack
249 
250       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
251     }
252 
253     /// popStackAfter - Pop the current value off of the top of the FP stack
254     /// after the specified instruction.
255     void popStackAfter(MachineBasicBlock::iterator &I);
256 
257     /// freeStackSlotAfter - Free the specified register from the register
258     /// stack, so that it is no longer in a register.  If the register is
259     /// currently at the top of the stack, we just pop the current instruction,
260     /// otherwise we store the current top-of-stack into the specified slot,
261     /// then pop the top of stack.
262     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
263 
264     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
265     /// instruction.
266     MachineBasicBlock::iterator
267     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
268 
269     /// Adjust the live registers to be the set in Mask.
270     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
271 
272     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
273     /// st(0), FP reg FixStack[1] is st(1) etc.
274     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
275                          MachineBasicBlock::iterator I);
276 
277     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
278 
279     void handleCall(MachineBasicBlock::iterator &I);
280     void handleReturn(MachineBasicBlock::iterator &I);
281     void handleZeroArgFP(MachineBasicBlock::iterator &I);
282     void handleOneArgFP(MachineBasicBlock::iterator &I);
283     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
284     void handleTwoArgFP(MachineBasicBlock::iterator &I);
285     void handleCompareFP(MachineBasicBlock::iterator &I);
286     void handleCondMovFP(MachineBasicBlock::iterator &I);
287     void handleSpecialFP(MachineBasicBlock::iterator &I);
288 
289     // Check if a COPY instruction is using FP registers.
290     static bool isFPCopy(MachineInstr &MI) {
291       Register DstReg = MI.getOperand(0).getReg();
292       Register SrcReg = MI.getOperand(1).getReg();
293 
294       return X86::RFP80RegClass.contains(DstReg) ||
295         X86::RFP80RegClass.contains(SrcReg);
296     }
297 
298     void setKillFlags(MachineBasicBlock &MBB) const;
299   };
300 }
301 
302 char FPS::ID = 0;
303 
304 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
305                       false, false)
306 INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy)
307 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
308                     false, false)
309 
310 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
311 
312 /// getFPReg - Return the X86::FPx register number for the specified operand.
313 /// For example, this returns 3 for X86::FP3.
314 static unsigned getFPReg(const MachineOperand &MO) {
315   assert(MO.isReg() && "Expected an FP register!");
316   Register Reg = MO.getReg();
317   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
318   return Reg - X86::FP0;
319 }
320 
321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
322 /// register references into FP stack references.
323 ///
324 bool FPS::runOnMachineFunction(MachineFunction &MF) {
325   // We only need to run this pass if there are any FP registers used in this
326   // function.  If it is all integer, there is nothing for us to do!
327   bool FPIsUsed = false;
328 
329   static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
330   const MachineRegisterInfo &MRI = MF.getRegInfo();
331   for (unsigned i = 0; i <= 6; ++i)
332     if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
333       FPIsUsed = true;
334       break;
335     }
336 
337   // Early exit.
338   if (!FPIsUsed) return false;
339 
340   Bundles = &getAnalysis<EdgeBundlesWrapperLegacy>().getEdgeBundles();
341   TII = MF.getSubtarget().getInstrInfo();
342 
343   // Prepare cross-MBB liveness.
344   bundleCFGRecomputeKillFlags(MF);
345 
346   StackTop = 0;
347 
348   // Process the function in depth first order so that we process at least one
349   // of the predecessors for every reachable block in the function.
350   df_iterator_default_set<MachineBasicBlock*> Processed;
351   MachineBasicBlock *Entry = &MF.front();
352 
353   LiveBundle &Bundle =
354     LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
355 
356   // In regcall convention, some FP registers may not be passed through
357   // the stack, so they will need to be assigned to the stack first
358   if ((Entry->getParent()->getFunction().getCallingConv() ==
359     CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
360     // In the register calling convention, up to one FP argument could be
361     // saved in the first FP register.
362     // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
363     // that the FP registers contain arguments.
364     // The actual value is passed in FP0.
365     // Here we fix the stack and mark FP0 as pre-assigned register.
366     assert((Bundle.Mask & 0xFE) == 0 &&
367       "Only FP0 could be passed as an argument");
368     Bundle.FixCount = 1;
369     Bundle.FixStack[0] = 0;
370   }
371 
372   bool Changed = false;
373   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
374     Changed |= processBasicBlock(MF, *BB);
375 
376   // Process any unreachable blocks in arbitrary order now.
377   if (MF.size() != Processed.size())
378     for (MachineBasicBlock &BB : MF)
379       if (Processed.insert(&BB).second)
380         Changed |= processBasicBlock(MF, BB);
381 
382   LiveBundles.clear();
383 
384   return Changed;
385 }
386 
387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
388 /// live-out sets for the FP registers. Consistent means that the set of
389 /// registers live-out from a block is identical to the live-in set of all
390 /// successors. This is not enforced by the normal live-in lists since
391 /// registers may be implicitly defined, or not used by all successors.
392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
393   assert(LiveBundles.empty() && "Stale data in LiveBundles");
394   LiveBundles.resize(Bundles->getNumBundles());
395 
396   // Gather the actual live-in masks for all MBBs.
397   for (MachineBasicBlock &MBB : MF) {
398     setKillFlags(MBB);
399 
400     const unsigned Mask = calcLiveInMask(&MBB, false);
401     if (!Mask)
402       continue;
403     // Update MBB ingoing bundle mask.
404     LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
405   }
406 }
407 
408 /// processBasicBlock - Loop over all of the instructions in the basic block,
409 /// transforming FP instructions into their stack form.
410 ///
411 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
412   bool Changed = false;
413   MBB = &BB;
414 
415   setupBlockStack();
416 
417   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
418     MachineInstr &MI = *I;
419     uint64_t Flags = MI.getDesc().TSFlags;
420 
421     unsigned FPInstClass = Flags & X86II::FPTypeMask;
422     if (MI.isInlineAsm())
423       FPInstClass = X86II::SpecialFP;
424 
425     if (MI.isCopy() && isFPCopy(MI))
426       FPInstClass = X86II::SpecialFP;
427 
428     if (MI.isImplicitDef() &&
429         X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
430       FPInstClass = X86II::SpecialFP;
431 
432     if (MI.isCall())
433       FPInstClass = X86II::SpecialFP;
434 
435     // A fake_use with a floating point pseudo register argument that is
436     // killed must behave like any other floating point operation and pop
437     // the floating point stack (this is done in handleSpecialFP()).
438     // Fake_use is, however, unusual, in that sometimes its operand is not
439     // killed because a later instruction (probably a return) will use it.
440     // It is this instruction that will pop the stack.
441     // In this scenario we can safely remove the fake_use's operand
442     // (it is live anyway).
443     if (MI.isFakeUse()) {
444       const MachineOperand &MO = MI.getOperand(0);
445       if (MO.isReg() && X86::RFP80RegClass.contains(MO.getReg())) {
446         if (MO.isKill())
447           FPInstClass = X86II::SpecialFP;
448         else
449           MI.removeOperand(0);
450       }
451     }
452 
453     if (FPInstClass == X86II::NotFP)
454       continue;  // Efficiently ignore non-fp insts!
455 
456     MachineInstr *PrevMI = nullptr;
457     if (I != BB.begin())
458       PrevMI = &*std::prev(I);
459 
460     ++NumFP;  // Keep track of # of pseudo instrs
461     LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
462 
463     // Get dead variables list now because the MI pointer may be deleted as part
464     // of processing!
465     SmallVector<unsigned, 8> DeadRegs;
466     for (const MachineOperand &MO : MI.operands())
467       if (MO.isReg() && MO.isDead())
468         DeadRegs.push_back(MO.getReg());
469 
470     switch (FPInstClass) {
471     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
472     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
473     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
474     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
475     case X86II::CompareFP:  handleCompareFP(I); break;
476     case X86II::CondMovFP:  handleCondMovFP(I); break;
477     case X86II::SpecialFP:  handleSpecialFP(I); break;
478     default: llvm_unreachable("Unknown FP Type!");
479     }
480 
481     // Check to see if any of the values defined by this instruction are dead
482     // after definition.  If so, pop them.
483     for (unsigned Reg : DeadRegs) {
484       // Check if Reg is live on the stack. An inline-asm register operand that
485       // is in the clobber list and marked dead might not be live on the stack.
486       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
487       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
488         LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
489         freeStackSlotAfter(I, Reg-X86::FP0);
490       }
491     }
492 
493     // Print out all of the instructions expanded to if -debug
494     LLVM_DEBUG({
495       MachineBasicBlock::iterator PrevI = PrevMI;
496       if (I == PrevI) {
497         dbgs() << "Just deleted pseudo instruction\n";
498       } else {
499         MachineBasicBlock::iterator Start = I;
500         // Rewind to first instruction newly inserted.
501         while (Start != BB.begin() && std::prev(Start) != PrevI)
502           --Start;
503         dbgs() << "Inserted instructions:\n\t";
504         Start->print(dbgs());
505         while (++Start != std::next(I)) {
506         }
507       }
508       dumpStack();
509     });
510     (void)PrevMI;
511 
512     Changed = true;
513   }
514 
515   finishBlockStack();
516 
517   return Changed;
518 }
519 
520 /// setupBlockStack - Use the live bundles to set up our model of the stack
521 /// to match predecessors' live out stack.
522 void FPS::setupBlockStack() {
523   LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
524                     << " derived from " << MBB->getName() << ".\n");
525   StackTop = 0;
526   // Get the live-in bundle for MBB.
527   const LiveBundle &Bundle =
528     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
529 
530   if (!Bundle.Mask) {
531     LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
532     return;
533   }
534 
535   // Depth-first iteration should ensure that we always have an assigned stack.
536   assert(Bundle.isFixed() && "Reached block before any predecessors");
537 
538   // Push the fixed live-in registers.
539   for (unsigned i = Bundle.FixCount; i > 0; --i) {
540     LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
541                       << unsigned(Bundle.FixStack[i - 1]) << '\n');
542     pushReg(Bundle.FixStack[i-1]);
543   }
544 
545   // Kill off unwanted live-ins. This can happen with a critical edge.
546   // FIXME: We could keep these live registers around as zombies. They may need
547   // to be revived at the end of a short block. It might save a few instrs.
548   unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
549   adjustLiveRegs(Mask, MBB->begin());
550   LLVM_DEBUG(MBB->dump());
551 }
552 
553 /// finishBlockStack - Revive live-outs that are implicitly defined out of
554 /// MBB. Shuffle live registers to match the expected fixed stack of any
555 /// predecessors, and ensure that all predecessors are expecting the same
556 /// stack.
557 void FPS::finishBlockStack() {
558   // The RET handling below takes care of return blocks for us.
559   if (MBB->succ_empty())
560     return;
561 
562   LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
563                     << " derived from " << MBB->getName() << ".\n");
564 
565   // Get MBB's live-out bundle.
566   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
567   LiveBundle &Bundle = LiveBundles[BundleIdx];
568 
569   // We may need to kill and define some registers to match successors.
570   // FIXME: This can probably be combined with the shuffle below.
571   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
572   adjustLiveRegs(Bundle.Mask, Term);
573 
574   if (!Bundle.Mask) {
575     LLVM_DEBUG(dbgs() << "No live-outs.\n");
576     return;
577   }
578 
579   // Has the stack order been fixed yet?
580   LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
581   if (Bundle.isFixed()) {
582     LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
583     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
584   } else {
585     // Not fixed yet, we get to choose.
586     LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
587     Bundle.FixCount = StackTop;
588     for (unsigned i = 0; i < StackTop; ++i)
589       Bundle.FixStack[i] = getStackEntry(i);
590   }
591 }
592 
593 
594 //===----------------------------------------------------------------------===//
595 // Efficient Lookup Table Support
596 //===----------------------------------------------------------------------===//
597 
598 namespace {
599   struct TableEntry {
600     uint16_t from;
601     uint16_t to;
602     bool operator<(const TableEntry &TE) const { return from < TE.from; }
603     friend bool operator<(const TableEntry &TE, unsigned V) {
604       return TE.from < V;
605     }
606     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
607                                                 const TableEntry &TE) {
608       return V < TE.from;
609     }
610   };
611 }
612 
613 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
614   const TableEntry *I = llvm::lower_bound(Table, Opcode);
615   if (I != Table.end() && I->from == Opcode)
616     return I->to;
617   return -1;
618 }
619 
620 #ifdef NDEBUG
621 #define ASSERT_SORTED(TABLE)
622 #else
623 #define ASSERT_SORTED(TABLE)                                                   \
624   {                                                                            \
625     static std::atomic<bool> TABLE##Checked(false);                            \
626     if (!TABLE##Checked.load(std::memory_order_relaxed)) {                     \
627       assert(is_sorted(TABLE) &&                                               \
628              "All lookup tables must be sorted for efficient access!");        \
629       TABLE##Checked.store(true, std::memory_order_relaxed);                   \
630     }                                                                          \
631   }
632 #endif
633 
634 //===----------------------------------------------------------------------===//
635 // Register File -> Register Stack Mapping Methods
636 //===----------------------------------------------------------------------===//
637 
638 // OpcodeTable - Sorted map of register instructions to their stack version.
639 // The first element is an register file pseudo instruction, the second is the
640 // concrete X86 instruction which uses the register stack.
641 //
642 static const TableEntry OpcodeTable[] = {
643   { X86::ABS_Fp32     , X86::ABS_F     },
644   { X86::ABS_Fp64     , X86::ABS_F     },
645   { X86::ABS_Fp80     , X86::ABS_F     },
646   { X86::ADD_Fp32m    , X86::ADD_F32m  },
647   { X86::ADD_Fp64m    , X86::ADD_F64m  },
648   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
649   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
650   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
651   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
652   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
653   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
654   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
655   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
656   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
657   { X86::CHS_Fp32     , X86::CHS_F     },
658   { X86::CHS_Fp64     , X86::CHS_F     },
659   { X86::CHS_Fp80     , X86::CHS_F     },
660   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
661   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
662   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
663   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
664   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
665   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
666   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
667   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
668   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
669   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
670   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
671   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
672   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
673   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
674   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
675   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
676   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
677   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
678   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
679   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
680   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
681   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
682   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
683   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
684   { X86::COM_FpIr32   , X86::COM_FIr   },
685   { X86::COM_FpIr64   , X86::COM_FIr   },
686   { X86::COM_FpIr80   , X86::COM_FIr   },
687   { X86::COM_Fpr32    , X86::COM_FST0r },
688   { X86::COM_Fpr64    , X86::COM_FST0r },
689   { X86::COM_Fpr80    , X86::COM_FST0r },
690   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
691   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
692   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
693   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
694   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
695   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
696   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
697   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
698   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
699   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
700   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
701   { X86::DIV_Fp32m    , X86::DIV_F32m  },
702   { X86::DIV_Fp64m    , X86::DIV_F64m  },
703   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
704   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
705   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
706   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
707   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
708   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
709   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
710   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
711   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
712   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
713   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
714   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
715   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
716   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
717   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
718   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
719   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
720   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
721   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
722   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
723   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
724   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
725   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
726   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
727   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
728   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
729   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
730   { X86::IST_Fp16m32  , X86::IST_F16m  },
731   { X86::IST_Fp16m64  , X86::IST_F16m  },
732   { X86::IST_Fp16m80  , X86::IST_F16m  },
733   { X86::IST_Fp32m32  , X86::IST_F32m  },
734   { X86::IST_Fp32m64  , X86::IST_F32m  },
735   { X86::IST_Fp32m80  , X86::IST_F32m  },
736   { X86::IST_Fp64m32  , X86::IST_FP64m },
737   { X86::IST_Fp64m64  , X86::IST_FP64m },
738   { X86::IST_Fp64m80  , X86::IST_FP64m },
739   { X86::LD_Fp032     , X86::LD_F0     },
740   { X86::LD_Fp064     , X86::LD_F0     },
741   { X86::LD_Fp080     , X86::LD_F0     },
742   { X86::LD_Fp132     , X86::LD_F1     },
743   { X86::LD_Fp164     , X86::LD_F1     },
744   { X86::LD_Fp180     , X86::LD_F1     },
745   { X86::LD_Fp32m     , X86::LD_F32m   },
746   { X86::LD_Fp32m64   , X86::LD_F32m   },
747   { X86::LD_Fp32m80   , X86::LD_F32m   },
748   { X86::LD_Fp64m     , X86::LD_F64m   },
749   { X86::LD_Fp64m80   , X86::LD_F64m   },
750   { X86::LD_Fp80m     , X86::LD_F80m   },
751   { X86::MUL_Fp32m    , X86::MUL_F32m  },
752   { X86::MUL_Fp64m    , X86::MUL_F64m  },
753   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
754   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
755   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
756   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
757   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
758   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
759   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
760   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
761   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
762   { X86::SQRT_Fp32    , X86::SQRT_F    },
763   { X86::SQRT_Fp64    , X86::SQRT_F    },
764   { X86::SQRT_Fp80    , X86::SQRT_F    },
765   { X86::ST_Fp32m     , X86::ST_F32m   },
766   { X86::ST_Fp64m     , X86::ST_F64m   },
767   { X86::ST_Fp64m32   , X86::ST_F32m   },
768   { X86::ST_Fp80m32   , X86::ST_F32m   },
769   { X86::ST_Fp80m64   , X86::ST_F64m   },
770   { X86::ST_FpP80m    , X86::ST_FP80m  },
771   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
772   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
773   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
774   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
775   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
776   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
777   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
778   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
779   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
780   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
781   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
782   { X86::SUB_Fp32m    , X86::SUB_F32m  },
783   { X86::SUB_Fp64m    , X86::SUB_F64m  },
784   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
785   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
786   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
787   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
788   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
789   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
790   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
791   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
792   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
793   { X86::TST_Fp32     , X86::TST_F     },
794   { X86::TST_Fp64     , X86::TST_F     },
795   { X86::TST_Fp80     , X86::TST_F     },
796   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
797   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
798   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
799   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
800   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
801   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
802   { X86::XAM_Fp32     , X86::XAM_F     },
803   { X86::XAM_Fp64     , X86::XAM_F     },
804   { X86::XAM_Fp80     , X86::XAM_F     },
805 };
806 
807 static unsigned getConcreteOpcode(unsigned Opcode) {
808   ASSERT_SORTED(OpcodeTable);
809   int Opc = Lookup(OpcodeTable, Opcode);
810   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
811   return Opc;
812 }
813 
814 //===----------------------------------------------------------------------===//
815 // Helper Methods
816 //===----------------------------------------------------------------------===//
817 
818 // PopTable - Sorted map of instructions to their popping version.  The first
819 // element is an instruction, the second is the version which pops.
820 //
821 static const TableEntry PopTable[] = {
822   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
823 
824   { X86::COMP_FST0r, X86::FCOMPP      },
825   { X86::COM_FIr   , X86::COM_FIPr    },
826   { X86::COM_FST0r , X86::COMP_FST0r  },
827 
828   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
829   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
830 
831   { X86::IST_F16m  , X86::IST_FP16m   },
832   { X86::IST_F32m  , X86::IST_FP32m   },
833 
834   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
835 
836   { X86::ST_F32m   , X86::ST_FP32m    },
837   { X86::ST_F64m   , X86::ST_FP64m    },
838   { X86::ST_Frr    , X86::ST_FPrr     },
839 
840   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
841   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
842 
843   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
844 
845   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
846   { X86::UCOM_Fr   , X86::UCOM_FPr    },
847 };
848 
849 static bool doesInstructionSetFPSW(MachineInstr &MI) {
850   if (const MachineOperand *MO =
851           MI.findRegisterDefOperand(X86::FPSW, /*TRI=*/nullptr))
852     if (!MO->isDead())
853       return true;
854   return false;
855 }
856 
857 static MachineBasicBlock::iterator
858 getNextFPInstruction(MachineBasicBlock::iterator I) {
859   MachineBasicBlock &MBB = *I->getParent();
860   while (++I != MBB.end()) {
861     MachineInstr &MI = *I;
862     if (X86::isX87Instruction(MI))
863       return I;
864   }
865   return MBB.end();
866 }
867 
868 /// popStackAfter - Pop the current value off of the top of the FP stack after
869 /// the specified instruction.  This attempts to be sneaky and combine the pop
870 /// into the instruction itself if possible.  The iterator is left pointing to
871 /// the last instruction, be it a new pop instruction inserted, or the old
872 /// instruction if it was modified in place.
873 ///
874 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
875   MachineInstr &MI = *I;
876   const DebugLoc &dl = MI.getDebugLoc();
877   ASSERT_SORTED(PopTable);
878 
879   popReg();
880 
881   // Check to see if there is a popping version of this instruction...
882   int Opcode = Lookup(PopTable, I->getOpcode());
883   if (Opcode != -1) {
884     I->setDesc(TII->get(Opcode));
885     if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
886       I->removeOperand(0);
887     MI.dropDebugNumber();
888   } else {    // Insert an explicit pop
889     // If this instruction sets FPSW, which is read in following instruction,
890     // insert pop after that reader.
891     if (doesInstructionSetFPSW(MI)) {
892       MachineBasicBlock &MBB = *MI.getParent();
893       MachineBasicBlock::iterator Next = getNextFPInstruction(I);
894       if (Next != MBB.end() && Next->readsRegister(X86::FPSW, /*TRI=*/nullptr))
895         I = Next;
896     }
897     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
898   }
899 }
900 
901 /// freeStackSlotAfter - Free the specified register from the register stack, so
902 /// that it is no longer in a register.  If the register is currently at the top
903 /// of the stack, we just pop the current instruction, otherwise we store the
904 /// current top-of-stack into the specified slot, then pop the top of stack.
905 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
906   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
907     popStackAfter(I);
908     return;
909   }
910 
911   // Otherwise, store the top of stack into the dead slot, killing the operand
912   // without having to add in an explicit xchg then pop.
913   //
914   I = freeStackSlotBefore(++I, FPRegNo);
915 }
916 
917 /// freeStackSlotBefore - Free the specified register without trying any
918 /// folding.
919 MachineBasicBlock::iterator
920 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
921   unsigned STReg    = getSTReg(FPRegNo);
922   unsigned OldSlot  = getSlot(FPRegNo);
923   unsigned TopReg   = Stack[StackTop-1];
924   Stack[OldSlot]    = TopReg;
925   RegMap[TopReg]    = OldSlot;
926   RegMap[FPRegNo]   = ~0;
927   Stack[--StackTop] = ~0;
928   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
929       .addReg(STReg)
930       .getInstr();
931 }
932 
933 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
934 /// registers with a bit in Mask are live.
935 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
936   unsigned Defs = Mask;
937   unsigned Kills = 0;
938   for (unsigned i = 0; i < StackTop; ++i) {
939     unsigned RegNo = Stack[i];
940     if (!(Defs & (1 << RegNo)))
941       // This register is live, but we don't want it.
942       Kills |= (1 << RegNo);
943     else
944       // We don't need to imp-def this live register.
945       Defs &= ~(1 << RegNo);
946   }
947   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
948 
949   // Produce implicit-defs for free by using killed registers.
950   while (Kills && Defs) {
951     unsigned KReg = llvm::countr_zero(Kills);
952     unsigned DReg = llvm::countr_zero(Defs);
953     LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
954                       << "\n");
955     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
956     std::swap(RegMap[KReg], RegMap[DReg]);
957     Kills &= ~(1 << KReg);
958     Defs &= ~(1 << DReg);
959   }
960 
961   // Kill registers by popping.
962   if (Kills && I != MBB->begin()) {
963     MachineBasicBlock::iterator I2 = std::prev(I);
964     while (StackTop) {
965       unsigned KReg = getStackEntry(0);
966       if (!(Kills & (1 << KReg)))
967         break;
968       LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
969       popStackAfter(I2);
970       Kills &= ~(1 << KReg);
971     }
972   }
973 
974   // Manually kill the rest.
975   while (Kills) {
976     unsigned KReg = llvm::countr_zero(Kills);
977     LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
978     freeStackSlotBefore(I, KReg);
979     Kills &= ~(1 << KReg);
980   }
981 
982   // Load zeros for all the imp-defs.
983   while(Defs) {
984     unsigned DReg = llvm::countr_zero(Defs);
985     LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
986     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
987     pushReg(DReg);
988     Defs &= ~(1 << DReg);
989   }
990 
991   // Now we should have the correct registers live.
992   LLVM_DEBUG(dumpStack());
993   assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch");
994 }
995 
996 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
997 /// FixCount entries into the order given by FixStack.
998 /// FIXME: Is there a better algorithm than insertion sort?
999 void FPS::shuffleStackTop(const unsigned char *FixStack,
1000                           unsigned FixCount,
1001                           MachineBasicBlock::iterator I) {
1002   // Move items into place, starting from the desired stack bottom.
1003   while (FixCount--) {
1004     // Old register at position FixCount.
1005     unsigned OldReg = getStackEntry(FixCount);
1006     // Desired register at position FixCount.
1007     unsigned Reg = FixStack[FixCount];
1008     if (Reg == OldReg)
1009       continue;
1010     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
1011     moveToTop(Reg, I);
1012     if (FixCount > 0)
1013       moveToTop(OldReg, I);
1014   }
1015   LLVM_DEBUG(dumpStack());
1016 }
1017 
1018 
1019 //===----------------------------------------------------------------------===//
1020 // Instruction transformation implementation
1021 //===----------------------------------------------------------------------===//
1022 
1023 void FPS::handleCall(MachineBasicBlock::iterator &I) {
1024   MachineInstr &MI = *I;
1025   unsigned STReturns = 0;
1026 
1027   bool ClobbersFPStack = false;
1028   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1029     MachineOperand &Op = MI.getOperand(i);
1030     // Check if this call clobbers the FP stack.
1031     // is sufficient.
1032     if (Op.isRegMask()) {
1033       bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1034 #ifndef NDEBUG
1035       static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1036       for (unsigned i = 1; i != 8; ++i)
1037         assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1038                "Inconsistent FP register clobber");
1039 #endif
1040 
1041       if (ClobbersFP0)
1042         ClobbersFPStack = true;
1043     }
1044 
1045     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1046       continue;
1047 
1048     assert(Op.isImplicit() && "Expected implicit def/use");
1049 
1050     if (Op.isDef())
1051       STReturns |= 1 << getFPReg(Op);
1052 
1053     // Remove the operand so that later passes don't see it.
1054     MI.removeOperand(i);
1055     --i;
1056     --e;
1057   }
1058 
1059   // Most calls should have a regmask that clobbers the FP registers. If it
1060   // isn't present then the register allocator didn't spill the FP registers
1061   // so they are still on the stack.
1062   assert((ClobbersFPStack || STReturns == 0) &&
1063          "ST returns without FP stack clobber");
1064   if (!ClobbersFPStack)
1065     return;
1066 
1067   unsigned N = llvm::countr_one(STReturns);
1068 
1069   // FP registers used for function return must be consecutive starting at
1070   // FP0
1071   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1072 
1073   // Reset the FP Stack - It is required because of possible leftovers from
1074   // passed arguments. The caller should assume that the FP stack is
1075   // returned empty (unless the callee returns values on FP stack).
1076   while (StackTop > 0)
1077     popReg();
1078 
1079   for (unsigned I = 0; I < N; ++I)
1080     pushReg(N - I - 1);
1081 
1082   // If this call has been modified, drop all variable values defined by it.
1083   // We can't track them once they've been stackified.
1084   if (STReturns)
1085     I->dropDebugNumber();
1086 }
1087 
1088 /// If RET has an FP register use operand, pass the first one in ST(0) and
1089 /// the second one in ST(1).
1090 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1091   MachineInstr &MI = *I;
1092 
1093   // Find the register operands.
1094   unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1095   unsigned LiveMask = 0;
1096 
1097   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1098     MachineOperand &Op = MI.getOperand(i);
1099     if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1100       continue;
1101     // FP Register uses must be kills unless there are two uses of the same
1102     // register, in which case only one will be a kill.
1103     assert(Op.isUse() &&
1104            (Op.isKill() ||                  // Marked kill.
1105             getFPReg(Op) == FirstFPRegOp || // Second instance.
1106             MI.killsRegister(Op.getReg(),
1107                              /*TRI=*/nullptr)) && // Later use is marked kill.
1108            "Ret only defs operands, and values aren't live beyond it");
1109 
1110     if (FirstFPRegOp == ~0U)
1111       FirstFPRegOp = getFPReg(Op);
1112     else {
1113       assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1114       SecondFPRegOp = getFPReg(Op);
1115     }
1116     LiveMask |= (1 << getFPReg(Op));
1117 
1118     // Remove the operand so that later passes don't see it.
1119     MI.removeOperand(i);
1120     --i;
1121     --e;
1122   }
1123 
1124   // We may have been carrying spurious live-ins, so make sure only the
1125   // returned registers are left live.
1126   adjustLiveRegs(LiveMask, MI);
1127   if (!LiveMask) return;  // Quick check to see if any are possible.
1128 
1129   // There are only four possibilities here:
1130   // 1) we are returning a single FP value.  In this case, it has to be in
1131   //    ST(0) already, so just declare success by removing the value from the
1132   //    FP Stack.
1133   if (SecondFPRegOp == ~0U) {
1134     // Assert that the top of stack contains the right FP register.
1135     assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1136            "Top of stack not the right register for RET!");
1137 
1138     // Ok, everything is good, mark the value as not being on the stack
1139     // anymore so that our assertion about the stack being empty at end of
1140     // block doesn't fire.
1141     StackTop = 0;
1142     return;
1143   }
1144 
1145   // Otherwise, we are returning two values:
1146   // 2) If returning the same value for both, we only have one thing in the FP
1147   //    stack.  Consider:  RET FP1, FP1
1148   if (StackTop == 1) {
1149     assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1150            "Stack misconfiguration for RET!");
1151 
1152     // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1153     // register to hold it.
1154     unsigned NewReg = ScratchFPReg;
1155     duplicateToTop(FirstFPRegOp, NewReg, MI);
1156     FirstFPRegOp = NewReg;
1157   }
1158 
1159   /// Okay we know we have two different FPx operands now:
1160   assert(StackTop == 2 && "Must have two values live!");
1161 
1162   /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1163   ///    in ST(1).  In this case, emit an fxch.
1164   if (getStackEntry(0) == SecondFPRegOp) {
1165     assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1166     moveToTop(FirstFPRegOp, MI);
1167   }
1168 
1169   /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1170   /// ST(1).  Just remove both from our understanding of the stack and return.
1171   assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1172   assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1173   StackTop = 0;
1174 }
1175 
1176 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
1177 ///
1178 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1179   MachineInstr &MI = *I;
1180   unsigned DestReg = getFPReg(MI.getOperand(0));
1181 
1182   // Change from the pseudo instruction to the concrete instruction.
1183   MI.removeOperand(0); // Remove the explicit ST(0) operand
1184   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1185   MI.addOperand(
1186       MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1187 
1188   // Result gets pushed on the stack.
1189   pushReg(DestReg);
1190 
1191   MI.dropDebugNumber();
1192 }
1193 
1194 /// handleOneArgFP - fst <mem>, ST(0)
1195 ///
1196 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1197   MachineInstr &MI = *I;
1198   unsigned NumOps = MI.getDesc().getNumOperands();
1199   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1200          "Can only handle fst* & ftst instructions!");
1201 
1202   // Is this the last use of the source register?
1203   unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1204   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1205 
1206   // FISTP64m is strange because there isn't a non-popping versions.
1207   // If we have one _and_ we don't want to pop the operand, duplicate the value
1208   // on the stack instead of moving it.  This ensure that popping the value is
1209   // always ok.
1210   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1211   //
1212   if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1213                     MI.getOpcode() == X86::ISTT_Fp16m32 ||
1214                     MI.getOpcode() == X86::ISTT_Fp32m32 ||
1215                     MI.getOpcode() == X86::ISTT_Fp64m32 ||
1216                     MI.getOpcode() == X86::IST_Fp64m64 ||
1217                     MI.getOpcode() == X86::ISTT_Fp16m64 ||
1218                     MI.getOpcode() == X86::ISTT_Fp32m64 ||
1219                     MI.getOpcode() == X86::ISTT_Fp64m64 ||
1220                     MI.getOpcode() == X86::IST_Fp64m80 ||
1221                     MI.getOpcode() == X86::ISTT_Fp16m80 ||
1222                     MI.getOpcode() == X86::ISTT_Fp32m80 ||
1223                     MI.getOpcode() == X86::ISTT_Fp64m80 ||
1224                     MI.getOpcode() == X86::ST_FpP80m)) {
1225     duplicateToTop(Reg, ScratchFPReg, I);
1226   } else {
1227     moveToTop(Reg, I);            // Move to the top of the stack...
1228   }
1229 
1230   // Convert from the pseudo instruction to the concrete instruction.
1231   MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
1232   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1233   MI.addOperand(
1234       MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1235 
1236   if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1237       MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1238       MI.getOpcode() == X86::ST_FP80m) {
1239     if (StackTop == 0)
1240       report_fatal_error("Stack empty??");
1241     --StackTop;
1242   } else if (KillsSrc) { // Last use of operand?
1243     popStackAfter(I);
1244   }
1245 
1246   MI.dropDebugNumber();
1247 }
1248 
1249 
1250 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1251 /// replace the value with a newly computed value.  These instructions may have
1252 /// non-fp operands after their FP operands.
1253 ///
1254 ///  Examples:
1255 ///     R1 = fchs R2
1256 ///     R1 = fadd R2, [mem]
1257 ///
1258 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1259   MachineInstr &MI = *I;
1260 #ifndef NDEBUG
1261   unsigned NumOps = MI.getDesc().getNumOperands();
1262   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1263 #endif
1264 
1265   // Is this the last use of the source register?
1266   unsigned Reg = getFPReg(MI.getOperand(1));
1267   bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1268 
1269   if (KillsSrc) {
1270     // If this is the last use of the source register, just make sure it's on
1271     // the top of the stack.
1272     moveToTop(Reg, I);
1273     if (StackTop == 0)
1274       report_fatal_error("Stack cannot be empty!");
1275     --StackTop;
1276     pushReg(getFPReg(MI.getOperand(0)));
1277   } else {
1278     // If this is not the last use of the source register, _copy_ it to the top
1279     // of the stack.
1280     duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1281   }
1282 
1283   // Change from the pseudo instruction to the concrete instruction.
1284   MI.removeOperand(1); // Drop the source operand.
1285   MI.removeOperand(0); // Drop the destination operand.
1286   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1287   MI.dropDebugNumber();
1288 }
1289 
1290 
1291 //===----------------------------------------------------------------------===//
1292 // Define tables of various ways to map pseudo instructions
1293 //
1294 
1295 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1296 static const TableEntry ForwardST0Table[] = {
1297   { X86::ADD_Fp32  , X86::ADD_FST0r },
1298   { X86::ADD_Fp64  , X86::ADD_FST0r },
1299   { X86::ADD_Fp80  , X86::ADD_FST0r },
1300   { X86::DIV_Fp32  , X86::DIV_FST0r },
1301   { X86::DIV_Fp64  , X86::DIV_FST0r },
1302   { X86::DIV_Fp80  , X86::DIV_FST0r },
1303   { X86::MUL_Fp32  , X86::MUL_FST0r },
1304   { X86::MUL_Fp64  , X86::MUL_FST0r },
1305   { X86::MUL_Fp80  , X86::MUL_FST0r },
1306   { X86::SUB_Fp32  , X86::SUB_FST0r },
1307   { X86::SUB_Fp64  , X86::SUB_FST0r },
1308   { X86::SUB_Fp80  , X86::SUB_FST0r },
1309 };
1310 
1311 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1312 static const TableEntry ReverseST0Table[] = {
1313   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1314   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1315   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1316   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1317   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1318   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1319   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1320   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1321   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1322   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1323   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1324   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1325 };
1326 
1327 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1328 static const TableEntry ForwardSTiTable[] = {
1329   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1330   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1331   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1332   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1333   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1334   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1335   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1336   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1337   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1338   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1339   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1340   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1341 };
1342 
1343 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1344 static const TableEntry ReverseSTiTable[] = {
1345   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1346   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1347   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1348   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1349   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1350   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1351   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1352   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1353   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1354   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1355   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1356   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1357 };
1358 
1359 
1360 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1361 /// instructions which need to be simplified and possibly transformed.
1362 ///
1363 /// Result: ST(0) = fsub  ST(0), ST(i)
1364 ///         ST(i) = fsub  ST(0), ST(i)
1365 ///         ST(0) = fsubr ST(0), ST(i)
1366 ///         ST(i) = fsubr ST(0), ST(i)
1367 ///
1368 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1369   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1370   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1371   MachineInstr &MI = *I;
1372 
1373   unsigned NumOperands = MI.getDesc().getNumOperands();
1374   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1375   unsigned Dest = getFPReg(MI.getOperand(0));
1376   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1377   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1378   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1379   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1380   const DebugLoc &dl = MI.getDebugLoc();
1381 
1382   unsigned TOS = getStackEntry(0);
1383 
1384   // One of our operands must be on the top of the stack.  If neither is yet, we
1385   // need to move one.
1386   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1387     // We can choose to move either operand to the top of the stack.  If one of
1388     // the operands is killed by this instruction, we want that one so that we
1389     // can update right on top of the old version.
1390     if (KillsOp0) {
1391       moveToTop(Op0, I);         // Move dead operand to TOS.
1392       TOS = Op0;
1393     } else if (KillsOp1) {
1394       moveToTop(Op1, I);
1395       TOS = Op1;
1396     } else {
1397       // All of the operands are live after this instruction executes, so we
1398       // cannot update on top of any operand.  Because of this, we must
1399       // duplicate one of the stack elements to the top.  It doesn't matter
1400       // which one we pick.
1401       //
1402       duplicateToTop(Op0, Dest, I);
1403       Op0 = TOS = Dest;
1404       KillsOp0 = true;
1405     }
1406   } else if (!KillsOp0 && !KillsOp1) {
1407     // If we DO have one of our operands at the top of the stack, but we don't
1408     // have a dead operand, we must duplicate one of the operands to a new slot
1409     // on the stack.
1410     duplicateToTop(Op0, Dest, I);
1411     Op0 = TOS = Dest;
1412     KillsOp0 = true;
1413   }
1414 
1415   // Now we know that one of our operands is on the top of the stack, and at
1416   // least one of our operands is killed by this instruction.
1417   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1418          "Stack conditions not set up right!");
1419 
1420   // We decide which form to use based on what is on the top of the stack, and
1421   // which operand is killed by this instruction.
1422   ArrayRef<TableEntry> InstTable;
1423   bool isForward = TOS == Op0;
1424   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1425   if (updateST0) {
1426     if (isForward)
1427       InstTable = ForwardST0Table;
1428     else
1429       InstTable = ReverseST0Table;
1430   } else {
1431     if (isForward)
1432       InstTable = ForwardSTiTable;
1433     else
1434       InstTable = ReverseSTiTable;
1435   }
1436 
1437   int Opcode = Lookup(InstTable, MI.getOpcode());
1438   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1439 
1440   // NotTOS - The register which is not on the top of stack...
1441   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1442 
1443   // Replace the old instruction with a new instruction
1444   MBB->remove(&*I++);
1445   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1446 
1447   if (!MI.mayRaiseFPException())
1448     I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1449 
1450   // If both operands are killed, pop one off of the stack in addition to
1451   // overwriting the other one.
1452   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1453     assert(!updateST0 && "Should have updated other operand!");
1454     popStackAfter(I);   // Pop the top of stack
1455   }
1456 
1457   // Update stack information so that we know the destination register is now on
1458   // the stack.
1459   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1460   assert(UpdatedSlot < StackTop && Dest < 7);
1461   Stack[UpdatedSlot]   = Dest;
1462   RegMap[Dest]         = UpdatedSlot;
1463   MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
1464 }
1465 
1466 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1467 /// register arguments and no explicit destinations.
1468 ///
1469 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1470   MachineInstr &MI = *I;
1471 
1472   unsigned NumOperands = MI.getDesc().getNumOperands();
1473   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1474   unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1475   unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1476   bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1477   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1478 
1479   // Make sure the first operand is on the top of stack, the other one can be
1480   // anywhere.
1481   moveToTop(Op0, I);
1482 
1483   // Change from the pseudo instruction to the concrete instruction.
1484   MI.getOperand(0).setReg(getSTReg(Op1));
1485   MI.removeOperand(1);
1486   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1487   MI.dropDebugNumber();
1488 
1489   // If any of the operands are killed by this instruction, free them.
1490   if (KillsOp0) freeStackSlotAfter(I, Op0);
1491   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1492 }
1493 
1494 /// handleCondMovFP - Handle two address conditional move instructions.  These
1495 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1496 /// instructions require that the first operand is at the top of the stack, but
1497 /// otherwise don't modify the stack at all.
1498 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1499   MachineInstr &MI = *I;
1500 
1501   unsigned Op0 = getFPReg(MI.getOperand(0));
1502   unsigned Op1 = getFPReg(MI.getOperand(2));
1503   bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1504 
1505   // The first operand *must* be on the top of the stack.
1506   moveToTop(Op0, I);
1507 
1508   // Change the second operand to the stack register that the operand is in.
1509   // Change from the pseudo instruction to the concrete instruction.
1510   MI.removeOperand(0);
1511   MI.removeOperand(1);
1512   MI.getOperand(0).setReg(getSTReg(Op1));
1513   MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1514   MI.dropDebugNumber();
1515 
1516   // If we kill the second operand, make sure to pop it from the stack.
1517   if (Op0 != Op1 && KillsOp1) {
1518     // Get this value off of the register stack.
1519     freeStackSlotAfter(I, Op1);
1520   }
1521 }
1522 
1523 
1524 /// handleSpecialFP - Handle special instructions which behave unlike other
1525 /// floating point instructions.  This is primarily intended for use by pseudo
1526 /// instructions.
1527 ///
1528 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1529   MachineInstr &MI = *Inst;
1530 
1531   if (MI.isCall()) {
1532     handleCall(Inst);
1533     return;
1534   }
1535 
1536   if (MI.isReturn()) {
1537     handleReturn(Inst);
1538     return;
1539   }
1540 
1541   switch (MI.getOpcode()) {
1542   default: llvm_unreachable("Unknown SpecialFP instruction!");
1543   case TargetOpcode::COPY: {
1544     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1545     const MachineOperand &MO1 = MI.getOperand(1);
1546     const MachineOperand &MO0 = MI.getOperand(0);
1547     bool KillsSrc = MI.killsRegister(MO1.getReg(), /*TRI=*/nullptr);
1548 
1549     // FP <- FP copy.
1550     unsigned DstFP = getFPReg(MO0);
1551     unsigned SrcFP = getFPReg(MO1);
1552     assert(isLive(SrcFP) && "Cannot copy dead register");
1553     if (KillsSrc) {
1554       // If the input operand is killed, we can just change the owner of the
1555       // incoming stack slot into the result.
1556       unsigned Slot = getSlot(SrcFP);
1557       Stack[Slot] = DstFP;
1558       RegMap[DstFP] = Slot;
1559     } else {
1560       // For COPY we just duplicate the specified value to a new stack slot.
1561       // This could be made better, but would require substantial changes.
1562       duplicateToTop(SrcFP, DstFP, Inst);
1563     }
1564     break;
1565   }
1566 
1567   case TargetOpcode::IMPLICIT_DEF: {
1568     // All FP registers must be explicitly defined, so load a 0 instead.
1569     unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1570     LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1571     BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1572     pushReg(Reg);
1573     break;
1574   }
1575 
1576   case TargetOpcode::INLINEASM:
1577   case TargetOpcode::INLINEASM_BR: {
1578     // The inline asm MachineInstr currently only *uses* FP registers for the
1579     // 'f' constraint.  These should be turned into the current ST(x) register
1580     // in the machine instr.
1581     //
1582     // There are special rules for x87 inline assembly. The compiler must know
1583     // exactly how many registers are popped and pushed implicitly by the asm.
1584     // Otherwise it is not possible to restore the stack state after the inline
1585     // asm.
1586     //
1587     // There are 3 kinds of input operands:
1588     //
1589     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1590     //    popped input operand must be in a fixed stack slot, and it is either
1591     //    tied to an output operand, or in the clobber list. The MI has ST use
1592     //    and def operands for these inputs.
1593     //
1594     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1595     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1596     //    following the popped inputs. A fixed input operand cannot be tied to
1597     //    an output or appear in the clobber list. The MI has ST use operands
1598     //    and no defs for these inputs.
1599     //
1600     // 3. Preserved inputs. These inputs use the "f" constraint which is
1601     //    represented as an FP register. The inline asm won't change these
1602     //    stack slots.
1603     //
1604     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1605     // registers do not count as output operands. The inline asm changes the
1606     // stack as if it popped all the popped inputs and then pushed all the
1607     // output operands.
1608 
1609     // Scan the assembly for ST registers used, defined and clobbered. We can
1610     // only tell clobbers from defs by looking at the asm descriptor.
1611     unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1612     unsigned NumOps = 0;
1613     SmallSet<unsigned, 1> FRegIdx;
1614     unsigned RCID;
1615 
1616     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1617          i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1618       unsigned Flags = MI.getOperand(i).getImm();
1619       const InlineAsm::Flag F(Flags);
1620 
1621       NumOps = F.getNumOperandRegisters();
1622       if (NumOps != 1)
1623         continue;
1624       const MachineOperand &MO = MI.getOperand(i + 1);
1625       if (!MO.isReg())
1626         continue;
1627       unsigned STReg = MO.getReg() - X86::FP0;
1628       if (STReg >= 8)
1629         continue;
1630 
1631       // If the flag has a register class constraint, this must be an operand
1632       // with constraint "f". Record its index and continue.
1633       if (F.hasRegClassConstraint(RCID)) {
1634         FRegIdx.insert(i + 1);
1635         continue;
1636       }
1637 
1638       switch (F.getKind()) {
1639       case InlineAsm::Kind::RegUse:
1640         STUses |= (1u << STReg);
1641         break;
1642       case InlineAsm::Kind::RegDef:
1643       case InlineAsm::Kind::RegDefEarlyClobber:
1644         STDefs |= (1u << STReg);
1645         break;
1646       case InlineAsm::Kind::Clobber:
1647         STClobbers |= (1u << STReg);
1648         break;
1649       default:
1650         break;
1651       }
1652     }
1653 
1654     if (STUses && !isMask_32(STUses))
1655       MI.emitGenericError("fixed input regs must be last on the x87 stack");
1656     unsigned NumSTUses = llvm::countr_one(STUses);
1657 
1658     // Defs must be contiguous from the stack top. ST0-STn.
1659     if (STDefs && !isMask_32(STDefs)) {
1660       MI.emitGenericError("output regs must be last on the x87 stack");
1661       STDefs = NextPowerOf2(STDefs) - 1;
1662     }
1663     unsigned NumSTDefs = llvm::countr_one(STDefs);
1664 
1665     // So must the clobbered stack slots. ST0-STm, m >= n.
1666     if (STClobbers && !isMask_32(STDefs | STClobbers))
1667       MI.emitGenericError("clobbers must be last on the x87 stack");
1668 
1669     // Popped inputs are the ones that are also clobbered or defined.
1670     unsigned STPopped = STUses & (STDefs | STClobbers);
1671     if (STPopped && !isMask_32(STPopped))
1672       MI.emitGenericError(
1673           "implicitly popped regs must be last on the x87 stack");
1674     unsigned NumSTPopped = llvm::countr_one(STPopped);
1675 
1676     LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1677                       << NumSTPopped << ", and defines " << NumSTDefs
1678                       << " regs.\n");
1679 
1680 #ifndef NDEBUG
1681     // If any input operand uses constraint "f", all output register
1682     // constraints must be early-clobber defs.
1683     for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1684       if (FRegIdx.count(I)) {
1685         assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1686                "Operands with constraint \"f\" cannot overlap with defs");
1687       }
1688 #endif
1689 
1690     // Collect all FP registers (register operands with constraints "t", "u",
1691     // and "f") to kill afer the instruction.
1692     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1693     for (const MachineOperand &Op : MI.operands()) {
1694       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1695         continue;
1696       unsigned FPReg = getFPReg(Op);
1697 
1698       // If we kill this operand, make sure to pop it from the stack after the
1699       // asm.  We just remember it for now, and pop them all off at the end in
1700       // a batch.
1701       if (Op.isUse() && Op.isKill())
1702         FPKills |= 1U << FPReg;
1703     }
1704 
1705     // Do not include registers that are implicitly popped by defs/clobbers.
1706     FPKills &= ~(STDefs | STClobbers);
1707 
1708     // Now we can rearrange the live registers to match what was requested.
1709     unsigned char STUsesArray[8];
1710 
1711     for (unsigned I = 0; I < NumSTUses; ++I)
1712       STUsesArray[I] = I;
1713 
1714     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1715     LLVM_DEBUG({
1716       dbgs() << "Before asm: ";
1717       dumpStack();
1718     });
1719 
1720     // With the stack layout fixed, rewrite the FP registers.
1721     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1722       MachineOperand &Op = MI.getOperand(i);
1723       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1724         continue;
1725 
1726       unsigned FPReg = getFPReg(Op);
1727 
1728       if (FRegIdx.count(i))
1729         // Operand with constraint "f".
1730         Op.setReg(getSTReg(FPReg));
1731       else
1732         // Operand with a single register class constraint ("t" or "u").
1733         Op.setReg(X86::ST0 + FPReg);
1734     }
1735 
1736     // Simulate the inline asm popping its inputs and pushing its outputs.
1737     StackTop -= NumSTPopped;
1738 
1739     for (unsigned i = 0; i < NumSTDefs; ++i)
1740       pushReg(NumSTDefs - i - 1);
1741 
1742     // If this asm kills any FP registers (is the last use of them) we must
1743     // explicitly emit pop instructions for them.  Do this now after the asm has
1744     // executed so that the ST(x) numbers are not off (which would happen if we
1745     // did this inline with operand rewriting).
1746     //
1747     // Note: this might be a non-optimal pop sequence.  We might be able to do
1748     // better by trying to pop in stack order or something.
1749     while (FPKills) {
1750       unsigned FPReg = llvm::countr_zero(FPKills);
1751       if (isLive(FPReg))
1752         freeStackSlotAfter(Inst, FPReg);
1753       FPKills &= ~(1U << FPReg);
1754     }
1755 
1756     // Don't delete the inline asm!
1757     return;
1758   }
1759 
1760   // FAKE_USE must pop its register operand off the stack if it is killed,
1761   // because this constitutes the register's last use. If the operand
1762   // is not killed, it will have its last use later, so we leave it alone.
1763   // In either case we remove the operand so later passes don't see it.
1764   case TargetOpcode::FAKE_USE: {
1765     assert(MI.getNumExplicitOperands() == 1 &&
1766            "FAKE_USE must have exactly one operand");
1767     if (MI.getOperand(0).isKill()) {
1768       freeStackSlotBefore(Inst, getFPReg(MI.getOperand(0)));
1769     }
1770     MI.removeOperand(0);
1771     return;
1772   }
1773   }
1774 
1775   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1776 
1777   // We want to leave I pointing to the previous instruction, but what if we
1778   // just erased the first instruction?
1779   if (Inst == MBB->begin()) {
1780     LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1781     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1782   } else
1783     --Inst;
1784 }
1785 
1786 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1787   const TargetRegisterInfo &TRI =
1788       *MBB.getParent()->getSubtarget().getRegisterInfo();
1789   LiveRegUnits LPR(TRI);
1790 
1791   LPR.addLiveOuts(MBB);
1792 
1793   for (MachineInstr &MI : llvm::reverse(MBB)) {
1794     if (MI.isDebugInstr())
1795       continue;
1796 
1797     std::bitset<8> Defs;
1798     SmallVector<MachineOperand *, 2> Uses;
1799 
1800     for (auto &MO : MI.operands()) {
1801       if (!MO.isReg())
1802         continue;
1803 
1804       unsigned Reg = MO.getReg() - X86::FP0;
1805 
1806       if (Reg >= 8)
1807         continue;
1808 
1809       if (MO.isDef()) {
1810         Defs.set(Reg);
1811         if (LPR.available(MO.getReg()))
1812           MO.setIsDead();
1813       } else
1814         Uses.push_back(&MO);
1815     }
1816 
1817     for (auto *MO : Uses)
1818       if (Defs.test(getFPReg(*MO)) || LPR.available(MO->getReg()))
1819         MO->setIsKill();
1820 
1821     LPR.stepBackward(MI);
1822   }
1823 }
1824