1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "WebAssembly.h" 24 #include "WebAssemblyDebugValueManager.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <iterator> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-reg-stackify" 41 42 namespace { 43 class WebAssemblyRegStackify final : public MachineFunctionPass { 44 StringRef getPassName() const override { 45 return "WebAssembly Register Stackify"; 46 } 47 48 void getAnalysisUsage(AnalysisUsage &AU) const override { 49 AU.setPreservesCFG(); 50 AU.addRequired<MachineDominatorTreeWrapperPass>(); 51 AU.addRequired<LiveIntervalsWrapperPass>(); 52 AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>(); 53 AU.addPreserved<SlotIndexesWrapperPass>(); 54 AU.addPreserved<LiveIntervalsWrapperPass>(); 55 AU.addPreservedID(LiveVariablesID); 56 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 bool runOnMachineFunction(MachineFunction &MF) override; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 65 }; 66 } // end anonymous namespace 67 68 char WebAssemblyRegStackify::ID = 0; 69 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 70 "Reorder instructions to use the WebAssembly value stack", 71 false, false) 72 73 FunctionPass *llvm::createWebAssemblyRegStackify() { 74 return new WebAssemblyRegStackify(); 75 } 76 77 // Decorate the given instruction with implicit operands that enforce the 78 // expression stack ordering constraints for an instruction which is on 79 // the expression stack. 80 static void imposeStackOrdering(MachineInstr *MI) { 81 // Write the opaque VALUE_STACK register. 82 if (!MI->definesRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) 83 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 84 /*isDef=*/true, 85 /*isImp=*/true)); 86 87 // Also read the opaque VALUE_STACK register. 88 if (!MI->readsRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr)) 89 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 90 /*isDef=*/false, 91 /*isImp=*/true)); 92 } 93 94 // Convert an IMPLICIT_DEF instruction into an instruction which defines 95 // a constant zero value. 96 static void convertImplicitDefToConstZero(MachineInstr *MI, 97 MachineRegisterInfo &MRI, 98 const TargetInstrInfo *TII, 99 MachineFunction &MF, 100 LiveIntervals &LIS) { 101 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 102 103 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 104 if (RegClass == &WebAssembly::I32RegClass) { 105 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 106 MI->addOperand(MachineOperand::CreateImm(0)); 107 } else if (RegClass == &WebAssembly::I64RegClass) { 108 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 109 MI->addOperand(MachineOperand::CreateImm(0)); 110 } else if (RegClass == &WebAssembly::F32RegClass) { 111 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 112 auto *Val = cast<ConstantFP>(Constant::getNullValue( 113 Type::getFloatTy(MF.getFunction().getContext()))); 114 MI->addOperand(MachineOperand::CreateFPImm(Val)); 115 } else if (RegClass == &WebAssembly::F64RegClass) { 116 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 117 auto *Val = cast<ConstantFP>(Constant::getNullValue( 118 Type::getDoubleTy(MF.getFunction().getContext()))); 119 MI->addOperand(MachineOperand::CreateFPImm(Val)); 120 } else if (RegClass == &WebAssembly::V128RegClass) { 121 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2)); 122 MI->addOperand(MachineOperand::CreateImm(0)); 123 MI->addOperand(MachineOperand::CreateImm(0)); 124 } else { 125 llvm_unreachable("Unexpected reg class"); 126 } 127 } 128 129 // Determine whether a call to the callee referenced by 130 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 131 // effects. 132 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, 133 bool &Effects, bool &StackPointer) { 134 // All calls can use the stack pointer. 135 StackPointer = true; 136 137 const MachineOperand &MO = WebAssembly::getCalleeOp(MI); 138 if (MO.isGlobal()) { 139 const Constant *GV = MO.getGlobal(); 140 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 141 if (!GA->isInterposable()) 142 GV = GA->getAliasee(); 143 144 if (const auto *F = dyn_cast<Function>(GV)) { 145 if (!F->doesNotThrow()) 146 Effects = true; 147 if (F->doesNotAccessMemory()) 148 return; 149 if (F->onlyReadsMemory()) { 150 Read = true; 151 return; 152 } 153 } 154 } 155 156 // Assume the worst. 157 Write = true; 158 Read = true; 159 Effects = true; 160 } 161 162 // Determine whether MI reads memory, writes memory, has side effects, 163 // and/or uses the stack pointer value. 164 static void query(const MachineInstr &MI, bool &Read, bool &Write, 165 bool &Effects, bool &StackPointer) { 166 assert(!MI.isTerminator()); 167 168 if (MI.isDebugInstr() || MI.isPosition()) 169 return; 170 171 // Check for loads. 172 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) 173 Read = true; 174 175 // Check for stores. 176 if (MI.mayStore()) { 177 Write = true; 178 } else if (MI.hasOrderedMemoryRef()) { 179 switch (MI.getOpcode()) { 180 case WebAssembly::DIV_S_I32: 181 case WebAssembly::DIV_S_I64: 182 case WebAssembly::REM_S_I32: 183 case WebAssembly::REM_S_I64: 184 case WebAssembly::DIV_U_I32: 185 case WebAssembly::DIV_U_I64: 186 case WebAssembly::REM_U_I32: 187 case WebAssembly::REM_U_I64: 188 case WebAssembly::I32_TRUNC_S_F32: 189 case WebAssembly::I64_TRUNC_S_F32: 190 case WebAssembly::I32_TRUNC_S_F64: 191 case WebAssembly::I64_TRUNC_S_F64: 192 case WebAssembly::I32_TRUNC_U_F32: 193 case WebAssembly::I64_TRUNC_U_F32: 194 case WebAssembly::I32_TRUNC_U_F64: 195 case WebAssembly::I64_TRUNC_U_F64: 196 // These instruction have hasUnmodeledSideEffects() returning true 197 // because they trap on overflow and invalid so they can't be arbitrarily 198 // moved, however hasOrderedMemoryRef() interprets this plus their lack 199 // of memoperands as having a potential unknown memory reference. 200 break; 201 default: 202 // Record volatile accesses, unless it's a call, as calls are handled 203 // specially below. 204 if (!MI.isCall()) { 205 Write = true; 206 Effects = true; 207 } 208 break; 209 } 210 } 211 212 // Check for side effects. 213 if (MI.hasUnmodeledSideEffects()) { 214 switch (MI.getOpcode()) { 215 case WebAssembly::DIV_S_I32: 216 case WebAssembly::DIV_S_I64: 217 case WebAssembly::REM_S_I32: 218 case WebAssembly::REM_S_I64: 219 case WebAssembly::DIV_U_I32: 220 case WebAssembly::DIV_U_I64: 221 case WebAssembly::REM_U_I32: 222 case WebAssembly::REM_U_I64: 223 case WebAssembly::I32_TRUNC_S_F32: 224 case WebAssembly::I64_TRUNC_S_F32: 225 case WebAssembly::I32_TRUNC_S_F64: 226 case WebAssembly::I64_TRUNC_S_F64: 227 case WebAssembly::I32_TRUNC_U_F32: 228 case WebAssembly::I64_TRUNC_U_F32: 229 case WebAssembly::I32_TRUNC_U_F64: 230 case WebAssembly::I64_TRUNC_U_F64: 231 // These instructions have hasUnmodeledSideEffects() returning true 232 // because they trap on overflow and invalid so they can't be arbitrarily 233 // moved, however in the specific case of register stackifying, it is safe 234 // to move them because overflow and invalid are Undefined Behavior. 235 break; 236 default: 237 Effects = true; 238 break; 239 } 240 } 241 242 // Check for writes to __stack_pointer global. 243 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 || 244 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) && 245 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 246 StackPointer = true; 247 248 // Analyze calls. 249 if (MI.isCall()) { 250 queryCallee(MI, Read, Write, Effects, StackPointer); 251 } 252 } 253 254 // Test whether Def is safe and profitable to rematerialize. 255 static bool shouldRematerialize(const MachineInstr &Def, 256 const WebAssemblyInstrInfo *TII) { 257 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def); 258 } 259 260 // Identify the definition for this register at this point. This is a 261 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 262 // LiveIntervals to handle complex cases. 263 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 264 const MachineRegisterInfo &MRI, 265 const LiveIntervals &LIS) { 266 // Most registers are in SSA form here so we try a quick MRI query first. 267 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 268 return Def; 269 270 // MRI doesn't know what the Def is. Try asking LIS. 271 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 272 LIS.getInstructionIndex(*Insert))) 273 return LIS.getInstructionFromIndex(ValNo->def); 274 275 return nullptr; 276 } 277 278 // Test whether Reg, as defined at Def, has exactly one use. This is a 279 // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses 280 // LiveIntervals to handle complex cases. 281 static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def, 282 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 283 LiveIntervals &LIS) { 284 // Most registers are in SSA form here so we try a quick MRI query first. 285 if (MRI.hasOneNonDBGUse(Reg)) 286 return true; 287 288 bool HasOne = false; 289 const LiveInterval &LI = LIS.getInterval(Reg); 290 const VNInfo *DefVNI = 291 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 292 assert(DefVNI); 293 for (auto &I : MRI.use_nodbg_operands(Reg)) { 294 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 295 if (Result.valueIn() == DefVNI) { 296 if (!Result.isKill()) 297 return false; 298 if (HasOne) 299 return false; 300 HasOne = true; 301 } 302 } 303 return HasOne; 304 } 305 306 // Test whether it's safe to move Def to just before Insert. 307 // TODO: Compute memory dependencies in a way that doesn't require always 308 // walking the block. 309 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 310 // more precise. 311 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, 312 const MachineInstr *Insert, 313 const WebAssemblyFunctionInfo &MFI, 314 const MachineRegisterInfo &MRI) { 315 const MachineInstr *DefI = Def->getParent(); 316 const MachineInstr *UseI = Use->getParent(); 317 assert(DefI->getParent() == Insert->getParent()); 318 assert(UseI->getParent() == Insert->getParent()); 319 320 // The first def of a multivalue instruction can be stackified by moving, 321 // since the later defs can always be placed into locals if necessary. Later 322 // defs can only be stackified if all previous defs are already stackified 323 // since ExplicitLocals will not know how to place a def in a local if a 324 // subsequent def is stackified. But only one def can be stackified by moving 325 // the instruction, so it must be the first one. 326 // 327 // TODO: This could be loosened to be the first *live* def, but care would 328 // have to be taken to ensure the drops of the initial dead defs can be 329 // placed. This would require checking that no previous defs are used in the 330 // same instruction as subsequent defs. 331 if (Def != DefI->defs().begin()) 332 return false; 333 334 // If any subsequent def is used prior to the current value by the same 335 // instruction in which the current value is used, we cannot 336 // stackify. Stackifying in this case would require that def moving below the 337 // current def in the stack, which cannot be achieved, even with locals. 338 // Also ensure we don't sink the def past any other prior uses. 339 for (const auto &SubsequentDef : drop_begin(DefI->defs())) { 340 auto I = std::next(MachineBasicBlock::const_iterator(DefI)); 341 auto E = std::next(MachineBasicBlock::const_iterator(UseI)); 342 for (; I != E; ++I) { 343 for (const auto &PriorUse : I->uses()) { 344 if (&PriorUse == Use) 345 break; 346 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg()) 347 return false; 348 } 349 } 350 } 351 352 // If moving is a semantic nop, it is always allowed 353 const MachineBasicBlock *MBB = DefI->getParent(); 354 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI)); 355 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 356 ; 357 if (NextI == Insert) 358 return true; 359 360 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot 361 // move. 362 if (WebAssembly::isCatch(DefI->getOpcode())) 363 return false; 364 365 // Check for register dependencies. 366 SmallVector<unsigned, 4> MutableRegisters; 367 for (const MachineOperand &MO : DefI->operands()) { 368 if (!MO.isReg() || MO.isUndef()) 369 continue; 370 Register Reg = MO.getReg(); 371 372 // If the register is dead here and at Insert, ignore it. 373 if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) && 374 !Insert->readsRegister(Reg, /*TRI=*/nullptr)) 375 continue; 376 377 if (Reg.isPhysical()) { 378 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 379 // from moving down, and we've already checked for that. 380 if (Reg == WebAssembly::ARGUMENTS) 381 continue; 382 // If the physical register is never modified, ignore it. 383 if (!MRI.isPhysRegModified(Reg)) 384 continue; 385 // Otherwise, it's a physical register with unknown liveness. 386 return false; 387 } 388 389 // If one of the operands isn't in SSA form, it has different values at 390 // different times, and we need to make sure we don't move our use across 391 // a different def. 392 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 393 MutableRegisters.push_back(Reg); 394 } 395 396 bool Read = false, Write = false, Effects = false, StackPointer = false; 397 query(*DefI, Read, Write, Effects, StackPointer); 398 399 // If the instruction does not access memory and has no side effects, it has 400 // no additional dependencies. 401 bool HasMutableRegisters = !MutableRegisters.empty(); 402 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 403 return true; 404 405 // Scan through the intervening instructions between DefI and Insert. 406 MachineBasicBlock::const_iterator D(DefI), I(Insert); 407 for (--I; I != D; --I) { 408 bool InterveningRead = false; 409 bool InterveningWrite = false; 410 bool InterveningEffects = false; 411 bool InterveningStackPointer = false; 412 query(*I, InterveningRead, InterveningWrite, InterveningEffects, 413 InterveningStackPointer); 414 if (Effects && InterveningEffects) 415 return false; 416 if (Read && InterveningWrite) 417 return false; 418 if (Write && (InterveningRead || InterveningWrite)) 419 return false; 420 if (StackPointer && InterveningStackPointer) 421 return false; 422 423 for (unsigned Reg : MutableRegisters) 424 for (const MachineOperand &MO : I->operands()) 425 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 426 return false; 427 } 428 429 return true; 430 } 431 432 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 433 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 434 const MachineBasicBlock &MBB, 435 const MachineRegisterInfo &MRI, 436 const MachineDominatorTree &MDT, 437 LiveIntervals &LIS, 438 WebAssemblyFunctionInfo &MFI) { 439 const LiveInterval &LI = LIS.getInterval(Reg); 440 441 const MachineInstr *OneUseInst = OneUse.getParent(); 442 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 443 444 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 445 if (&Use == &OneUse) 446 continue; 447 448 const MachineInstr *UseInst = Use.getParent(); 449 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 450 451 if (UseVNI != OneUseVNI) 452 continue; 453 454 if (UseInst == OneUseInst) { 455 // Another use in the same instruction. We need to ensure that the one 456 // selected use happens "before" it. 457 if (&OneUse > &Use) 458 return false; 459 } else { 460 // Test that the use is dominated by the one selected use. 461 while (!MDT.dominates(OneUseInst, UseInst)) { 462 // Actually, dominating is over-conservative. Test that the use would 463 // happen after the one selected use in the stack evaluation order. 464 // 465 // This is needed as a consequence of using implicit local.gets for 466 // uses and implicit local.sets for defs. 467 if (UseInst->getDesc().getNumDefs() == 0) 468 return false; 469 const MachineOperand &MO = UseInst->getOperand(0); 470 if (!MO.isReg()) 471 return false; 472 Register DefReg = MO.getReg(); 473 if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg)) 474 return false; 475 assert(MRI.hasOneNonDBGUse(DefReg)); 476 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 477 const MachineInstr *NewUseInst = NewUse.getParent(); 478 if (NewUseInst == OneUseInst) { 479 if (&OneUse > &NewUse) 480 return false; 481 break; 482 } 483 UseInst = NewUseInst; 484 } 485 } 486 } 487 return true; 488 } 489 490 /// Get the appropriate tee opcode for the given register class. 491 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 492 if (RC == &WebAssembly::I32RegClass) 493 return WebAssembly::TEE_I32; 494 if (RC == &WebAssembly::I64RegClass) 495 return WebAssembly::TEE_I64; 496 if (RC == &WebAssembly::F32RegClass) 497 return WebAssembly::TEE_F32; 498 if (RC == &WebAssembly::F64RegClass) 499 return WebAssembly::TEE_F64; 500 if (RC == &WebAssembly::V128RegClass) 501 return WebAssembly::TEE_V128; 502 if (RC == &WebAssembly::EXTERNREFRegClass) 503 return WebAssembly::TEE_EXTERNREF; 504 if (RC == &WebAssembly::FUNCREFRegClass) 505 return WebAssembly::TEE_FUNCREF; 506 if (RC == &WebAssembly::EXNREFRegClass) 507 return WebAssembly::TEE_EXNREF; 508 llvm_unreachable("Unexpected register class"); 509 } 510 511 // Shrink LI to its uses, cleaning up LI. 512 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 513 if (LIS.shrinkToUses(&LI)) { 514 SmallVector<LiveInterval *, 4> SplitLIs; 515 LIS.splitSeparateComponents(LI, SplitLIs); 516 } 517 } 518 519 /// A single-use def in the same block with no intervening memory or register 520 /// dependencies; move the def down and nest it with the current instruction. 521 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 522 MachineInstr *Def, MachineBasicBlock &MBB, 523 MachineInstr *Insert, LiveIntervals &LIS, 524 WebAssemblyFunctionInfo &MFI, 525 MachineRegisterInfo &MRI) { 526 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 527 528 WebAssemblyDebugValueManager DefDIs(Def); 529 DefDIs.sink(Insert); 530 LIS.handleMove(*Def); 531 532 if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) { 533 // No one else is using this register for anything so we can just stackify 534 // it in place. 535 MFI.stackifyVReg(MRI, Reg); 536 } else { 537 // The register may have unrelated uses or defs; create a new register for 538 // just our one def and use so that we can stackify it. 539 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 540 Op.setReg(NewReg); 541 DefDIs.updateReg(NewReg); 542 543 // Tell LiveIntervals about the new register. 544 LIS.createAndComputeVirtRegInterval(NewReg); 545 546 // Tell LiveIntervals about the changes to the old register. 547 LiveInterval &LI = LIS.getInterval(Reg); 548 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 549 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 550 /*RemoveDeadValNo=*/true); 551 552 MFI.stackifyVReg(MRI, NewReg); 553 554 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 555 } 556 557 imposeStackOrdering(Def); 558 return Def; 559 } 560 561 static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) { 562 for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode()) 563 if (!I->isDebugInstr()) 564 return I; 565 return nullptr; 566 } 567 568 /// A trivially cloneable instruction; clone it and nest the new copy with the 569 /// current instruction. 570 static MachineInstr *rematerializeCheapDef( 571 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 572 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 573 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 574 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 575 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 576 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 577 578 WebAssemblyDebugValueManager DefDIs(&Def); 579 580 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 581 DefDIs.cloneSink(&*Insert, NewReg); 582 Op.setReg(NewReg); 583 MachineInstr *Clone = getPrevNonDebugInst(&*Insert); 584 assert(Clone); 585 LIS.InsertMachineInstrInMaps(*Clone); 586 LIS.createAndComputeVirtRegInterval(NewReg); 587 MFI.stackifyVReg(MRI, NewReg); 588 imposeStackOrdering(Clone); 589 590 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 591 592 // Shrink the interval. 593 bool IsDead = MRI.use_empty(Reg); 594 if (!IsDead) { 595 LiveInterval &LI = LIS.getInterval(Reg); 596 shrinkToUses(LI, LIS); 597 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 598 } 599 600 // If that was the last use of the original, delete the original. 601 if (IsDead) { 602 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 603 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 604 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx); 605 LIS.removeInterval(Reg); 606 LIS.RemoveMachineInstrFromMaps(Def); 607 DefDIs.removeDef(); 608 } 609 610 return Clone; 611 } 612 613 /// A multiple-use def in the same block with no intervening memory or register 614 /// dependencies; move the def down, nest it with the current instruction, and 615 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 616 /// this: 617 /// 618 /// Reg = INST ... // Def 619 /// INST ..., Reg, ... // Insert 620 /// INST ..., Reg, ... 621 /// INST ..., Reg, ... 622 /// 623 /// to this: 624 /// 625 /// DefReg = INST ... // Def (to become the new Insert) 626 /// TeeReg, Reg = TEE_... DefReg 627 /// INST ..., TeeReg, ... // Insert 628 /// INST ..., Reg, ... 629 /// INST ..., Reg, ... 630 /// 631 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 632 /// resulting code. 633 static MachineInstr *moveAndTeeForMultiUse( 634 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 635 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 636 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 637 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 638 639 const auto *RegClass = MRI.getRegClass(Reg); 640 Register TeeReg = MRI.createVirtualRegister(RegClass); 641 Register DefReg = MRI.createVirtualRegister(RegClass); 642 643 // Move Def into place. 644 WebAssemblyDebugValueManager DefDIs(Def); 645 DefDIs.sink(Insert); 646 LIS.handleMove(*Def); 647 648 // Create the Tee and attach the registers. 649 MachineOperand &DefMO = Def->getOperand(0); 650 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 651 TII->get(getTeeOpcode(RegClass)), TeeReg) 652 .addReg(Reg, RegState::Define) 653 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 654 Op.setReg(TeeReg); 655 DefDIs.updateReg(DefReg); 656 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 657 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 658 659 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 660 LiveInterval &LI = LIS.getInterval(Reg); 661 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 662 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 663 I->start = TeeIdx; 664 ValNo->def = TeeIdx; 665 shrinkToUses(LI, LIS); 666 667 // Finish stackifying the new regs. 668 LIS.createAndComputeVirtRegInterval(TeeReg); 669 LIS.createAndComputeVirtRegInterval(DefReg); 670 MFI.stackifyVReg(MRI, DefReg); 671 MFI.stackifyVReg(MRI, TeeReg); 672 imposeStackOrdering(Def); 673 imposeStackOrdering(Tee); 674 675 // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone 676 // DBG_VALUEs for both of them, given that the latter will cancel the former 677 // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted 678 // to a local index in ExplicitLocals pass. 679 DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false); 680 681 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 682 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 683 return Def; 684 } 685 686 namespace { 687 /// A stack for walking the tree of instructions being built, visiting the 688 /// MachineOperands in DFS order. 689 class TreeWalkerState { 690 using mop_iterator = MachineInstr::mop_iterator; 691 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 692 using RangeTy = iterator_range<mop_reverse_iterator>; 693 SmallVector<RangeTy, 4> Worklist; 694 695 public: 696 explicit TreeWalkerState(MachineInstr *Insert) { 697 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 698 if (!Range.empty()) 699 Worklist.push_back(reverse(Range)); 700 } 701 702 bool done() const { return Worklist.empty(); } 703 704 MachineOperand &pop() { 705 RangeTy &Range = Worklist.back(); 706 MachineOperand &Op = *Range.begin(); 707 Range = drop_begin(Range); 708 if (Range.empty()) 709 Worklist.pop_back(); 710 assert((Worklist.empty() || !Worklist.back().empty()) && 711 "Empty ranges shouldn't remain in the worklist"); 712 return Op; 713 } 714 715 /// Push Instr's operands onto the stack to be visited. 716 void pushOperands(MachineInstr *Instr) { 717 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 718 if (!Range.empty()) 719 Worklist.push_back(reverse(Range)); 720 } 721 722 /// Some of Instr's operands are on the top of the stack; remove them and 723 /// re-insert them starting from the beginning (because we've commuted them). 724 void resetTopOperands(MachineInstr *Instr) { 725 assert(hasRemainingOperands(Instr) && 726 "Reseting operands should only be done when the instruction has " 727 "an operand still on the stack"); 728 Worklist.back() = reverse(Instr->explicit_uses()); 729 } 730 731 /// Test whether Instr has operands remaining to be visited at the top of 732 /// the stack. 733 bool hasRemainingOperands(const MachineInstr *Instr) const { 734 if (Worklist.empty()) 735 return false; 736 const RangeTy &Range = Worklist.back(); 737 return !Range.empty() && Range.begin()->getParent() == Instr; 738 } 739 740 /// Test whether the given register is present on the stack, indicating an 741 /// operand in the tree that we haven't visited yet. Moving a definition of 742 /// Reg to a point in the tree after that would change its value. 743 /// 744 /// This is needed as a consequence of using implicit local.gets for 745 /// uses and implicit local.sets for defs. 746 bool isOnStack(unsigned Reg) const { 747 for (const RangeTy &Range : Worklist) 748 for (const MachineOperand &MO : Range) 749 if (MO.isReg() && MO.getReg() == Reg) 750 return true; 751 return false; 752 } 753 }; 754 755 /// State to keep track of whether commuting is in flight or whether it's been 756 /// tried for the current instruction and didn't work. 757 class CommutingState { 758 /// There are effectively three states: the initial state where we haven't 759 /// started commuting anything and we don't know anything yet, the tentative 760 /// state where we've commuted the operands of the current instruction and are 761 /// revisiting it, and the declined state where we've reverted the operands 762 /// back to their original order and will no longer commute it further. 763 bool TentativelyCommuting = false; 764 bool Declined = false; 765 766 /// During the tentative state, these hold the operand indices of the commuted 767 /// operands. 768 unsigned Operand0, Operand1; 769 770 public: 771 /// Stackification for an operand was not successful due to ordering 772 /// constraints. If possible, and if we haven't already tried it and declined 773 /// it, commute Insert's operands and prepare to revisit it. 774 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 775 const WebAssemblyInstrInfo *TII) { 776 if (TentativelyCommuting) { 777 assert(!Declined && 778 "Don't decline commuting until you've finished trying it"); 779 // Commuting didn't help. Revert it. 780 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 781 TentativelyCommuting = false; 782 Declined = true; 783 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 784 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 785 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 786 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 787 // Tentatively commute the operands and try again. 788 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 789 TreeWalker.resetTopOperands(Insert); 790 TentativelyCommuting = true; 791 Declined = false; 792 } 793 } 794 } 795 796 /// Stackification for some operand was successful. Reset to the default 797 /// state. 798 void reset() { 799 TentativelyCommuting = false; 800 Declined = false; 801 } 802 }; 803 } // end anonymous namespace 804 805 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 806 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 807 "********** Function: " 808 << MF.getName() << '\n'); 809 810 bool Changed = false; 811 MachineRegisterInfo &MRI = MF.getRegInfo(); 812 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 813 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 814 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 815 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 816 auto &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 817 818 // Walk the instructions from the bottom up. Currently we don't look past 819 // block boundaries, and the blocks aren't ordered so the block visitation 820 // order isn't significant, but we may want to change this in the future. 821 for (MachineBasicBlock &MBB : MF) { 822 // Don't use a range-based for loop, because we modify the list as we're 823 // iterating over it and the end iterator may change. 824 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 825 MachineInstr *Insert = &*MII; 826 // Don't nest anything inside an inline asm, because we don't have 827 // constraints for $push inputs. 828 if (Insert->isInlineAsm()) 829 continue; 830 831 // Ignore debugging intrinsics. 832 if (Insert->isDebugValue()) 833 continue; 834 835 // Iterate through the inputs in reverse order, since we'll be pulling 836 // operands off the stack in LIFO order. 837 CommutingState Commuting; 838 TreeWalkerState TreeWalker(Insert); 839 while (!TreeWalker.done()) { 840 MachineOperand &Use = TreeWalker.pop(); 841 842 // We're only interested in explicit virtual register operands. 843 if (!Use.isReg()) 844 continue; 845 846 Register Reg = Use.getReg(); 847 assert(Use.isUse() && "explicit_uses() should only iterate over uses"); 848 assert(!Use.isImplicit() && 849 "explicit_uses() should only iterate over explicit operands"); 850 if (Reg.isPhysical()) 851 continue; 852 853 // Identify the definition for this register at this point. 854 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS); 855 if (!DefI) 856 continue; 857 858 // Don't nest an INLINE_ASM def into anything, because we don't have 859 // constraints for $pop outputs. 860 if (DefI->isInlineAsm()) 861 continue; 862 863 // Argument instructions represent live-in registers and not real 864 // instructions. 865 if (WebAssembly::isArgument(DefI->getOpcode())) 866 continue; 867 868 MachineOperand *Def = 869 DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr); 870 assert(Def != nullptr); 871 872 // Decide which strategy to take. Prefer to move a single-use value 873 // over cloning it, and prefer cloning over introducing a tee. 874 // For moving, we require the def to be in the same block as the use; 875 // this makes things simpler (LiveIntervals' handleMove function only 876 // supports intra-block moves) and it's MachineSink's job to catch all 877 // the sinking opportunities anyway. 878 bool SameBlock = DefI->getParent() == &MBB; 879 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) && 880 !TreeWalker.isOnStack(Reg); 881 if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) { 882 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI); 883 884 // If we are removing the frame base reg completely, remove the debug 885 // info as well. 886 // TODO: Encode this properly as a stackified value. 887 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) 888 MFI.clearFrameBaseVreg(); 889 } else if (shouldRematerialize(*DefI, TII)) { 890 Insert = 891 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(), 892 LIS, MFI, MRI, TII, TRI); 893 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT, 894 LIS, MFI)) { 895 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, 896 MRI, TII); 897 } else { 898 // We failed to stackify the operand. If the problem was ordering 899 // constraints, Commuting may be able to help. 900 if (!CanMove && SameBlock) 901 Commuting.maybeCommute(Insert, TreeWalker, TII); 902 // Proceed to the next operand. 903 continue; 904 } 905 906 // Stackifying a multivalue def may unlock in-place stackification of 907 // subsequent defs. TODO: Handle the case where the consecutive uses are 908 // not all in the same instruction. 909 auto *SubsequentDef = Insert->defs().begin(); 910 auto *SubsequentUse = &Use; 911 while (SubsequentDef != Insert->defs().end() && 912 SubsequentUse != Use.getParent()->uses().end()) { 913 if (!SubsequentDef->isReg() || !SubsequentUse->isReg()) 914 break; 915 Register DefReg = SubsequentDef->getReg(); 916 Register UseReg = SubsequentUse->getReg(); 917 // TODO: This single-use restriction could be relaxed by using tees 918 if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg)) 919 break; 920 MFI.stackifyVReg(MRI, DefReg); 921 ++SubsequentDef; 922 ++SubsequentUse; 923 } 924 925 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 926 // to a constant 0 so that the def is explicit, and the push/pop 927 // correspondence is maintained. 928 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 929 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 930 931 // We stackified an operand. Add the defining instruction's operands to 932 // the worklist stack now to continue to build an ever deeper tree. 933 Commuting.reset(); 934 TreeWalker.pushOperands(Insert); 935 } 936 937 // If we stackified any operands, skip over the tree to start looking for 938 // the next instruction we can build a tree on. 939 if (Insert != &*MII) { 940 imposeStackOrdering(&*MII); 941 MII = MachineBasicBlock::iterator(Insert).getReverse(); 942 Changed = true; 943 } 944 } 945 } 946 947 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 948 // that it never looks like a use-before-def. 949 if (Changed) { 950 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 951 for (MachineBasicBlock &MBB : MF) 952 MBB.addLiveIn(WebAssembly::VALUE_STACK); 953 } 954 955 #ifndef NDEBUG 956 // Verify that pushes and pops are performed in LIFO order. 957 SmallVector<unsigned, 0> Stack; 958 for (MachineBasicBlock &MBB : MF) { 959 for (MachineInstr &MI : MBB) { 960 if (MI.isDebugInstr()) 961 continue; 962 for (MachineOperand &MO : reverse(MI.explicit_uses())) { 963 if (!MO.isReg()) 964 continue; 965 Register Reg = MO.getReg(); 966 if (MFI.isVRegStackified(Reg)) 967 assert(Stack.pop_back_val() == Reg && 968 "Register stack pop should be paired with a push"); 969 } 970 for (MachineOperand &MO : MI.defs()) { 971 if (!MO.isReg()) 972 continue; 973 Register Reg = MO.getReg(); 974 if (MFI.isVRegStackified(Reg)) 975 Stack.push_back(MO.getReg()); 976 } 977 } 978 // TODO: Generalize this code to support keeping values on the stack across 979 // basic block boundaries. 980 assert(Stack.empty() && 981 "Register stack pushes and pops should be balanced"); 982 } 983 #endif 984 985 return Changed; 986 } 987