xref: /llvm-project/llvm/lib/Target/SystemZ/SystemZInstrVector.td (revision 8424bf207efd89eacf2fe893b67be98d535e1db6)
1//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Move instructions
11//===----------------------------------------------------------------------===//
12
13let Predicates = [FeatureVector] in {
14  // Register move.
15  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
16  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
17  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;
18
19  // Load GR from VR element.
20  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
21  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
22  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
23  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
24  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;
25
26  // Load VR element from GR.
27  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
28  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
29                          v128b, v128b, GR32, 0>;
30  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
31                          v128h, v128h, GR32, 1>;
32  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
33                          v128f, v128f, GR32, 2>;
34  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
35                          v128g, v128g, GR64, 3>;
36
37  // Load VR from GRs disjoint.
38  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
39  def VLVGP32 : BinaryAliasVRRf<GR32>;
40}
41
42// Extractions always assign to the full GR64, even if the element would
43// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
44// subreg of the result.
45class VectorExtractSubreg<ValueType type, Instruction insn>
46  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
47        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;
48
49def : VectorExtractSubreg<v16i8, VLGVB>;
50def : VectorExtractSubreg<v8i16, VLGVH>;
51def : VectorExtractSubreg<v4i32, VLGVF>;
52
53//===----------------------------------------------------------------------===//
54// Immediate instructions
55//===----------------------------------------------------------------------===//
56
57let Predicates = [FeatureVector] in {
58  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
59
60    // Generate byte mask.
61    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
62    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
63    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16_timm>;
64
65    // Generate mask.
66    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
67    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
68    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
69    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
70    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;
71
72    // Replicate immediate.
73    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
74    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16_timm, 0>;
75    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16_timm, 1>;
76    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16_timm, 2>;
77    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16_timm, 3>;
78  }
79
80  // Load element immediate.
81  //
82  // We want these instructions to be used ahead of VLVG* where possible.
83  // However, VLVG* takes a variable BD-format index whereas VLEI takes
84  // a plain immediate index.  This means that VLVG* has an extra "base"
85  // register operand and is 3 units more complex.  Bumping the complexity
86  // of the VLEI* instructions by 4 means that they are strictly better
87  // than VLVG* in cases where both forms match.
88  let AddedComplexity = 4 in {
89    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
90                            v128b, v128b, imm32sx16trunc, imm32zx4>;
91    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
92                            v128h, v128h, imm32sx16trunc, imm32zx3>;
93    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
94                            v128f, v128f, imm32sx16, imm32zx2>;
95    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
96                            v128g, v128g, imm64sx16, imm32zx1>;
97  }
98}
99
100//===----------------------------------------------------------------------===//
101// Loads
102//===----------------------------------------------------------------------===//
103
104let Predicates = [FeatureVector] in {
105  // Load.
106  defm VL : UnaryVRXAlign<"vl", 0xE706>;
107
108  // Load to block boundary.  The number of loaded bytes is only known
109  // at run time.  The instruction is really polymorphic, but v128b matches
110  // the return type of the associated intrinsic.
111  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;
112
113  // Load count to block boundary.
114  let Defs = [CC] in
115    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
116                               (ins (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3),
117                       "lcbb\t$R1, $XBD2, $M3",
118                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
119                                                      imm32zx4_timm:$M3))]>;
120
121  // Load with length.  The number of loaded bytes is only known at run time.
122  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;
123
124  // Load multiple.
125  defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;
126
127  // Load and replicate
128  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
129  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
130  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
131  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
132  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
133  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
134            (VLREPF bdxaddr12only:$addr)>;
135  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
136            (VLREPG bdxaddr12only:$addr)>;
137
138  // Use VLREP to load subvectors.  These patterns use "12pair" because
139  // LEY and LDY offer full 20-bit displacement fields.  It's often better
140  // to use those instructions rather than force a 20-bit displacement
141  // into a GPR temporary.
142  let mayLoad = 1, canFoldAsLoad = 1 in {
143    def VL32 : UnaryAliasVRX<z_load, v32sb, bdxaddr12pair>;
144    def VL64 : UnaryAliasVRX<z_load, v64db, bdxaddr12pair>;
145  }
146
147  // Load logical element and zero.
148  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
149  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
150  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
151  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
152  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
153  def : Pat<(z_vllezf32 bdxaddr12only:$addr),
154            (VLLEZF bdxaddr12only:$addr)>;
155  def : Pat<(z_vllezf64 bdxaddr12only:$addr),
156            (VLLEZG bdxaddr12only:$addr)>;
157  let Predicates = [FeatureVectorEnhancements1] in {
158    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
159    def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
160              (VLLEZLF bdxaddr12only:$addr)>;
161  }
162
163  // Load element.
164  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
165  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
166  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
167  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
168  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
169            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
170  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
171            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
172
173  // Gather element.
174  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
175  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
176}
177
178let Predicates = [FeatureVectorPackedDecimal] in {
179  // Load rightmost with length.  The number of loaded bytes is only known
180  // at run time.  Note that while the instruction will accept immediate
181  // lengths larger that 15 at runtime, those will always result in a trap,
182  // so we never emit them here.
183  def VLRL : BinaryVSI<"vlrl", 0xE635, null_frag, 0>;
184  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
185  def : Pat<(int_s390_vlrl imm32zx4:$len, bdaddr12only:$addr),
186            (VLRL bdaddr12only:$addr, imm32zx4:$len)>;
187}
188
189// Use replicating loads if we're inserting a single element into an
190// undefined vector.  This avoids a false dependency on the previous
191// register contents.
192multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
193                             SDPatternOperator load, ValueType scalartype> {
194  def : Pat<(vectype (z_vector_insert
195                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
196            (vlrep bdxaddr12only:$addr)>;
197  def : Pat<(vectype (scalar_to_vector
198                      (scalartype (load bdxaddr12only:$addr)))),
199            (vlrep bdxaddr12only:$addr)>;
200}
201defm : ReplicatePeephole<VLREPB, v16i8, z_anyextloadi8, i32>;
202defm : ReplicatePeephole<VLREPH, v8i16, z_anyextloadi16, i32>;
203defm : ReplicatePeephole<VLREPF, v4i32, z_load, i32>;
204defm : ReplicatePeephole<VLREPG, v2i64, z_load, i64>;
205defm : ReplicatePeephole<VLREPF, v4f32, z_load, f32>;
206defm : ReplicatePeephole<VLREPG, v2f64, z_load, f64>;
207
208//===----------------------------------------------------------------------===//
209// Stores
210//===----------------------------------------------------------------------===//
211
212let Predicates = [FeatureVector] in {
213  // Store.
214  defm VST : StoreVRXAlign<"vst", 0xE70E>;
215
216  // Store with length.  The number of stored bytes is only known at run time.
217  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;
218
219  // Store multiple.
220  defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;
221
222  // Store element.
223  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
224  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
225  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
226  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
227  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
228                       imm32zx2:$index),
229            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
230  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
231                       imm32zx1:$index),
232            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;
233
234  // Use VSTE to store subvectors.  These patterns use "12pair" because
235  // STEY and STDY offer full 20-bit displacement fields.  It's often better
236  // to use those instructions rather than force a 20-bit displacement
237  // into a GPR temporary.
238  let mayStore = 1 in {
239    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
240    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
241  }
242
243  // Scatter element.
244  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
245  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
246}
247
248let Predicates = [FeatureVectorPackedDecimal] in {
249  // Store rightmost with length.  The number of stored bytes is only known
250  // at run time.  Note that while the instruction will accept immediate
251  // lengths larger that 15 at runtime, those will always result in a trap,
252  // so we never emit them here.
253  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, null_frag, 0>;
254  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
255  def : Pat<(int_s390_vstrl VR128:$val, imm32zx4:$len, bdaddr12only:$addr),
256            (VSTRL VR128:$val, bdaddr12only:$addr, imm32zx4:$len)>;
257}
258
259//===----------------------------------------------------------------------===//
260// Byte swaps
261//===----------------------------------------------------------------------===//
262
263let Predicates = [FeatureVectorEnhancements2] in {
264  // Load byte-reversed elements.
265  def VLBR  : UnaryVRXGeneric<"vlbr", 0xE606>;
266  def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
267  def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
268  def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
269  def VLBRQ : UnaryVRX<"vlbrq", 0xE606, z_loadbswap, v128q, 16, 4>;
270
271  // Load elements reversed.
272  def VLER  : UnaryVRXGeneric<"vler", 0xE607>;
273  def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
274  def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
275  def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
276  def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
277            (VLERF bdxaddr12only:$addr)>;
278  def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
279            (VLERG bdxaddr12only:$addr)>;
280  def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
281            (VLBRQ bdxaddr12only:$addr)>;
282
283  // Load byte-reversed element.
284  def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
285  def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
286  def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;
287
288  // Load byte-reversed element and zero.
289  def VLLEBRZ  : UnaryVRXGeneric<"vllebrz", 0xE604>;
290  def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
291  def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
292  def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
293  def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
294  def : InstAlias<"lerv\t$V1, $XBD2",
295                  (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
296  def : InstAlias<"ldrv\t$V1, $XBD2",
297                  (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;
298
299  // Load byte-reversed element and replicate.
300  def VLBRREP  : UnaryVRXGeneric<"vlbrrep", 0xE605>;
301  def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
302  def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
303  def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;
304
305  // Store byte-reversed elements.
306  def VSTBR  : StoreVRXGeneric<"vstbr", 0xE60E>;
307  def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
308  def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
309  def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
310  def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, z_storebswap, v128q, 16, 4>;
311
312  // Store elements reversed.
313  def VSTER  : StoreVRXGeneric<"vster", 0xE60F>;
314  def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
315  def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
316  def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
317  def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
318            (VSTERF VR128:$val, bdxaddr12only:$addr)>;
319  def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
320            (VSTERG VR128:$val, bdxaddr12only:$addr)>;
321  def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
322            (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;
323
324  // Store byte-reversed element.
325  def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
326  def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
327  def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
328  def : InstAlias<"sterv\t$V1, $XBD2",
329                  (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
330  def : InstAlias<"stdrv\t$V1, $XBD2",
331                  (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
332}
333
334//===----------------------------------------------------------------------===//
335// Selects and permutes
336//===----------------------------------------------------------------------===//
337
338let Predicates = [FeatureVector] in {
339  // Merge high.
340  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
341  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
342  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
343  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
344  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
345  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
346  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;
347
348  // Merge low.
349  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
350  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
351  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
352  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
353  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
354  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
355  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;
356
357  // Permute.
358  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;
359
360  // Permute doubleword immediate.
361  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;
362
363  // Bit Permute.
364  let Predicates = [FeatureVectorEnhancements1] in
365    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;
366
367  // Replicate.
368  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
369  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
370  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
371  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
372  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
373  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16_timm:$index)),
374            (VREPF VR128:$vec, imm32zx16:$index)>;
375  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16_timm:$index)),
376            (VREPG VR128:$vec, imm32zx16:$index)>;
377
378  // Select.
379  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
380
381  // Blend.
382  let Predicates = [FeatureVectorEnhancements3] in {
383    def VBLEND  : TernaryVRRdGeneric<"vblend", 0xE789>;
384    def VBLENDB : TernaryVRRd<"vblendb", 0xE789, null_frag, v128b, v128b, 0>;
385    def VBLENDH : TernaryVRRd<"vblendh", 0xE789, null_frag, v128h, v128h, 1>;
386    def VBLENDF : TernaryVRRd<"vblendf", 0xE789, null_frag, v128f, v128f, 2>;
387    def VBLENDG : TernaryVRRd<"vblendg", 0xE789, null_frag, v128g, v128g, 3>;
388    def VBLENDQ : TernaryVRRd<"vblendq", 0xE789, null_frag, v128q, v128q, 4>;
389  }
390}
391
392//===----------------------------------------------------------------------===//
393// Widening and narrowing
394//===----------------------------------------------------------------------===//
395
396let Predicates = [FeatureVector] in {
397  // Pack
398  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
399  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
400  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
401  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;
402
403  // Pack saturate.
404  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
405  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
406                               v128b, v128h, 1>;
407  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
408                               v128h, v128f, 2>;
409  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
410                               v128f, v128g, 3>;
411
412  // Pack saturate logical.
413  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
414  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
415                                v128b, v128h, 1>;
416  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
417                                v128h, v128f, 2>;
418  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
419                                v128f, v128g, 3>;
420
421  // Sign-extend to doubleword.
422  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
423  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
424  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
425  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
426  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
427  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
428  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;
429
430  // Generate element masks.
431  let Predicates = [FeatureVectorEnhancements3] in {
432    def VGEM  : UnaryVRRaGeneric<"vgem", 0xE754>;
433    def VGEMB : UnaryVRRa<"vgemb", 0xE754, int_s390_vgemb, v128b, v128h, 0>;
434    def VGEMH : UnaryVRRa<"vgemh", 0xE754, int_s390_vgemh, v128h, v128b, 1>;
435    def VGEMF : UnaryVRRa<"vgemf", 0xE754, int_s390_vgemf, v128f, v128b, 2>;
436    def VGEMG : UnaryVRRa<"vgemg", 0xE754, int_s390_vgemg, v128g, v128b, 3>;
437    def VGEMQ : UnaryVRRa<"vgemq", 0xE754, int_s390_vgemq, v128q, v128b, 4>;
438  }
439
440  // Unpack high.
441  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
442  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
443  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
444  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;
445  let Predicates = [FeatureVectorEnhancements3] in
446    def VUPHG : UnaryVRRa<"vuphg", 0xE7D7, z_unpack_high, v128q, v128g, 3>;
447
448  // Unpack logical high.
449  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
450  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
451  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
452  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;
453  let Predicates = [FeatureVectorEnhancements3] in
454    def VUPLHG : UnaryVRRa<"vuplhg", 0xE7D5, z_unpackl_high, v128q, v128g, 3>;
455
456  // Unpack low.
457  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
458  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
459  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
460  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;
461  let Predicates = [FeatureVectorEnhancements3] in
462    def VUPLG  : UnaryVRRa<"vuplg",  0xE7D6, z_unpack_low, v128q, v128g, 3>;
463
464  // Unpack logical low.
465  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
466  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
467  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
468  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
469  let Predicates = [FeatureVectorEnhancements3] in
470    def VUPLLG : UnaryVRRa<"vupllg", 0xE7D4, z_unpackl_low, v128q, v128g, 3>;
471}
472
473//===----------------------------------------------------------------------===//
474// Instantiating generic operations for specific types.
475//===----------------------------------------------------------------------===//
476
477multiclass GenericVectorOps<ValueType type, ValueType inttype> {
478  let Predicates = [FeatureVector] in {
479    def : Pat<(type (load bdxaddr12only:$addr)),
480              (VL bdxaddr12only:$addr)>;
481    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
482              (VST VR128:$src, bdxaddr12only:$addr)>;
483    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
484              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
485    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
486              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
487  }
488}
489
490defm : GenericVectorOps<v16i8, v16i8>;
491defm : GenericVectorOps<v8i16, v8i16>;
492defm : GenericVectorOps<v4i32, v4i32>;
493defm : GenericVectorOps<v2i64, v2i64>;
494defm : GenericVectorOps<v4f32, v4i32>;
495defm : GenericVectorOps<v2f64, v2i64>;
496
497multiclass BlendVectorOps<ValueType type, ValueType inttype,
498                          Instruction blend> {
499  let Predicates = [FeatureVectorEnhancements3] in {
500    def : Pat<(type (vselect (inttype (z_vicmpl_zero VR128:$x)),
501                             VR128:$y, VR128:$z)),
502              (blend VR128:$y, VR128:$z, VR128:$x)>;
503    def : Pat<(type (vselect (inttype (z_vnot (z_vicmpl_zero VR128:$x))),
504                             VR128:$y, VR128:$z)),
505              (blend VR128:$z, VR128:$y, VR128:$x)>;
506  }
507}
508
509defm : BlendVectorOps<v16i8, v16i8, VBLENDB>;
510defm : BlendVectorOps<v8i16, v8i16, VBLENDH>;
511defm : BlendVectorOps<v4i32, v4i32, VBLENDF>;
512defm : BlendVectorOps<v2i64, v2i64, VBLENDG>;
513defm : BlendVectorOps<v4f32, v4i32, VBLENDF>;
514defm : BlendVectorOps<v2f64, v2i64, VBLENDG>;
515
516let Predicates = [FeatureVectorEnhancements3] in {
517    def : Pat<(i128 (or (and VR128:$y, (z_vicmph 0, VR128:$x)),
518                        (and VR128:$z, (not (z_vicmph 0, VR128:$x))))),
519              (VBLENDQ VR128:$y, VR128:$z, VR128:$x)>;
520}
521
522//===----------------------------------------------------------------------===//
523// Integer arithmetic
524//===----------------------------------------------------------------------===//
525
526let Predicates = [FeatureVector] in {
527  let isCommutable = 1 in {
528    // Add.
529    def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
530    def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
531    def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
532    def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
533    def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
534    def VAQ : BinaryVRRc<"vaq", 0xE7F3, add, v128q, v128q, 4>;
535  }
536
537  let isCommutable = 1 in {
538    // Add compute carry.
539    def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
540    def VACCB : BinaryVRRc<"vaccb", 0xE7F1, z_vacc, v128b, v128b, 0>;
541    def VACCH : BinaryVRRc<"vacch", 0xE7F1, z_vacc, v128h, v128h, 1>;
542    def VACCF : BinaryVRRc<"vaccf", 0xE7F1, z_vacc, v128f, v128f, 2>;
543    def VACCG : BinaryVRRc<"vaccg", 0xE7F1, z_vacc, v128g, v128g, 3>;
544    def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, z_vacc, v128q, v128q, 4>;
545
546    // Add with carry.
547    def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
548    def VACQ : TernaryVRRd<"vacq", 0xE7BB, z_vac, v128q, v128q, 4>;
549
550    // Add with carry compute carry.
551    def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
552    def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, z_vaccc, v128q, v128q, 4>;
553  }
554
555  // And.
556  let isCommutable = 1 in
557    def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;
558
559  // And with complement.
560  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;
561
562  let isCommutable = 1 in {
563    // Average.
564    def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
565    def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
566    def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
567    def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
568    def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;
569    let Predicates = [FeatureVectorEnhancements3] in
570      def VAVGQ : BinaryVRRc<"vavgq", 0xE7F2, int_s390_vavgq, v128q, v128q, 4>;
571
572    // Average logical.
573    def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
574    def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
575    def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
576    def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
577    def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;
578    let Predicates = [FeatureVectorEnhancements3] in
579      def VAVGLQ : BinaryVRRc<"vavglq", 0xE7F0, int_s390_vavglq, v128q, v128q, 4>;
580  }
581
582  // Checksum.
583  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;
584
585  // Count leading zeros.
586  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
587  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
588  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
589  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
590  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;
591  let Predicates = [FeatureVectorEnhancements3] in
592    def VCLZQ : UnaryVRRa<"vclzq", 0xE753, ctlz, v128q, v128q, 4>;
593
594  // Count trailing zeros.
595  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
596  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
597  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
598  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
599  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;
600  let Predicates = [FeatureVectorEnhancements3] in
601    def VCTZQ : UnaryVRRa<"vctzq", 0xE752, cttz, v128q, v128q, 4>;
602
603  // Divide.
604  let Predicates = [FeatureVectorEnhancements3] in {
605    let hasSideEffects = 1 in {
606      def VD  : TernaryVRRcIntGeneric<"vd", 0xE7B2>;
607      def VDF : TernaryVRRcInt<"vdf", 0xE7B2, null_frag, v128f, v128f, 2>;
608      def VDG : TernaryVRRcInt<"vdg", 0xE7B2, null_frag, v128g, v128g, 3>;
609      def VDQ : TernaryVRRcInt<"vdq", 0xE7B2, null_frag, v128q, v128q, 4>;
610    }
611    def : Pat<(v4i32 (sdiv VR128:$x, VR128:$y)), (VDF VR128:$x, VR128:$y, 0)>;
612    def : Pat<(v2i64 (sdiv VR128:$x, VR128:$y)), (VDG VR128:$x, VR128:$y, 0)>;
613    def : Pat<(i128 (sdiv VR128:$x, VR128:$y)), (VDQ VR128:$x, VR128:$y, 0)>;
614  }
615
616  // Divide logical.
617  let Predicates = [FeatureVectorEnhancements3] in {
618    let hasSideEffects = 1 in {
619      def VDL  : TernaryVRRcIntGeneric<"vdl", 0xE7B0>;
620      def VDLF : TernaryVRRcInt<"vdlf", 0xE7B0, null_frag, v128f, v128f, 2>;
621      def VDLG : TernaryVRRcInt<"vdlg", 0xE7B0, null_frag, v128g, v128g, 3>;
622      def VDLQ : TernaryVRRcInt<"vdlq", 0xE7B0, null_frag, v128q, v128q, 4>;
623    }
624    def : Pat<(v4i32 (udiv VR128:$x, VR128:$y)), (VDLF VR128:$x, VR128:$y, 0)>;
625    def : Pat<(v2i64 (udiv VR128:$x, VR128:$y)), (VDLG VR128:$x, VR128:$y, 0)>;
626    def : Pat<(i128 (udiv VR128:$x, VR128:$y)), (VDLQ VR128:$x, VR128:$y, 0)>;
627  }
628
629  // Evaluate.
630  let Predicates = [FeatureVectorEnhancements3] in
631    def VEVAL : QuaternaryVRIk<"veval", 0xE788, int_s390_veval, v128b>;
632
633  let isCommutable = 1 in {
634    // Not exclusive or.
635    let Predicates = [FeatureVectorEnhancements1] in
636      def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;
637
638    // Exclusive or.
639    def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;
640  }
641
642  // Galois field multiply sum.
643  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
644  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
645  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
646  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
647  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;
648
649  // Galois field multiply sum and accumulate.
650  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
651  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
652  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
653  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
654  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;
655
656  // Load complement.
657  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
658  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
659  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
660  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
661  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;
662  let Predicates = [FeatureVectorEnhancements3] in
663    def VLCQ : UnaryVRRa<"vlcq", 0xE7DE, ineg, v128q, v128q, 4>;
664
665  // Load positive.
666  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
667  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, abs, v128b, v128b, 0>;
668  def VLPH : UnaryVRRa<"vlph", 0xE7DF, abs, v128h, v128h, 1>;
669  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, abs, v128f, v128f, 2>;
670  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, abs, v128g, v128g, 3>;
671  let Predicates = [FeatureVectorEnhancements3] in
672    def VLPQ : UnaryVRRa<"vlpq", 0xE7DF, abs, v128q, v128q, 4>;
673
674  let isCommutable = 1 in {
675    // Maximum.
676    def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
677    def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
678    def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
679    def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
680    def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;
681    let Predicates = [FeatureVectorEnhancements3] in
682      def VMXQ : BinaryVRRc<"vmxq", 0xE7FF, null_frag, v128q, v128q, 4>;
683
684    // Maximum logical.
685    def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
686    def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
687    def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
688    def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
689    def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;
690    let Predicates = [FeatureVectorEnhancements3] in
691      def VMXLQ : BinaryVRRc<"vmxlq", 0xE7FD, null_frag, v128q, v128q, 4>;
692  }
693
694  let isCommutable = 1 in {
695    // Minimum.
696    def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
697    def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
698    def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
699    def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
700    def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;
701    let Predicates = [FeatureVectorEnhancements3] in
702      def VMNQ : BinaryVRRc<"vmnq", 0xE7FE, null_frag, v128q, v128q, 4>;
703
704    // Minimum logical.
705    def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
706    def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
707    def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
708    def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
709    def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;
710    let Predicates = [FeatureVectorEnhancements3] in
711      def VMNLQ : BinaryVRRc<"vmnlq", 0xE7FC, null_frag, v128q, v128q, 4>;
712  }
713
714  let isCommutable = 1 in {
715    // Multiply and add low.
716    def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
717    def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
718    def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
719    def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;
720    let Predicates = [FeatureVectorEnhancements3] in {
721      def VMALG : TernaryVRRd<"vmalg",  0xE7AA, z_muladd, v128g, v128g, 3>;
722      def VMALQ : TernaryVRRd<"vmalq",  0xE7AA, z_muladd, v128q, v128q, 4>;
723    }
724
725    // Multiply and add high.
726    def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
727    def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
728    def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
729    def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;
730    let Predicates = [FeatureVectorEnhancements3] in {
731      def VMAHG : TernaryVRRd<"vmahg", 0xE7AB, int_s390_vmahg, v128g, v128g, 3>;
732      def VMAHQ : TernaryVRRd<"vmahq", 0xE7AB, int_s390_vmahq, v128q, v128q, 4>;
733    }
734
735    // Multiply and add logical high.
736    def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
737    def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
738    def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
739    def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;
740    let Predicates = [FeatureVectorEnhancements3] in {
741      def VMALHG : TernaryVRRd<"vmalhg", 0xE7A9, int_s390_vmalhg, v128g, v128g, 3>;
742      def VMALHQ : TernaryVRRd<"vmalhq", 0xE7A9, int_s390_vmalhq, v128q, v128q, 4>;
743    }
744
745    // Multiply and add even.
746    def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
747    def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
748    def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
749    def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;
750    let Predicates = [FeatureVectorEnhancements3] in
751      def VMAEG : TernaryVRRd<"vmaeg", 0xE7AE, int_s390_vmaeg, v128q, v128g, 3>;
752
753    // Multiply and add logical even.
754    def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
755    def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
756    def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
757    def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;
758    let Predicates = [FeatureVectorEnhancements3] in
759      def VMALEG : TernaryVRRd<"vmaleg", 0xE7AC, int_s390_vmaleg, v128q, v128g, 3>;
760
761    // Multiply and add odd.
762    def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
763    def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
764    def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
765    def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;
766    let Predicates = [FeatureVectorEnhancements3] in
767      def VMAOG : TernaryVRRd<"vmaog", 0xE7AF, int_s390_vmaog, v128q, v128g, 3>;
768
769    // Multiply and add logical odd.
770    def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
771    def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
772    def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
773    def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;
774    let Predicates = [FeatureVectorEnhancements3] in
775      def VMALOG : TernaryVRRd<"vmalog", 0xE7AD, int_s390_vmalog, v128q, v128g, 3>;
776  }
777
778  let isCommutable = 1 in {
779    // Multiply high.
780    def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
781    def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
782    def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
783    def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;
784    let Predicates = [FeatureVectorEnhancements3] in {
785      def VMHG : BinaryVRRc<"vmhg", 0xE7A3, int_s390_vmhg, v128g, v128g, 3>;
786      def VMHQ : BinaryVRRc<"vmhq", 0xE7A3, int_s390_vmhq, v128q, v128q, 4>;
787    }
788
789    // Multiply logical high.
790    def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
791    def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
792    def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
793    def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;
794    let Predicates = [FeatureVectorEnhancements3] in {
795      def VMLHG : BinaryVRRc<"vmlhg", 0xE7A1, int_s390_vmlhg, v128g, v128g, 3>;
796      def VMLHQ : BinaryVRRc<"vmlhq", 0xE7A1, int_s390_vmlhq, v128q, v128q, 4>;
797    }
798
799    // Multiply low.
800    def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
801    def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
802    def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
803    def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;
804    let Predicates = [FeatureVectorEnhancements3] in {
805      def VMLG : BinaryVRRc<"vmlg",  0xE7A2, mul, v128g, v128g, 3>;
806      def VMLQ : BinaryVRRc<"vmlq",  0xE7A2, mul, v128q, v128q, 4>;
807    }
808
809    // Multiply even.
810    def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
811    def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
812    def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
813    def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;
814    let Predicates = [FeatureVectorEnhancements3] in
815      def VMEG : BinaryVRRc<"vmeg", 0xE7A6, int_s390_vmeg, v128q, v128g, 3>;
816
817    // Multiply logical even.
818    def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
819    def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
820    def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
821    def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;
822    let Predicates = [FeatureVectorEnhancements3] in
823      def VMLEG : BinaryVRRc<"vmleg", 0xE7A4, int_s390_vmleg, v128q, v128g, 3>;
824
825    // Multiply odd.
826    def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
827    def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
828    def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
829    def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;
830    let Predicates = [FeatureVectorEnhancements3] in
831      def VMOG : BinaryVRRc<"vmog", 0xE7A7, int_s390_vmog, v128q, v128g, 3>;
832
833    // Multiply logical odd.
834    def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
835    def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
836    def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
837    def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;
838    let Predicates = [FeatureVectorEnhancements3] in
839      def VMLOG : BinaryVRRc<"vmlog", 0xE7A5, int_s390_vmlog, v128q, v128g, 3>;
840  }
841  let Predicates = [FeatureVectorEnhancements3] in {
842    def : Pat<(i128 (mulhs VR128:$x, VR128:$y)), (VMHQ VR128:$x, VR128:$y)>;
843    def : Pat<(i128 (mulhu VR128:$x, VR128:$y)), (VMLHQ VR128:$x, VR128:$y)>;
844  }
845
846  // Multiply sum logical.
847  let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in {
848    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
849    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
850                               v128q, v128g, v128g, v128q, 3>;
851  }
852
853  // Nand.
854  let Predicates = [FeatureVectorEnhancements1], isCommutable = 1 in
855    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;
856
857  // Nor.
858  let isCommutable = 1 in
859    def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
860  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;
861
862  // Or.
863  let isCommutable = 1 in
864    def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;
865
866  // Or with complement.
867  let Predicates = [FeatureVectorEnhancements1] in
868    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;
869
870  // Population count.
871  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
872  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
873  let Predicates = [FeatureVectorEnhancements1] in {
874    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
875    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
876    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
877    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
878  }
879
880  // Remainder.
881  let Predicates = [FeatureVectorEnhancements3] in {
882    let hasSideEffects = 1 in {
883      def VR  : TernaryVRRcIntGeneric<"vr", 0xE7B3>;
884      def VRF : TernaryVRRcInt<"vrf", 0xE7B3, null_frag, v128f, v128f, 2>;
885      def VRG : TernaryVRRcInt<"vrg", 0xE7B3, null_frag, v128g, v128g, 3>;
886      def VRQ : TernaryVRRcInt<"vrq", 0xE7B3, null_frag, v128q, v128q, 4>;
887    }
888    def : Pat<(v4i32 (srem VR128:$x, VR128:$y)), (VRF VR128:$x, VR128:$y, 0)>;
889    def : Pat<(v2i64 (srem VR128:$x, VR128:$y)), (VRG VR128:$x, VR128:$y, 0)>;
890    def : Pat<(i128 (srem VR128:$x, VR128:$y)), (VRQ VR128:$x, VR128:$y, 0)>;
891  }
892
893  // Remainder logical.
894  let Predicates = [FeatureVectorEnhancements3] in {
895    let hasSideEffects = 1 in {
896      def VRL  : TernaryVRRcIntGeneric<"vrl", 0xE7B1>;
897      def VRLF : TernaryVRRcInt<"vrlf", 0xE7B1, null_frag, v128f, v128f, 2>;
898      def VRLG : TernaryVRRcInt<"vrlg", 0xE7B1, null_frag, v128g, v128g, 3>;
899      def VRLQ : TernaryVRRcInt<"vrlq", 0xE7B1, null_frag, v128q, v128q, 4>;
900    }
901    def : Pat<(v4i32 (urem VR128:$x, VR128:$y)), (VRLF VR128:$x, VR128:$y, 0)>;
902    def : Pat<(v2i64 (urem VR128:$x, VR128:$y)), (VRLG VR128:$x, VR128:$y, 0)>;
903    def : Pat<(i128 (urem VR128:$x, VR128:$y)), (VRLQ VR128:$x, VR128:$y, 0)>;
904  }
905
906  // Element rotate left logical (with vector shift amount).
907  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
908  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, rotl, v128b, v128b, 0>;
909  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, rotl, v128h, v128h, 1>;
910  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, rotl, v128f, v128f, 2>;
911  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, rotl, v128g, v128g, 3>;
912
913  // Element rotate left logical (with scalar shift amount).
914  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
915  def VERLLB : BinaryVRSa<"verllb", 0xE733, z_vrotl_by_scalar, v128b, v128b, 0>;
916  def VERLLH : BinaryVRSa<"verllh", 0xE733, z_vrotl_by_scalar, v128h, v128h, 1>;
917  def VERLLF : BinaryVRSa<"verllf", 0xE733, z_vrotl_by_scalar, v128f, v128f, 2>;
918  def VERLLG : BinaryVRSa<"verllg", 0xE733, z_vrotl_by_scalar, v128g, v128g, 3>;
919
920  // Element rotate and insert under mask.
921  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
922  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
923  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
924  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
925  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;
926
927  // Element shift left (with vector shift amount).
928  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
929  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
930  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
931  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
932  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;
933
934  // Element shift left (with scalar shift amount).
935  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
936  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
937  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
938  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
939  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;
940
941  // Element shift right arithmetic (with vector shift amount).
942  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
943  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
944  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
945  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
946  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;
947
948  // Element shift right arithmetic (with scalar shift amount).
949  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
950  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
951  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
952  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
953  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;
954
955  // Element shift right logical (with vector shift amount).
956  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
957  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
958  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
959  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
960  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;
961
962  // Element shift right logical (with scalar shift amount).
963  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
964  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
965  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
966  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
967  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;
968
969  // Shift left.
970  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;
971
972  // Shift left by byte.
973  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;
974
975  // Shift left double by byte.
976  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
977  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8_timm:$z),
978            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;
979
980  // Shift left double by bit.
981  let Predicates = [FeatureVectorEnhancements2] in
982    def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;
983
984  // Shift right arithmetic.
985  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;
986
987  // Shift right arithmetic by byte.
988  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;
989
990  // Shift right logical.
991  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;
992
993  // Shift right logical by byte.
994  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;
995
996  // Shift right double by bit.
997  let Predicates = [FeatureVectorEnhancements2] in
998    def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;
999
1000  // Subtract.
1001  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
1002  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
1003  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
1004  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
1005  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
1006  def VSQ : BinaryVRRc<"vsq", 0xE7F7, sub, v128q, v128q, 4>;
1007
1008  // Subtract compute borrow indication.
1009  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
1010  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, z_vscbi, v128b, v128b, 0>;
1011  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, z_vscbi, v128h, v128h, 1>;
1012  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, z_vscbi, v128f, v128f, 2>;
1013  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, z_vscbi, v128g, v128g, 3>;
1014  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, z_vscbi, v128q, v128q, 4>;
1015
1016  // Subtract with borrow indication.
1017  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
1018  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, z_vsbi, v128q, v128q, 4>;
1019
1020  // Subtract with borrow compute borrow indication.
1021  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
1022  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, z_vsbcbi, v128q, v128q, 4>;
1023
1024  // Sum across doubleword.
1025  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
1026  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
1027  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;
1028
1029  // Sum across quadword.
1030  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
1031  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
1032  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;
1033
1034  // Sum across word.
1035  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
1036  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
1037  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
1038}
1039
1040// Instantiate the bitwise ops for type TYPE.
1041multiclass BitwiseVectorOps<ValueType type, SDPatternOperator not_op> {
1042  let Predicates = [FeatureVector] in {
1043    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
1044    def : Pat<(type (and VR128:$x, (not_op VR128:$y))),
1045              (VNC VR128:$x, VR128:$y)>;
1046    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
1047    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
1048    def : Pat<(type (or (and VR128:$x, VR128:$z),
1049                        (and VR128:$y, (not_op VR128:$z)))),
1050              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
1051    def : Pat<(type (not_op (or VR128:$x, VR128:$y))),
1052              (VNO VR128:$x, VR128:$y)>;
1053    def : Pat<(type (not_op VR128:$x)), (VNO VR128:$x, VR128:$x)>;
1054  }
1055  let Predicates = [FeatureVectorEnhancements1] in {
1056    def : Pat<(type (not_op (xor VR128:$x, VR128:$y))),
1057              (VNX VR128:$x, VR128:$y)>;
1058    def : Pat<(type (not_op (and VR128:$x, VR128:$y))),
1059              (VNN VR128:$x, VR128:$y)>;
1060    def : Pat<(type (or VR128:$x, (not_op VR128:$y))),
1061              (VOC VR128:$x, VR128:$y)>;
1062  }
1063  let Predicates = [FeatureVectorEnhancements3] in {
1064    def : Pat<(type (and VR128:$x, (and VR128:$y, VR128:$z))),
1065              (VEVAL VR128:$x, VR128:$y, VR128:$z, 1)>;
1066    def : Pat<(type (and (not_op VR128:$z), (and VR128:$x, VR128:$y))),
1067              (VEVAL VR128:$x, VR128:$y, VR128:$z, 2)>;
1068    def : Pat<(type (and VR128:$x, (xor VR128:$y, VR128:$z))),
1069              (VEVAL VR128:$x, VR128:$y, VR128:$z, 6)>;
1070    def : Pat<(type (and VR128:$x, (or VR128:$y, VR128:$z))),
1071              (VEVAL VR128:$x, VR128:$y, VR128:$z, 7)>;
1072    def : Pat<(type (and VR128:$x, (not_op (or VR128:$y, VR128:$z)))),
1073              (VEVAL VR128:$x, VR128:$y, VR128:$z, 8)>;
1074    def : Pat<(type (and VR128:$x, (not_op (xor VR128:$y, VR128:$z)))),
1075              (VEVAL VR128:$x, VR128:$y, VR128:$z, 9)>;
1076    def : Pat<(type (and VR128:$x, (or VR128:$y, (not_op VR128:$z)))),
1077              (VEVAL VR128:$x, VR128:$y, VR128:$z, 11)>;
1078    def : Pat<(type (and VR128:$x, (not_op (and VR128:$y, VR128:$z)))),
1079              (VEVAL VR128:$x, VR128:$y, VR128:$z, 14)>;
1080    def : Pat<(type (and (or VR128:$x, VR128:$y), (xor VR128:$z, (and VR128:$x, VR128:$y)))),
1081              (VEVAL VR128:$x, VR128:$y, VR128:$z, 22)>;
1082    def : Pat<(type (or (and VR128:$x, VR128:$y), (and VR128:$z, (or VR128:$x, VR128:$y)))),
1083              (VEVAL VR128:$x, VR128:$y, VR128:$z, 23)>;
1084    def : Pat<(type (and (xor VR128:$x, VR128:$y), (xor VR128:$x, VR128:$z))),
1085              (VEVAL VR128:$x, VR128:$y, VR128:$z, 24)>;
1086    def : Pat<(type (and (or VR128:$x, VR128:$y), (not_op (xor VR128:$y, VR128:$z)))),
1087              (VEVAL VR128:$x, VR128:$y, VR128:$z, 25)>;
1088    def : Pat<(type (and (or VR128:$x, VR128:$y), (xor VR128:$x, VR128:$z))),
1089              (VEVAL VR128:$x, VR128:$y, VR128:$z, 26)>;
1090    def : Pat<(type (and (or VR128:$x, VR128:$z), (or VR128:$y, (not_op VR128:$z)))),
1091              (VEVAL VR128:$x, VR128:$y, VR128:$z, 27)>;
1092    def : Pat<(type (xor VR128:$x, (and VR128:$y, VR128:$z))),
1093              (VEVAL VR128:$x, VR128:$y, VR128:$z, 30)>;
1094    def : Pat<(type (or VR128:$x, (and VR128:$y, VR128:$z))),
1095              (VEVAL VR128:$x, VR128:$y, VR128:$z, 31)>;
1096    def : Pat<(type (and (not_op VR128:$z), (xor VR128:$x, VR128:$y))),
1097              (VEVAL VR128:$x, VR128:$y, VR128:$z, 40)>;
1098    def : Pat<(type (and (or VR128:$x, VR128:$y), (not_op (xor VR128:$z, (and VR128:$x, VR128:$y))))),
1099              (VEVAL VR128:$x, VR128:$y, VR128:$z, 41)>;
1100    def : Pat<(type (and (not_op VR128:$z), (or VR128:$x, VR128:$y))),
1101              (VEVAL VR128:$x, VR128:$y, VR128:$z, 42)>;
1102    def : Pat<(type (or (and VR128:$x, VR128:$y), (and (not_op VR128:$z), (or VR128:$x, VR128:$y)))),
1103              (VEVAL VR128:$x, VR128:$y, VR128:$z, 43)>;
1104    def : Pat<(type (xor VR128:$y, (or VR128:$x, (and VR128:$y, VR128:$z)))),
1105              (VEVAL VR128:$x, VR128:$y, VR128:$z, 44)>;
1106    def : Pat<(type (xor VR128:$x, (and VR128:$y, (not_op VR128:$z)))),
1107              (VEVAL VR128:$x, VR128:$y, VR128:$z, 45)>;
1108    def : Pat<(type (and (or VR128:$x, VR128:$y), (not_op (and VR128:$y, VR128:$z)))),
1109              (VEVAL VR128:$x, VR128:$y, VR128:$z, 46)>;
1110    def : Pat<(type (or VR128:$x, (and VR128:$y, (not_op VR128:$z)))),
1111              (VEVAL VR128:$x, VR128:$y, VR128:$z, 47)>;
1112    def : Pat<(type (or (xor VR128:$x, VR128:$y), (and VR128:$x, VR128:$z))),
1113              (VEVAL VR128:$x, VR128:$y, VR128:$z, 61)>;
1114    def : Pat<(type (or (xor VR128:$x, VR128:$y), (and VR128:$x, (not_op VR128:$z)))),
1115              (VEVAL VR128:$x, VR128:$y, VR128:$z, 62)>;
1116    def : Pat<(type (xor (or VR128:$x, VR128:$y), (or VR128:$z, (and VR128:$x, VR128:$y)))),
1117              (VEVAL VR128:$x, VR128:$y, VR128:$z, 104)>;
1118    def : Pat<(type (xor VR128:$x, (xor VR128:$y, VR128:$z))),
1119              (VEVAL VR128:$x, VR128:$y, VR128:$z, 105)>;
1120    def : Pat<(type (xor VR128:$z, (or VR128:$x, VR128:$y))),
1121              (VEVAL VR128:$x, VR128:$y, VR128:$z, 106)>;
1122    def : Pat<(type (or (and VR128:$x, VR128:$y), (xor VR128:$z, (or VR128:$x, VR128:$y)))),
1123              (VEVAL VR128:$x, VR128:$y, VR128:$z, 107)>;
1124    def : Pat<(type (or (xor VR128:$y, VR128:$z), (and VR128:$x, (not_op VR128:$y)))),
1125              (VEVAL VR128:$x, VR128:$y, VR128:$z, 110)>;
1126    def : Pat<(type (or VR128:$x, (xor VR128:$y, VR128:$z))),
1127              (VEVAL VR128:$x, VR128:$y, VR128:$z, 111)>;
1128    def : Pat<(type (or (xor VR128:$x, VR128:$y), (xor VR128:$x, VR128:$z))),
1129              (VEVAL VR128:$x, VR128:$y, VR128:$z, 126)>;
1130    def : Pat<(type (or VR128:$x, (or VR128:$y, VR128:$z))),
1131              (VEVAL VR128:$x, VR128:$y, VR128:$z, 127)>;
1132    def : Pat<(type (not_op (or VR128:$x, (or VR128:$y, VR128:$z)))),
1133              (VEVAL VR128:$x, VR128:$y, VR128:$z, 128)>;
1134    def : Pat<(type (not_op (or (xor VR128:$x, VR128:$y), (xor VR128:$x, VR128:$z)))),
1135              (VEVAL VR128:$x, VR128:$y, VR128:$z, 129)>;
1136    def : Pat<(type (not_op (or VR128:$z, (xor VR128:$x, VR128:$y)))),
1137              (VEVAL VR128:$x, VR128:$y, VR128:$z, 130)>;
1138    def : Pat<(type (and (not_op (xor VR128:$x, VR128:$y)), (or VR128:$x, (not_op VR128:$z)))),
1139              (VEVAL VR128:$x, VR128:$y, VR128:$z, 131)>;
1140    def : Pat<(type (xor (or VR128:$y, VR128:$z), (or (not_op VR128:$x), (and VR128:$y, VR128:$z)))),
1141              (VEVAL VR128:$x, VR128:$y, VR128:$z, 134)>;
1142    def : Pat<(type (not_op (xor VR128:$x, (or VR128:$y, VR128:$z)))),
1143              (VEVAL VR128:$x, VR128:$y, VR128:$z, 135)>;
1144    def : Pat<(type (or (not_op (or VR128:$y, VR128:$z)), (and VR128:$x, (and VR128:$y, VR128:$z)))),
1145              (VEVAL VR128:$x, VR128:$y, VR128:$z, 137)>;
1146    def : Pat<(type (and (not_op VR128:$z), (or VR128:$x, (not_op VR128:$y)))),
1147              (VEVAL VR128:$x, VR128:$y, VR128:$z, 138)>;
1148    def : Pat<(type (or (and VR128:$x, VR128:$y), (not_op (or VR128:$y, VR128:$z)))),
1149              (VEVAL VR128:$x, VR128:$y, VR128:$z, 139)>;
1150    def : Pat<(type (or (not_op (or VR128:$y, VR128:$z)), (and VR128:$x, (xor VR128:$y, VR128:$z)))),
1151              (VEVAL VR128:$x, VR128:$y, VR128:$z, 142)>;
1152    def : Pat<(type (or VR128:$x, (not_op (or VR128:$y, VR128:$z)))),
1153              (VEVAL VR128:$x, VR128:$y, VR128:$z, 143)>;
1154    def : Pat<(type (not_op (xor VR128:$x, (xor VR128:$y, VR128:$z)))),
1155              (VEVAL VR128:$x, VR128:$y, VR128:$z, 150)>;
1156    def : Pat<(type (or (and VR128:$x, VR128:$y), (not_op (xor VR128:$z, (or VR128:$x, VR128:$y))))),
1157              (VEVAL VR128:$x, VR128:$y, VR128:$z, 151)>;
1158    def : Pat<(type (not_op (or (and VR128:$x, VR128:$y), (xor VR128:$y, VR128:$z)))),
1159              (VEVAL VR128:$x, VR128:$y, VR128:$z, 152)>;
1160    def : Pat<(type (xor VR128:$z, (or VR128:$x, (not_op VR128:$y)))),
1161              (VEVAL VR128:$x, VR128:$y, VR128:$z, 154)>;
1162    def : Pat<(type (or (and VR128:$x, VR128:$y), (not_op (xor VR128:$y, VR128:$z)))),
1163              (VEVAL VR128:$x, VR128:$y, VR128:$z, 155)>;
1164    def : Pat<(type (or (not_op (or VR128:$y, VR128:$z)), (xor VR128:$x, (and VR128:$y, VR128:$z)))),
1165              (VEVAL VR128:$x, VR128:$y, VR128:$z, 158)>;
1166    def : Pat<(type (or VR128:$x, (not_op (xor VR128:$y, VR128:$z)))),
1167              (VEVAL VR128:$x, VR128:$y, VR128:$z, 159)>;
1168    def : Pat<(type (not_op (or VR128:$z, (and VR128:$x, VR128:$y)))),
1169              (VEVAL VR128:$x, VR128:$y, VR128:$z, 168)>;
1170    def : Pat<(type (not_op (xor VR128:$z, (and VR128:$x, VR128:$y)))),
1171              (VEVAL VR128:$x, VR128:$y, VR128:$z, 169)>;
1172    def : Pat<(type (or (not_op VR128:$z), (and VR128:$x, VR128:$y))),
1173              (VEVAL VR128:$x, VR128:$y, VR128:$z, 171)>;
1174    def : Pat<(type (and (not_op (and VR128:$x, VR128:$y)), (or VR128:$x, (not_op VR128:$z)))),
1175              (VEVAL VR128:$x, VR128:$y, VR128:$z, 172)>;
1176    def : Pat<(type (not_op (and (xor VR128:$x, VR128:$z), (or VR128:$y, VR128:$z)))),
1177              (VEVAL VR128:$x, VR128:$y, VR128:$z, 173)>;
1178    def : Pat<(type (or (not_op VR128:$z), (and VR128:$x, (not_op VR128:$y)))),
1179              (VEVAL VR128:$x, VR128:$y, VR128:$z, 174)>;
1180    def : Pat<(type (or (xor VR128:$x, VR128:$y), (not_op (or VR128:$x, VR128:$z)))),
1181              (VEVAL VR128:$x, VR128:$y, VR128:$z, 188)>;
1182    def : Pat<(type (not_op (and (xor VR128:$x, VR128:$z), (xor VR128:$y, VR128:$z)))),
1183              (VEVAL VR128:$x, VR128:$y, VR128:$z, 189)>;
1184    def : Pat<(type (or (not_op VR128:$z), (xor VR128:$x, VR128:$y))),
1185              (VEVAL VR128:$x, VR128:$y, VR128:$z, 190)>;
1186    def : Pat<(type (or (not_op VR128:$z), (or VR128:$x, VR128:$y))),
1187              (VEVAL VR128:$x, VR128:$y, VR128:$z, 191)>;
1188    def : Pat<(type (or (not_op (or VR128:$x, VR128:$y)), (and (not_op VR128:$z), (xor VR128:$x, VR128:$y)))),
1189              (VEVAL VR128:$x, VR128:$y, VR128:$z, 232)>;
1190    def : Pat<(type (xor (not_op (and VR128:$x, VR128:$y)), (and VR128:$z, (or VR128:$x, VR128:$y)))),
1191              (VEVAL VR128:$x, VR128:$y, VR128:$z, 233)>;
1192    def : Pat<(type (not_op (and VR128:$z, (or VR128:$x, VR128:$y)))),
1193              (VEVAL VR128:$x, VR128:$y, VR128:$z, 234)>;
1194    def : Pat<(type (not_op (and VR128:$z, (xor VR128:$x, VR128:$y)))),
1195              (VEVAL VR128:$x, VR128:$y, VR128:$z, 235)>;
1196    def : Pat<(type (or VR128:$x, (not_op (and VR128:$y, VR128:$z)))),
1197              (VEVAL VR128:$x, VR128:$y, VR128:$z, 239)>;
1198    def : Pat<(type (not_op (and VR128:$x, (and VR128:$y, VR128:$z)))),
1199              (VEVAL VR128:$x, VR128:$y, VR128:$z, 254)>;
1200  }
1201}
1202
1203defm : BitwiseVectorOps<v16i8, z_vnot>;
1204defm : BitwiseVectorOps<v8i16, z_vnot>;
1205defm : BitwiseVectorOps<v4i32, z_vnot>;
1206defm : BitwiseVectorOps<v2i64, z_vnot>;
1207defm : BitwiseVectorOps<i128, not>;
1208
1209// Instantiate additional patterns for absolute-related expressions on
1210// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
1211// instruction.
1212multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
1213                                    Instruction lp, int shift> {
1214  let Predicates = [FeatureVector] in {
1215    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
1216                             (z_vneg VR128:$x), VR128:$x)),
1217              (lc (lp VR128:$x))>;
1218    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
1219                             VR128:$x, (z_vneg VR128:$x))),
1220              (lc (lp VR128:$x))>;
1221    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
1222                             VR128:$x, (z_vneg VR128:$x))),
1223              (lc (lp VR128:$x))>;
1224    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
1225                             (z_vneg VR128:$x), VR128:$x)),
1226              (lc (lp VR128:$x))>;
1227    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
1228                             (z_vneg VR128:$x)),
1229                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
1230                             VR128:$x))),
1231              (lp VR128:$x)>;
1232    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
1233                             VR128:$x),
1234                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
1235                             (z_vneg VR128:$x)))),
1236              (lc (lp VR128:$x))>;
1237  }
1238}
1239
1240defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
1241defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
1242defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
1243defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;
1244
1245// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
1246// signed or unsigned "set if greater than" comparison instruction and
1247// MIN and MAX are the associated minimum and maximum instructions.
1248multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
1249                                  Instruction min, Instruction max> {
1250  let Predicates = [FeatureVector] in {
1251    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
1252              (max VR128:$x, VR128:$y)>;
1253    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
1254              (min VR128:$x, VR128:$y)>;
1255    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
1256                             VR128:$x, VR128:$y)),
1257              (min VR128:$x, VR128:$y)>;
1258    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
1259                             VR128:$y, VR128:$x)),
1260              (max VR128:$x, VR128:$y)>;
1261  }
1262}
1263
1264// Signed min/max.
1265defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
1266defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
1267defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
1268defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;
1269
1270let Predicates = [FeatureVectorEnhancements3] in {
1271  def : Pat<(i128 (or (and VR128:$x, (z_vicmph VR128:$x, VR128:$y)),
1272                      (and VR128:$y, (not (z_vicmph VR128:$x, VR128:$y))))),
1273            (VMXQ VR128:$x, VR128:$y)>;
1274  def : Pat<(i128 (or (and VR128:$y, (z_vicmph VR128:$x, VR128:$y)),
1275                      (and VR128:$x, (not (z_vicmph VR128:$x, VR128:$y))))),
1276            (VMNQ VR128:$x, VR128:$y)>;
1277}
1278
1279// Unsigned min/max.
1280defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
1281defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
1282defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
1283defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;
1284
1285let Predicates = [FeatureVectorEnhancements3] in {
1286  def : Pat<(i128 (or (and VR128:$x, (z_vicmphl VR128:$x, VR128:$y)),
1287                      (and VR128:$y, (not (z_vicmphl VR128:$x, VR128:$y))))),
1288            (VMXLQ VR128:$x, VR128:$y)>;
1289  def : Pat<(i128 (or (and VR128:$y, (z_vicmphl VR128:$x, VR128:$y)),
1290                      (and VR128:$x, (not (z_vicmphl VR128:$x, VR128:$y))))),
1291            (VMNLQ VR128:$x, VR128:$y)>;
1292}
1293
1294// Instantiate full-vector shifts.
1295multiclass FullVectorShiftOps<SDPatternOperator shift,
1296                              Instruction sbit, Instruction sbyte> {
1297  let Predicates = [FeatureVector] in {
1298    def : Pat<(shift (i128 VR128:$x), imm32nobytes:$amt),
1299              (sbit VR128:$x, (VREPIB (UIMM8 imm:$amt)))>;
1300    def : Pat<(shift (i128 VR128:$x), imm32nobits:$amt),
1301              (sbyte VR128:$x, (VREPIB (UIMM8 imm:$amt)))>;
1302    def : Pat<(shift (i128 VR128:$x), imm32:$amt),
1303              (sbit (sbyte VR128:$x, (VREPIB (UIMM8 imm:$amt))),
1304                    (VREPIB (UIMM8 imm:$amt)))>;
1305    def : Pat<(shift (i128 VR128:$x), GR32:$amt),
1306              (sbit (sbyte VR128:$x, (VREPB (VLVGP32 GR32:$amt, GR32:$amt), 15)),
1307                    (VREPB (VLVGP32 GR32:$amt, GR32:$amt), 15))>;
1308  }
1309}
1310defm : FullVectorShiftOps<vshiftop<shl>, VSL, VSLB>;
1311defm : FullVectorShiftOps<vshiftop<srl>, VSRL, VSRLB>;
1312defm : FullVectorShiftOps<vshiftop<sra>, VSRA, VSRAB>;
1313
1314//===----------------------------------------------------------------------===//
1315// Integer comparison
1316//===----------------------------------------------------------------------===//
1317
1318let Predicates = [FeatureVector] in {
1319  // Element compare.
1320  let Defs = [CC] in {
1321    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
1322    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
1323    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
1324    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
1325    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
1326    let Predicates = [FeatureVectorEnhancements3] in
1327      def VECQ : CompareVRRa<"vecq", 0xE7DB, z_scmp, v128q, 4>;
1328  }
1329
1330  // Element compare logical.
1331  let Defs = [CC] in {
1332    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
1333    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
1334    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
1335    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
1336    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
1337    let Predicates = [FeatureVectorEnhancements3] in
1338      def VECLQ : CompareVRRa<"veclq", 0xE7D9, z_ucmp, v128q, 4>;
1339  }
1340
1341  // Compare equal.
1342  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
1343  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
1344                               v128b, v128b, 0>;
1345  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
1346                               v128h, v128h, 1>;
1347  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
1348                               v128f, v128f, 2>;
1349  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
1350                               v128g, v128g, 3>;
1351  let Predicates = [FeatureVectorEnhancements3] in
1352    defm VCEQQ : BinaryVRRbSPair<"vceqq", 0xE7F8, z_vicmpe, z_vicmpes,
1353                                 v128q, v128q, 4>;
1354
1355  // Compare high.
1356  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
1357  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
1358                              v128b, v128b, 0>;
1359  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
1360                              v128h, v128h, 1>;
1361  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
1362                              v128f, v128f, 2>;
1363  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
1364                              v128g, v128g, 3>;
1365  let Predicates = [FeatureVectorEnhancements3] in
1366    defm VCHQ : BinaryVRRbSPair<"vchq", 0xE7FB, z_vicmph, z_vicmphs,
1367                                v128q, v128q, 4>;
1368
1369  // Compare high logical.
1370  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
1371  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
1372                               v128b, v128b, 0>;
1373  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
1374                               v128h, v128h, 1>;
1375  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
1376                               v128f, v128f, 2>;
1377  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
1378                               v128g, v128g, 3>;
1379  let Predicates = [FeatureVectorEnhancements3] in
1380    defm VCHLQ : BinaryVRRbSPair<"vchlq", 0xE7F9, z_vicmphl, z_vicmphls,
1381                                 v128q, v128q, 4>;
1382
1383  // Test under mask.
1384  let Defs = [CC] in
1385    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Floating-point arithmetic
1390//===----------------------------------------------------------------------===//
1391
1392// See comments in SystemZInstrFP.td for the suppression flags and
1393// rounding modes.
1394multiclass VectorRounding<Instruction insn, TypedReg tr> {
1395  def : FPConversion<insn, any_frint,      tr, tr, 0, 0>;
1396  def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
1397  def : FPConversion<insn, any_ffloor,     tr, tr, 4, 7>;
1398  def : FPConversion<insn, any_fceil,      tr, tr, 4, 6>;
1399  def : FPConversion<insn, any_ftrunc,     tr, tr, 4, 5>;
1400  def : FPConversion<insn, any_fround,     tr, tr, 4, 1>;
1401}
1402
1403let Predicates = [FeatureVector] in {
1404  // Add.
1405  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1406    def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
1407    def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
1408    def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8, 0,
1409                           "adbr">;
1410    let Predicates = [FeatureVectorEnhancements1] in {
1411      def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
1412      def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8, 0,
1413                             "aebr">;
1414      def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
1415    }
1416  }
1417
1418  // Convert from fixed.
1419  let Uses = [FPC], mayRaiseFPException = 1 in {
1420    def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
1421    def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
1422    def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
1423  }
1424  def : FPConversion<VCDGB, any_sint_to_fp, v128db, v128g, 0, 0>;
1425  let Predicates = [FeatureVectorEnhancements2] in {
1426    let Uses = [FPC], mayRaiseFPException = 1 in {
1427      let isAsmParserOnly = 1 in
1428        def VCFPS  : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
1429      def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
1430      def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
1431    }
1432    def : FPConversion<VCEFB, any_sint_to_fp, v128sb, v128f, 0, 0>;
1433  }
1434
1435  // Convert from logical.
1436  let Uses = [FPC], mayRaiseFPException = 1 in {
1437    def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
1438    def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
1439    def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
1440  }
1441  def : FPConversion<VCDLGB, any_uint_to_fp, v128db, v128g, 0, 0>;
1442  let Predicates = [FeatureVectorEnhancements2] in {
1443    let Uses = [FPC], mayRaiseFPException = 1 in {
1444      let isAsmParserOnly = 1 in
1445        def VCFPL  : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
1446      def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
1447      def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
1448    }
1449    def : FPConversion<VCELFB, any_uint_to_fp, v128sb, v128f, 0, 0>;
1450  }
1451
1452  // Convert to fixed.
1453  let Uses = [FPC], mayRaiseFPException = 1 in {
1454    def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
1455    def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
1456    def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
1457  }
1458  // Rounding mode should agree with SystemZInstrFP.td.
1459  def : FPConversion<VCGDB, any_fp_to_sint, v128g, v128db, 0, 5>;
1460  let Predicates = [FeatureVectorEnhancements2] in {
1461    let Uses = [FPC], mayRaiseFPException = 1 in {
1462      let isAsmParserOnly = 1 in
1463        def VCSFP  : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
1464      def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
1465      def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
1466    }
1467    // Rounding mode should agree with SystemZInstrFP.td.
1468    def : FPConversion<VCFEB, any_fp_to_sint, v128f, v128sb, 0, 5>;
1469  }
1470
1471  // Convert to logical.
1472  let Uses = [FPC], mayRaiseFPException = 1 in {
1473    def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
1474    def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
1475    def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
1476  }
1477  // Rounding mode should agree with SystemZInstrFP.td.
1478  def : FPConversion<VCLGDB, any_fp_to_uint, v128g, v128db, 0, 5>;
1479  let Predicates = [FeatureVectorEnhancements2] in {
1480    let Uses = [FPC], mayRaiseFPException = 1 in {
1481      let isAsmParserOnly = 1 in
1482        def VCLFP  : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
1483      def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
1484      def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
1485    }
1486    // Rounding mode should agree with SystemZInstrFP.td.
1487    def : FPConversion<VCLFEB, any_fp_to_uint, v128f, v128sb, 0, 5>;
1488  }
1489
1490  // Divide.
1491  let Uses = [FPC], mayRaiseFPException = 1 in {
1492    def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
1493    def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
1494    def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8, 0,
1495                           "ddbr">;
1496    let Predicates = [FeatureVectorEnhancements1] in {
1497      def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
1498      def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8, 0,
1499                             "debr">;
1500      def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
1501    }
1502  }
1503
1504  // Load FP integer.
1505  let Uses = [FPC], mayRaiseFPException = 1 in {
1506    def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
1507    def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
1508    def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
1509  }
1510  defm : VectorRounding<VFIDB, v128db>;
1511  defm : VectorRounding<WFIDB, v64db>;
1512  let Predicates = [FeatureVectorEnhancements1] in {
1513    let Uses = [FPC], mayRaiseFPException = 1 in {
1514      def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
1515      def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
1516      def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
1517    }
1518    defm : VectorRounding<VFISB, v128sb>;
1519    defm : VectorRounding<WFISB, v32sb>;
1520    defm : VectorRounding<WFIXB, v128xb>;
1521  }
1522
1523  // Load lengthened.
1524  let Uses = [FPC], mayRaiseFPException = 1 in {
1525    def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
1526    def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_any_vextend, v128db, v128sb, 2, 0>;
1527    def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8, 0,
1528                          "ldebr">;
1529  }
1530  let Predicates = [FeatureVectorEnhancements1] in {
1531    let Uses = [FPC], mayRaiseFPException = 1 in {
1532      let isAsmParserOnly = 1 in {
1533        def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
1534        def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
1535        def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
1536      }
1537      def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
1538    }
1539    def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
1540              (WFLLD (WLDEB VR32:$src))>;
1541  }
1542
1543  // Load rounded.
1544  let Uses = [FPC], mayRaiseFPException = 1 in {
1545    def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
1546    def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1547    def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1548  }
1549  def : Pat<(v4f32 (z_any_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
1550  def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
1551  let Predicates = [FeatureVectorEnhancements1] in {
1552    let Uses = [FPC], mayRaiseFPException = 1 in {
1553      let isAsmParserOnly = 1 in {
1554        def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
1555        def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
1556        def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
1557      }
1558      def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
1559    }
1560    def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
1561    def : Pat<(f32 (any_fpround (f128 VR128:$src))),
1562              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
1563  }
1564
1565  // Maximum.
1566  multiclass VectorMax<Instruction insn, TypedReg tr> {
1567    def : FPMinMax<insn, any_fmaxnum, tr, 4>;
1568    def : FPMinMax<insn, any_fmaximum, tr, 1>;
1569  }
1570  let Predicates = [FeatureVectorEnhancements1] in {
1571    let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1572      def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
1573      def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
1574                                     v128db, v128db, 3, 0>;
1575      def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
1576                                     v64db, v64db, 3, 8>;
1577      def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
1578                                     v128sb, v128sb, 2, 0>;
1579      def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
1580                                     v32sb, v32sb, 2, 8>;
1581      def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
1582                                     v128xb, v128xb, 4, 8>;
1583    }
1584    defm : VectorMax<VFMAXDB, v128db>;
1585    defm : VectorMax<WFMAXDB, v64db>;
1586    defm : VectorMax<VFMAXSB, v128sb>;
1587    defm : VectorMax<WFMAXSB, v32sb>;
1588    defm : VectorMax<WFMAXXB, v128xb>;
1589  }
1590
1591  // Minimum.
1592  multiclass VectorMin<Instruction insn, TypedReg tr> {
1593    def : FPMinMax<insn, any_fminnum, tr, 4>;
1594    def : FPMinMax<insn, any_fminimum, tr, 1>;
1595  }
1596  let Predicates = [FeatureVectorEnhancements1] in {
1597    let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1598      def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
1599      def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
1600                                     v128db, v128db, 3, 0>;
1601      def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
1602                                     v64db, v64db, 3, 8>;
1603      def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
1604                                     v128sb, v128sb, 2, 0>;
1605      def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
1606                                     v32sb, v32sb, 2, 8>;
1607      def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
1608                                     v128xb, v128xb, 4, 8>;
1609    }
1610    defm : VectorMin<VFMINDB, v128db>;
1611    defm : VectorMin<WFMINDB, v64db>;
1612    defm : VectorMin<VFMINSB, v128sb>;
1613    defm : VectorMin<WFMINSB, v32sb>;
1614    defm : VectorMin<WFMINXB, v128xb>;
1615  }
1616
1617  // Multiply.
1618  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1619    def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
1620    def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
1621    def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8, 0,
1622                           "mdbr">;
1623    let Predicates = [FeatureVectorEnhancements1] in {
1624      def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
1625      def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8, 0,
1626                             "meebr">;
1627      def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
1628    }
1629  }
1630
1631  // Multiply and add.
1632  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1633    def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
1634    def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
1635    def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3,
1636                             "madbr">;
1637    let Predicates = [FeatureVectorEnhancements1] in {
1638      def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
1639      def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2,
1640                               "maebr">;
1641      def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
1642    }
1643  }
1644
1645  // Multiply and subtract.
1646  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1 in {
1647    def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
1648    def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
1649    def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3,
1650                             "msdbr">;
1651    let Predicates = [FeatureVectorEnhancements1] in {
1652      def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
1653      def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2,
1654                               "msebr">;
1655      def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
1656    }
1657  }
1658
1659  // Negative multiply and add.
1660  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
1661      Predicates = [FeatureVectorEnhancements1] in {
1662    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
1663    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
1664    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
1665    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
1666    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
1667    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
1668  }
1669
1670  // Negative multiply and subtract.
1671  let Uses = [FPC], mayRaiseFPException = 1, isCommutable = 1,
1672      Predicates = [FeatureVectorEnhancements1] in {
1673    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
1674    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
1675    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
1676    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
1677    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
1678    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
1679  }
1680
1681  // Perform sign operation.
1682  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
1683  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
1684  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
1685  let Predicates = [FeatureVectorEnhancements1] in {
1686    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
1687    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
1688    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
1689  }
1690
1691  // Load complement.
1692  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
1693  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
1694  let Predicates = [FeatureVectorEnhancements1] in {
1695    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
1696    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
1697    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
1698  }
1699
1700  // Load negative.
1701  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
1702  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
1703  let Predicates = [FeatureVectorEnhancements1] in {
1704    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
1705    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
1706    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
1707  }
1708
1709  // Load positive.
1710  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
1711  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
1712  let Predicates = [FeatureVectorEnhancements1] in {
1713    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
1714    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
1715    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
1716  }
1717
1718  // Square root.
1719  let Uses = [FPC], mayRaiseFPException = 1 in {
1720    def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
1721    def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
1722    def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8, 0,
1723                           "sqdbr">;
1724    let Predicates = [FeatureVectorEnhancements1] in {
1725      def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
1726      def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8, 0,
1727                             "sqebr">;
1728      def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
1729    }
1730  }
1731
1732  // Subtract.
1733  let Uses = [FPC], mayRaiseFPException = 1 in {
1734    def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
1735    def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
1736    def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8, 0,
1737                           "sdbr">;
1738    let Predicates = [FeatureVectorEnhancements1] in {
1739      def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
1740      def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8, 0,
1741                             "sebr">;
1742      def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
1743    }
1744  }
1745
1746  // Test data class immediate.
1747  let Defs = [CC] in {
1748    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
1749    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
1750    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
1751    let Predicates = [FeatureVectorEnhancements1] in {
1752      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
1753      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
1754      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
1755    }
1756  }
1757}
1758
1759//===----------------------------------------------------------------------===//
1760// Floating-point comparison
1761//===----------------------------------------------------------------------===//
1762
1763let Predicates = [FeatureVector] in {
1764  // Compare scalar.
1765  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
1766    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
1767    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_any_fcmp, v64db, 3, "cdbr">;
1768    let Predicates = [FeatureVectorEnhancements1] in {
1769      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_any_fcmp, v32sb, 2, "cebr">;
1770      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_any_fcmp, v128xb, 4>;
1771    }
1772  }
1773
1774  // Compare and signal scalar.
1775  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
1776    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
1777    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, z_strict_fcmps, v64db, 3, "kdbr">;
1778    let Predicates = [FeatureVectorEnhancements1] in {
1779      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, z_strict_fcmps, v32sb, 2, "kebr">;
1780      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, z_strict_fcmps, v128xb, 4>;
1781    }
1782  }
1783
1784  // Compare equal.
1785  let Uses = [FPC], mayRaiseFPException = 1 in {
1786    def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
1787    defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
1788                                  v128g, v128db, 3, 0>;
1789    defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
1790                                  v64g, v64db, 3, 8>;
1791    let Predicates = [FeatureVectorEnhancements1] in {
1792      defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
1793                                    v128f, v128sb, 2, 0>;
1794      defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
1795                                    v32f, v32sb, 2, 8>;
1796      defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
1797                                    v128q, v128xb, 4, 8>;
1798    }
1799  }
1800
1801  // Compare and signal equal.
1802  let Uses = [FPC], mayRaiseFPException = 1,
1803      Predicates = [FeatureVectorEnhancements1] in {
1804    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, z_strict_vfcmpes, null_frag,
1805                                  v128g, v128db, 3, 4>;
1806    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
1807                                  v64g, v64db, 3, 12>;
1808    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, z_strict_vfcmpes, null_frag,
1809                                  v128f, v128sb, 2, 4>;
1810    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
1811                                  v32f, v32sb, 2, 12>;
1812    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
1813                                  v128q, v128xb, 4, 12>;
1814  }
1815
1816  // Compare high.
1817  let Uses = [FPC], mayRaiseFPException = 1 in {
1818    def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
1819    defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
1820                                  v128g, v128db, 3, 0>;
1821    defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
1822                                  v64g, v64db, 3, 8>;
1823    let Predicates = [FeatureVectorEnhancements1] in {
1824      defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
1825                                    v128f, v128sb, 2, 0>;
1826      defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
1827                                    v32f, v32sb, 2, 8>;
1828      defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
1829                                    v128q, v128xb, 4, 8>;
1830    }
1831  }
1832
1833  // Compare and signal high.
1834  let Uses = [FPC], mayRaiseFPException = 1,
1835      Predicates = [FeatureVectorEnhancements1] in {
1836    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, z_strict_vfcmphs, null_frag,
1837                                  v128g, v128db, 3, 4>;
1838    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
1839                                  v64g, v64db, 3, 12>;
1840    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, z_strict_vfcmphs, null_frag,
1841                                  v128f, v128sb, 2, 4>;
1842    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
1843                                  v32f, v32sb, 2, 12>;
1844    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
1845                                  v128q, v128xb, 4, 12>;
1846  }
1847
1848  // Compare high or equal.
1849  let Uses = [FPC], mayRaiseFPException = 1 in {
1850    def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
1851    defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
1852                                   v128g, v128db, 3, 0>;
1853    defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
1854                                   v64g, v64db, 3, 8>;
1855    let Predicates = [FeatureVectorEnhancements1] in {
1856      defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
1857                                     v128f, v128sb, 2, 0>;
1858      defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
1859                                     v32f, v32sb, 2, 8>;
1860      defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
1861                                     v128q, v128xb, 4, 8>;
1862    }
1863  }
1864
1865  // Compare and signal high or equal.
1866  let Uses = [FPC], mayRaiseFPException = 1,
1867      Predicates = [FeatureVectorEnhancements1] in {
1868    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, z_strict_vfcmphes, null_frag,
1869                                   v128g, v128db, 3, 4>;
1870    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
1871                                   v64g, v64db, 3, 12>;
1872    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, z_strict_vfcmphes, null_frag,
1873                                   v128f, v128sb, 2, 4>;
1874    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
1875                                   v32f, v32sb, 2, 12>;
1876    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
1877                                   v128q, v128xb, 4, 12>;
1878  }
1879}
1880
1881//===----------------------------------------------------------------------===//
1882// Support for 128-bit integer values in vector registers
1883//===----------------------------------------------------------------------===//
1884
1885// Loads and stores.
1886let Predicates = [FeatureVector] in {
1887  def : Pat<(i128 (load bdxaddr12only:$addr)),
1888            (VL bdxaddr12only:$addr)>;
1889  def : Pat<(store (i128 VR128:$src), bdxaddr12only:$addr),
1890            (VST VR128:$src, bdxaddr12only:$addr)>;
1891}
1892
1893// Full i128 move from GPR pair.
1894let Predicates = [FeatureVector] in
1895  def : Pat<(i128 (or (zext GR64:$x), (shl (anyext GR64:$y), (i32 64)))),
1896            (VLVGP GR64:$y, GR64:$x)>;
1897
1898// Any-extensions from GPR to i128.
1899let Predicates = [FeatureVector] in {
1900  def : Pat<(i128 (anyext GR32:$x)), (VLVGP32 GR32:$x, GR32:$x)>;
1901  def : Pat<(i128 (anyext GR64:$x)), (VLVGP GR64:$x, GR64:$x)>;
1902}
1903
1904// Any-extending loads into i128.
1905let Predicates = [FeatureVector] in {
1906  def : Pat<(i128 (z_extloadi8 bdxaddr12only:$addr)),
1907            (VLREPB bdxaddr12only:$addr)>;
1908  def : Pat<(i128 (z_extloadi16 bdxaddr12only:$addr)),
1909            (VLREPH bdxaddr12only:$addr)>;
1910  def : Pat<(i128 (z_extloadi32 bdxaddr12only:$addr)),
1911            (VLREPF bdxaddr12only:$addr)>;
1912  def : Pat<(i128 (z_extloadi64 bdxaddr12only:$addr)),
1913            (VLREPG bdxaddr12only:$addr)>;
1914}
1915
1916// Truncations from i128 to GPR.
1917let Predicates = [FeatureVector] in {
1918  def : Pat<(i32 (trunc (i128 VR128:$vec))),
1919            (EXTRACT_SUBREG (VLGVF VR128:$vec, zero_reg, 3), subreg_l32)>;
1920  def : Pat<(i32 (trunc (srl (i128 VR128:$vec), (i32 32)))),
1921            (EXTRACT_SUBREG (VLGVF VR128:$vec, zero_reg, 2), subreg_l32)>;
1922  def : Pat<(i32 (trunc (srl (i128 VR128:$vec), (i32 64)))),
1923            (EXTRACT_SUBREG (VLGVF VR128:$vec, zero_reg, 1), subreg_l32)>;
1924  def : Pat<(i32 (trunc (srl (i128 VR128:$vec), (i32 96)))),
1925            (EXTRACT_SUBREG (VLGVF VR128:$vec, zero_reg, 0), subreg_l32)>;
1926  def : Pat<(i64 (trunc (i128 VR128:$vec))),
1927            (VLGVG VR128:$vec, zero_reg, 1)>;
1928  def : Pat<(i64 (trunc (srl (i128 VR128:$vec), (i32 64)))),
1929            (VLGVG VR128:$vec, zero_reg, 0)>;
1930}
1931
1932// Truncating stores from i128.
1933let Predicates = [FeatureVector] in {
1934  def : Pat<(truncstorei8 (i128 VR128:$x), bdxaddr12only:$addr),
1935            (VSTEB VR128:$x, bdxaddr12only:$addr, 15)>;
1936  def : Pat<(truncstorei16 (i128 VR128:$x), bdxaddr12only:$addr),
1937            (VSTEH VR128:$x, bdxaddr12only:$addr, 7)>;
1938  def : Pat<(truncstorei32 (i128 VR128:$x), bdxaddr12only:$addr),
1939            (VSTEF VR128:$x, bdxaddr12only:$addr, 3)>;
1940  def : Pat<(truncstorei32 (srl (i128 VR128:$x), (i32 32)), bdxaddr12only:$addr),
1941            (VSTEF VR128:$x, bdxaddr12only:$addr, 2)>;
1942  def : Pat<(truncstorei32 (srl (i128 VR128:$x), (i32 64)), bdxaddr12only:$addr),
1943            (VSTEF VR128:$x, bdxaddr12only:$addr, 1)>;
1944  def : Pat<(truncstorei32 (srl (i128 VR128:$x), (i32 96)), bdxaddr12only:$addr),
1945            (VSTEF VR128:$x, bdxaddr12only:$addr, 0)>;
1946  def : Pat<(truncstorei64 (i128 VR128:$x), bdxaddr12only:$addr),
1947            (VSTEG VR128:$x, bdxaddr12only:$addr, 1)>;
1948  def : Pat<(truncstorei64 (srl (i128 VR128:$x), (i32 64)), bdxaddr12only:$addr),
1949            (VSTEG VR128:$x, bdxaddr12only:$addr, 0)>;
1950}
1951
1952// Zero-extensions from GPR to i128.
1953let Predicates = [FeatureVector] in {
1954  def : Pat<(i128 (zext8 (anyext GR32:$x))),
1955            (VLVGB (VGBM 0), GR32:$x, zero_reg, 15)>;
1956  def : Pat<(i128 (zext16 (anyext GR32:$x))),
1957            (VLVGH (VGBM 0), GR32:$x, zero_reg, 7)>;
1958  def : Pat<(i128 (zext GR32:$x)),
1959            (VLVGF (VGBM 0), GR32:$x, zero_reg, 3)>;
1960  def : Pat<(i128 (zext GR64:$x)),
1961            (VLVGG (VGBM 0), GR64:$x, zero_reg, 1)>;
1962}
1963
1964// Zero-extending loads into i128.
1965let Predicates = [FeatureVector] in {
1966  def : Pat<(i128 (z_zextloadi8 bdxaddr12only:$addr)),
1967            (VLEB (VGBM 0), bdxaddr12only:$addr, 15)>;
1968  def : Pat<(i128 (z_zextloadi16 bdxaddr12only:$addr)),
1969            (VLEH (VGBM 0), bdxaddr12only:$addr, 7)>;
1970  def : Pat<(i128 (z_zextloadi32 bdxaddr12only:$addr)),
1971            (VLEF (VGBM 0), bdxaddr12only:$addr, 3)>;
1972  def : Pat<(i128 (z_zextloadi64 bdxaddr12only:$addr)),
1973            (VLEG (VGBM 0), bdxaddr12only:$addr, 1)>;
1974}
1975
1976// In-register i128 sign-extensions on arch15.
1977let Predicates = [FeatureVectorEnhancements3] in {
1978  def : Pat<(i128 (sext_inreg VR128:$x, i8)), (VUPLG (VSEGB VR128:$x))>;
1979  def : Pat<(i128 (sext_inreg VR128:$x, i16)), (VUPLG (VSEGH VR128:$x))>;
1980  def : Pat<(i128 (sext_inreg VR128:$x, i32)), (VUPLG (VSEGF VR128:$x))>;
1981  def : Pat<(i128 (sext_inreg VR128:$x, i64)), (VUPLG VR128:$x)>;
1982}
1983
1984// In-register i128 sign-extensions.
1985let Predicates = [FeatureVector] in {
1986  def : Pat<(i128 (sext_inreg VR128:$x, i8)),
1987            (VSRAB (VREPB VR128:$x, 15), (VREPIB 120))>;
1988  def : Pat<(i128 (sext_inreg VR128:$x, i16)),
1989            (VSRAB (VREPH VR128:$x, 7), (VREPIB 112))>;
1990  def : Pat<(i128 (sext_inreg VR128:$x, i32)),
1991            (VSRAB (VREPF VR128:$x, 3), (VREPIB 96))>;
1992  def : Pat<(i128 (sext_inreg VR128:$x, i64)),
1993            (VSRAB (VREPG VR128:$x, 1), (VREPIB 64))>;
1994}
1995
1996// Sign-extensions from GPR to i128 on arch15.
1997let Predicates = [FeatureVectorEnhancements3] in {
1998  def : Pat<(i128 (sext_inreg (anyext GR32:$x), i8)),
1999            (VUPLG (VLVGP (LGBR (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$x, subreg_l32)),
2000                          (LGBR (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$x, subreg_l32))))>;
2001  def : Pat<(i128 (sext_inreg (anyext GR32:$x), i16)),
2002            (VUPLG (VLVGP (LGHR (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$x, subreg_l32)),
2003                          (LGHR (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$x, subreg_l32))))>;
2004  def : Pat<(i128 (sext GR32:$x)),
2005            (VUPLG (VLVGP (LGFR GR32:$x), (LGFR GR32:$x)))>;
2006  def : Pat<(i128 (sext GR64:$x)),
2007            (VUPLG (VLVGP GR64:$x, GR64:$x))>;
2008}
2009
2010// Sign-extensions from GPR to i128.
2011let Predicates = [FeatureVector] in {
2012  def : Pat<(i128 (sext_inreg (anyext GR32:$x), i8)),
2013            (VLVGP (SRAG (LGBR (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
2014                                 GR32:$x, subreg_l32)), zero_reg, 63),
2015                   (LGBR (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
2016                            GR32:$x, subreg_l32)))>;
2017  def : Pat<(i128 (sext_inreg (anyext GR32:$x), i16)),
2018            (VLVGP (SRAG (LGHR (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
2019                                  GR32:$x, subreg_l32)), zero_reg, 63),
2020                   (LGHR (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
2021                            GR32:$x, subreg_l32)))>;
2022  def : Pat<(i128 (sext GR32:$x)),
2023            (VLVGP (SRAG (LGFR GR32:$x), zero_reg, 63), (LGFR GR32:$x))>;
2024  def : Pat<(i128 (sext GR64:$x)),
2025            (VLVGP (SRAG GR64:$x, zero_reg, 63), GR64:$x)>;
2026}
2027
2028// Sign-extending loads into i128.
2029let Predicates = [FeatureVector] in {
2030  def : Pat<(i128 (z_sextloadi8 bdxaddr12only:$addr)),
2031            (VSRAB (VLREPB bdxaddr12only:$addr), (VREPIB 120))>;
2032  def : Pat<(i128 (z_sextloadi16 bdxaddr12only:$addr)),
2033            (VSRAB (VLREPH bdxaddr12only:$addr), (VREPIB 112))>;
2034  def : Pat<(i128 (z_sextloadi32 bdxaddr12only:$addr)),
2035            (VSRAB (VLREPF bdxaddr12only:$addr), (VREPIB 96))>;
2036  def : Pat<(i128 (z_sextloadi64 bdxaddr12only:$addr)),
2037            (VSRAB (VLREPG bdxaddr12only:$addr), (VREPIB 64))>;
2038}
2039
2040// i128 comparison pseudo-instructions.
2041let Predicates = [FeatureVector], Defs = [CC],
2042    usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
2043  def SCmp128Hi : Pseudo<(outs), (ins VR128:$src1, VR128:$src2),
2044                         [(set CC, (z_scmp128hi (i128 VR128:$src1),
2045                                                (i128 VR128:$src2)))]>;
2046  def UCmp128Hi : Pseudo<(outs), (ins VR128:$src1, VR128:$src2),
2047                         [(set CC, (z_ucmp128hi (i128 VR128:$src1),
2048                                                (i128 VR128:$src2)))]>;
2049}
2050
2051// i128 select pseudo-instructions.
2052let Predicates = [FeatureVector] in
2053  def Select128 : SelectWrapper<i128, VR128>;
2054
2055//===----------------------------------------------------------------------===//
2056// Conversions
2057//===----------------------------------------------------------------------===//
2058
2059let Predicates = [FeatureVector] in {
2060def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
2061def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
2062def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
2063def : Pat<(v16i8 (bitconvert (i128  VR128:$src))), (v16i8 VR128:$src)>;
2064def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
2065def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
2066def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;
2067
2068def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
2069def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
2070def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
2071def : Pat<(v8i16 (bitconvert (i128  VR128:$src))), (v8i16 VR128:$src)>;
2072def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
2073def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
2074def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;
2075
2076def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
2077def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
2078def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
2079def : Pat<(v4i32 (bitconvert (i128  VR128:$src))), (v4i32 VR128:$src)>;
2080def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
2081def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
2082def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;
2083
2084def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
2085def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
2086def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
2087def : Pat<(v2i64 (bitconvert (i128  VR128:$src))), (v2i64 VR128:$src)>;
2088def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
2089def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
2090def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;
2091
2092def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
2093def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
2094def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
2095def : Pat<(v4f32 (bitconvert (i128  VR128:$src))), (v4f32 VR128:$src)>;
2096def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
2097def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
2098def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;
2099
2100def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
2101def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
2102def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
2103def : Pat<(v2f64 (bitconvert (i128  VR128:$src))), (v2f64 VR128:$src)>;
2104def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
2105def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
2106def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;
2107
2108def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
2109def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
2110def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
2111def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
2112def : Pat<(f128  (bitconvert (i128  VR128:$src))), (f128  VR128:$src)>;
2113def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
2114def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;
2115
2116def : Pat<(i128  (bitconvert (v16i8 VR128:$src))), (i128  VR128:$src)>;
2117def : Pat<(i128  (bitconvert (v8i16 VR128:$src))), (i128  VR128:$src)>;
2118def : Pat<(i128  (bitconvert (v4i32 VR128:$src))), (i128  VR128:$src)>;
2119def : Pat<(i128  (bitconvert (v2i64 VR128:$src))), (i128  VR128:$src)>;
2120def : Pat<(i128  (bitconvert (v4f32 VR128:$src))), (i128  VR128:$src)>;
2121def : Pat<(i128  (bitconvert (v2f64 VR128:$src))), (i128  VR128:$src)>;
2122def : Pat<(i128  (bitconvert (f128  VR128:$src))), (i128  VR128:$src)>;
2123} // End Predicates = [FeatureVector]
2124
2125//===----------------------------------------------------------------------===//
2126// Replicating scalars
2127//===----------------------------------------------------------------------===//
2128
2129// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
2130// INDEX is 8 minus the element size in bytes.
2131class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
2132  : Pat<(type (z_replicate GR32:$scalar)),
2133        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;
2134
2135def : VectorReplicateScalar<v16i8, VREPB, 7>;
2136def : VectorReplicateScalar<v8i16, VREPH, 3>;
2137def : VectorReplicateScalar<v4i32, VREPF, 1>;
2138
2139// i64 replications are just a single instruction.
2140def : Pat<(v2i64 (z_replicate GR64:$scalar)),
2141          (VLVGP GR64:$scalar, GR64:$scalar)>;
2142
2143//===----------------------------------------------------------------------===//
2144// Floating-point insertion and extraction
2145//===----------------------------------------------------------------------===//
2146
2147// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
2148// and VLGVF.
2149let Predicates = [FeatureVector] in {
2150  def LEFR : UnaryAliasVRS<VR32, GR32>;
2151  def LFER : UnaryAliasVRS<GR64, VR32>;
2152  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
2153  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
2154            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
2155}
2156
2157// Floating-point values are stored in element 0 of the corresponding
2158// vector register.  Scalar to vector conversion is just a subreg and
2159// scalar replication can just replicate element 0 of the vector register.
2160multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
2161                            SubRegIndex subreg> {
2162  def : Pat<(vt (scalar_to_vector cls:$scalar)),
2163            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
2164  def : Pat<(vt (z_replicate cls:$scalar)),
2165            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
2166                                 subreg), 0)>;
2167}
2168defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
2169defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;
2170
2171// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
2172// TableGen for the base register operand in VLVG-based integer insertions
2173// and ensures that this version is strictly better.
2174let AddedComplexity = 4 in {
2175  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
2176            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
2177                                 subreg_h64), VR128:$vec, 1)>;
2178  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
2179            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
2180                                             subreg_h64), 0)>;
2181}
2182
2183// We extract floating-point element X by replicating (for elements other
2184// than 0) and then taking a high subreg.  The AddedComplexity counters the
2185// 3 added by TableGen for the base register operand in VLGV-based integer
2186// extractions and ensures that this version is strictly better.
2187let AddedComplexity = 4 in {
2188  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
2189            (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
2190  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
2191            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;
2192
2193  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
2194            (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
2195  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
2196            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
2197}
2198
2199//===----------------------------------------------------------------------===//
2200// Support for 128-bit floating-point values in vector registers
2201//===----------------------------------------------------------------------===//
2202
2203let Predicates = [FeatureVectorEnhancements1] in {
2204  def : Pat<(f128 (load bdxaddr12only:$addr)),
2205            (VL bdxaddr12only:$addr)>;
2206  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
2207            (VST VR128:$src, bdxaddr12only:$addr)>;
2208
2209  def : Pat<(f128 fpimm0), (VZERO)>;
2210  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
2211}
2212
2213//===----------------------------------------------------------------------===//
2214// String instructions
2215//===----------------------------------------------------------------------===//
2216
2217let Predicates = [FeatureVector] in {
2218  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
2219  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
2220                                   z_vfae_cc, v128b, v128b, 0>;
2221  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
2222                                   z_vfae_cc, v128h, v128h, 1>;
2223  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
2224                                   z_vfae_cc, v128f, v128f, 2>;
2225  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
2226                                    z_vfaez_cc, v128b, v128b, 0, 2>;
2227  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
2228                                    z_vfaez_cc, v128h, v128h, 1, 2>;
2229  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
2230                                    z_vfaez_cc, v128f, v128f, 2, 2>;
2231
2232  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
2233  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
2234                                    z_vfee_cc, v128b, v128b, 0>;
2235  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
2236                                    z_vfee_cc, v128h, v128h, 1>;
2237  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
2238                                    z_vfee_cc, v128f, v128f, 2>;
2239  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
2240                                z_vfeez_cc, v128b, v128b, 0, 2>;
2241  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
2242                                z_vfeez_cc, v128h, v128h, 1, 2>;
2243  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
2244                                z_vfeez_cc, v128f, v128f, 2, 2>;
2245
2246  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
2247  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
2248                                     z_vfene_cc, v128b, v128b, 0>;
2249  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
2250                                     z_vfene_cc, v128h, v128h, 1>;
2251  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
2252                                     z_vfene_cc, v128f, v128f, 2>;
2253  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
2254                                 z_vfenez_cc, v128b, v128b, 0, 2>;
2255  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
2256                                 z_vfenez_cc, v128h, v128h, 1, 2>;
2257  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
2258                                 z_vfenez_cc, v128f, v128f, 2, 2>;
2259
2260  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
2261  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
2262                                    z_vistr_cc, v128b, v128b, 0>;
2263  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
2264                                    z_vistr_cc, v128h, v128h, 1>;
2265  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
2266                                    z_vistr_cc, v128f, v128f, 2>;
2267
2268  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
2269  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
2270                                       z_vstrc_cc, v128b, v128b, 0>;
2271  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
2272                                       z_vstrc_cc, v128h, v128h, 1>;
2273  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
2274                                       z_vstrc_cc, v128f, v128f, 2>;
2275  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
2276                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
2277  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
2278                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
2279  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
2280                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
2281}
2282
2283let Predicates = [FeatureVectorEnhancements2] in {
2284  defm VSTRS  : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
2285  defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
2286                                 z_vstrs_cc, v128b, v128b, 0>;
2287  defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
2288                                 z_vstrs_cc, v128b, v128h, 1>;
2289  defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
2290                                 z_vstrs_cc, v128b, v128f, 2>;
2291  let Defs = [CC] in {
2292    def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
2293                              z_vstrsz_cc, v128b, v128b, 0, 2>;
2294    def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
2295                              z_vstrsz_cc, v128b, v128h, 1, 2>;
2296    def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
2297                              z_vstrsz_cc, v128b, v128f, 2, 2>;
2298  }
2299}
2300
2301//===----------------------------------------------------------------------===//
2302// NNP assist instructions
2303//===----------------------------------------------------------------------===//
2304
2305let Predicates = [FeatureVector, FeatureNNPAssist] in {
2306  let Uses = [FPC], mayRaiseFPException = 1 in
2307    def VCFN : UnaryVRRaFloatGeneric<"vcfn", 0xE65D>;
2308  def : Pat<(int_s390_vcfn VR128:$x, imm32zx4_timm:$m),
2309            (VCFN VR128:$x, 1, imm32zx4:$m)>;
2310
2311  let Uses = [FPC], mayRaiseFPException = 1 in
2312    def VCLFNL : UnaryVRRaFloatGeneric<"vclfnl", 0xE65E>;
2313  def : Pat<(int_s390_vclfnls VR128:$x, imm32zx4_timm:$m),
2314            (VCLFNL VR128:$x, 2, imm32zx4:$m)>;
2315
2316  let Uses = [FPC], mayRaiseFPException = 1 in
2317    def VCLFNH : UnaryVRRaFloatGeneric<"vclfnh", 0xE656>;
2318  def : Pat<(int_s390_vclfnhs VR128:$x, imm32zx4_timm:$m),
2319            (VCLFNH VR128:$x, 2, imm32zx4:$m)>;
2320
2321  let Uses = [FPC], mayRaiseFPException = 1 in
2322    def VCNF : UnaryVRRaFloatGeneric<"vcnf", 0xE655>;
2323  def : Pat<(int_s390_vcnf VR128:$x, imm32zx4_timm:$m),
2324            (VCNF VR128:$x, imm32zx4:$m, 1)>;
2325
2326  let Uses = [FPC], mayRaiseFPException = 1 in
2327    def VCRNF : BinaryVRRcFloatGeneric<"vcrnf", 0xE675>;
2328  def : Pat<(int_s390_vcrnfs VR128:$x, VR128:$y, imm32zx4_timm:$m),
2329            (VCRNF VR128:$x, VR128:$y, imm32zx4:$m, 2)>;
2330}
2331
2332//===----------------------------------------------------------------------===//
2333// Packed-decimal instructions
2334//===----------------------------------------------------------------------===//
2335
2336let Predicates = [FeatureVectorPackedDecimal] in {
2337  def VLIP : BinaryVRIh<"vlip", 0xE649>;
2338
2339  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
2340  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;
2341
2342  let Defs = [CC] in {
2343    let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
2344      def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
2345      def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
2346    }
2347    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
2348    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
2349    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
2350    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;
2351
2352    def VAP : QuaternaryVRIf<"vap", 0xE671>;
2353    def VSP : QuaternaryVRIf<"vsp", 0xE673>;
2354
2355    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
2356    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;
2357
2358    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
2359    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
2360    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;
2361
2362    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
2363    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;
2364
2365    def VTP : TestVRRg<"vtp", 0xE65F>;
2366    def VCP : CompareVRRh<"vcp", 0xE677>;
2367  }
2368}
2369
2370let Predicates = [FeatureVectorPackedDecimalEnhancement2] in {
2371  def VSCHP : BinaryExtraVRRbGeneric<"vschp", 0xE674>;
2372  def VSCHSP : BinaryExtraVRRb<"vschsp", 0xE674, 2>;
2373  def VSCHDP : BinaryExtraVRRb<"vschdp", 0xE674, 3>;
2374  def VSCHXP : BinaryExtraVRRb<"vschxp", 0xE674, 4>;
2375
2376  def VSCSHP : BinaryVRRb<"vscshp", 0xE67C, null_frag, v128b, v128b>;
2377
2378  def VCSPH : TernaryVRRj<"vcsph", 0xE67D>;
2379
2380  let Defs = [CC] in
2381    def VCLZDP : BinaryVRRk<"vclzdp", 0xE651>;
2382
2383  let Defs = [CC] in
2384    def VSRPR : QuaternaryVRIf<"vsrpr", 0xE672>;
2385
2386  let Defs = [CC] in {
2387    def VPKZR : QuaternaryVRIf<"vpkzr", 0xE670>;
2388    def VUPKZH : BinaryVRRk<"vupkzh", 0xE654>;
2389    def VUPKZL : BinaryVRRk<"vupkzl", 0xE65C>;
2390  }
2391}
2392
2393let Predicates = [FeatureVectorPackedDecimalEnhancement3] in {
2394  def VCVBQ : BinaryVRRk<"vcvbq", 0xE64E>;
2395  let Defs = [CC] in
2396    def VCVDQ : TernaryVRIj<"vcvdq", 0xE64A>;
2397
2398  let Defs = [CC] in {
2399    def VTPOpt : TestExtraVRRg<"vtp", 0xE65F>;
2400    def VTZ : TestExtraVRIl<"vtz", 0xE67F>;
2401  }
2402}
2403