xref: /llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td (revision 8424bf207efd89eacf2fe893b67be98d535e1db6)
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9def IsTargetXPLINK64      : Predicate<"Subtarget->isTargetXPLINK64()">;
10def IsTargetELF           : Predicate<"Subtarget->isTargetELF()">;
11
12//===----------------------------------------------------------------------===//
13// Stack allocation
14//===----------------------------------------------------------------------===//
15
16// These pseudos carry values needed to compute the MaxcallFrameSize of the
17// function.  The callseq_start node requires the hasSideEffects flag.
18let usesCustomInserter = 1, hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20                                [(callseq_start timm:$amt1, timm:$amt2)]>;
21  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22                                [(callseq_end timm:$amt1, timm:$amt2)]>;
23}
24
25// Takes as input the value of the stack pointer after a dynamic allocation
26// has been made.  Sets the output to the address of the dynamically-
27// allocated area itself, skipping the outgoing arguments.
28//
29// This expands to an LA or LAY instruction.  We restrict the offset
30// to the range of LA and keep the LAY range in reserve for when
31// the size of the outgoing arguments is added.
32def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33                         [(set GR64:$dst, dynalloc12only:$src)]>;
34
35let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36    usesCustomInserter = 1 in
37  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38                             (ins GR64:$oldSP, GR64:$space),
39           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
40
41let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
42    hasSideEffects = 1 in
43  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
44
45let Defs = [R3D, CC], Uses = [R3D, R4D], hasNoSchedulingInfo = 1,
46    hasSideEffects = 1 in
47  def XPLINK_STACKALLOC : Pseudo<(outs), (ins), []>;
48
49//===----------------------------------------------------------------------===//
50// Branch instructions
51//===----------------------------------------------------------------------===//
52
53// Conditional branches.
54let isBranch = 1, isTerminator = 1, Uses = [CC] in {
55  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
56  // with the condition-code mask being the first operand.  It seems friendlier
57  // to use mnemonic forms like JE and JLH when writing out the assembly though.
58  let isCodeGenOnly = 1 in {
59    // An assembler extended mnemonic for BRC.
60    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
61    // An assembler extended mnemonic for BRCL.  (The extension is "G"
62    // rather than "L" because "JL" is "Jump if Less".)
63    def BRCL : CondBranchRIL<"jg#", 0xC04>;
64    let isIndirectBranch = 1 in {
65      def BC  : CondBranchRX<"b#",  0x47>;
66      def BCR : CondBranchRR<"b#r", 0x07>;
67      def BIC : CondBranchRXY<"bi#", 0xe347>,
68                Requires<[FeatureMiscellaneousExtensions2]>;
69    }
70  }
71
72  // Allow using the raw forms directly from the assembler (and occasional
73  // special code generation needs) as well.
74  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
75  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
76  let isIndirectBranch = 1 in {
77    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
78    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
79    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
80                 Requires<[FeatureMiscellaneousExtensions2]>;
81  }
82
83  // Define AsmParser extended mnemonics for each general condition-code mask
84  // (integer or floating-point)
85  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
86                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
87    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
88    def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
89    let isIndirectBranch = 1 in {
90      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
91      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
92      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
93                    Requires<[FeatureMiscellaneousExtensions2]>;
94    }
95  }
96}
97
98// Unconditional branches.  These are in fact simply variants of the
99// conditional branches with the condition mask set to "always".
100let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
101  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
102  def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
103  let isIndirectBranch = 1 in {
104    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
105    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
106    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
107             Requires<[FeatureMiscellaneousExtensions2]>;
108  }
109}
110
111// NOPs.  These are again variants of the conditional branches, with the
112// condition mask set to "never".
113defm NOP  : NeverCondBranchRX<"nop", 0x47>;
114defm NOPR : NeverCondBranchRR<"nopr", 0x07>;
115def JNOP  : NeverCondBranchRI<"jnop", 0xA74>;
116def JGNOP : NeverCondBranchRIL<"j{g|l}nop", 0xC04>;
117
118// Fused compare-and-branch instructions.
119//
120// These instructions do not use or clobber the condition codes.
121// We nevertheless pretend that the relative compare-and-branch
122// instructions clobber CC, so that we can lower them to separate
123// comparisons and BRCLs if the branch ends up being out of range.
124let isBranch = 1, isTerminator = 1 in {
125  // As for normal branches, we handle these instructions internally in
126  // their raw CRJ-like form, but use assembly macros like CRJE when writing
127  // them out.  Using the *Pair multiclasses, we also create the raw forms.
128  let Defs = [CC] in {
129    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
130    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
131    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
132    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
133    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
134    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
135    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
136    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
137  }
138  let isIndirectBranch = 1 in {
139    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
140    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
141    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
142    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
143    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
144    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
145    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
146    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
147  }
148
149  // Define AsmParser mnemonics for each integer condition-code mask.
150  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
151                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
152    let Defs = [CC] in {
153      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
154      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
155      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
156                                          imm32sx8>;
157      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
158                                          imm64sx8>;
159      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
160      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
161      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
162                                          imm32zx8>;
163      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
164                                          imm64zx8>;
165    }
166    let isIndirectBranch = 1 in {
167      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
168      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
169      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
170                                         imm32sx8>;
171      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
172                                         imm64sx8>;
173      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
174      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
175      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
176                                         imm32zx8>;
177      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
178                                         imm64zx8>;
179    }
180  }
181}
182
183// Decrement a register and branch if it is nonzero.  These don't clobber CC,
184// but we might need to split long relative branches into sequences that do.
185let isBranch = 1, isTerminator = 1 in {
186  let Defs = [CC] in {
187    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
188    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
189  }
190  // This doesn't need to clobber CC since we never need to split it.
191  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
192              Requires<[FeatureHighWord]>;
193
194  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
195  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
196  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
197  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
198}
199
200let isBranch = 1, isTerminator = 1 in {
201  let Defs = [CC] in {
202    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
203    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
204    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
205    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
206  }
207  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
208  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
209  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
210  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
211}
212
213//===----------------------------------------------------------------------===//
214// Trap instructions
215//===----------------------------------------------------------------------===//
216
217// Unconditional trap.
218let hasCtrlDep = 1, hasSideEffects = 1 in
219  def Trap : Alias<4, (outs), (ins), [(trap)]>;
220
221// Conditional trap.
222let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
223  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
224
225// Fused compare-and-trap instructions.
226let hasCtrlDep = 1, hasSideEffects = 1 in {
227  // These patterns work the same way as for compare-and-branch.
228  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
229  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
230  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
231  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
232  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
233  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
234  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
235  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
236  let Predicates = [FeatureMiscellaneousExtensions] in {
237    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
238    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
239  }
240
241  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
242                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
243    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
244    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
245    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
246    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
247    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
248                                         imm32sx16>;
249    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
250                                         imm64sx16>;
251    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
252                                         imm32zx16>;
253    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
254                                         imm64zx16>;
255    let Predicates = [FeatureMiscellaneousExtensions] in {
256      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
257      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
258    }
259  }
260}
261
262//===----------------------------------------------------------------------===//
263// Call and return instructions
264//===----------------------------------------------------------------------===//
265
266// Define the general form of the call instructions for the asm parser.
267// These instructions don't hard-code %r14 as the return address register.
268let isCall = 1, Defs = [CC] in {
269  def BRAS  : CallRI <"bras", 0xA75>;
270  def BRASL : CallRIL<"brasl", 0xC05>;
271  def BAS   : CallRX <"bas", 0x4D>;
272  def BASR  : CallRR <"basr", 0x0D>;
273}
274
275// A symbol in the ADA (z/OS only).
276def adasym : Operand<i64>;
277
278// z/OS XPLINK
279let Predicates = [IsTargetXPLINK64] in {
280  let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
281    def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
282                          [(z_call pcrel32:$I2)]>;
283    def CallBASR_XPLINK64  : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
284                          [(z_call ADDR64:$R2)]>;
285  }
286
287  let isCall = 1, Defs = [R3D, CC], Uses = [FPC] in {
288    def CallBASR_STACKEXT  : Alias<4, (outs), (ins ADDR64:$R2), []>;
289  }
290
291  let hasNoSchedulingInfo = 1, Defs = [CC] in {
292    def ADA_ENTRY : Alias<12, (outs ADDR64:$Reg), (ins adasym:$addr,
293                              ADDR64:$ADA, imm64:$Offset),
294                            [(set i64:$Reg, (z_ada_entry i64:$addr,
295                              i64:$ADA, i64:$Offset))]>;
296  }
297  let mayLoad = 1, AddedComplexity = 20, hasNoSchedulingInfo = 1, Defs = [CC] in {
298    def ADA_ENTRY_VALUE : Alias<12, (outs ADDR64:$Reg), (ins adasym:$addr,
299                              ADDR64:$ADA, imm64:$Offset),
300                            [(set i64:$Reg, (z_load (z_ada_entry
301                              iPTR:$addr, iPTR:$ADA, i64:$Offset)))]>;
302 }
303}
304
305// Regular calls.
306// z/Linux ELF
307let Predicates = [IsTargetELF] in {
308  let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
309    def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
310                          [(z_call pcrel32:$I2)]>;
311    def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
312                          [(z_call ADDR64:$R2)]>;
313  }
314
315  // TLS calls.  These will be lowered into a call to __tls_get_offset,
316  // with an extra relocation specifying the TLS symbol.
317  let isCall = 1, Defs = [R14D, CC] in {
318    def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
319                           [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
320    def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
321                           [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
322  }
323}
324
325// Sibling calls. Indirect sibling calls must be via R6 for XPLink,
326// R1 used for ELF
327let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
328  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
329                     [(z_sibcall pcrel32:$I2)]>;
330  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
331                     [(z_sibcall ADDR64:$R2)]>;
332}
333
334// Conditional sibling calls.
335let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
336  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
337                                   pcrel32:$I2), []>;
338  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
339                                  ADDR64:$R2), []>;
340}
341
342// Fused compare and conditional sibling calls.
343let isCall = 1, isTerminator = 1, isReturn = 1 in {
344  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
345  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
346  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
347  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
348  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
349  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
350  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
351  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
352}
353
354let Predicates = [IsTargetXPLINK64] in {
355  // A return instruction (b 2(%r7)).
356  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
357    def Return_XPLINK : Alias<4, (outs), (ins), [(z_retglue)]>;
358
359  // A conditional return instruction (bc <cond>, 2(%r7)).
360  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
361    def CondReturn_XPLINK : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
362}
363
364let Predicates = [IsTargetELF] in {
365  // A return instruction (br %r14).
366  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
367    def Return : Alias<2, (outs), (ins), [(z_retglue)]>;
368
369  // A conditional return instruction (bcr <cond>, %r14).
370  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
371    def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
372}
373
374// Fused compare and conditional returns.
375let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
376  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
377  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
378  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
379  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
380  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
381  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
382  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
383  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
384}
385
386//===----------------------------------------------------------------------===//
387// Select instructions
388//===----------------------------------------------------------------------===//
389
390def Select32    : SelectWrapper<i32, GR32>,
391                  Requires<[FeatureNoLoadStoreOnCond]>;
392def Select64    : SelectWrapper<i64, GR64>,
393                  Requires<[FeatureNoLoadStoreOnCond]>;
394
395// We don't define 32-bit Mux stores if we don't have STOCFH, because the
396// low-only STOC should then always be used if possible.
397defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
398                                 nonvolatile_anyextloadi8, bdxaddr20only>,
399                      Requires<[FeatureHighWord]>;
400defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
401                                 nonvolatile_anyextloadi16, bdxaddr20only>,
402                      Requires<[FeatureHighWord]>;
403defm CondStore32Mux : CondStores<GRX32, simple_store,
404                                 simple_load, bdxaddr20only>,
405                      Requires<[FeatureLoadStoreOnCond2]>;
406defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
407                                 nonvolatile_anyextloadi8, bdxaddr20only>;
408defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
409                                 nonvolatile_anyextloadi16, bdxaddr20only>;
410defm CondStore32    : CondStores<GR32, simple_store,
411                                 simple_load, bdxaddr20only>;
412
413defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
414                    nonvolatile_anyextloadi8, bdxaddr20only>;
415defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
416                    nonvolatile_anyextloadi16, bdxaddr20only>;
417defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
418                    nonvolatile_anyextloadi32, bdxaddr20only>;
419defm CondStore64 : CondStores<GR64, simple_store,
420                              simple_load, bdxaddr20only>;
421
422//===----------------------------------------------------------------------===//
423// Move instructions
424//===----------------------------------------------------------------------===//
425
426// Register moves.
427def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
428def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
429
430let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
431  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
432  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
433}
434
435let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
436  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
437
438// Immediate moves.
439let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
440  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
441  // deopending on the choice of register.
442  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
443               Requires<[FeatureHighWord]>;
444  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
445  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
446
447  // Other 16-bit immediates.
448  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
449  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
450  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
451  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
452
453  // 32-bit immediates.
454  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
455  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
456  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
457}
458def LLGFI : InstAlias<"llgfi\t$R1, $RI1", (LLILF GR64:$R1, imm64lf32:$RI1)>;
459def LLGHI : InstAlias<"llghi\t$R1, $RI1", (LLILL GR64:$R1, imm64ll16:$RI1)>;
460
461// Register loads.
462let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
463  // Expands to L, LY or LFH, depending on the choice of register.
464  def LMux : UnaryRXYPseudo<"l", z_load, GRX32, 4>,
465             Requires<[FeatureHighWord]>;
466  defm L : UnaryRXPair<"l", 0x58, 0xE358, z_load, GR32, 4>;
467  def LFH : UnaryRXY<"lfh", 0xE3CA, z_load, GRH32, 4>,
468            Requires<[FeatureHighWord]>;
469  def LG : UnaryRXY<"lg", 0xE304, z_load, GR64, 8>;
470
471  // These instructions are split after register allocation, so we don't
472  // want a custom inserter.
473  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
474    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
475                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
476  }
477}
478let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
479  def LT  : UnaryRXY<"lt",  0xE312, z_load, GR32, 4>;
480  def LTG : UnaryRXY<"ltg", 0xE302, z_load, GR64, 8>;
481}
482
483let canFoldAsLoad = 1 in {
484  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_z_load, GR32>;
485  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_z_load, GR64>;
486}
487
488// Load and zero rightmost byte.
489let Predicates = [FeatureLoadAndZeroRightmostByte] in {
490  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
491  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
492  def : Pat<(and (i32 (z_load bdxaddr20only:$src)), 0xffffff00),
493            (LZRF bdxaddr20only:$src)>;
494  def : Pat<(and (i64 (z_load bdxaddr20only:$src)), 0xffffffffffffff00),
495            (LZRG bdxaddr20only:$src)>;
496}
497
498// Load and trap.
499let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
500  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
501  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
502  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
503}
504
505// Register stores.
506let SimpleBDXStore = 1, mayStore = 1 in {
507  // Expands to ST, STY or STFH, depending on the choice of register.
508  def STMux : StoreRXYPseudo<store, GRX32, 4>,
509              Requires<[FeatureHighWord]>;
510  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
511  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
512             Requires<[FeatureHighWord]>;
513  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
514
515  // These instructions are split after register allocation, so we don't
516  // want a custom inserter.
517  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
518    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
519                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
520  }
521}
522def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
523def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
524
525// 8-bit immediate stores to 8-bit fields.
526defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
527
528// 16-bit immediate stores to 16-, 32- or 64-bit fields.
529def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
530def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
531def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
532
533// Memory-to-memory moves.
534let mayLoad = 1, mayStore = 1 in
535  defm MVC : MemorySS<"mvc", 0xD2, z_mvc>;
536let mayLoad = 1, mayStore = 1, Defs = [CC] in {
537  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
538  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
539  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
540}
541
542// Memset[Length][Byte] pseudos.
543def MemsetImmImm : MemsetPseudo<imm64, imm32zx8trunc>;
544def MemsetImmReg : MemsetPseudo<imm64, GR32>;
545def MemsetRegImm : MemsetPseudo<ADDR64, imm32zx8trunc>;
546def MemsetRegReg : MemsetPseudo<ADDR64, GR32>;
547
548// Move right.
549let Predicates = [FeatureMiscellaneousExtensions3],
550    mayLoad = 1, mayStore = 1, Uses = [R0L] in
551  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
552
553// String moves.
554let mayLoad = 1, mayStore = 1, Defs = [CC] in
555  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
556
557//===----------------------------------------------------------------------===//
558// Conditional move instructions
559//===----------------------------------------------------------------------===//
560
561let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
562  // Select.
563  let isCommutable = 1 in {
564    // Expands to SELR or SELFHR or a branch-and-move sequence,
565    // depending on the choice of registers.
566    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
567    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
568    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
569    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
570  }
571
572  // Define AsmParser extended mnemonics for each general condition-code mask.
573  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
574                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
575    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
576                                          GR32, GR32, GR32>;
577    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
578                                          GRH32, GRH32, GRH32>;
579    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
580                                          GR64, GR64, GR64>;
581  }
582}
583
584let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
585  // Load immediate on condition.  Matched via DAG pattern and created
586  // by the PeepholeOptimizer via FoldImmediate.
587
588  // Expands to LOCHI or LOCHHI, depending on the choice of register.
589  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
590  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
591  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
592  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
593
594  // Move register on condition.  Matched via DAG pattern and
595  // created by early if-conversion.
596  let isCommutable = 1 in {
597    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
598    // depending on the choice of registers.
599    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
600    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
601  }
602
603  // Load on condition.  Matched via DAG pattern.
604  // Expands to LOC or LOCFH, depending on the choice of register.
605  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
606  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
607
608  // Store on condition.  Expanded from CondStore* pseudos.
609  // Expands to STOC or STOCFH, depending on the choice of register.
610  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
611  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
612
613  // Define AsmParser extended mnemonics for each general condition-code mask.
614  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
615                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
616    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
617                                         imm32sx16>;
618    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
619                                         imm64sx16>;
620    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
621                                         imm32sx16>;
622    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
623    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
624    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
625  }
626}
627
628let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
629  // Move register on condition.  Matched via DAG pattern and
630  // created by early if-conversion.
631  let isCommutable = 1 in {
632    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
633    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
634  }
635
636  // Load on condition.  Matched via DAG pattern.
637  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
638  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
639
640  // Store on condition.  Expanded from CondStore* pseudos.
641  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
642  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
643
644  // Define AsmParser extended mnemonics for each general condition-code mask.
645  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
646                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
647    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
648    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
649    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
650    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
651    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
652    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
653  }
654}
655//===----------------------------------------------------------------------===//
656// Sign extensions
657//===----------------------------------------------------------------------===//
658//
659// Note that putting these before zero extensions mean that we will prefer
660// them for anyextload*.  There's not really much to choose between the two
661// either way, but signed-extending loads have a short LH and a long LHY,
662// while zero-extending loads have only the long LLH.
663//
664//===----------------------------------------------------------------------===//
665
666// 32-bit extensions from registers.
667def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
668def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
669
670// 64-bit extensions from registers.
671def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
672def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
673def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
674
675let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
676  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
677
678// Match 32-to-64-bit sign extensions in which the source is already
679// in a 64-bit register.
680def : Pat<(sext_inreg GR64:$src, i32),
681          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
682
683// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
684// depending on the choice of register.
685def LBMux : UnaryRXYPseudo<"lb", z_asextloadi8, GRX32, 1>,
686            Requires<[FeatureHighWord]>;
687def LB  : UnaryRXY<"lb", 0xE376, z_asextloadi8, GR32, 1>;
688def LBH : UnaryRXY<"lbh", 0xE3C0, z_asextloadi8, GRH32, 1>,
689          Requires<[FeatureHighWord]>;
690
691// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
692// depending on the choice of register.
693def LHMux : UnaryRXYPseudo<"lh", z_asextloadi16, GRX32, 2>,
694            Requires<[FeatureHighWord]>;
695defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, z_asextloadi16, GR32, 2>;
696def  LHH  : UnaryRXY<"lhh", 0xE3C4, z_asextloadi16, GRH32, 2>,
697            Requires<[FeatureHighWord]>;
698def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_z_asextloadi16, GR32>;
699
700// 64-bit extensions from memory.
701def LGB   : UnaryRXY<"lgb", 0xE377, z_asextloadi8,  GR64, 1>;
702def LGH   : UnaryRXY<"lgh", 0xE315, z_asextloadi16, GR64, 2>;
703def LGF   : UnaryRXY<"lgf", 0xE314, z_asextloadi32, GR64, 4>;
704def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_z_asextloadi16, GR64>;
705def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_z_asextloadi32, GR64>;
706let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
707  def LTGF : UnaryRXY<"ltgf", 0xE332, z_asextloadi32, GR64, 4>;
708
709//===----------------------------------------------------------------------===//
710// Zero extensions
711//===----------------------------------------------------------------------===//
712
713// 32-bit extensions from registers.
714
715// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
716def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
717              Requires<[FeatureHighWord]>;
718def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
719// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
720def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
721              Requires<[FeatureHighWord]>;
722def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
723
724// 64-bit extensions from registers.
725def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
726def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
727def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
728
729// Match 32-to-64-bit zero extensions in which the source is already
730// in a 64-bit register.
731def : Pat<(and GR64:$src, 0xffffffff),
732          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
733
734// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
735// depending on the choice of register.
736def LLCMux : UnaryRXYPseudo<"llc", z_azextloadi8, GRX32, 1>,
737             Requires<[FeatureHighWord]>;
738def LLC  : UnaryRXY<"llc", 0xE394, z_azextloadi8, GR32, 1>;
739def LLCH : UnaryRXY<"llch", 0xE3C2, z_azextloadi8, GRH32, 1>,
740           Requires<[FeatureHighWord]>;
741
742// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
743// depending on the choice of register.
744def LLHMux : UnaryRXYPseudo<"llh", z_azextloadi16, GRX32, 2>,
745             Requires<[FeatureHighWord]>;
746def LLH   : UnaryRXY<"llh", 0xE395, z_azextloadi16, GR32, 2>;
747def LLHH  : UnaryRXY<"llhh", 0xE3C6, z_azextloadi16, GRH32, 2>,
748            Requires<[FeatureHighWord]>;
749def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_z_azextloadi16, GR32>;
750
751// 64-bit extensions from memory.
752def LLGC   : UnaryRXY<"llgc", 0xE390, z_azextloadi8,  GR64, 1>;
753def LLGH   : UnaryRXY<"llgh", 0xE391, z_azextloadi16, GR64, 2>;
754def LLGF   : UnaryRXY<"llgf", 0xE316, z_azextloadi32, GR64, 4>;
755def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_z_azextloadi16, GR64>;
756def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_z_azextloadi32, GR64>;
757
758// 31-to-64-bit zero extensions.
759def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
760def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
761def : Pat<(and GR64:$src, 0x7fffffff),
762          (LLGTR GR64:$src)>;
763def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
764          (LLGT bdxaddr20only:$src)>;
765
766// Load and zero rightmost byte.
767let Predicates = [FeatureLoadAndZeroRightmostByte] in {
768  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
769  def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0xffffff00),
770            (LLZRGF bdxaddr20only:$src)>;
771}
772
773// Load and trap.
774let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
775  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
776  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
777}
778
779// Extend GR64s to GR128s.
780let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
781  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
782
783//===----------------------------------------------------------------------===//
784// "Any" extensions
785//===----------------------------------------------------------------------===//
786
787// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
788def : Pat<(i64 (anyext GR32:$src)),
789          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
790
791// Extend GR64s to GR128s.
792let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
793  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
794
795//===----------------------------------------------------------------------===//
796// Truncations
797//===----------------------------------------------------------------------===//
798
799// Truncations of 64-bit registers to 32-bit registers.
800def : Pat<(i32 (trunc GR64:$src)),
801          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
802
803// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
804// STC, STCY or STCH, depending on the choice of register.
805def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
806             Requires<[FeatureHighWord]>;
807defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
808def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
809           Requires<[FeatureHighWord]>;
810
811// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
812// STH, STHY or STHH, depending on the choice of register.
813def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
814             Requires<[FeatureHighWord]>;
815defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
816def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
817           Requires<[FeatureHighWord]>;
818def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
819
820// Truncations of 64-bit registers to memory.
821defm : StoreGR64Pair<STC, STCY, truncstorei8>;
822defm : StoreGR64Pair<STH, STHY, truncstorei16>;
823def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
824defm : StoreGR64Pair<ST, STY, truncstorei32>;
825def  : StoreGR64PC<STRL, aligned_truncstorei32>;
826
827// Store characters under mask -- not (yet) used for codegen.
828defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
829def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
830
831//===----------------------------------------------------------------------===//
832// Multi-register moves
833//===----------------------------------------------------------------------===//
834
835// Multi-register loads.
836defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
837def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
838def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
839def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
840
841// Multi-register stores.
842defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
843def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
844def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
845
846//===----------------------------------------------------------------------===//
847// Byte swaps
848//===----------------------------------------------------------------------===//
849
850// Byte-swapping register moves.
851def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
852def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
853
854// Byte-swapping loads.
855def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
856def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
857def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
858
859// Byte-swapping stores.
860def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
861def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
862def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
863
864// Byte-swapping memory-to-memory moves.
865let mayLoad = 1, mayStore = 1 in
866  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
867
868//===----------------------------------------------------------------------===//
869// Load address instructions
870//===----------------------------------------------------------------------===//
871
872// Load BDX-style addresses.
873let isAsCheapAsAMove = 1, isReMaterializable = 1 in
874  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
875
876// Load a PC-relative address.  There's no version of this instruction
877// with a 16-bit offset, so there's no relaxation.
878let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
879  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
880
881// Load the Global Offset Table address.  This will be lowered into a
882//     larl $R1, _GLOBAL_OFFSET_TABLE_
883// instruction.
884def GOT : Alias<6, (outs GR64:$R1), (ins),
885                [(set GR64:$R1, (global_offset_table))]>;
886
887// Load (logical) indexed address.
888let Predicates = [FeatureMiscellaneousExtensions4] in {
889  defm LXAB  : LoadIndexedAddressRXY<"lxab",  0xE360, sext32>;
890  defm LXAH  : LoadIndexedAddressRXY<"lxah",  0xE362, sext32, shl1>;
891  defm LXAF  : LoadIndexedAddressRXY<"lxaf",  0xE364, sext32, shl2>;
892  defm LXAG  : LoadIndexedAddressRXY<"lxag",  0xE366, sext32, shl3>;
893  defm LXAQ  : LoadIndexedAddressRXY<"lxaq",  0xE368, sext32, shl4>;
894  defm LLXAB : LoadIndexedAddressRXY<"llxab", 0xE361, zext32>;
895  defm LLXAH : LoadIndexedAddressRXY<"llxah", 0xE363, zext32, shl1>;
896  defm LLXAF : LoadIndexedAddressRXY<"llxaf", 0xE365, zext32, shl2>;
897  defm LLXAG : LoadIndexedAddressRXY<"llxag", 0xE367, zext32, shl3>;
898  defm LLXAQ : LoadIndexedAddressRXY<"llxaq", 0xE369, zext32, shl4>;
899
900  // Peepholes to use load (logical) indexed address to implement
901  // add + shift of an already extended value.
902  def : Pat<(add ADDR64:$base, (shl1 (assertsext32 ADDR64:$index))),
903            (LXAH ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
904  def : Pat<(add ADDR64:$base, (shl2 (assertsext32 ADDR64:$index))),
905            (LXAF ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
906  def : Pat<(add ADDR64:$base, (shl3 (assertsext32 ADDR64:$index))),
907            (LXAG ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
908  def : Pat<(add ADDR64:$base, (shl4 (assertsext32 ADDR64:$index))),
909            (LXAQ ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
910  def : Pat<(add ADDR64:$base, (shl1 (assertzext32 ADDR64:$index))),
911            (LLXAH ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
912  def : Pat<(add ADDR64:$base, (shl2 (assertzext32 ADDR64:$index))),
913            (LLXAF ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
914  def : Pat<(add ADDR64:$base, (shl3 (assertzext32 ADDR64:$index))),
915            (LLXAG ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
916  def : Pat<(add ADDR64:$base, (shl4 (assertzext32 ADDR64:$index))),
917            (LLXAQ ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
918}
919
920//===----------------------------------------------------------------------===//
921// Absolute and Negation
922//===----------------------------------------------------------------------===//
923
924let Defs = [CC] in {
925  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
926    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
927    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
928  }
929  let CCValues = 0xE, CompareZeroCCMask = 0xE in
930    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
931}
932defm : SXU<abs, LPGFR>;
933
934let Defs = [CC] in {
935  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
936    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
937    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
938  }
939  let CCValues = 0xE, CompareZeroCCMask = 0xE in
940    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
941}
942defm : SXU<z_inegabs, LNGFR>;
943
944let Defs = [CC] in {
945  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
946    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
947    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
948  }
949  let CCValues = 0xE, CompareZeroCCMask = 0xE in
950    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
951}
952defm : SXU<ineg, LCGFR>;
953
954//===----------------------------------------------------------------------===//
955// Insertion
956//===----------------------------------------------------------------------===//
957
958let isCodeGenOnly = 1 in
959  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, z_azextloadi8, 1>;
960defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, z_azextloadi8, 1>;
961
962defm : InsertMem<"inserti8", IC32,  GR32, z_azextloadi8, bdxaddr12pair>;
963defm : InsertMem<"inserti8", IC32Y, GR32, z_azextloadi8, bdxaddr20pair>;
964
965defm : InsertMem<"inserti8", IC,  GR64, z_azextloadi8, bdxaddr12pair>;
966defm : InsertMem<"inserti8", ICY, GR64, z_azextloadi8, bdxaddr20pair>;
967
968// Insert characters under mask -- not (yet) used for codegen.
969let Defs = [CC] in {
970  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
971  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
972}
973
974// Insertions of a 16-bit immediate, leaving other bits unaffected.
975// We don't have or_as_insert equivalents of these operations because
976// OI is available instead.
977//
978// IIxMux expands to II[LH]x, depending on the choice of register.
979def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
980             Requires<[FeatureHighWord]>;
981def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
982             Requires<[FeatureHighWord]>;
983def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
984def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
985def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
986def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
987def IILL64 : BinaryAliasRI<insertll64, GR64, imm64ll16>;
988def IILH64 : BinaryAliasRI<insertlh64, GR64, imm64lh16>;
989def IIHL64 : BinaryAliasRI<inserthl64, GR64, imm64hl16>;
990def IIHH64 : BinaryAliasRI<inserthh64, GR64, imm64hh16>;
991
992// ...likewise for 32-bit immediates.  For GR32s this is a general
993// full-width move.  (We use IILF rather than something like LLILF
994// for 32-bit moves because IILF leaves the upper 32 bits of the
995// GR64 unchanged.)
996let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
997  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
998               Requires<[FeatureHighWord]>;
999  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
1000  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
1001}
1002def LFI : InstAlias<"lfi\t$R1, $RI1", (IILF GR32:$R1, uimm32:$RI1)>;
1003def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
1004def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
1005
1006// An alternative model of inserthf, with the first operand being
1007// a zero-extended value.
1008def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
1009          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
1010                  imm64hf32:$imm)>;
1011
1012//===----------------------------------------------------------------------===//
1013// Addition
1014//===----------------------------------------------------------------------===//
1015
1016// Addition producing a signed overflow flag.
1017let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
1018  // Addition of a register.
1019  let isCommutable = 1 in {
1020    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
1021    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
1022  }
1023  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
1024
1025  // Addition to a high register.
1026  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
1027              Requires<[FeatureHighWord]>;
1028  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
1029              Requires<[FeatureHighWord]>;
1030
1031  // Addition of signed 16-bit immediates.
1032  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
1033  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
1034  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
1035
1036  // Addition of signed 32-bit immediates.
1037  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
1038               Requires<[FeatureHighWord]>;
1039  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
1040  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
1041             Requires<[FeatureHighWord]>;
1042  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
1043
1044  // Addition of memory.
1045  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, z_asextloadi16, 2>;
1046  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, z_load, 4>;
1047  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, z_asextloadi16, 2>,
1048             Requires<[FeatureMiscellaneousExtensions2]>;
1049  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, z_asextloadi32, 4>;
1050  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, z_load, 8>;
1051
1052  // Addition to memory.
1053  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
1054  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
1055}
1056defm : SXB<z_sadd, GR64, AGFR>;
1057
1058// Addition producing a carry.
1059let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
1060  // Addition of a register.
1061  let isCommutable = 1 in {
1062    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
1063    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
1064  }
1065  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
1066
1067  // Addition to a high register.
1068  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1069               Requires<[FeatureHighWord]>;
1070  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1071               Requires<[FeatureHighWord]>;
1072
1073  // Addition of signed 16-bit immediates.
1074  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
1075                Requires<[FeatureDistinctOps]>;
1076  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1077                Requires<[FeatureDistinctOps]>;
1078
1079  // Addition of unsigned 32-bit immediates.
1080  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
1081  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1082
1083  // Addition of signed 32-bit immediates.
1084  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1085              Requires<[FeatureHighWord]>;
1086
1087  // Addition of memory.
1088  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, z_load, 4>;
1089  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, z_azextloadi32, 4>;
1090  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, z_load, 8>;
1091
1092  // Addition to memory.
1093  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1094  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1095}
1096defm : ZXB<z_uadd, GR64, ALGFR>;
1097
1098// Addition producing and using a carry.
1099let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1100  // Addition of a register.
1101  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1102  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1103
1104  // Addition of memory.
1105  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, z_load, 4>;
1106  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, z_load, 8>;
1107}
1108
1109// Addition that does not modify the condition code.
1110def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1111             Requires<[FeatureHighWord]>;
1112
1113
1114//===----------------------------------------------------------------------===//
1115// Subtraction
1116//===----------------------------------------------------------------------===//
1117
1118// Subtraction producing a signed overflow flag.
1119let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1120    CCIfNoSignedWrap = 1 in {
1121  // Subtraction of a register.
1122  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1123  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1124  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1125
1126  // Subtraction from a high register.
1127  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1128              Requires<[FeatureHighWord]>;
1129  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1130              Requires<[FeatureHighWord]>;
1131
1132  // Subtraction of memory.
1133  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, z_asextloadi16, 2>;
1134  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, z_load, 4>;
1135  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, z_asextloadi16, 2>,
1136             Requires<[FeatureMiscellaneousExtensions2]>;
1137  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, z_asextloadi32, 4>;
1138  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, z_load, 8>;
1139}
1140defm : SXB<z_ssub, GR64, SGFR>;
1141
1142// Subtracting an immediate is the same as adding the negated immediate.
1143let AddedComplexity = 1 in {
1144  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1145            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1146        Requires<[FeatureHighWord]>;
1147  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1148            (AFIMux GR32:$src1, simm32n:$src2)>,
1149        Requires<[FeatureHighWord]>;
1150  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1151            (AHI GR32:$src1, imm32sx16n:$src2)>;
1152  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1153            (AFI GR32:$src1, simm32n:$src2)>;
1154  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1155            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1156  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1157            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1158}
1159
1160// And vice versa in one special case, where we need to load a
1161// constant into a register in any case, but the negated constant
1162// requires fewer instructions to load.
1163def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1164          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1165def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1166          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1167
1168// Subtraction producing a carry.
1169let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1170  // Subtraction of a register.
1171  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1172  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1173  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1174
1175  // Subtraction from a high register.
1176  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1177               Requires<[FeatureHighWord]>;
1178  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1179               Requires<[FeatureHighWord]>;
1180
1181  // Subtraction of unsigned 32-bit immediates.
1182  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1183  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1184
1185  // Subtraction of memory.
1186  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, z_load, 4>;
1187  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, z_azextloadi32, 4>;
1188  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, z_load, 8>;
1189}
1190defm : ZXB<z_usub, GR64, SLGFR>;
1191
1192// Subtracting an immediate is the same as adding the negated immediate.
1193let AddedComplexity = 1 in {
1194  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1195            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1196        Requires<[FeatureDistinctOps]>;
1197  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1198            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1199        Requires<[FeatureDistinctOps]>;
1200}
1201
1202// And vice versa in one special case (but we prefer addition).
1203def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1204          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1205
1206// Subtraction producing and using a carry.
1207let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1208  // Subtraction of a register.
1209  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1210  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1211
1212  // Subtraction of memory.
1213  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, z_load, 4>;
1214  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, z_load, 8>;
1215}
1216
1217
1218//===----------------------------------------------------------------------===//
1219// AND
1220//===----------------------------------------------------------------------===//
1221
1222let Defs = [CC] in {
1223  // ANDs of a register.
1224  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1225    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1226    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1227  }
1228
1229  let isConvertibleToThreeAddress = 1 in {
1230    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1231    // The CC result only reflects the 16-bit field, not the full register.
1232    //
1233    // NIxMux expands to NI[LH]x, depending on the choice of register.
1234    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1235                 Requires<[FeatureHighWord]>;
1236    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1237                 Requires<[FeatureHighWord]>;
1238    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1239    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1240    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1241    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1242    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1243    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1244    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1245    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1246
1247    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1248    // The CC result only reflects the 32-bit field, which means we can
1249    // use it as a zero indicator for i32 operations but not otherwise.
1250    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1251      // Expands to NILF or NIHF, depending on the choice of register.
1252      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1253                   Requires<[FeatureHighWord]>;
1254      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1255      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1256    }
1257    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1258    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1259  }
1260
1261  // ANDs of memory.
1262  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1263    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, z_load, 4>;
1264    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, z_load, 8>;
1265  }
1266
1267  // AND to memory
1268  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1269
1270  // Block AND.
1271  let mayLoad = 1, mayStore = 1 in
1272    defm NC : MemorySS<"nc", 0xD4, z_nc>;
1273}
1274defm : RMWIByte<and, bdaddr12pair, NI>;
1275defm : RMWIByte<and, bdaddr20pair, NIY>;
1276
1277//===----------------------------------------------------------------------===//
1278// OR
1279//===----------------------------------------------------------------------===//
1280
1281let Defs = [CC] in {
1282  // ORs of a register.
1283  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1284    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1285    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1286  }
1287
1288  // ORs of a 16-bit immediate, leaving other bits unaffected.
1289  // The CC result only reflects the 16-bit field, not the full register.
1290  //
1291  // OIxMux expands to OI[LH]x, depending on the choice of register.
1292  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1293               Requires<[FeatureHighWord]>;
1294  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1295               Requires<[FeatureHighWord]>;
1296  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1297  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1298  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1299  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1300  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1301  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1302  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1303  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1304
1305  // ORs of a 32-bit immediate, leaving other bits unaffected.
1306  // The CC result only reflects the 32-bit field, which means we can
1307  // use it as a zero indicator for i32 operations but not otherwise.
1308  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1309    // Expands to OILF or OIHF, depending on the choice of register.
1310    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1311                 Requires<[FeatureHighWord]>;
1312    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1313    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1314  }
1315  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1316  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1317
1318  // ORs of memory.
1319  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1320    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, z_load, 4>;
1321    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, z_load, 8>;
1322  }
1323
1324  // OR to memory
1325  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1326
1327  // Block OR.
1328  let mayLoad = 1, mayStore = 1 in
1329    defm OC : MemorySS<"oc", 0xD6, z_oc>;
1330}
1331defm : RMWIByte<or, bdaddr12pair, OI>;
1332defm : RMWIByte<or, bdaddr20pair, OIY>;
1333
1334//===----------------------------------------------------------------------===//
1335// XOR
1336//===----------------------------------------------------------------------===//
1337
1338let Defs = [CC] in {
1339  // XORs of a register.
1340  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1341    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1342    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1343  }
1344
1345  // XORs of a 32-bit immediate, leaving other bits unaffected.
1346  // The CC result only reflects the 32-bit field, which means we can
1347  // use it as a zero indicator for i32 operations but not otherwise.
1348  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1349    // Expands to XILF or XIHF, depending on the choice of register.
1350    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1351                 Requires<[FeatureHighWord]>;
1352    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1353    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1354  }
1355  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1356  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1357
1358  // XORs of memory.
1359  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1360    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, z_load, 4>;
1361    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, z_load, 8>;
1362  }
1363
1364  // XOR to memory
1365  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1366
1367  // Block XOR.
1368  let mayLoad = 1, mayStore = 1 in
1369    defm XC : MemorySS<"xc", 0xD7, z_xc>;
1370}
1371defm : RMWIByte<xor, bdaddr12pair, XI>;
1372defm : RMWIByte<xor, bdaddr20pair, XIY>;
1373
1374//===----------------------------------------------------------------------===//
1375// Combined logical operations
1376//===----------------------------------------------------------------------===//
1377
1378let Predicates = [FeatureMiscellaneousExtensions3],
1379    Defs = [CC] in {
1380  // AND with complement.
1381  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1382    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1383    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1384  }
1385
1386  // OR with complement.
1387  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1388    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1389    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1390  }
1391
1392  // NAND.
1393  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1394    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1395    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1396  }
1397
1398  // NOR.
1399  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1400    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1401    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1402    let isAsmParserOnly = 1 in {
1403      def NOTR : UnaryRRFa<"notr", 0xB976, nor, GR32, GR32>;
1404      def NOTGR : UnaryRRFa<"notgr", 0xB966, nor, GR64, GR64>;
1405    }
1406  }
1407
1408  // NXOR.
1409  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1410    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1411    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1412  }
1413}
1414
1415//===----------------------------------------------------------------------===//
1416// Multiplication
1417//===----------------------------------------------------------------------===//
1418
1419// Multiplication of a register, setting the condition code.  We prefer these
1420// over MS(G)R if available, even though we cannot use the condition code,
1421// since they are three-operand instructions.
1422let Predicates = [FeatureMiscellaneousExtensions2],
1423    Defs = [CC], isCommutable = 1 in {
1424  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1425  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1426}
1427
1428// Multiplication of a register.
1429let isCommutable = 1 in {
1430  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1431  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1432}
1433def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1434defm : SXB<mul, GR64, MSGFR>;
1435
1436// Multiplication of a signed 16-bit immediate.
1437def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1438def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1439
1440// Multiplication of a signed 32-bit immediate.
1441def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1442def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1443
1444// Multiplication of memory.
1445defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, z_asextloadi16, 2>;
1446defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, z_load, 4>;
1447def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, z_asextloadi16, 2>,
1448            Requires<[FeatureMiscellaneousExtensions2]>;
1449def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, z_asextloadi32, 4>;
1450def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, z_load, 8>;
1451
1452// Multiplication of memory, setting the condition code.
1453let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1454  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, z_load, 4>;
1455  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, z_load, 8>;
1456}
1457
1458// Multiplication of a register, producing two results.
1459def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1460def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1461           Requires<[FeatureMiscellaneousExtensions2]>;
1462def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1463def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1464
1465def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1466          (MGRK GR64:$src1, GR64:$src2)>;
1467def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1468          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1469
1470// Multiplication of memory, producing two results.
1471def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, z_load, 4>;
1472def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, z_load, 4>;
1473def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, z_load, 8>,
1474          Requires<[FeatureMiscellaneousExtensions2]>;
1475def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, z_load, 4>;
1476def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, z_load, 8>;
1477
1478def : Pat<(z_smul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1479          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1480def : Pat<(z_umul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1481          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1482
1483//===----------------------------------------------------------------------===//
1484// Division and remainder
1485//===----------------------------------------------------------------------===//
1486
1487let hasSideEffects = 1 in {  // Do not speculatively execute.
1488  // Division and remainder, from registers.
1489  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1490  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1491  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1492  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1493  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1494
1495  // Division and remainder, from memory.
1496  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, z_load, 4>;
1497  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, z_load, 4>;
1498  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, z_load, 8>;
1499  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, z_load, 4>;
1500  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, z_load, 8>;
1501}
1502def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1503          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1504def : Pat<(z_sdivrem GR64:$src1, (i32 (z_load bdxaddr20only:$src2))),
1505          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1506def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1507          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1508def : Pat<(z_sdivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1509          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1510
1511def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1512          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1513                                       subreg_l32)), GR32:$src2)>;
1514def : Pat<(z_udivrem GR32:$src1, (i32 (z_load bdxaddr20only:$src2))),
1515          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1516                                      subreg_l32)), bdxaddr20only:$src2)>;
1517def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1518          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1519def : Pat<(z_udivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1520          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1521
1522//===----------------------------------------------------------------------===//
1523// Shifts
1524//===----------------------------------------------------------------------===//
1525
1526// Logical shift left.
1527defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1528def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1529def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1530
1531// Arithmetic shift left.
1532let Defs = [CC] in {
1533  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1534  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1535  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1536}
1537
1538// Logical shift right.
1539defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1540def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1541def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1542
1543// Arithmetic shift right.
1544let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1545  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1546  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1547  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1548}
1549
1550// Rotate left.
1551def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1552def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1553
1554// Rotate second operand left and inserted selected bits into first operand.
1555// These can act like 32-bit operands provided that the constant start and
1556// end bits (operands 2 and 3) are in the range [32, 64).
1557let Defs = [CC] in {
1558  let isCodeGenOnly = 1 in
1559    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1560  let CCValues = 0xE, CompareZeroCCMask = 0xE in {
1561    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1562    def RISBGZ : RotateSelectRIEf<"risbgz", 0xEC55, GR64, GR64, 0, 128>;
1563  }
1564}
1565
1566// On zEC12 we have a variant of RISBG that does not set CC.
1567let Predicates = [FeatureMiscellaneousExtensions] in {
1568  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1569  def RISBGNZ : RotateSelectRIEf<"risbgnz", 0xEC59, GR64, GR64, 0, 128>;
1570}
1571
1572// Forms of RISBG that only affect one word of the destination register.
1573// They do not set CC.
1574let Predicates = [FeatureHighWord] in {
1575  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1576  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1577  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1578  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1579  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1580  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1581  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1582}
1583
1584// Rotate second operand left and perform a logical operation with selected
1585// bits of the first operand.  The CC result only describes the selected bits,
1586// so isn't useful for a full comparison against zero.
1587let Defs = [CC] in {
1588  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1589  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1590  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1591}
1592
1593//===----------------------------------------------------------------------===//
1594// Comparison
1595//===----------------------------------------------------------------------===//
1596
1597// Signed comparisons.  We put these before the unsigned comparisons because
1598// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1599// of the unsigned forms do.
1600let Defs = [CC], CCValues = 0xE in {
1601  // Comparison with a register.
1602  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1603  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1604  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1605
1606  // Comparison with a high register.
1607  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1608             Requires<[FeatureHighWord]>;
1609  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1610             Requires<[FeatureHighWord]>;
1611
1612  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1613  // depending on the choice of register.
1614  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1615               Requires<[FeatureHighWord]>;
1616  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1617  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1618
1619  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1620  // depending on the choice of register.
1621  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1622               Requires<[FeatureHighWord]>;
1623  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1624  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1625             Requires<[FeatureHighWord]>;
1626  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1627
1628  // Comparison with memory.
1629  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, z_asextloadi16, 2>;
1630  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, z_load, 4>,
1631               Requires<[FeatureHighWord]>;
1632  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, z_load, 4>;
1633  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, z_load, 4>,
1634               Requires<[FeatureHighWord]>;
1635  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, z_asextloadi16, 2>;
1636  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, z_asextloadi32, 4>;
1637  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, z_load, 8>;
1638  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_z_asextloadi16>;
1639  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_z_load>;
1640  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_z_asextloadi16>;
1641  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_z_asextloadi32>;
1642  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_z_load>;
1643
1644  // Comparison between memory and a signed 16-bit immediate.
1645  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, z_asextloadi16, imm32sx16>;
1646  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, z_load, imm32sx16>;
1647  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, z_load, imm64sx16>;
1648}
1649defm : SXB<z_scmp, GR64, CGFR>;
1650
1651// Unsigned comparisons.
1652let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1653  // Comparison with a register.
1654  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1655  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1656  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1657
1658  // Comparison with a high register.
1659  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1660              Requires<[FeatureHighWord]>;
1661  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1662              Requires<[FeatureHighWord]>;
1663
1664  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1665  // or CLIH, depending on the choice of register.
1666  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1667                Requires<[FeatureHighWord]>;
1668  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1669  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1670              Requires<[FeatureHighWord]>;
1671  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1672
1673  // Comparison with memory.
1674  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, z_load, 4>,
1675                Requires<[FeatureHighWord]>;
1676  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, z_load, 4>;
1677  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, z_load, 4>,
1678                Requires<[FeatureHighWord]>;
1679  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, z_azextloadi32, 4>;
1680  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, z_load, 8>;
1681  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1682                             aligned_z_azextloadi16>;
1683  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1684                             aligned_z_load>;
1685  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1686                             aligned_z_azextloadi16>;
1687  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1688                             aligned_z_azextloadi32>;
1689  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1690                             aligned_z_load>;
1691
1692  // Comparison between memory and an unsigned 8-bit immediate.
1693  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, z_azextloadi8, imm32zx8>;
1694
1695  // Comparison between memory and an unsigned 16-bit immediate.
1696  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, z_azextloadi16, imm32zx16>;
1697  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, z_load, imm32zx16>;
1698  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, z_load, imm64zx16>;
1699}
1700defm : ZXB<z_ucmp, GR64, CLGFR>;
1701
1702// Memory-to-memory comparison.
1703let mayLoad = 1, Defs = [CC] in {
1704  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc>;
1705  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1706  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1707  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1708}
1709
1710// String comparison.
1711let mayLoad = 1, Defs = [CC] in
1712  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1713
1714// Test under mask.
1715let Defs = [CC] in {
1716  // TMxMux expands to TM[LH]x, depending on the choice of register.
1717  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1718               Requires<[FeatureHighWord]>;
1719  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1720               Requires<[FeatureHighWord]>;
1721  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1722  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1723  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1724  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1725
1726  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1727  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1728  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1729  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1730
1731  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, z_anyextloadi8, imm32zx8>;
1732}
1733
1734def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1735def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1736
1737// Compare logical characters under mask -- not (yet) used for codegen.
1738let Defs = [CC] in {
1739  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1740  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1741}
1742
1743//===----------------------------------------------------------------------===//
1744// Prefetch and execution hint
1745//===----------------------------------------------------------------------===//
1746
1747let mayLoad = 1, mayStore = 1 in {
1748  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1749  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1750}
1751
1752let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1753  // Branch Prediction Preload
1754  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1755  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1756
1757  // Next Instruction Access Intent
1758  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1759}
1760
1761//===----------------------------------------------------------------------===//
1762// Atomic operations
1763//===----------------------------------------------------------------------===//
1764
1765// A serialization instruction that acts as a barrier for all memory
1766// accesses, which expands to "bcr 14, 0".
1767let hasSideEffects = 1 in
1768def Serialize : Alias<2, (outs), (ins), []>;
1769
1770let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1771  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_i32, GR32>;
1772  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_i64, GR64>;
1773  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1774  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1775  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_i32, GR32>;
1776  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_i64, GR64>;
1777  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_i32, GR32>;
1778  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_i64, GR64>;
1779  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_i32, GR32>;
1780  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_i64, GR64>;
1781}
1782
1783def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1784
1785def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1786def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1787
1788def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1789
1790def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1791def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1792
1793def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1794def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1795
1796def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1797def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1798
1799def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1800def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1801                                               imm32lh16c>;
1802
1803def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1804def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1805def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1806def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1807
1808def ATOMIC_CMP_SWAPW
1809  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1810                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1811                                  uimm32:$bitsize),
1812           [(set GR32:$dst,
1813                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1814                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1815                                     uimm32:$bitsize))]> {
1816  let Defs = [CC];
1817  let mayLoad = 1;
1818  let mayStore = 1;
1819  let usesCustomInserter = 1;
1820  let hasNoSchedulingInfo = 1;
1821}
1822
1823// Test and set.
1824let mayLoad = 1, Defs = [CC] in
1825  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1826
1827// Compare and swap.
1828let Defs = [CC] in {
1829  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1830  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1831}
1832
1833// Compare double and swap.
1834let Defs = [CC] in {
1835  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1836  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1837}
1838
1839// Compare and swap and store.
1840let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1841  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1842
1843// Perform locked operation.
1844let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1845  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1846
1847// Load/store pair from/to quadword.
1848def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1849def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1850
1851// Load pair disjoint.
1852let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1853  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1854  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1855}
1856
1857// Compare and load.
1858let Predicates = [FeatureConcurrentFunctions], Defs = [CC] in {
1859  def CAL   : BinarySSF<"cal", 0xC86, GR32>;
1860  def CALGF : BinarySSF<"calgf", 0xC8F, GR64>;
1861  def CALG  : BinarySSF<"calg", 0xC87, GR64>;
1862}
1863
1864// Perform function with concurrent results.
1865let Predicates = [FeatureConcurrentFunctions], Uses = [R0D], Defs = [CC],
1866    mayLoad = 1, mayStore = 1, hasSideEffects = 1 in {
1867  def PFCR : BinaryRSY<"pfcr", 0xEB16, null_frag, GR64>;
1868}
1869
1870//===----------------------------------------------------------------------===//
1871// Translate and convert
1872//===----------------------------------------------------------------------===//
1873
1874let mayLoad = 1, mayStore = 1 in
1875  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1876
1877let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1878  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1879  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1880}
1881
1882let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1883  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1884
1885let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1886  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1887  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1888}
1889
1890let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1891  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1892  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1893  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1894  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1895}
1896
1897let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1898  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1899  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1900  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1901  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1902  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1903  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1904
1905  let isAsmParserOnly = 1 in {
1906    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1907    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1908  }
1909}
1910
1911//--------------------------------------------------------------------------
1912// Setjmp/Longjmp.
1913//--------------------------------------------------------------------------
1914let isBarrier = 1,  hasNoSchedulingInfo = 1 in {
1915  let hasSideEffects = 1, usesCustomInserter = 1 in {
1916    def EH_SjLj_SetJmp : Pseudo<(outs GR32:$dst), (ins ADDR64:$R2),
1917                        [(set GR32:$dst, (z_eh_sjlj_setjmp ADDR64:$R2))]>;
1918    let isTerminator = 1 in {
1919      def EH_SjLj_LongJmp : Pseudo<(outs), (ins ADDR64:$R2),
1920                           [(z_eh_sjlj_longjmp  ADDR64:$R2)]>;
1921    }
1922  }
1923  let isTerminator = 1, isCodeGenOnly = 1, Size = 0 in {
1924    def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst), []>;
1925  }
1926}
1927
1928//===----------------------------------------------------------------------===//
1929// Message-security assist
1930//===----------------------------------------------------------------------===//
1931
1932let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1933  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1934  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1935
1936  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1937  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1938  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1939
1940  let Predicates = [FeatureMessageSecurityAssist4] in {
1941    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1942    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1943    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1944                                               GR128, GR128, GR128>;
1945    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1946  }
1947
1948  let Predicates = [FeatureMessageSecurityAssist5] in
1949    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1950  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1951    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1952
1953  let Predicates = [FeatureMessageSecurityAssist8] in
1954    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1955                                              GR128, GR128, GR128>;
1956
1957  let Predicates = [FeatureMessageSecurityAssist9] in
1958    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1959
1960  let Predicates = [FeatureMessageSecurityAssist12] in {
1961    def KIMDOpt : SideEffectTernaryMemMemRRFc<"kimd", 0xB93E, GR64, GR128, imm32zx4>;
1962    def KLMDOpt : SideEffectTernaryMemMemRRFc<"klmd", 0xB93F, GR64, GR128, imm32zx4>;
1963  }
1964}
1965
1966//===----------------------------------------------------------------------===//
1967// Guarded storage
1968//===----------------------------------------------------------------------===//
1969
1970// These instructions use and/or modify the guarded storage control
1971// registers, which we do not otherwise model, so they should have
1972// hasSideEffects.
1973let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1974  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1975  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1976
1977  let mayLoad = 1 in
1978    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1979  let mayStore = 1 in
1980    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1981}
1982
1983//===----------------------------------------------------------------------===//
1984// Decimal arithmetic
1985//===----------------------------------------------------------------------===//
1986
1987defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, z_load, 4>;
1988def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, z_load, 8>;
1989
1990defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1991def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1992
1993let mayLoad = 1, mayStore = 1 in {
1994  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1995  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1996  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1997
1998  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1999  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
2000  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
2001  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
2002  let Defs = [CC] in {
2003    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
2004    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
2005  }
2006}
2007
2008let mayLoad = 1, mayStore = 1 in {
2009  let Defs = [CC] in {
2010    def AP : SideEffectBinarySSb<"ap", 0xFA>;
2011    def SP : SideEffectBinarySSb<"sp", 0xFB>;
2012    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
2013    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
2014  }
2015  def MP : SideEffectBinarySSb<"mp", 0xFC>;
2016  def DP : SideEffectBinarySSb<"dp", 0xFD>;
2017  let Defs = [CC] in {
2018    def ED : SideEffectBinarySSa<"ed", 0xDE>;
2019    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
2020  }
2021}
2022
2023let Defs = [CC] in {
2024  def CP : CompareSSb<"cp", 0xF9>;
2025  def TP : TestRSL<"tp", 0xEBC0>;
2026}
2027
2028//===----------------------------------------------------------------------===//
2029// Access registers
2030//===----------------------------------------------------------------------===//
2031
2032// Read a 32-bit access register into a GR32.  As with all GR32 operations,
2033// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
2034// when a 64-bit address is stored in a pair of access registers.
2035def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
2036
2037// Set access register.
2038def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
2039
2040// Copy access register.
2041def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
2042
2043// Load address extended.
2044defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
2045
2046// Load access multiple.
2047defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2048
2049// Store access multiple.
2050defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2051
2052//===----------------------------------------------------------------------===//
2053// Program mask and addressing mode
2054//===----------------------------------------------------------------------===//
2055
2056// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2057let Uses = [CC] in
2058  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2059
2060// Set CC and program mask from a register.
2061let hasSideEffects = 1, Defs = [CC] in
2062  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2063
2064// Branch and link - like BAS, but also extracts CC and program mask.
2065let isCall = 1, Uses = [CC], Defs = [CC] in {
2066  def BAL  : CallRX<"bal", 0x45>;
2067  def BALR : CallRR<"balr", 0x05>;
2068}
2069
2070// Test addressing mode.
2071let Defs = [CC] in
2072  def TAM : SideEffectInherentE<"tam", 0x010B>;
2073
2074// Set addressing mode.
2075let hasSideEffects = 1 in {
2076  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2077  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2078  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2079}
2080
2081// Branch and set mode.  Not really a call, but also sets an output register.
2082let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2083  def BSM : CallRR<"bsm", 0x0B>;
2084
2085// Branch and save and set mode.
2086let isCall = 1, Defs = [CC] in
2087  def BASSM : CallRR<"bassm", 0x0C>;
2088
2089//===----------------------------------------------------------------------===//
2090// Transactional execution
2091//===----------------------------------------------------------------------===//
2092
2093let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2094  // Transaction Begin
2095  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2096    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2097    let hasNoSchedulingInfo = 1 in
2098     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2099    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2100                                      int_s390_tbeginc, imm32zx16>;
2101  }
2102
2103  // Transaction End
2104  let Defs = [CC] in
2105    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2106
2107  // Transaction Abort
2108  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2109      hasSideEffects = 1 in
2110    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2111
2112  // Nontransactional Store
2113  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2114
2115  // Extract Transaction Nesting Depth
2116  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2117}
2118
2119//===----------------------------------------------------------------------===//
2120// Processor assist
2121//===----------------------------------------------------------------------===//
2122
2123let Predicates = [FeatureProcessorAssist] in {
2124  let hasSideEffects = 1 in
2125    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2126  def : Pat<(int_s390_ppa_txassist GR32:$src),
2127            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2128                 zero_reg, 1)>;
2129}
2130
2131//===----------------------------------------------------------------------===//
2132// Miscellaneous Instructions.
2133//===----------------------------------------------------------------------===//
2134
2135// Count leading/trailing zeros.
2136let Predicates = [FeatureMiscellaneousExtensions4] in {
2137  def CLZG : UnaryRRE<"clzg", 0xB968, ctlz, GR64, GR64>;
2138  def CTZG : UnaryRRE<"ctzg", 0xB969, cttz, GR64, GR64>;
2139}
2140
2141// Find leftmost one, AKA count leading zeros.  The instruction actually
2142// returns a pair of GR64s, the first giving the number of leading zeros
2143// and the second giving a copy of the source with the leftmost one bit
2144// cleared.  We only use the first result here.
2145let Defs = [CC] in
2146  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2147def : Pat<(i64 (ctlz GR64:$src)),
2148          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2149
2150// Population count.  Counts bits set per byte or doubleword.
2151let Predicates = [FeatureMiscellaneousExtensions3] in {
2152  let Defs = [CC] in
2153    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2154  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2155}
2156let Predicates = [FeaturePopulationCount], Defs = [CC] in
2157  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2158
2159// Bit deposit and bit extract.
2160let Predicates = [FeatureMiscellaneousExtensions4] in {
2161  def BDEPG : BinaryRRFa<"bdepg", 0xB96D, int_s390_bdepg, GR64, GR64, GR64>;
2162  def BEXTG : BinaryRRFa<"bextg", 0xB96C, int_s390_bextg, GR64, GR64, GR64>;
2163}
2164
2165// Search a block of memory for a character.
2166let mayLoad = 1, Defs = [CC] in
2167  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2168let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2169  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2170
2171// Compare until substring equal.
2172let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2173  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2174
2175// Compare and form codeword.
2176let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2177  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2178
2179// Update tree.
2180let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2181    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2182  def UPT : SideEffectInherentE<"upt", 0x0102>;
2183
2184// Checksum.
2185let mayLoad = 1, Defs = [CC] in
2186  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2187
2188// Compression call.
2189let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2190  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2191
2192// Sort lists.
2193let Predicates = [FeatureEnhancedSort],
2194    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2195  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2196
2197// Deflate conversion call.
2198let Predicates = [FeatureDeflateConversion],
2199    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2200  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2201                                           GR128, GR128, GR64>;
2202
2203// NNPA.
2204let Predicates = [FeatureNNPAssist],
2205    mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2206  def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2207
2208// Execute.
2209let hasSideEffects = 1 in {
2210  def EX   : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2211  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2212  let hasNoSchedulingInfo = 1 in
2213    def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2214                                          bdaddr12only:$bdl1, bdaddr12only:$bd2),
2215                                          []>;
2216}
2217
2218//===----------------------------------------------------------------------===//
2219// .insn directive instructions
2220//===----------------------------------------------------------------------===//
2221
2222let isCodeGenOnly = 1, hasSideEffects = 1 in {
2223  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2224  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2225                                             imm32sx16:$I2),
2226                                ".insn ri,$enc,$R1,$I2", []>;
2227  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2228                                              AnyReg:$R3, brtarget16:$I2),
2229                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2230  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2231                                              brtarget32:$I2),
2232                                 ".insn ril,$enc,$R1,$I2", []>;
2233  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2234                                               uimm32:$I2),
2235                                  ".insn rilu,$enc,$R1,$I2", []>;
2236  def InsnRIS : DirectiveInsnRIS<(outs),
2237                                 (ins imm64zx48:$enc, AnyReg:$R1,
2238                                      imm32sx8:$I2, imm32zx4:$M3,
2239                                      (bdaddr12only $B4, $D4):$BD4),
2240                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2241  def InsnRR : DirectiveInsnRR<(outs),
2242                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2243                               ".insn rr,$enc,$R1,$R2", []>;
2244  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2245                                              AnyReg:$R1, AnyReg:$R2),
2246                                 ".insn rre,$enc,$R1,$R2", []>;
2247  def InsnRRF : DirectiveInsnRRF<(outs),
2248                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2249                                      AnyReg:$R3, imm32zx4:$M4),
2250                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2251  def InsnRRS : DirectiveInsnRRS<(outs),
2252                                 (ins imm64zx48:$enc, AnyReg:$R1,
2253                                      AnyReg:$R2, imm32zx4:$M3,
2254                                      (bdaddr12only $B4, $D4):$BD4),
2255                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2256  def InsnRS  : DirectiveInsnRS<(outs),
2257                                (ins imm64zx32:$enc, AnyReg:$R1,
2258                                     AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2259                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2260  def InsnRSE : DirectiveInsnRSE<(outs),
2261                                 (ins imm64zx48:$enc, AnyReg:$R1,
2262                                      AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2263                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2264  def InsnRSI : DirectiveInsnRSI<(outs),
2265                                 (ins imm64zx48:$enc, AnyReg:$R1,
2266                                      AnyReg:$R3, brtarget16:$RI2),
2267                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2268  def InsnRSY : DirectiveInsnRSY<(outs),
2269                                 (ins imm64zx48:$enc, AnyReg:$R1,
2270                                      AnyReg:$R3, (bdaddr20only $B2, $D2):$BD2),
2271                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2272  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2273                                             (bdxaddr12only $B2, $D2, $X2):$XBD2),
2274                                ".insn rx,$enc,$R1,$XBD2", []>;
2275  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2276                                              (bdxaddr12only $B2, $D2, $X2):$XBD2),
2277                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2278  def InsnRXF : DirectiveInsnRXF<(outs),
2279                                 (ins imm64zx48:$enc, AnyReg:$R1,
2280                                      AnyReg:$R3, (bdxaddr12only $B2, $D2, $X2):$XBD2),
2281                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2282  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2283                                              (bdxaddr20only $B2, $D2, $X2):$XBD2),
2284                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2285  def InsnS : DirectiveInsnS<(outs),
2286                             (ins imm64zx32:$enc, (bdaddr12only $B2, $D2):$BD2),
2287                             ".insn s,$enc,$BD2", []>;
2288  def InsnSI : DirectiveInsnSI<(outs),
2289                               (ins imm64zx32:$enc, (bdaddr12only $B1, $D1):$BD1,
2290                                    imm32sx8:$I2),
2291                               ".insn si,$enc,$BD1,$I2", []>;
2292  def InsnSIY : DirectiveInsnSIY<(outs),
2293                                 (ins imm64zx48:$enc,
2294                                      (bdaddr20only $B1, $D1):$BD1, imm32zx8:$I2),
2295                                 ".insn siy,$enc,$BD1,$I2", []>;
2296  def InsnSIL : DirectiveInsnSIL<(outs),
2297                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2298                                      imm32zx16:$I2),
2299                                 ".insn sil,$enc,$BD1,$I2", []>;
2300  def InsnSS : DirectiveInsnSS<(outs),
2301                               (ins imm64zx48:$enc, (bdraddr12only $B1, $D1, $R1):$RBD1,
2302                                    (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2303                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2304  def InsnSSE : DirectiveInsnSSE<(outs),
2305                                 (ins imm64zx48:$enc,
2306                                      (bdaddr12only $B1, $D1):$BD1,(bdaddr12only $B2, $D2):$BD2),
2307                                 ".insn sse,$enc,$BD1,$BD2", []>;
2308  def InsnSSF : DirectiveInsnSSF<(outs),
2309                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2310                                      (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2311                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2312  def InsnVRI : DirectiveInsnVRI<(outs),
2313                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2314                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2315                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2316  def InsnVRR : DirectiveInsnVRR<(outs),
2317                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2318                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2319                                  imm32zx4:$M6),
2320                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2321  def InsnVRS : DirectiveInsnVRS<(outs),
2322                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2323                                  (bdaddr12only $B2, $D2):$BD2, imm32zx4:$M4),
2324                                 ".insn vrs,$enc,$BD2,$M4", []>;
2325  def InsnVRV : DirectiveInsnVRV<(outs),
2326                                 (ins imm64zx48:$enc, VR128:$V1,
2327                                      (bdvaddr12only $B2, $D2, $V2):$VBD2, imm32zx4:$M3),
2328                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2329  def InsnVRX : DirectiveInsnVRX<(outs),
2330                                 (ins imm64zx48:$enc, VR128:$V1,
2331                                  (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3),
2332                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2333  def InsnVSI : DirectiveInsnVSI<(outs),
2334                                 (ins imm64zx48:$enc, VR128:$V1,
2335                                  (bdaddr12only $B2, $D2):$BD2, imm32zx8:$I3),
2336                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2337}
2338
2339//===----------------------------------------------------------------------===//
2340// Peepholes.
2341//===----------------------------------------------------------------------===//
2342
2343// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2344// equivalent to (and (xor x, -1), y)
2345def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2346                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2347
2348// Use LCGR/AGHI for i64 xor with -1.
2349def : Pat<(xor GR64:$x, (i64 -1)),
2350          (AGHI (LCGR GR64:$x), (i64 -1))>;
2351
2352// Shift/rotate instructions only use the last 6 bits of the second operand
2353// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2354// last 16 bits.
2355// Complexity is added so that we match this before we match NILF on the AND
2356// operation alone.
2357let AddedComplexity = 4 in {
2358  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2359            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2360
2361  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2362            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2363
2364  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2365            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2366
2367  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2368            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2369
2370  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2371            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2372
2373  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2374            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2375
2376  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2377            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2378
2379  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2380            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2381}
2382
2383// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2384// use the last 6 bits of the second operand register (making it modulo 64).
2385let AddedComplexity = 4 in {
2386  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2387            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2388
2389  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2390            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2391
2392  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2393            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2394
2395  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2396            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2397}
2398
2399// Peepholes for turning scalar operations into block operations.  The length
2400// is given as one less for these pseudos.
2401defm : BlockLoadStore<anyextloadi8, i32, MVCImm, NCImm, OCImm, XCImm, 0>;
2402defm : BlockLoadStore<anyextloadi16, i32, MVCImm, NCImm, OCImm, XCImm, 1>;
2403defm : BlockLoadStore<load, i32, MVCImm, NCImm, OCImm, XCImm, 3>;
2404defm : BlockLoadStore<anyextloadi8, i64, MVCImm, NCImm, OCImm, XCImm, 0>;
2405defm : BlockLoadStore<anyextloadi16, i64, MVCImm, NCImm, OCImm, XCImm, 1>;
2406defm : BlockLoadStore<anyextloadi32, i64, MVCImm, NCImm, OCImm, XCImm, 3>;
2407defm : BlockLoadStore<load, i64, MVCImm, NCImm, OCImm, XCImm, 7>;
2408
2409//===----------------------------------------------------------------------===//
2410// Mnemonic Aliases
2411//===----------------------------------------------------------------------===//
2412
2413def JCT   : MnemonicAlias<"jct", "brct">;
2414def JCTG  : MnemonicAlias<"jctg", "brctg">;
2415def JC    : MnemonicAlias<"jc", "brc">;
2416def JCTH  : MnemonicAlias<"jcth", "brcth">;
2417def JAS   : MnemonicAlias<"jas", "bras">;
2418def JASL  : MnemonicAlias<"jasl", "brasl">;
2419def JXH   : MnemonicAlias<"jxh", "brxh">;
2420def JXLE  : MnemonicAlias<"jxle", "brxle">;
2421def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2422def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2423
2424def BRU   : MnemonicAlias<"bru", "j">;
2425def BRUL  : MnemonicAlias<"brul", "jg", "gnu">;
2426def BRUL_HLASM  : MnemonicAlias<"brul", "jlu", "hlasm">;
2427
2428foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2429              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2430  defm BRUAsm#V  : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2431  defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "gnu">;
2432  defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;
2433}
2434