xref: /llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 6d5697f7cb4e933d2f176c46b7ac05a9cbaeb8b6)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicsS390.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/KnownBits.h"
30 #include <cctype>
31 #include <optional>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "systemz-lower"
36 
37 // Temporarily let this be disabled by default until all known problems
38 // related to argument extensions are fixed.
39 static cl::opt<bool> EnableIntArgExtCheck(
40     "argext-abi-check", cl::init(false),
41     cl::desc("Verify that narrow int args are properly extended per the "
42              "SystemZ ABI."));
43 
44 namespace {
45 // Represents information about a comparison.
46 struct Comparison {
47   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
48     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
49       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
50 
51   // The operands to the comparison.
52   SDValue Op0, Op1;
53 
54   // Chain if this is a strict floating-point comparison.
55   SDValue Chain;
56 
57   // The opcode that should be used to compare Op0 and Op1.
58   unsigned Opcode;
59 
60   // A SystemZICMP value.  Only used for integer comparisons.
61   unsigned ICmpType;
62 
63   // The mask of CC values that Opcode can produce.
64   unsigned CCValid;
65 
66   // The mask of CC values for which the original condition is true.
67   unsigned CCMask;
68 };
69 } // end anonymous namespace
70 
71 // Classify VT as either 32 or 64 bit.
72 static bool is32Bit(EVT VT) {
73   switch (VT.getSimpleVT().SimpleTy) {
74   case MVT::i32:
75     return true;
76   case MVT::i64:
77     return false;
78   default:
79     llvm_unreachable("Unsupported type");
80   }
81 }
82 
83 // Return a version of MachineOperand that can be safely used before the
84 // final use.
85 static MachineOperand earlyUseOperand(MachineOperand Op) {
86   if (Op.isReg())
87     Op.setIsKill(false);
88   return Op;
89 }
90 
91 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
92                                              const SystemZSubtarget &STI)
93     : TargetLowering(TM), Subtarget(STI) {
94   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
95 
96   auto *Regs = STI.getSpecialRegisters();
97 
98   // Set up the register classes.
99   if (Subtarget.hasHighWord())
100     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
101   else
102     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
103   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
104   if (!useSoftFloat()) {
105     if (Subtarget.hasVector()) {
106       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
107       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
108     } else {
109       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
110       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
111     }
112     if (Subtarget.hasVectorEnhancements1())
113       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
114     else
115       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
116 
117     if (Subtarget.hasVector()) {
118       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
119       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
120       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
121       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
122       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
123       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
124     }
125 
126     if (Subtarget.hasVector())
127       addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
128   }
129 
130   // Compute derived properties from the register classes
131   computeRegisterProperties(Subtarget.getRegisterInfo());
132 
133   // Set up special registers.
134   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
135 
136   // TODO: It may be better to default to latency-oriented scheduling, however
137   // LLVM's current latency-oriented scheduler can't handle physreg definitions
138   // such as SystemZ has with CC, so set this to the register-pressure
139   // scheduler, because it can.
140   setSchedulingPreference(Sched::RegPressure);
141 
142   setBooleanContents(ZeroOrOneBooleanContent);
143   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
144 
145   setMaxAtomicSizeInBitsSupported(128);
146 
147   // Instructions are strings of 2-byte aligned 2-byte values.
148   setMinFunctionAlignment(Align(2));
149   // For performance reasons we prefer 16-byte alignment.
150   setPrefFunctionAlignment(Align(16));
151 
152   // Handle operations that are handled in a similar way for all types.
153   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154        I <= MVT::LAST_FP_VALUETYPE;
155        ++I) {
156     MVT VT = MVT::SimpleValueType(I);
157     if (isTypeLegal(VT)) {
158       // Lower SET_CC into an IPM-based sequence.
159       setOperationAction(ISD::SETCC, VT, Custom);
160       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
161       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
162 
163       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
164       setOperationAction(ISD::SELECT, VT, Expand);
165 
166       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
167       setOperationAction(ISD::SELECT_CC, VT, Custom);
168       setOperationAction(ISD::BR_CC,     VT, Custom);
169     }
170   }
171 
172   // Expand jump table branches as address arithmetic followed by an
173   // indirect jump.
174   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
175 
176   // Expand BRCOND into a BR_CC (see above).
177   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
178 
179   // Handle integer types except i128.
180   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
181        I <= MVT::LAST_INTEGER_VALUETYPE;
182        ++I) {
183     MVT VT = MVT::SimpleValueType(I);
184     if (isTypeLegal(VT) && VT != MVT::i128) {
185       setOperationAction(ISD::ABS, VT, Legal);
186 
187       // Expand individual DIV and REMs into DIVREMs.
188       setOperationAction(ISD::SDIV, VT, Expand);
189       setOperationAction(ISD::UDIV, VT, Expand);
190       setOperationAction(ISD::SREM, VT, Expand);
191       setOperationAction(ISD::UREM, VT, Expand);
192       setOperationAction(ISD::SDIVREM, VT, Custom);
193       setOperationAction(ISD::UDIVREM, VT, Custom);
194 
195       // Support addition/subtraction with overflow.
196       setOperationAction(ISD::SADDO, VT, Custom);
197       setOperationAction(ISD::SSUBO, VT, Custom);
198 
199       // Support addition/subtraction with carry.
200       setOperationAction(ISD::UADDO, VT, Custom);
201       setOperationAction(ISD::USUBO, VT, Custom);
202 
203       // Support carry in as value rather than glue.
204       setOperationAction(ISD::UADDO_CARRY, VT, Custom);
205       setOperationAction(ISD::USUBO_CARRY, VT, Custom);
206 
207       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
208       // available, or if the operand is constant.
209       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
210 
211       // Use POPCNT on z196 and above.
212       if (Subtarget.hasPopulationCount())
213         setOperationAction(ISD::CTPOP, VT, Custom);
214       else
215         setOperationAction(ISD::CTPOP, VT, Expand);
216 
217       // No special instructions for these.
218       setOperationAction(ISD::CTTZ,            VT, Expand);
219       setOperationAction(ISD::ROTR,            VT, Expand);
220 
221       // Use *MUL_LOHI where possible instead of MULH*.
222       setOperationAction(ISD::MULHS, VT, Expand);
223       setOperationAction(ISD::MULHU, VT, Expand);
224       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
225       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
226 
227       // Only z196 and above have native support for conversions to unsigned.
228       // On z10, promoting to i64 doesn't generate an inexact condition for
229       // values that are outside the i32 range but in the i64 range, so use
230       // the default expansion.
231       if (!Subtarget.hasFPExtension())
232         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
233 
234       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
235       // default to Expand, so need to be modified to Legal where appropriate.
236       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
237       if (Subtarget.hasFPExtension())
238         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
239 
240       // And similarly for STRICT_[SU]INT_TO_FP.
241       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
242       if (Subtarget.hasFPExtension())
243         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
244     }
245   }
246 
247   // Handle i128 if legal.
248   if (isTypeLegal(MVT::i128)) {
249     // No special instructions for these.
250     setOperationAction(ISD::SDIVREM,   MVT::i128, Expand);
251     setOperationAction(ISD::UDIVREM,   MVT::i128, Expand);
252     setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
253     setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
254     setOperationAction(ISD::ROTR,      MVT::i128, Expand);
255     setOperationAction(ISD::ROTL,      MVT::i128, Expand);
256 
257     // No special instructions for these before arch15.
258     if (!Subtarget.hasVectorEnhancements3()) {
259       setOperationAction(ISD::MUL,   MVT::i128, Expand);
260       setOperationAction(ISD::MULHS, MVT::i128, Expand);
261       setOperationAction(ISD::MULHU, MVT::i128, Expand);
262       setOperationAction(ISD::SDIV,  MVT::i128, Expand);
263       setOperationAction(ISD::UDIV,  MVT::i128, Expand);
264       setOperationAction(ISD::SREM,  MVT::i128, Expand);
265       setOperationAction(ISD::UREM,  MVT::i128, Expand);
266       setOperationAction(ISD::CTLZ,  MVT::i128, Expand);
267       setOperationAction(ISD::CTTZ,  MVT::i128, Expand);
268     } else {
269       // Even if we do have a legal 128-bit multiply, we do not
270       // want 64-bit multiply-high operations to use it.
271       setOperationAction(ISD::MULHS, MVT::i64, Custom);
272       setOperationAction(ISD::MULHU, MVT::i64, Custom);
273     }
274 
275     // Support addition/subtraction with carry.
276     setOperationAction(ISD::UADDO, MVT::i128, Custom);
277     setOperationAction(ISD::USUBO, MVT::i128, Custom);
278     setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
279     setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
280 
281     // Use VPOPCT and add up partial results.
282     setOperationAction(ISD::CTPOP, MVT::i128, Custom);
283 
284     // Additional instructions available with arch15.
285     if (Subtarget.hasVectorEnhancements3()) {
286       setOperationAction(ISD::ABS, MVT::i128, Legal);
287     }
288 
289     // We have to use libcalls for these.
290     setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
291     setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
292     setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
293     setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
294     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
295     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
296     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
297     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
298   }
299 
300   // Type legalization will convert 8- and 16-bit atomic operations into
301   // forms that operate on i32s (but still keeping the original memory VT).
302   // Lower them into full i32 operations.
303   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
304   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
305   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
306   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
307   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
308   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
309   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
310   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
311   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
312   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
313   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
314 
315   // Whether or not i128 is not a legal type, we need to custom lower
316   // the atomic operations in order to exploit SystemZ instructions.
317   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
318   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
319   setOperationAction(ISD::ATOMIC_LOAD, MVT::f128, Custom);
320   setOperationAction(ISD::ATOMIC_STORE, MVT::f128, Custom);
321 
322   // Mark sign/zero extending atomic loads as legal, which will make
323   // DAGCombiner fold extensions into atomic loads if possible.
324   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64,
325                          {MVT::i8, MVT::i16, MVT::i32}, Legal);
326   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
327                          {MVT::i8, MVT::i16}, Legal);
328   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i16,
329                          MVT::i8, Legal);
330 
331   // We can use the CC result of compare-and-swap to implement
332   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
333   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
334   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
335   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
336 
337   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
338 
339   // Traps are legal, as we will convert them to "j .+2".
340   setOperationAction(ISD::TRAP, MVT::Other, Legal);
341 
342   // z10 has instructions for signed but not unsigned FP conversion.
343   // Handle unsigned 32-bit types as signed 64-bit types.
344   if (!Subtarget.hasFPExtension()) {
345     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
346     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
347     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
348     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
349   }
350 
351   // We have native support for a 64-bit CTLZ, via FLOGR.
352   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
353   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
354   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
355 
356   // On arch15 we have native support for a 64-bit CTTZ.
357   if (Subtarget.hasMiscellaneousExtensions4()) {
358     setOperationAction(ISD::CTTZ, MVT::i32, Promote);
359     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Promote);
360     setOperationAction(ISD::CTTZ, MVT::i64, Legal);
361   }
362 
363   // On z15 we have native support for a 64-bit CTPOP.
364   if (Subtarget.hasMiscellaneousExtensions3()) {
365     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
366     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
367   }
368 
369   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
370   setOperationAction(ISD::OR, MVT::i64, Custom);
371 
372   // Expand 128 bit shifts without using a libcall.
373   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
374   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
375   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
376 
377   // Also expand 256 bit shifts if i128 is a legal type.
378   if (isTypeLegal(MVT::i128)) {
379     setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
380     setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
381     setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
382   }
383 
384   // Handle bitcast from fp128 to i128.
385   if (!isTypeLegal(MVT::i128))
386     setOperationAction(ISD::BITCAST, MVT::i128, Custom);
387 
388   // We have native instructions for i8, i16 and i32 extensions, but not i1.
389   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
390   for (MVT VT : MVT::integer_valuetypes()) {
391     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
392     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
393     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
394   }
395 
396   // Handle the various types of symbolic address.
397   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
398   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
399   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
400   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
401   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
402 
403   // We need to handle dynamic allocations specially because of the
404   // 160-byte area at the bottom of the stack.
405   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
406   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
407 
408   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
409   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
410 
411   // Handle prefetches with PFD or PFDRL.
412   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
413 
414   // Handle readcyclecounter with STCKF.
415   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
416 
417   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
418     // Assume by default that all vector operations need to be expanded.
419     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
420       if (getOperationAction(Opcode, VT) == Legal)
421         setOperationAction(Opcode, VT, Expand);
422 
423     // Likewise all truncating stores and extending loads.
424     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
425       setTruncStoreAction(VT, InnerVT, Expand);
426       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
427       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
428       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
429     }
430 
431     if (isTypeLegal(VT)) {
432       // These operations are legal for anything that can be stored in a
433       // vector register, even if there is no native support for the format
434       // as such.  In particular, we can do these for v4f32 even though there
435       // are no specific instructions for that format.
436       setOperationAction(ISD::LOAD, VT, Legal);
437       setOperationAction(ISD::STORE, VT, Legal);
438       setOperationAction(ISD::VSELECT, VT, Legal);
439       setOperationAction(ISD::BITCAST, VT, Legal);
440       setOperationAction(ISD::UNDEF, VT, Legal);
441 
442       // Likewise, except that we need to replace the nodes with something
443       // more specific.
444       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
445       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
446     }
447   }
448 
449   // Handle integer vector types.
450   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
451     if (isTypeLegal(VT)) {
452       // These operations have direct equivalents.
453       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
454       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
455       setOperationAction(ISD::ADD, VT, Legal);
456       setOperationAction(ISD::SUB, VT, Legal);
457       if (VT != MVT::v2i64 || Subtarget.hasVectorEnhancements3())
458         setOperationAction(ISD::MUL, VT, Legal);
459       if (Subtarget.hasVectorEnhancements3() &&
460           VT != MVT::v16i8 && VT != MVT::v8i16) {
461         setOperationAction(ISD::SDIV, VT, Legal);
462         setOperationAction(ISD::UDIV, VT, Legal);
463         setOperationAction(ISD::SREM, VT, Legal);
464         setOperationAction(ISD::UREM, VT, Legal);
465       }
466       setOperationAction(ISD::ABS, VT, Legal);
467       setOperationAction(ISD::AND, VT, Legal);
468       setOperationAction(ISD::OR, VT, Legal);
469       setOperationAction(ISD::XOR, VT, Legal);
470       if (Subtarget.hasVectorEnhancements1())
471         setOperationAction(ISD::CTPOP, VT, Legal);
472       else
473         setOperationAction(ISD::CTPOP, VT, Custom);
474       setOperationAction(ISD::CTTZ, VT, Legal);
475       setOperationAction(ISD::CTLZ, VT, Legal);
476 
477       // Convert a GPR scalar to a vector by inserting it into element 0.
478       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
479 
480       // Use a series of unpacks for extensions.
481       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
482       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
483 
484       // Detect shifts/rotates by a scalar amount and convert them into
485       // V*_BY_SCALAR.
486       setOperationAction(ISD::SHL, VT, Custom);
487       setOperationAction(ISD::SRA, VT, Custom);
488       setOperationAction(ISD::SRL, VT, Custom);
489       setOperationAction(ISD::ROTL, VT, Custom);
490 
491       // Add ISD::VECREDUCE_ADD as custom in order to implement
492       // it with VZERO+VSUM
493       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
494 
495       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
496       // and inverting the result as necessary.
497       setOperationAction(ISD::SETCC, VT, Custom);
498     }
499   }
500 
501   if (Subtarget.hasVector()) {
502     // There should be no need to check for float types other than v2f64
503     // since <2 x f32> isn't a legal type.
504     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
505     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
506     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
507     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
509     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
510     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
511     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
512 
513     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
514     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
515     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
516     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
518     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
520     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
521   }
522 
523   if (Subtarget.hasVectorEnhancements2()) {
524     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
525     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
526     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
527     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
528     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
529     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
530     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
531     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
532 
533     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
534     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
535     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
536     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
537     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
538     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
539     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
540     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
541   }
542 
543   // Handle floating-point types.
544   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
545        I <= MVT::LAST_FP_VALUETYPE;
546        ++I) {
547     MVT VT = MVT::SimpleValueType(I);
548     if (isTypeLegal(VT)) {
549       // We can use FI for FRINT.
550       setOperationAction(ISD::FRINT, VT, Legal);
551 
552       // We can use the extended form of FI for other rounding operations.
553       if (Subtarget.hasFPExtension()) {
554         setOperationAction(ISD::FNEARBYINT, VT, Legal);
555         setOperationAction(ISD::FFLOOR, VT, Legal);
556         setOperationAction(ISD::FCEIL, VT, Legal);
557         setOperationAction(ISD::FTRUNC, VT, Legal);
558         setOperationAction(ISD::FROUND, VT, Legal);
559       }
560 
561       // No special instructions for these.
562       setOperationAction(ISD::FSIN, VT, Expand);
563       setOperationAction(ISD::FCOS, VT, Expand);
564       setOperationAction(ISD::FSINCOS, VT, Expand);
565       setOperationAction(ISD::FREM, VT, Expand);
566       setOperationAction(ISD::FPOW, VT, Expand);
567 
568       // Special treatment.
569       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
570 
571       // Handle constrained floating-point operations.
572       setOperationAction(ISD::STRICT_FADD, VT, Legal);
573       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
574       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
575       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
576       setOperationAction(ISD::STRICT_FMA, VT, Legal);
577       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
578       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
579       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
580       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
581       if (Subtarget.hasFPExtension()) {
582         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
583         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
584         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
585         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
586         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
587       }
588     }
589   }
590 
591   // Handle floating-point vector types.
592   if (Subtarget.hasVector()) {
593     // Scalar-to-vector conversion is just a subreg.
594     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
595     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
596 
597     // Some insertions and extractions can be done directly but others
598     // need to go via integers.
599     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
600     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
601     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
602     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
603 
604     // These operations have direct equivalents.
605     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
606     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
607     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
608     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
609     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
610     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
611     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
612     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
613     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
614     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
615     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
616     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
617     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
618     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
619 
620     // Handle constrained floating-point operations.
621     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
622     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
623     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
624     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
625     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
626     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
627     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
628     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
629     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
630     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
631     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
632     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
633 
634     setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
635     setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
636     setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
637     setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
638     if (Subtarget.hasVectorEnhancements1()) {
639       setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
640       setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
641     }
642   }
643 
644   // The vector enhancements facility 1 has instructions for these.
645   if (Subtarget.hasVectorEnhancements1()) {
646     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
647     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
648     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
649     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
650     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
651     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
652     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
653     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
654     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
655     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
656     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
657     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
658     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
659     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
660 
661     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
662     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
663     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
664     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
665 
666     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
667     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
668     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
669     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
670 
671     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
672     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
673     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
674     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
675 
676     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
677     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
678     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
679     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
680 
681     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
682     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
683     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
684     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
685 
686     // Handle constrained floating-point operations.
687     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
688     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
689     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
690     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
691     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
692     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
693     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
694     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
695     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
696     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
697     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
698     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
699     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
700                      MVT::v4f32, MVT::v2f64 }) {
701       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
702       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
703       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
704       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
705     }
706   }
707 
708   // We only have fused f128 multiply-addition on vector registers.
709   if (!Subtarget.hasVectorEnhancements1()) {
710     setOperationAction(ISD::FMA, MVT::f128, Expand);
711     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
712   }
713 
714   // We don't have a copysign instruction on vector registers.
715   if (Subtarget.hasVectorEnhancements1())
716     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
717 
718   // Needed so that we don't try to implement f128 constant loads using
719   // a load-and-extend of a f80 constant (in cases where the constant
720   // would fit in an f80).
721   for (MVT VT : MVT::fp_valuetypes())
722     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
723 
724   // We don't have extending load instruction on vector registers.
725   if (Subtarget.hasVectorEnhancements1()) {
726     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
727     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
728   }
729 
730   // Floating-point truncation and stores need to be done separately.
731   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
732   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
733   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
734 
735   // We have 64-bit FPR<->GPR moves, but need special handling for
736   // 32-bit forms.
737   if (!Subtarget.hasVector()) {
738     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
739     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
740   }
741 
742   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
743   // structure, but VAEND is a no-op.
744   setOperationAction(ISD::VASTART, MVT::Other, Custom);
745   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
746   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
747 
748   if (Subtarget.isTargetzOS()) {
749     // Handle address space casts between mixed sized pointers.
750     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
751     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
752   }
753 
754   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
755 
756   // Codes for which we want to perform some z-specific combinations.
757   setTargetDAGCombine({ISD::ZERO_EXTEND,
758                        ISD::SIGN_EXTEND,
759                        ISD::SIGN_EXTEND_INREG,
760                        ISD::LOAD,
761                        ISD::STORE,
762                        ISD::VECTOR_SHUFFLE,
763                        ISD::EXTRACT_VECTOR_ELT,
764                        ISD::FP_ROUND,
765                        ISD::STRICT_FP_ROUND,
766                        ISD::FP_EXTEND,
767                        ISD::SINT_TO_FP,
768                        ISD::UINT_TO_FP,
769                        ISD::STRICT_FP_EXTEND,
770                        ISD::BSWAP,
771                        ISD::SDIV,
772                        ISD::UDIV,
773                        ISD::SREM,
774                        ISD::UREM,
775                        ISD::INTRINSIC_VOID,
776                        ISD::INTRINSIC_W_CHAIN});
777 
778   // Handle intrinsics.
779   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
780   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
781 
782   // We're not using SJLJ for exception handling, but they're implemented
783   // solely to support use of __builtin_setjmp / __builtin_longjmp.
784   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
785   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
786 
787   // We want to use MVC in preference to even a single load/store pair.
788   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
789   MaxStoresPerMemcpyOptSize = 0;
790 
791   // The main memset sequence is a byte store followed by an MVC.
792   // Two STC or MV..I stores win over that, but the kind of fused stores
793   // generated by target-independent code don't when the byte value is
794   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
795   // than "STC;MVC".  Handle the choice in target-specific code instead.
796   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
797   MaxStoresPerMemsetOptSize = 0;
798 
799   // Default to having -disable-strictnode-mutation on
800   IsStrictFPEnabled = true;
801 
802   if (Subtarget.isTargetzOS()) {
803     struct RTLibCallMapping {
804       RTLIB::Libcall Code;
805       const char *Name;
806     };
807     static RTLibCallMapping RTLibCallCommon[] = {
808 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
809 #include "ZOSLibcallNames.def"
810     };
811     for (auto &E : RTLibCallCommon)
812       setLibcallName(E.Code, E.Name);
813   }
814 }
815 
816 bool SystemZTargetLowering::useSoftFloat() const {
817   return Subtarget.hasSoftFloat();
818 }
819 
820 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
821                                               LLVMContext &, EVT VT) const {
822   if (!VT.isVector())
823     return MVT::i32;
824   return VT.changeVectorElementTypeToInteger();
825 }
826 
827 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
828     const MachineFunction &MF, EVT VT) const {
829   if (useSoftFloat())
830     return false;
831 
832   VT = VT.getScalarType();
833 
834   if (!VT.isSimple())
835     return false;
836 
837   switch (VT.getSimpleVT().SimpleTy) {
838   case MVT::f32:
839   case MVT::f64:
840     return true;
841   case MVT::f128:
842     return Subtarget.hasVectorEnhancements1();
843   default:
844     break;
845   }
846 
847   return false;
848 }
849 
850 // Return true if the constant can be generated with a vector instruction,
851 // such as VGM, VGMB or VREPI.
852 bool SystemZVectorConstantInfo::isVectorConstantLegal(
853     const SystemZSubtarget &Subtarget) {
854   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
855   if (!Subtarget.hasVector() ||
856       (isFP128 && !Subtarget.hasVectorEnhancements1()))
857     return false;
858 
859   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
860   // preferred way of creating all-zero and all-one vectors so give it
861   // priority over other methods below.
862   unsigned Mask = 0;
863   unsigned I = 0;
864   for (; I < SystemZ::VectorBytes; ++I) {
865     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
866     if (Byte == 0xff)
867       Mask |= 1ULL << I;
868     else if (Byte != 0)
869       break;
870   }
871   if (I == SystemZ::VectorBytes) {
872     Opcode = SystemZISD::BYTE_MASK;
873     OpVals.push_back(Mask);
874     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
875     return true;
876   }
877 
878   if (SplatBitSize > 64)
879     return false;
880 
881   auto tryValue = [&](uint64_t Value) -> bool {
882     // Try VECTOR REPLICATE IMMEDIATE
883     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
884     if (isInt<16>(SignedValue)) {
885       OpVals.push_back(((unsigned) SignedValue));
886       Opcode = SystemZISD::REPLICATE;
887       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
888                                SystemZ::VectorBits / SplatBitSize);
889       return true;
890     }
891     // Try VECTOR GENERATE MASK
892     unsigned Start, End;
893     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
894       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
895       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
896       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
897       OpVals.push_back(Start - (64 - SplatBitSize));
898       OpVals.push_back(End - (64 - SplatBitSize));
899       Opcode = SystemZISD::ROTATE_MASK;
900       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
901                                SystemZ::VectorBits / SplatBitSize);
902       return true;
903     }
904     return false;
905   };
906 
907   // First try assuming that any undefined bits above the highest set bit
908   // and below the lowest set bit are 1s.  This increases the likelihood of
909   // being able to use a sign-extended element value in VECTOR REPLICATE
910   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
911   uint64_t SplatBitsZ = SplatBits.getZExtValue();
912   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
913   unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
914   unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
915   uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
916   uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
917   if (tryValue(SplatBitsZ | Upper | Lower))
918     return true;
919 
920   // Now try assuming that any undefined bits between the first and
921   // last defined set bits are set.  This increases the chances of
922   // using a non-wraparound mask.
923   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
924   return tryValue(SplatBitsZ | Middle);
925 }
926 
927 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
928   if (IntImm.isSingleWord()) {
929     IntBits = APInt(128, IntImm.getZExtValue());
930     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
931   } else
932     IntBits = IntImm;
933   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
934 
935   // Find the smallest splat.
936   SplatBits = IntImm;
937   unsigned Width = SplatBits.getBitWidth();
938   while (Width > 8) {
939     unsigned HalfSize = Width / 2;
940     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
941     APInt LowValue = SplatBits.trunc(HalfSize);
942 
943     // If the two halves do not match, stop here.
944     if (HighValue != LowValue || 8 > HalfSize)
945       break;
946 
947     SplatBits = HighValue;
948     Width = HalfSize;
949   }
950   SplatUndef = 0;
951   SplatBitSize = Width;
952 }
953 
954 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
955   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
956   bool HasAnyUndefs;
957 
958   // Get IntBits by finding the 128 bit splat.
959   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
960                        true);
961 
962   // Get SplatBits by finding the 8 bit or greater splat.
963   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
964                        true);
965 }
966 
967 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
968                                          bool ForCodeSize) const {
969   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
970   if (Imm.isZero() || Imm.isNegZero())
971     return true;
972 
973   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
974 }
975 
976 MachineBasicBlock *
977 SystemZTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
978                                         MachineBasicBlock *MBB) const {
979   DebugLoc DL = MI.getDebugLoc();
980   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
981   const SystemZRegisterInfo *TRI = Subtarget.getRegisterInfo();
982 
983   MachineFunction *MF = MBB->getParent();
984   MachineRegisterInfo &MRI = MF->getRegInfo();
985 
986   const BasicBlock *BB = MBB->getBasicBlock();
987   MachineFunction::iterator I = ++MBB->getIterator();
988 
989   Register DstReg = MI.getOperand(0).getReg();
990   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
991   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
992   (void)TRI;
993   Register mainDstReg = MRI.createVirtualRegister(RC);
994   Register restoreDstReg = MRI.createVirtualRegister(RC);
995 
996   MVT PVT = getPointerTy(MF->getDataLayout());
997   assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
998   // For v = setjmp(buf), we generate.
999   // Algorithm:
1000   //
1001   //                 ---------
1002   //                | thisMBB |
1003   //                 ---------
1004   //                     |
1005   //         ------------------------
1006   //        |                        |
1007   //     ----------           ---------------
1008   //    |  mainMBB |         | restoreMBB    |
1009   //    |   v = 0  |         |  v = 1        |
1010   //     ----------           ---------------
1011   //        |                        |
1012   //         -------------------------
1013   //                     |
1014   //           -----------------------------
1015   //          |       sinkMBB               |
1016   //          | phi(v_mainMBB,v_restoreMBB) |
1017   //           -----------------------------
1018   // thisMBB:
1019   //  buf[FPOffset] = Frame Pointer if hasFP.
1020   //  buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB.
1021   //  buf[BCOffset] = Backchain value if building with -mbackchain.
1022   //  buf[SPOffset] = Stack Pointer.
1023   //  buf[LPOffset] = We never write this slot with  R13, gcc stores R13 always.
1024   //  SjLjSetup restoreMBB
1025   // mainMBB:
1026   //  v_main = 0
1027   // sinkMBB:
1028   //  v = phi(v_main, v_restore)
1029   // restoreMBB:
1030   //  v_restore = 1
1031 
1032   MachineBasicBlock *thisMBB = MBB;
1033   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
1034   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
1035   MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
1036 
1037   MF->insert(I, mainMBB);
1038   MF->insert(I, sinkMBB);
1039   MF->push_back(restoreMBB);
1040   restoreMBB->setMachineBlockAddressTaken();
1041 
1042   MachineInstrBuilder MIB;
1043 
1044   // Transfer the remainder of BB and its successor edges to sinkMBB.
1045   sinkMBB->splice(sinkMBB->begin(), MBB,
1046                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1047   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
1048 
1049   // thisMBB:
1050   const int64_t FPOffset = 0;                         // Slot 1.
1051   const int64_t LabelOffset = 1 * PVT.getStoreSize(); // Slot 2.
1052   const int64_t BCOffset = 2 * PVT.getStoreSize();    // Slot 3.
1053   const int64_t SPOffset = 3 * PVT.getStoreSize();    // Slot 4.
1054 
1055   // Buf address.
1056   Register BufReg = MI.getOperand(1).getReg();
1057 
1058   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
1059   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
1060 
1061   // Prepare IP for longjmp.
1062   BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::LARL), LabelReg)
1063       .addMBB(restoreMBB);
1064   // Store IP for return from jmp, slot 2, offset = 1.
1065   BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::STG))
1066       .addReg(LabelReg)
1067       .addReg(BufReg)
1068       .addImm(LabelOffset)
1069       .addReg(0);
1070 
1071   auto *SpecialRegs = Subtarget.getSpecialRegisters();
1072   bool HasFP = Subtarget.getFrameLowering()->hasFP(*MF);
1073   if (HasFP) {
1074     BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::STG))
1075         .addReg(SpecialRegs->getFramePointerRegister())
1076         .addReg(BufReg)
1077         .addImm(FPOffset)
1078         .addReg(0);
1079   }
1080 
1081   // Store SP.
1082   BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::STG))
1083       .addReg(SpecialRegs->getStackPointerRegister())
1084       .addReg(BufReg)
1085       .addImm(SPOffset)
1086       .addReg(0);
1087 
1088   // Slot 3(Offset = 2) Backchain value (if building with -mbackchain).
1089   bool BackChain = MF->getSubtarget<SystemZSubtarget>().hasBackChain();
1090   if (BackChain) {
1091     Register BCReg = MRI.createVirtualRegister(PtrRC);
1092     auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
1093     MIB = BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::LG), BCReg)
1094               .addReg(SpecialRegs->getStackPointerRegister())
1095               .addImm(TFL->getBackchainOffset(*MF))
1096               .addReg(0);
1097 
1098     BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::STG))
1099         .addReg(BCReg)
1100         .addReg(BufReg)
1101         .addImm(BCOffset)
1102         .addReg(0);
1103   }
1104 
1105   // Setup.
1106   MIB = BuildMI(*thisMBB, MI, DL, TII->get(SystemZ::EH_SjLj_Setup))
1107             .addMBB(restoreMBB);
1108 
1109   const SystemZRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1110   MIB.addRegMask(RegInfo->getNoPreservedMask());
1111 
1112   thisMBB->addSuccessor(mainMBB);
1113   thisMBB->addSuccessor(restoreMBB);
1114 
1115   // mainMBB:
1116   BuildMI(mainMBB, DL, TII->get(SystemZ::LHI), mainDstReg).addImm(0);
1117   mainMBB->addSuccessor(sinkMBB);
1118 
1119   // sinkMBB:
1120   BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(SystemZ::PHI), DstReg)
1121       .addReg(mainDstReg)
1122       .addMBB(mainMBB)
1123       .addReg(restoreDstReg)
1124       .addMBB(restoreMBB);
1125 
1126   // restoreMBB.
1127   BuildMI(restoreMBB, DL, TII->get(SystemZ::LHI), restoreDstReg).addImm(1);
1128   BuildMI(restoreMBB, DL, TII->get(SystemZ::J)).addMBB(sinkMBB);
1129   restoreMBB->addSuccessor(sinkMBB);
1130 
1131   MI.eraseFromParent();
1132 
1133   return sinkMBB;
1134 }
1135 
1136 MachineBasicBlock *
1137 SystemZTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
1138                                          MachineBasicBlock *MBB) const {
1139 
1140   DebugLoc DL = MI.getDebugLoc();
1141   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1142 
1143   MachineFunction *MF = MBB->getParent();
1144   MachineRegisterInfo &MRI = MF->getRegInfo();
1145 
1146   MVT PVT = getPointerTy(MF->getDataLayout());
1147   assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
1148   Register BufReg = MI.getOperand(0).getReg();
1149   const TargetRegisterClass *RC = MRI.getRegClass(BufReg);
1150   auto *SpecialRegs = Subtarget.getSpecialRegisters();
1151 
1152   Register Tmp = MRI.createVirtualRegister(RC);
1153   Register BCReg = MRI.createVirtualRegister(RC);
1154 
1155   MachineInstrBuilder MIB;
1156 
1157   const int64_t FPOffset = 0;
1158   const int64_t LabelOffset = 1 * PVT.getStoreSize();
1159   const int64_t BCOffset = 2 * PVT.getStoreSize();
1160   const int64_t SPOffset = 3 * PVT.getStoreSize();
1161   const int64_t LPOffset = 4 * PVT.getStoreSize();
1162 
1163   MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::LG), Tmp)
1164             .addReg(BufReg)
1165             .addImm(LabelOffset)
1166             .addReg(0);
1167 
1168   MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::LG),
1169                 SpecialRegs->getFramePointerRegister())
1170             .addReg(BufReg)
1171             .addImm(FPOffset)
1172             .addReg(0);
1173 
1174   // We are restoring R13 even though we never stored in setjmp from llvm,
1175   // as gcc always stores R13 in builtin_setjmp. We could have mixed code
1176   // gcc setjmp and llvm longjmp.
1177   MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::LG), SystemZ::R13D)
1178             .addReg(BufReg)
1179             .addImm(LPOffset)
1180             .addReg(0);
1181 
1182   bool BackChain = MF->getSubtarget<SystemZSubtarget>().hasBackChain();
1183   if (BackChain) {
1184     MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::LG), BCReg)
1185               .addReg(BufReg)
1186               .addImm(BCOffset)
1187               .addReg(0);
1188   }
1189 
1190   MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::LG),
1191                 SpecialRegs->getStackPointerRegister())
1192             .addReg(BufReg)
1193             .addImm(SPOffset)
1194             .addReg(0);
1195 
1196   if (BackChain) {
1197     auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
1198     BuildMI(*MBB, MI, DL, TII->get(SystemZ::STG))
1199         .addReg(BCReg)
1200         .addReg(SpecialRegs->getStackPointerRegister())
1201         .addImm(TFL->getBackchainOffset(*MF))
1202         .addReg(0);
1203   }
1204 
1205   MIB = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BR)).addReg(Tmp);
1206 
1207   MI.eraseFromParent();
1208   return MBB;
1209 }
1210 
1211 /// Returns true if stack probing through inline assembly is requested.
1212 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
1213   // If the function specifically requests inline stack probes, emit them.
1214   if (MF.getFunction().hasFnAttribute("probe-stack"))
1215     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
1216            "inline-asm";
1217   return false;
1218 }
1219 
1220 TargetLowering::AtomicExpansionKind
1221 SystemZTargetLowering::shouldCastAtomicLoadInIR(LoadInst *LI) const {
1222   return AtomicExpansionKind::None;
1223 }
1224 
1225 TargetLowering::AtomicExpansionKind
1226 SystemZTargetLowering::shouldCastAtomicStoreInIR(StoreInst *SI) const {
1227   return AtomicExpansionKind::None;
1228 }
1229 
1230 TargetLowering::AtomicExpansionKind
1231 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
1232   // Don't expand subword operations as they require special treatment.
1233   if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
1234     return AtomicExpansionKind::None;
1235 
1236   // Don't expand if there is a target instruction available.
1237   if (Subtarget.hasInterlockedAccess1() &&
1238       (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
1239       (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
1240        RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
1241        RMW->getOperation() == AtomicRMWInst::BinOp::And ||
1242        RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
1243        RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
1244     return AtomicExpansionKind::None;
1245 
1246   return AtomicExpansionKind::CmpXChg;
1247 }
1248 
1249 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1250   // We can use CGFI or CLGFI.
1251   return isInt<32>(Imm) || isUInt<32>(Imm);
1252 }
1253 
1254 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1255   // We can use ALGFI or SLGFI.
1256   return isUInt<32>(Imm) || isUInt<32>(-Imm);
1257 }
1258 
1259 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
1260     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
1261   // Unaligned accesses should never be slower than the expanded version.
1262   // We check specifically for aligned accesses in the few cases where
1263   // they are required.
1264   if (Fast)
1265     *Fast = 1;
1266   return true;
1267 }
1268 
1269 // Information about the addressing mode for a memory access.
1270 struct AddressingMode {
1271   // True if a long displacement is supported.
1272   bool LongDisplacement;
1273 
1274   // True if use of index register is supported.
1275   bool IndexReg;
1276 
1277   AddressingMode(bool LongDispl, bool IdxReg) :
1278     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
1279 };
1280 
1281 // Return the desired addressing mode for a Load which has only one use (in
1282 // the same block) which is a Store.
1283 static AddressingMode getLoadStoreAddrMode(bool HasVector,
1284                                           Type *Ty) {
1285   // With vector support a Load->Store combination may be combined to either
1286   // an MVC or vector operations and it seems to work best to allow the
1287   // vector addressing mode.
1288   if (HasVector)
1289     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1290 
1291   // Otherwise only the MVC case is special.
1292   bool MVC = Ty->isIntegerTy(8);
1293   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
1294 }
1295 
1296 // Return the addressing mode which seems most desirable given an LLVM
1297 // Instruction pointer.
1298 static AddressingMode
1299 supportedAddressingMode(Instruction *I, bool HasVector) {
1300   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1301     switch (II->getIntrinsicID()) {
1302     default: break;
1303     case Intrinsic::memset:
1304     case Intrinsic::memmove:
1305     case Intrinsic::memcpy:
1306       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1307     }
1308   }
1309 
1310   if (isa<LoadInst>(I) && I->hasOneUse()) {
1311     auto *SingleUser = cast<Instruction>(*I->user_begin());
1312     if (SingleUser->getParent() == I->getParent()) {
1313       if (isa<ICmpInst>(SingleUser)) {
1314         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1315           if (C->getBitWidth() <= 64 &&
1316               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1317             // Comparison of memory with 16 bit signed / unsigned immediate
1318             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1319       } else if (isa<StoreInst>(SingleUser))
1320         // Load->Store
1321         return getLoadStoreAddrMode(HasVector, I->getType());
1322     }
1323   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1324     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1325       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1326         // Load->Store
1327         return getLoadStoreAddrMode(HasVector, LoadI->getType());
1328   }
1329 
1330   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1331 
1332     // * Use LDE instead of LE/LEY for z13 to avoid partial register
1333     //   dependencies (LDE only supports small offsets).
1334     // * Utilize the vector registers to hold floating point
1335     //   values (vector load / store instructions only support small
1336     //   offsets).
1337 
1338     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1339                          I->getOperand(0)->getType());
1340     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1341     bool IsVectorAccess = MemAccessTy->isVectorTy();
1342 
1343     // A store of an extracted vector element will be combined into a VSTE type
1344     // instruction.
1345     if (!IsVectorAccess && isa<StoreInst>(I)) {
1346       Value *DataOp = I->getOperand(0);
1347       if (isa<ExtractElementInst>(DataOp))
1348         IsVectorAccess = true;
1349     }
1350 
1351     // A load which gets inserted into a vector element will be combined into a
1352     // VLE type instruction.
1353     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1354       User *LoadUser = *I->user_begin();
1355       if (isa<InsertElementInst>(LoadUser))
1356         IsVectorAccess = true;
1357     }
1358 
1359     if (IsFPAccess || IsVectorAccess)
1360       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1361   }
1362 
1363   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1364 }
1365 
1366 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1367        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1368   // Punt on globals for now, although they can be used in limited
1369   // RELATIVE LONG cases.
1370   if (AM.BaseGV)
1371     return false;
1372 
1373   // Require a 20-bit signed offset.
1374   if (!isInt<20>(AM.BaseOffs))
1375     return false;
1376 
1377   bool RequireD12 =
1378       Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1379   AddressingMode SupportedAM(!RequireD12, true);
1380   if (I != nullptr)
1381     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1382 
1383   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1384     return false;
1385 
1386   if (!SupportedAM.IndexReg)
1387     // No indexing allowed.
1388     return AM.Scale == 0;
1389   else
1390     // Indexing is OK but no scale factor can be applied.
1391     return AM.Scale == 0 || AM.Scale == 1;
1392 }
1393 
1394 bool SystemZTargetLowering::findOptimalMemOpLowering(
1395     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1396     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1397   const int MVCFastLen = 16;
1398 
1399   if (Limit != ~unsigned(0)) {
1400     // Don't expand Op into scalar loads/stores in these cases:
1401     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1402       return false; // Small memcpy: Use MVC
1403     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1404       return false; // Small memset (first byte with STC/MVI): Use MVC
1405     if (Op.isZeroMemset())
1406       return false; // Memset zero: Use XC
1407   }
1408 
1409   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1410                                                   SrcAS, FuncAttributes);
1411 }
1412 
1413 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1414                                    const AttributeList &FuncAttributes) const {
1415   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1416 }
1417 
1418 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1419   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1420     return false;
1421   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1422   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1423   return FromBits > ToBits;
1424 }
1425 
1426 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1427   if (!FromVT.isInteger() || !ToVT.isInteger())
1428     return false;
1429   unsigned FromBits = FromVT.getFixedSizeInBits();
1430   unsigned ToBits = ToVT.getFixedSizeInBits();
1431   return FromBits > ToBits;
1432 }
1433 
1434 //===----------------------------------------------------------------------===//
1435 // Inline asm support
1436 //===----------------------------------------------------------------------===//
1437 
1438 TargetLowering::ConstraintType
1439 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1440   if (Constraint.size() == 1) {
1441     switch (Constraint[0]) {
1442     case 'a': // Address register
1443     case 'd': // Data register (equivalent to 'r')
1444     case 'f': // Floating-point register
1445     case 'h': // High-part register
1446     case 'r': // General-purpose register
1447     case 'v': // Vector register
1448       return C_RegisterClass;
1449 
1450     case 'Q': // Memory with base and unsigned 12-bit displacement
1451     case 'R': // Likewise, plus an index
1452     case 'S': // Memory with base and signed 20-bit displacement
1453     case 'T': // Likewise, plus an index
1454     case 'm': // Equivalent to 'T'.
1455       return C_Memory;
1456 
1457     case 'I': // Unsigned 8-bit constant
1458     case 'J': // Unsigned 12-bit constant
1459     case 'K': // Signed 16-bit constant
1460     case 'L': // Signed 20-bit displacement (on all targets we support)
1461     case 'M': // 0x7fffffff
1462       return C_Immediate;
1463 
1464     default:
1465       break;
1466     }
1467   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1468     switch (Constraint[1]) {
1469     case 'Q': // Address with base and unsigned 12-bit displacement
1470     case 'R': // Likewise, plus an index
1471     case 'S': // Address with base and signed 20-bit displacement
1472     case 'T': // Likewise, plus an index
1473       return C_Address;
1474 
1475     default:
1476       break;
1477     }
1478   }
1479   return TargetLowering::getConstraintType(Constraint);
1480 }
1481 
1482 TargetLowering::ConstraintWeight SystemZTargetLowering::
1483 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1484                                const char *constraint) const {
1485   ConstraintWeight weight = CW_Invalid;
1486   Value *CallOperandVal = info.CallOperandVal;
1487   // If we don't have a value, we can't do a match,
1488   // but allow it at the lowest weight.
1489   if (!CallOperandVal)
1490     return CW_Default;
1491   Type *type = CallOperandVal->getType();
1492   // Look at the constraint type.
1493   switch (*constraint) {
1494   default:
1495     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1496     break;
1497 
1498   case 'a': // Address register
1499   case 'd': // Data register (equivalent to 'r')
1500   case 'h': // High-part register
1501   case 'r': // General-purpose register
1502     weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1503     break;
1504 
1505   case 'f': // Floating-point register
1506     if (!useSoftFloat())
1507       weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1508     break;
1509 
1510   case 'v': // Vector register
1511     if (Subtarget.hasVector())
1512       weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1513                                                                  : CW_Default;
1514     break;
1515 
1516   case 'I': // Unsigned 8-bit constant
1517     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1518       if (isUInt<8>(C->getZExtValue()))
1519         weight = CW_Constant;
1520     break;
1521 
1522   case 'J': // Unsigned 12-bit constant
1523     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1524       if (isUInt<12>(C->getZExtValue()))
1525         weight = CW_Constant;
1526     break;
1527 
1528   case 'K': // Signed 16-bit constant
1529     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1530       if (isInt<16>(C->getSExtValue()))
1531         weight = CW_Constant;
1532     break;
1533 
1534   case 'L': // Signed 20-bit displacement (on all targets we support)
1535     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1536       if (isInt<20>(C->getSExtValue()))
1537         weight = CW_Constant;
1538     break;
1539 
1540   case 'M': // 0x7fffffff
1541     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1542       if (C->getZExtValue() == 0x7fffffff)
1543         weight = CW_Constant;
1544     break;
1545   }
1546   return weight;
1547 }
1548 
1549 // Parse a "{tNNN}" register constraint for which the register type "t"
1550 // has already been verified.  MC is the class associated with "t" and
1551 // Map maps 0-based register numbers to LLVM register numbers.
1552 static std::pair<unsigned, const TargetRegisterClass *>
1553 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1554                     const unsigned *Map, unsigned Size) {
1555   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1556   if (isdigit(Constraint[2])) {
1557     unsigned Index;
1558     bool Failed =
1559         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1560     if (!Failed && Index < Size && Map[Index])
1561       return std::make_pair(Map[Index], RC);
1562   }
1563   return std::make_pair(0U, nullptr);
1564 }
1565 
1566 std::pair<unsigned, const TargetRegisterClass *>
1567 SystemZTargetLowering::getRegForInlineAsmConstraint(
1568     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1569   if (Constraint.size() == 1) {
1570     // GCC Constraint Letters
1571     switch (Constraint[0]) {
1572     default: break;
1573     case 'd': // Data register (equivalent to 'r')
1574     case 'r': // General-purpose register
1575       if (VT.getSizeInBits() == 64)
1576         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1577       else if (VT.getSizeInBits() == 128)
1578         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1579       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1580 
1581     case 'a': // Address register
1582       if (VT == MVT::i64)
1583         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1584       else if (VT == MVT::i128)
1585         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1586       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1587 
1588     case 'h': // High-part register (an LLVM extension)
1589       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1590 
1591     case 'f': // Floating-point register
1592       if (!useSoftFloat()) {
1593         if (VT.getSizeInBits() == 64)
1594           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1595         else if (VT.getSizeInBits() == 128)
1596           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1597         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1598       }
1599       break;
1600 
1601     case 'v': // Vector register
1602       if (Subtarget.hasVector()) {
1603         if (VT.getSizeInBits() == 32)
1604           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1605         if (VT.getSizeInBits() == 64)
1606           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1607         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1608       }
1609       break;
1610     }
1611   }
1612   if (Constraint.starts_with("{")) {
1613 
1614     // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1615     // to check the size on.
1616     auto getVTSizeInBits = [&VT]() {
1617       return VT == MVT::Other ? 0 : VT.getSizeInBits();
1618     };
1619 
1620     // We need to override the default register parsing for GPRs and FPRs
1621     // because the interpretation depends on VT.  The internal names of
1622     // the registers are also different from the external names
1623     // (F0D and F0S instead of F0, etc.).
1624     if (Constraint[1] == 'r') {
1625       if (getVTSizeInBits() == 32)
1626         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1627                                    SystemZMC::GR32Regs, 16);
1628       if (getVTSizeInBits() == 128)
1629         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1630                                    SystemZMC::GR128Regs, 16);
1631       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1632                                  SystemZMC::GR64Regs, 16);
1633     }
1634     if (Constraint[1] == 'f') {
1635       if (useSoftFloat())
1636         return std::make_pair(
1637             0u, static_cast<const TargetRegisterClass *>(nullptr));
1638       if (getVTSizeInBits() == 32)
1639         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1640                                    SystemZMC::FP32Regs, 16);
1641       if (getVTSizeInBits() == 128)
1642         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1643                                    SystemZMC::FP128Regs, 16);
1644       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1645                                  SystemZMC::FP64Regs, 16);
1646     }
1647     if (Constraint[1] == 'v') {
1648       if (!Subtarget.hasVector())
1649         return std::make_pair(
1650             0u, static_cast<const TargetRegisterClass *>(nullptr));
1651       if (getVTSizeInBits() == 32)
1652         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1653                                    SystemZMC::VR32Regs, 32);
1654       if (getVTSizeInBits() == 64)
1655         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1656                                    SystemZMC::VR64Regs, 32);
1657       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1658                                  SystemZMC::VR128Regs, 32);
1659     }
1660   }
1661   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1662 }
1663 
1664 // FIXME? Maybe this could be a TableGen attribute on some registers and
1665 // this table could be generated automatically from RegInfo.
1666 Register
1667 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1668                                          const MachineFunction &MF) const {
1669   Register Reg =
1670       StringSwitch<Register>(RegName)
1671           .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D
1672                                                    : SystemZ::NoRegister)
1673           .Case("r15",
1674                 Subtarget.isTargetELF() ? SystemZ::R15D : SystemZ::NoRegister)
1675           .Default(SystemZ::NoRegister);
1676 
1677   if (Reg)
1678     return Reg;
1679   report_fatal_error("Invalid register name global variable");
1680 }
1681 
1682 Register SystemZTargetLowering::getExceptionPointerRegister(
1683     const Constant *PersonalityFn) const {
1684   return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1685 }
1686 
1687 Register SystemZTargetLowering::getExceptionSelectorRegister(
1688     const Constant *PersonalityFn) const {
1689   return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1690 }
1691 
1692 void SystemZTargetLowering::LowerAsmOperandForConstraint(
1693     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1694     SelectionDAG &DAG) const {
1695   // Only support length 1 constraints for now.
1696   if (Constraint.size() == 1) {
1697     switch (Constraint[0]) {
1698     case 'I': // Unsigned 8-bit constant
1699       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1700         if (isUInt<8>(C->getZExtValue()))
1701           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1702                                               Op.getValueType()));
1703       return;
1704 
1705     case 'J': // Unsigned 12-bit constant
1706       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1707         if (isUInt<12>(C->getZExtValue()))
1708           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1709                                               Op.getValueType()));
1710       return;
1711 
1712     case 'K': // Signed 16-bit constant
1713       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1714         if (isInt<16>(C->getSExtValue()))
1715           Ops.push_back(DAG.getSignedTargetConstant(
1716               C->getSExtValue(), SDLoc(Op), Op.getValueType()));
1717       return;
1718 
1719     case 'L': // Signed 20-bit displacement (on all targets we support)
1720       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1721         if (isInt<20>(C->getSExtValue()))
1722           Ops.push_back(DAG.getSignedTargetConstant(
1723               C->getSExtValue(), SDLoc(Op), Op.getValueType()));
1724       return;
1725 
1726     case 'M': // 0x7fffffff
1727       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1728         if (C->getZExtValue() == 0x7fffffff)
1729           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1730                                               Op.getValueType()));
1731       return;
1732     }
1733   }
1734   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1735 }
1736 
1737 //===----------------------------------------------------------------------===//
1738 // Calling conventions
1739 //===----------------------------------------------------------------------===//
1740 
1741 #include "SystemZGenCallingConv.inc"
1742 
1743 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1744   CallingConv::ID) const {
1745   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1746                                            SystemZ::R14D, 0 };
1747   return ScratchRegs;
1748 }
1749 
1750 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1751                                                      Type *ToType) const {
1752   return isTruncateFree(FromType, ToType);
1753 }
1754 
1755 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1756   return CI->isTailCall();
1757 }
1758 
1759 // Value is a value that has been passed to us in the location described by VA
1760 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1761 // any loads onto Chain.
1762 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1763                                    CCValAssign &VA, SDValue Chain,
1764                                    SDValue Value) {
1765   // If the argument has been promoted from a smaller type, insert an
1766   // assertion to capture this.
1767   if (VA.getLocInfo() == CCValAssign::SExt)
1768     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1769                         DAG.getValueType(VA.getValVT()));
1770   else if (VA.getLocInfo() == CCValAssign::ZExt)
1771     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1772                         DAG.getValueType(VA.getValVT()));
1773 
1774   if (VA.isExtInLoc())
1775     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1776   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1777     // If this is a short vector argument loaded from the stack,
1778     // extend from i64 to full vector size and then bitcast.
1779     assert(VA.getLocVT() == MVT::i64);
1780     assert(VA.getValVT().isVector());
1781     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1782     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1783   } else
1784     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1785   return Value;
1786 }
1787 
1788 // Value is a value of type VA.getValVT() that we need to copy into
1789 // the location described by VA.  Return a copy of Value converted to
1790 // VA.getValVT().  The caller is responsible for handling indirect values.
1791 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1792                                    CCValAssign &VA, SDValue Value) {
1793   switch (VA.getLocInfo()) {
1794   case CCValAssign::SExt:
1795     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1796   case CCValAssign::ZExt:
1797     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1798   case CCValAssign::AExt:
1799     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1800   case CCValAssign::BCvt: {
1801     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1802     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1803            VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1804     // For an f32 vararg we need to first promote it to an f64 and then
1805     // bitcast it to an i64.
1806     if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1807       Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1808     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1809                             ? MVT::v2i64
1810                             : VA.getLocVT();
1811     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1812     // For ELF, this is a short vector argument to be stored to the stack,
1813     // bitcast to v2i64 and then extract first element.
1814     if (BitCastToType == MVT::v2i64)
1815       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1816                          DAG.getConstant(0, DL, MVT::i32));
1817     return Value;
1818   }
1819   case CCValAssign::Full:
1820     return Value;
1821   default:
1822     llvm_unreachable("Unhandled getLocInfo()");
1823   }
1824 }
1825 
1826 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1827   SDLoc DL(In);
1828   SDValue Lo, Hi;
1829   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1830     Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1831     Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1832                      DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1833                                  DAG.getConstant(64, DL, MVT::i32)));
1834   } else {
1835     std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1836   }
1837 
1838   // FIXME: If v2i64 were a legal type, we could use it instead of
1839   // Untyped here.  This might enable improved folding.
1840   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1841                                     MVT::Untyped, Hi, Lo);
1842   return SDValue(Pair, 0);
1843 }
1844 
1845 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1846   SDLoc DL(In);
1847   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1848                                           DL, MVT::i64, In);
1849   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1850                                           DL, MVT::i64, In);
1851 
1852   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1853     Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1854     Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1855     Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1856                      DAG.getConstant(64, DL, MVT::i32));
1857     return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1858   } else {
1859     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1860   }
1861 }
1862 
1863 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1864     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1865     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1866   EVT ValueVT = Val.getValueType();
1867   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1868     // Inline assembly operand.
1869     Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1870     return true;
1871   }
1872 
1873   return false;
1874 }
1875 
1876 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1877     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1878     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1879   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1880     // Inline assembly operand.
1881     SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1882     return DAG.getBitcast(ValueVT, Res);
1883   }
1884 
1885   return SDValue();
1886 }
1887 
1888 SDValue SystemZTargetLowering::LowerFormalArguments(
1889     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1890     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1891     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1892   MachineFunction &MF = DAG.getMachineFunction();
1893   MachineFrameInfo &MFI = MF.getFrameInfo();
1894   MachineRegisterInfo &MRI = MF.getRegInfo();
1895   SystemZMachineFunctionInfo *FuncInfo =
1896       MF.getInfo<SystemZMachineFunctionInfo>();
1897   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1898   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1899 
1900   // Assign locations to all of the incoming arguments.
1901   SmallVector<CCValAssign, 16> ArgLocs;
1902   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1903   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1904   FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1905 
1906   unsigned NumFixedGPRs = 0;
1907   unsigned NumFixedFPRs = 0;
1908   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1909     SDValue ArgValue;
1910     CCValAssign &VA = ArgLocs[I];
1911     EVT LocVT = VA.getLocVT();
1912     if (VA.isRegLoc()) {
1913       // Arguments passed in registers
1914       const TargetRegisterClass *RC;
1915       switch (LocVT.getSimpleVT().SimpleTy) {
1916       default:
1917         // Integers smaller than i64 should be promoted to i64.
1918         llvm_unreachable("Unexpected argument type");
1919       case MVT::i32:
1920         NumFixedGPRs += 1;
1921         RC = &SystemZ::GR32BitRegClass;
1922         break;
1923       case MVT::i64:
1924         NumFixedGPRs += 1;
1925         RC = &SystemZ::GR64BitRegClass;
1926         break;
1927       case MVT::f32:
1928         NumFixedFPRs += 1;
1929         RC = &SystemZ::FP32BitRegClass;
1930         break;
1931       case MVT::f64:
1932         NumFixedFPRs += 1;
1933         RC = &SystemZ::FP64BitRegClass;
1934         break;
1935       case MVT::f128:
1936         NumFixedFPRs += 2;
1937         RC = &SystemZ::FP128BitRegClass;
1938         break;
1939       case MVT::v16i8:
1940       case MVT::v8i16:
1941       case MVT::v4i32:
1942       case MVT::v2i64:
1943       case MVT::v4f32:
1944       case MVT::v2f64:
1945         RC = &SystemZ::VR128BitRegClass;
1946         break;
1947       }
1948 
1949       Register VReg = MRI.createVirtualRegister(RC);
1950       MRI.addLiveIn(VA.getLocReg(), VReg);
1951       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1952     } else {
1953       assert(VA.isMemLoc() && "Argument not register or memory");
1954 
1955       // Create the frame index object for this incoming parameter.
1956       // FIXME: Pre-include call frame size in the offset, should not
1957       // need to manually add it here.
1958       int64_t ArgSPOffset = VA.getLocMemOffset();
1959       if (Subtarget.isTargetXPLINK64()) {
1960         auto &XPRegs =
1961             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1962         ArgSPOffset += XPRegs.getCallFrameSize();
1963       }
1964       int FI =
1965           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1966 
1967       // Create the SelectionDAG nodes corresponding to a load
1968       // from this parameter.  Unpromoted ints and floats are
1969       // passed as right-justified 8-byte values.
1970       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1971       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1972         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1973                           DAG.getIntPtrConstant(4, DL));
1974       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1975                              MachinePointerInfo::getFixedStack(MF, FI));
1976     }
1977 
1978     // Convert the value of the argument register into the value that's
1979     // being passed.
1980     if (VA.getLocInfo() == CCValAssign::Indirect) {
1981       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1982                                    MachinePointerInfo()));
1983       // If the original argument was split (e.g. i128), we need
1984       // to load all parts of it here (using the same address).
1985       unsigned ArgIndex = Ins[I].OrigArgIndex;
1986       assert (Ins[I].PartOffset == 0);
1987       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1988         CCValAssign &PartVA = ArgLocs[I + 1];
1989         unsigned PartOffset = Ins[I + 1].PartOffset;
1990         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1991                                       DAG.getIntPtrConstant(PartOffset, DL));
1992         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1993                                      MachinePointerInfo()));
1994         ++I;
1995       }
1996     } else
1997       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1998   }
1999 
2000   if (IsVarArg && Subtarget.isTargetXPLINK64()) {
2001     // Save the number of non-varargs registers for later use by va_start, etc.
2002     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
2003     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
2004 
2005     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
2006         Subtarget.getSpecialRegisters());
2007 
2008     // Likewise the address (in the form of a frame index) of where the
2009     // first stack vararg would be.  The 1-byte size here is arbitrary.
2010     // FIXME: Pre-include call frame size in the offset, should not
2011     // need to manually add it here.
2012     int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
2013     int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
2014     FuncInfo->setVarArgsFrameIndex(FI);
2015   }
2016 
2017   if (IsVarArg && Subtarget.isTargetELF()) {
2018     // Save the number of non-varargs registers for later use by va_start, etc.
2019     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
2020     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
2021 
2022     // Likewise the address (in the form of a frame index) of where the
2023     // first stack vararg would be.  The 1-byte size here is arbitrary.
2024     int64_t VarArgsOffset = CCInfo.getStackSize();
2025     FuncInfo->setVarArgsFrameIndex(
2026         MFI.CreateFixedObject(1, VarArgsOffset, true));
2027 
2028     // ...and a similar frame index for the caller-allocated save area
2029     // that will be used to store the incoming registers.
2030     int64_t RegSaveOffset =
2031       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
2032     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
2033     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
2034 
2035     // Store the FPR varargs in the reserved frame slots.  (We store the
2036     // GPRs as part of the prologue.)
2037     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
2038       SDValue MemOps[SystemZ::ELFNumArgFPRs];
2039       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
2040         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
2041         int FI =
2042           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
2043         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2044         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
2045                                      &SystemZ::FP64BitRegClass);
2046         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
2047         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
2048                                  MachinePointerInfo::getFixedStack(MF, FI));
2049       }
2050       // Join the stores, which are independent of one another.
2051       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2052                           ArrayRef(&MemOps[NumFixedFPRs],
2053                                    SystemZ::ELFNumArgFPRs - NumFixedFPRs));
2054     }
2055   }
2056 
2057   if (Subtarget.isTargetXPLINK64()) {
2058     // Create virual register  for handling incoming "ADA" special register (R5)
2059     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
2060     Register ADAvReg = MRI.createVirtualRegister(RC);
2061     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
2062         Subtarget.getSpecialRegisters());
2063     MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
2064     FuncInfo->setADAVirtualRegister(ADAvReg);
2065   }
2066   return Chain;
2067 }
2068 
2069 static bool canUseSiblingCall(const CCState &ArgCCInfo,
2070                               SmallVectorImpl<CCValAssign> &ArgLocs,
2071                               SmallVectorImpl<ISD::OutputArg> &Outs) {
2072   // Punt if there are any indirect or stack arguments, or if the call
2073   // needs the callee-saved argument register R6, or if the call uses
2074   // the callee-saved register arguments SwiftSelf and SwiftError.
2075   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
2076     CCValAssign &VA = ArgLocs[I];
2077     if (VA.getLocInfo() == CCValAssign::Indirect)
2078       return false;
2079     if (!VA.isRegLoc())
2080       return false;
2081     Register Reg = VA.getLocReg();
2082     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
2083       return false;
2084     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
2085       return false;
2086   }
2087   return true;
2088 }
2089 
2090 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
2091                            unsigned Offset, bool LoadAdr = false) {
2092   MachineFunction &MF = DAG.getMachineFunction();
2093   SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
2094   unsigned ADAvReg = MFI->getADAVirtualRegister();
2095   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2096 
2097   SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
2098   SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
2099 
2100   SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
2101   if (!LoadAdr)
2102     Result = DAG.getLoad(
2103         PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
2104         MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
2105 
2106   return Result;
2107 }
2108 
2109 // ADA access using Global value
2110 // Note: for functions, address of descriptor is returned
2111 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
2112                            EVT PtrVT) {
2113   unsigned ADAtype;
2114   bool LoadAddr = false;
2115   const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
2116   bool IsFunction =
2117       (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
2118   bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
2119 
2120   if (IsFunction) {
2121     if (IsInternal) {
2122       ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
2123       LoadAddr = true;
2124     } else
2125       ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
2126   } else {
2127     ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
2128   }
2129   SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
2130 
2131   return getADAEntry(DAG, Val, DL, 0, LoadAddr);
2132 }
2133 
2134 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
2135                                SDLoc &DL, SDValue &Chain) {
2136   unsigned ADADelta = 0; // ADA offset in desc.
2137   unsigned EPADelta = 8; // EPA offset in desc.
2138   MachineFunction &MF = DAG.getMachineFunction();
2139   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2140 
2141   // XPLink calling convention.
2142   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2143     bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
2144                        G->getGlobal()->hasPrivateLinkage());
2145     if (IsInternal) {
2146       SystemZMachineFunctionInfo *MFI =
2147           MF.getInfo<SystemZMachineFunctionInfo>();
2148       unsigned ADAvReg = MFI->getADAVirtualRegister();
2149       ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
2150       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2151       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2152       return true;
2153     } else {
2154       SDValue GA = DAG.getTargetGlobalAddress(
2155           G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
2156       ADA = getADAEntry(DAG, GA, DL, ADADelta);
2157       Callee = getADAEntry(DAG, GA, DL, EPADelta);
2158     }
2159   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2160     SDValue ES = DAG.getTargetExternalSymbol(
2161         E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
2162     ADA = getADAEntry(DAG, ES, DL, ADADelta);
2163     Callee = getADAEntry(DAG, ES, DL, EPADelta);
2164   } else {
2165     // Function pointer case
2166     ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
2167                       DAG.getConstant(ADADelta, DL, PtrVT));
2168     ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
2169                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2170     Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
2171                          DAG.getConstant(EPADelta, DL, PtrVT));
2172     Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
2173                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2174   }
2175   return false;
2176 }
2177 
2178 SDValue
2179 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
2180                                  SmallVectorImpl<SDValue> &InVals) const {
2181   SelectionDAG &DAG = CLI.DAG;
2182   SDLoc &DL = CLI.DL;
2183   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2184   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2185   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2186   SDValue Chain = CLI.Chain;
2187   SDValue Callee = CLI.Callee;
2188   bool &IsTailCall = CLI.IsTailCall;
2189   CallingConv::ID CallConv = CLI.CallConv;
2190   bool IsVarArg = CLI.IsVarArg;
2191   MachineFunction &MF = DAG.getMachineFunction();
2192   EVT PtrVT = getPointerTy(MF.getDataLayout());
2193   LLVMContext &Ctx = *DAG.getContext();
2194   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
2195 
2196   // FIXME: z/OS support to be added in later.
2197   if (Subtarget.isTargetXPLINK64())
2198     IsTailCall = false;
2199 
2200   // Integer args <=32 bits should have an extension attribute.
2201   verifyNarrowIntegerArgs_Call(Outs, &MF.getFunction(), Callee);
2202 
2203   // Analyze the operands of the call, assigning locations to each operand.
2204   SmallVector<CCValAssign, 16> ArgLocs;
2205   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
2206   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
2207 
2208   // We don't support GuaranteedTailCallOpt, only automatically-detected
2209   // sibling calls.
2210   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
2211     IsTailCall = false;
2212 
2213   // Get a count of how many bytes are to be pushed on the stack.
2214   unsigned NumBytes = ArgCCInfo.getStackSize();
2215 
2216   // Mark the start of the call.
2217   if (!IsTailCall)
2218     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
2219 
2220   // Copy argument values to their designated locations.
2221   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
2222   SmallVector<SDValue, 8> MemOpChains;
2223   SDValue StackPtr;
2224   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
2225     CCValAssign &VA = ArgLocs[I];
2226     SDValue ArgValue = OutVals[I];
2227 
2228     if (VA.getLocInfo() == CCValAssign::Indirect) {
2229       // Store the argument in a stack slot and pass its address.
2230       unsigned ArgIndex = Outs[I].OrigArgIndex;
2231       EVT SlotVT;
2232       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
2233         // Allocate the full stack space for a promoted (and split) argument.
2234         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
2235         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
2236         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
2237         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
2238         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
2239       } else {
2240         SlotVT = Outs[I].VT;
2241       }
2242       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
2243       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2244       MemOpChains.push_back(
2245           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2246                        MachinePointerInfo::getFixedStack(MF, FI)));
2247       // If the original argument was split (e.g. i128), we need
2248       // to store all parts of it here (and pass just one address).
2249       assert (Outs[I].PartOffset == 0);
2250       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
2251         SDValue PartValue = OutVals[I + 1];
2252         unsigned PartOffset = Outs[I + 1].PartOffset;
2253         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2254                                       DAG.getIntPtrConstant(PartOffset, DL));
2255         MemOpChains.push_back(
2256             DAG.getStore(Chain, DL, PartValue, Address,
2257                          MachinePointerInfo::getFixedStack(MF, FI)));
2258         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
2259                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
2260         ++I;
2261       }
2262       ArgValue = SpillSlot;
2263     } else
2264       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
2265 
2266     if (VA.isRegLoc()) {
2267       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
2268       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
2269       // and low values.
2270       if (VA.getLocVT() == MVT::i128)
2271         ArgValue = lowerI128ToGR128(DAG, ArgValue);
2272       // Queue up the argument copies and emit them at the end.
2273       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2274     } else {
2275       assert(VA.isMemLoc() && "Argument not register or memory");
2276 
2277       // Work out the address of the stack slot.  Unpromoted ints and
2278       // floats are passed as right-justified 8-byte values.
2279       if (!StackPtr.getNode())
2280         StackPtr = DAG.getCopyFromReg(Chain, DL,
2281                                       Regs->getStackPointerRegister(), PtrVT);
2282       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
2283                         VA.getLocMemOffset();
2284       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
2285         Offset += 4;
2286       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2287                                     DAG.getIntPtrConstant(Offset, DL));
2288 
2289       // Emit the store.
2290       MemOpChains.push_back(
2291           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2292 
2293       // Although long doubles or vectors are passed through the stack when
2294       // they are vararg (non-fixed arguments), if a long double or vector
2295       // occupies the third and fourth slot of the argument list GPR3 should
2296       // still shadow the third slot of the argument list.
2297       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
2298         SDValue ShadowArgValue =
2299             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
2300                         DAG.getIntPtrConstant(1, DL));
2301         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
2302       }
2303     }
2304   }
2305 
2306   // Join the stores, which are independent of one another.
2307   if (!MemOpChains.empty())
2308     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2309 
2310   // Accept direct calls by converting symbolic call addresses to the
2311   // associated Target* opcodes.  Force %r1 to be used for indirect
2312   // tail calls.
2313   SDValue Glue;
2314 
2315   if (Subtarget.isTargetXPLINK64()) {
2316     SDValue ADA;
2317     bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2318     if (!IsBRASL) {
2319       unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2320                                ->getAddressOfCalleeRegister();
2321       Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2322       Glue = Chain.getValue(1);
2323       Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2324     }
2325     RegsToPass.push_back(std::make_pair(
2326         static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2327   } else {
2328     if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2329       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2330       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2331     } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2332       Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2333       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2334     } else if (IsTailCall) {
2335       Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2336       Glue = Chain.getValue(1);
2337       Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2338     }
2339   }
2340 
2341   // Build a sequence of copy-to-reg nodes, chained and glued together.
2342   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2343     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2344                              RegsToPass[I].second, Glue);
2345     Glue = Chain.getValue(1);
2346   }
2347 
2348   // The first call operand is the chain and the second is the target address.
2349   SmallVector<SDValue, 8> Ops;
2350   Ops.push_back(Chain);
2351   Ops.push_back(Callee);
2352 
2353   // Add argument registers to the end of the list so that they are
2354   // known live into the call.
2355   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2356     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2357                                   RegsToPass[I].second.getValueType()));
2358 
2359   // Add a register mask operand representing the call-preserved registers.
2360   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2361   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2362   assert(Mask && "Missing call preserved mask for calling convention");
2363   Ops.push_back(DAG.getRegisterMask(Mask));
2364 
2365   // Glue the call to the argument copies, if any.
2366   if (Glue.getNode())
2367     Ops.push_back(Glue);
2368 
2369   // Emit the call.
2370   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2371   if (IsTailCall) {
2372     SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2373     DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2374     return Ret;
2375   }
2376   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2377   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2378   Glue = Chain.getValue(1);
2379 
2380   // Mark the end of the call, which is glued to the call itself.
2381   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2382   Glue = Chain.getValue(1);
2383 
2384   // Assign locations to each value returned by this call.
2385   SmallVector<CCValAssign, 16> RetLocs;
2386   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2387   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2388 
2389   // Copy all of the result registers out of their specified physreg.
2390   for (CCValAssign &VA : RetLocs) {
2391     // Copy the value out, gluing the copy to the end of the call sequence.
2392     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2393                                           VA.getLocVT(), Glue);
2394     Chain = RetValue.getValue(1);
2395     Glue = RetValue.getValue(2);
2396 
2397     // Convert the value of the return register into the value that's
2398     // being returned.
2399     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2400   }
2401 
2402   return Chain;
2403 }
2404 
2405 // Generate a call taking the given operands as arguments and returning a
2406 // result of type RetVT.
2407 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2408     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2409     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2410     bool DoesNotReturn, bool IsReturnValueUsed) const {
2411   TargetLowering::ArgListTy Args;
2412   Args.reserve(Ops.size());
2413 
2414   TargetLowering::ArgListEntry Entry;
2415   for (SDValue Op : Ops) {
2416     Entry.Node = Op;
2417     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2418     Entry.IsSExt = shouldSignExtendTypeInLibCall(Entry.Ty, IsSigned);
2419     Entry.IsZExt = !Entry.IsSExt;
2420     Args.push_back(Entry);
2421   }
2422 
2423   SDValue Callee =
2424       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2425 
2426   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2427   TargetLowering::CallLoweringInfo CLI(DAG);
2428   bool SignExtend = shouldSignExtendTypeInLibCall(RetTy, IsSigned);
2429   CLI.setDebugLoc(DL)
2430       .setChain(Chain)
2431       .setCallee(CallConv, RetTy, Callee, std::move(Args))
2432       .setNoReturn(DoesNotReturn)
2433       .setDiscardResult(!IsReturnValueUsed)
2434       .setSExtResult(SignExtend)
2435       .setZExtResult(!SignExtend);
2436   return LowerCallTo(CLI);
2437 }
2438 
2439 bool SystemZTargetLowering::
2440 CanLowerReturn(CallingConv::ID CallConv,
2441                MachineFunction &MF, bool isVarArg,
2442                const SmallVectorImpl<ISD::OutputArg> &Outs,
2443                LLVMContext &Context,
2444                const Type *RetTy) const {
2445   // Special case that we cannot easily detect in RetCC_SystemZ since
2446   // i128 may not be a legal type.
2447   for (auto &Out : Outs)
2448     if (Out.ArgVT == MVT::i128)
2449       return false;
2450 
2451   SmallVector<CCValAssign, 16> RetLocs;
2452   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2453   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2454 }
2455 
2456 SDValue
2457 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2458                                    bool IsVarArg,
2459                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2460                                    const SmallVectorImpl<SDValue> &OutVals,
2461                                    const SDLoc &DL, SelectionDAG &DAG) const {
2462   MachineFunction &MF = DAG.getMachineFunction();
2463 
2464   // Integer args <=32 bits should have an extension attribute.
2465   verifyNarrowIntegerArgs_Ret(Outs, &MF.getFunction());
2466 
2467   // Assign locations to each returned value.
2468   SmallVector<CCValAssign, 16> RetLocs;
2469   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2470   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2471 
2472   // Quick exit for void returns
2473   if (RetLocs.empty())
2474     return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2475 
2476   if (CallConv == CallingConv::GHC)
2477     report_fatal_error("GHC functions return void only");
2478 
2479   // Copy the result values into the output registers.
2480   SDValue Glue;
2481   SmallVector<SDValue, 4> RetOps;
2482   RetOps.push_back(Chain);
2483   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2484     CCValAssign &VA = RetLocs[I];
2485     SDValue RetValue = OutVals[I];
2486 
2487     // Make the return register live on exit.
2488     assert(VA.isRegLoc() && "Can only return in registers!");
2489 
2490     // Promote the value as required.
2491     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2492 
2493     // Chain and glue the copies together.
2494     Register Reg = VA.getLocReg();
2495     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2496     Glue = Chain.getValue(1);
2497     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2498   }
2499 
2500   // Update chain and glue.
2501   RetOps[0] = Chain;
2502   if (Glue.getNode())
2503     RetOps.push_back(Glue);
2504 
2505   return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2506 }
2507 
2508 // Return true if Op is an intrinsic node with chain that returns the CC value
2509 // as its only (other) argument.  Provide the associated SystemZISD opcode and
2510 // the mask of valid CC values if so.
2511 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2512                                       unsigned &CCValid) {
2513   unsigned Id = Op.getConstantOperandVal(1);
2514   switch (Id) {
2515   case Intrinsic::s390_tbegin:
2516     Opcode = SystemZISD::TBEGIN;
2517     CCValid = SystemZ::CCMASK_TBEGIN;
2518     return true;
2519 
2520   case Intrinsic::s390_tbegin_nofloat:
2521     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2522     CCValid = SystemZ::CCMASK_TBEGIN;
2523     return true;
2524 
2525   case Intrinsic::s390_tend:
2526     Opcode = SystemZISD::TEND;
2527     CCValid = SystemZ::CCMASK_TEND;
2528     return true;
2529 
2530   default:
2531     return false;
2532   }
2533 }
2534 
2535 // Return true if Op is an intrinsic node without chain that returns the
2536 // CC value as its final argument.  Provide the associated SystemZISD
2537 // opcode and the mask of valid CC values if so.
2538 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2539   unsigned Id = Op.getConstantOperandVal(0);
2540   switch (Id) {
2541   case Intrinsic::s390_vpkshs:
2542   case Intrinsic::s390_vpksfs:
2543   case Intrinsic::s390_vpksgs:
2544     Opcode = SystemZISD::PACKS_CC;
2545     CCValid = SystemZ::CCMASK_VCMP;
2546     return true;
2547 
2548   case Intrinsic::s390_vpklshs:
2549   case Intrinsic::s390_vpklsfs:
2550   case Intrinsic::s390_vpklsgs:
2551     Opcode = SystemZISD::PACKLS_CC;
2552     CCValid = SystemZ::CCMASK_VCMP;
2553     return true;
2554 
2555   case Intrinsic::s390_vceqbs:
2556   case Intrinsic::s390_vceqhs:
2557   case Intrinsic::s390_vceqfs:
2558   case Intrinsic::s390_vceqgs:
2559   case Intrinsic::s390_vceqqs:
2560     Opcode = SystemZISD::VICMPES;
2561     CCValid = SystemZ::CCMASK_VCMP;
2562     return true;
2563 
2564   case Intrinsic::s390_vchbs:
2565   case Intrinsic::s390_vchhs:
2566   case Intrinsic::s390_vchfs:
2567   case Intrinsic::s390_vchgs:
2568   case Intrinsic::s390_vchqs:
2569     Opcode = SystemZISD::VICMPHS;
2570     CCValid = SystemZ::CCMASK_VCMP;
2571     return true;
2572 
2573   case Intrinsic::s390_vchlbs:
2574   case Intrinsic::s390_vchlhs:
2575   case Intrinsic::s390_vchlfs:
2576   case Intrinsic::s390_vchlgs:
2577   case Intrinsic::s390_vchlqs:
2578     Opcode = SystemZISD::VICMPHLS;
2579     CCValid = SystemZ::CCMASK_VCMP;
2580     return true;
2581 
2582   case Intrinsic::s390_vtm:
2583     Opcode = SystemZISD::VTM;
2584     CCValid = SystemZ::CCMASK_VCMP;
2585     return true;
2586 
2587   case Intrinsic::s390_vfaebs:
2588   case Intrinsic::s390_vfaehs:
2589   case Intrinsic::s390_vfaefs:
2590     Opcode = SystemZISD::VFAE_CC;
2591     CCValid = SystemZ::CCMASK_ANY;
2592     return true;
2593 
2594   case Intrinsic::s390_vfaezbs:
2595   case Intrinsic::s390_vfaezhs:
2596   case Intrinsic::s390_vfaezfs:
2597     Opcode = SystemZISD::VFAEZ_CC;
2598     CCValid = SystemZ::CCMASK_ANY;
2599     return true;
2600 
2601   case Intrinsic::s390_vfeebs:
2602   case Intrinsic::s390_vfeehs:
2603   case Intrinsic::s390_vfeefs:
2604     Opcode = SystemZISD::VFEE_CC;
2605     CCValid = SystemZ::CCMASK_ANY;
2606     return true;
2607 
2608   case Intrinsic::s390_vfeezbs:
2609   case Intrinsic::s390_vfeezhs:
2610   case Intrinsic::s390_vfeezfs:
2611     Opcode = SystemZISD::VFEEZ_CC;
2612     CCValid = SystemZ::CCMASK_ANY;
2613     return true;
2614 
2615   case Intrinsic::s390_vfenebs:
2616   case Intrinsic::s390_vfenehs:
2617   case Intrinsic::s390_vfenefs:
2618     Opcode = SystemZISD::VFENE_CC;
2619     CCValid = SystemZ::CCMASK_ANY;
2620     return true;
2621 
2622   case Intrinsic::s390_vfenezbs:
2623   case Intrinsic::s390_vfenezhs:
2624   case Intrinsic::s390_vfenezfs:
2625     Opcode = SystemZISD::VFENEZ_CC;
2626     CCValid = SystemZ::CCMASK_ANY;
2627     return true;
2628 
2629   case Intrinsic::s390_vistrbs:
2630   case Intrinsic::s390_vistrhs:
2631   case Intrinsic::s390_vistrfs:
2632     Opcode = SystemZISD::VISTR_CC;
2633     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2634     return true;
2635 
2636   case Intrinsic::s390_vstrcbs:
2637   case Intrinsic::s390_vstrchs:
2638   case Intrinsic::s390_vstrcfs:
2639     Opcode = SystemZISD::VSTRC_CC;
2640     CCValid = SystemZ::CCMASK_ANY;
2641     return true;
2642 
2643   case Intrinsic::s390_vstrczbs:
2644   case Intrinsic::s390_vstrczhs:
2645   case Intrinsic::s390_vstrczfs:
2646     Opcode = SystemZISD::VSTRCZ_CC;
2647     CCValid = SystemZ::CCMASK_ANY;
2648     return true;
2649 
2650   case Intrinsic::s390_vstrsb:
2651   case Intrinsic::s390_vstrsh:
2652   case Intrinsic::s390_vstrsf:
2653     Opcode = SystemZISD::VSTRS_CC;
2654     CCValid = SystemZ::CCMASK_ANY;
2655     return true;
2656 
2657   case Intrinsic::s390_vstrszb:
2658   case Intrinsic::s390_vstrszh:
2659   case Intrinsic::s390_vstrszf:
2660     Opcode = SystemZISD::VSTRSZ_CC;
2661     CCValid = SystemZ::CCMASK_ANY;
2662     return true;
2663 
2664   case Intrinsic::s390_vfcedbs:
2665   case Intrinsic::s390_vfcesbs:
2666     Opcode = SystemZISD::VFCMPES;
2667     CCValid = SystemZ::CCMASK_VCMP;
2668     return true;
2669 
2670   case Intrinsic::s390_vfchdbs:
2671   case Intrinsic::s390_vfchsbs:
2672     Opcode = SystemZISD::VFCMPHS;
2673     CCValid = SystemZ::CCMASK_VCMP;
2674     return true;
2675 
2676   case Intrinsic::s390_vfchedbs:
2677   case Intrinsic::s390_vfchesbs:
2678     Opcode = SystemZISD::VFCMPHES;
2679     CCValid = SystemZ::CCMASK_VCMP;
2680     return true;
2681 
2682   case Intrinsic::s390_vftcidb:
2683   case Intrinsic::s390_vftcisb:
2684     Opcode = SystemZISD::VFTCI;
2685     CCValid = SystemZ::CCMASK_VCMP;
2686     return true;
2687 
2688   case Intrinsic::s390_tdc:
2689     Opcode = SystemZISD::TDC;
2690     CCValid = SystemZ::CCMASK_TDC;
2691     return true;
2692 
2693   default:
2694     return false;
2695   }
2696 }
2697 
2698 // Emit an intrinsic with chain and an explicit CC register result.
2699 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2700                                            unsigned Opcode) {
2701   // Copy all operands except the intrinsic ID.
2702   unsigned NumOps = Op.getNumOperands();
2703   SmallVector<SDValue, 6> Ops;
2704   Ops.reserve(NumOps - 1);
2705   Ops.push_back(Op.getOperand(0));
2706   for (unsigned I = 2; I < NumOps; ++I)
2707     Ops.push_back(Op.getOperand(I));
2708 
2709   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2710   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2711   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2712   SDValue OldChain = SDValue(Op.getNode(), 1);
2713   SDValue NewChain = SDValue(Intr.getNode(), 1);
2714   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2715   return Intr.getNode();
2716 }
2717 
2718 // Emit an intrinsic with an explicit CC register result.
2719 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2720                                    unsigned Opcode) {
2721   // Copy all operands except the intrinsic ID.
2722   unsigned NumOps = Op.getNumOperands();
2723   SmallVector<SDValue, 6> Ops;
2724   Ops.reserve(NumOps - 1);
2725   for (unsigned I = 1; I < NumOps; ++I)
2726     Ops.push_back(Op.getOperand(I));
2727 
2728   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2729   return Intr.getNode();
2730 }
2731 
2732 // CC is a comparison that will be implemented using an integer or
2733 // floating-point comparison.  Return the condition code mask for
2734 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2735 // unsigned comparisons and clear for signed ones.  In the floating-point
2736 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2737 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2738 #define CONV(X) \
2739   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2740   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2741   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2742 
2743   switch (CC) {
2744   default:
2745     llvm_unreachable("Invalid integer condition!");
2746 
2747   CONV(EQ);
2748   CONV(NE);
2749   CONV(GT);
2750   CONV(GE);
2751   CONV(LT);
2752   CONV(LE);
2753 
2754   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2755   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2756   }
2757 #undef CONV
2758 }
2759 
2760 // If C can be converted to a comparison against zero, adjust the operands
2761 // as necessary.
2762 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2763   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2764     return;
2765 
2766   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2767   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2768     return;
2769 
2770   int64_t Value = ConstOp1->getSExtValue();
2771   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2772       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2773       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2774       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2775     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2776     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2777   }
2778 }
2779 
2780 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2781 // adjust the operands as necessary.
2782 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2783                              Comparison &C) {
2784   // For us to make any changes, it must a comparison between a single-use
2785   // load and a constant.
2786   if (!C.Op0.hasOneUse() ||
2787       C.Op0.getOpcode() != ISD::LOAD ||
2788       C.Op1.getOpcode() != ISD::Constant)
2789     return;
2790 
2791   // We must have an 8- or 16-bit load.
2792   auto *Load = cast<LoadSDNode>(C.Op0);
2793   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2794   if ((NumBits != 8 && NumBits != 16) ||
2795       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2796     return;
2797 
2798   // The load must be an extending one and the constant must be within the
2799   // range of the unextended value.
2800   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2801   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2802     return;
2803   uint64_t Value = ConstOp1->getZExtValue();
2804   uint64_t Mask = (1 << NumBits) - 1;
2805   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2806     // Make sure that ConstOp1 is in range of C.Op0.
2807     int64_t SignedValue = ConstOp1->getSExtValue();
2808     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2809       return;
2810     if (C.ICmpType != SystemZICMP::SignedOnly) {
2811       // Unsigned comparison between two sign-extended values is equivalent
2812       // to unsigned comparison between two zero-extended values.
2813       Value &= Mask;
2814     } else if (NumBits == 8) {
2815       // Try to treat the comparison as unsigned, so that we can use CLI.
2816       // Adjust CCMask and Value as necessary.
2817       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2818         // Test whether the high bit of the byte is set.
2819         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2820       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2821         // Test whether the high bit of the byte is clear.
2822         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2823       else
2824         // No instruction exists for this combination.
2825         return;
2826       C.ICmpType = SystemZICMP::UnsignedOnly;
2827     }
2828   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2829     if (Value > Mask)
2830       return;
2831     // If the constant is in range, we can use any comparison.
2832     C.ICmpType = SystemZICMP::Any;
2833   } else
2834     return;
2835 
2836   // Make sure that the first operand is an i32 of the right extension type.
2837   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2838                               ISD::SEXTLOAD :
2839                               ISD::ZEXTLOAD);
2840   if (C.Op0.getValueType() != MVT::i32 ||
2841       Load->getExtensionType() != ExtType) {
2842     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2843                            Load->getBasePtr(), Load->getPointerInfo(),
2844                            Load->getMemoryVT(), Load->getAlign(),
2845                            Load->getMemOperand()->getFlags());
2846     // Update the chain uses.
2847     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2848   }
2849 
2850   // Make sure that the second operand is an i32 with the right value.
2851   if (C.Op1.getValueType() != MVT::i32 ||
2852       Value != ConstOp1->getZExtValue())
2853     C.Op1 = DAG.getConstant((uint32_t)Value, DL, MVT::i32);
2854 }
2855 
2856 // Return true if Op is either an unextended load, or a load suitable
2857 // for integer register-memory comparisons of type ICmpType.
2858 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2859   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2860   if (Load) {
2861     // There are no instructions to compare a register with a memory byte.
2862     if (Load->getMemoryVT() == MVT::i8)
2863       return false;
2864     // Otherwise decide on extension type.
2865     switch (Load->getExtensionType()) {
2866     case ISD::NON_EXTLOAD:
2867       return true;
2868     case ISD::SEXTLOAD:
2869       return ICmpType != SystemZICMP::UnsignedOnly;
2870     case ISD::ZEXTLOAD:
2871       return ICmpType != SystemZICMP::SignedOnly;
2872     default:
2873       break;
2874     }
2875   }
2876   return false;
2877 }
2878 
2879 // Return true if it is better to swap the operands of C.
2880 static bool shouldSwapCmpOperands(const Comparison &C) {
2881   // Leave i128 and f128 comparisons alone, since they have no memory forms.
2882   if (C.Op0.getValueType() == MVT::i128)
2883     return false;
2884   if (C.Op0.getValueType() == MVT::f128)
2885     return false;
2886 
2887   // Always keep a floating-point constant second, since comparisons with
2888   // zero can use LOAD TEST and comparisons with other constants make a
2889   // natural memory operand.
2890   if (isa<ConstantFPSDNode>(C.Op1))
2891     return false;
2892 
2893   // Never swap comparisons with zero since there are many ways to optimize
2894   // those later.
2895   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2896   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2897     return false;
2898 
2899   // Also keep natural memory operands second if the loaded value is
2900   // only used here.  Several comparisons have memory forms.
2901   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2902     return false;
2903 
2904   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2905   // In that case we generally prefer the memory to be second.
2906   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2907     // The only exceptions are when the second operand is a constant and
2908     // we can use things like CHHSI.
2909     if (!ConstOp1)
2910       return true;
2911     // The unsigned memory-immediate instructions can handle 16-bit
2912     // unsigned integers.
2913     if (C.ICmpType != SystemZICMP::SignedOnly &&
2914         isUInt<16>(ConstOp1->getZExtValue()))
2915       return false;
2916     // The signed memory-immediate instructions can handle 16-bit
2917     // signed integers.
2918     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2919         isInt<16>(ConstOp1->getSExtValue()))
2920       return false;
2921     return true;
2922   }
2923 
2924   // Try to promote the use of CGFR and CLGFR.
2925   unsigned Opcode0 = C.Op0.getOpcode();
2926   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2927     return true;
2928   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2929     return true;
2930   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2931       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2932       C.Op0.getConstantOperandVal(1) == 0xffffffff)
2933     return true;
2934 
2935   return false;
2936 }
2937 
2938 // Check whether C tests for equality between X and Y and whether X - Y
2939 // or Y - X is also computed.  In that case it's better to compare the
2940 // result of the subtraction against zero.
2941 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2942                                  Comparison &C) {
2943   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2944       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2945     for (SDNode *N : C.Op0->users()) {
2946       if (N->getOpcode() == ISD::SUB &&
2947           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2948            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2949         // Disable the nsw and nuw flags: the backend needs to handle
2950         // overflow as well during comparison elimination.
2951         N->dropFlags(SDNodeFlags::NoWrap);
2952         C.Op0 = SDValue(N, 0);
2953         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2954         return;
2955       }
2956     }
2957   }
2958 }
2959 
2960 // Check whether C compares a floating-point value with zero and if that
2961 // floating-point value is also negated.  In this case we can use the
2962 // negation to set CC, so avoiding separate LOAD AND TEST and
2963 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2964 static void adjustForFNeg(Comparison &C) {
2965   // This optimization is invalid for strict comparisons, since FNEG
2966   // does not raise any exceptions.
2967   if (C.Chain)
2968     return;
2969   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2970   if (C1 && C1->isZero()) {
2971     for (SDNode *N : C.Op0->users()) {
2972       if (N->getOpcode() == ISD::FNEG) {
2973         C.Op0 = SDValue(N, 0);
2974         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2975         return;
2976       }
2977     }
2978   }
2979 }
2980 
2981 // Check whether C compares (shl X, 32) with 0 and whether X is
2982 // also sign-extended.  In that case it is better to test the result
2983 // of the sign extension using LTGFR.
2984 //
2985 // This case is important because InstCombine transforms a comparison
2986 // with (sext (trunc X)) into a comparison with (shl X, 32).
2987 static void adjustForLTGFR(Comparison &C) {
2988   // Check for a comparison between (shl X, 32) and 0.
2989   if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2990       C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2991     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2992     if (C1 && C1->getZExtValue() == 32) {
2993       SDValue ShlOp0 = C.Op0.getOperand(0);
2994       // See whether X has any SIGN_EXTEND_INREG uses.
2995       for (SDNode *N : ShlOp0->users()) {
2996         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2997             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2998           C.Op0 = SDValue(N, 0);
2999           return;
3000         }
3001       }
3002     }
3003   }
3004 }
3005 
3006 // If C compares the truncation of an extending load, try to compare
3007 // the untruncated value instead.  This exposes more opportunities to
3008 // reuse CC.
3009 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
3010                                Comparison &C) {
3011   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
3012       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
3013       C.Op1.getOpcode() == ISD::Constant &&
3014       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3015       C.Op1->getAsZExtVal() == 0) {
3016     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
3017     if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
3018         C.Op0.getValueSizeInBits().getFixedValue()) {
3019       unsigned Type = L->getExtensionType();
3020       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
3021           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
3022         C.Op0 = C.Op0.getOperand(0);
3023         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
3024       }
3025     }
3026   }
3027 }
3028 
3029 // Return true if shift operation N has an in-range constant shift value.
3030 // Store it in ShiftVal if so.
3031 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
3032   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
3033   if (!Shift)
3034     return false;
3035 
3036   uint64_t Amount = Shift->getZExtValue();
3037   if (Amount >= N.getValueSizeInBits())
3038     return false;
3039 
3040   ShiftVal = Amount;
3041   return true;
3042 }
3043 
3044 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
3045 // instruction and whether the CC value is descriptive enough to handle
3046 // a comparison of type Opcode between the AND result and CmpVal.
3047 // CCMask says which comparison result is being tested and BitSize is
3048 // the number of bits in the operands.  If TEST UNDER MASK can be used,
3049 // return the corresponding CC mask, otherwise return 0.
3050 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
3051                                      uint64_t Mask, uint64_t CmpVal,
3052                                      unsigned ICmpType) {
3053   assert(Mask != 0 && "ANDs with zero should have been removed by now");
3054 
3055   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
3056   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
3057       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
3058     return 0;
3059 
3060   // Work out the masks for the lowest and highest bits.
3061   uint64_t High = llvm::bit_floor(Mask);
3062   uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
3063 
3064   // Signed ordered comparisons are effectively unsigned if the sign
3065   // bit is dropped.
3066   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
3067 
3068   // Check for equality comparisons with 0, or the equivalent.
3069   if (CmpVal == 0) {
3070     if (CCMask == SystemZ::CCMASK_CMP_EQ)
3071       return SystemZ::CCMASK_TM_ALL_0;
3072     if (CCMask == SystemZ::CCMASK_CMP_NE)
3073       return SystemZ::CCMASK_TM_SOME_1;
3074   }
3075   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
3076     if (CCMask == SystemZ::CCMASK_CMP_LT)
3077       return SystemZ::CCMASK_TM_ALL_0;
3078     if (CCMask == SystemZ::CCMASK_CMP_GE)
3079       return SystemZ::CCMASK_TM_SOME_1;
3080   }
3081   if (EffectivelyUnsigned && CmpVal < Low) {
3082     if (CCMask == SystemZ::CCMASK_CMP_LE)
3083       return SystemZ::CCMASK_TM_ALL_0;
3084     if (CCMask == SystemZ::CCMASK_CMP_GT)
3085       return SystemZ::CCMASK_TM_SOME_1;
3086   }
3087 
3088   // Check for equality comparisons with the mask, or the equivalent.
3089   if (CmpVal == Mask) {
3090     if (CCMask == SystemZ::CCMASK_CMP_EQ)
3091       return SystemZ::CCMASK_TM_ALL_1;
3092     if (CCMask == SystemZ::CCMASK_CMP_NE)
3093       return SystemZ::CCMASK_TM_SOME_0;
3094   }
3095   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
3096     if (CCMask == SystemZ::CCMASK_CMP_GT)
3097       return SystemZ::CCMASK_TM_ALL_1;
3098     if (CCMask == SystemZ::CCMASK_CMP_LE)
3099       return SystemZ::CCMASK_TM_SOME_0;
3100   }
3101   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
3102     if (CCMask == SystemZ::CCMASK_CMP_GE)
3103       return SystemZ::CCMASK_TM_ALL_1;
3104     if (CCMask == SystemZ::CCMASK_CMP_LT)
3105       return SystemZ::CCMASK_TM_SOME_0;
3106   }
3107 
3108   // Check for ordered comparisons with the top bit.
3109   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
3110     if (CCMask == SystemZ::CCMASK_CMP_LE)
3111       return SystemZ::CCMASK_TM_MSB_0;
3112     if (CCMask == SystemZ::CCMASK_CMP_GT)
3113       return SystemZ::CCMASK_TM_MSB_1;
3114   }
3115   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
3116     if (CCMask == SystemZ::CCMASK_CMP_LT)
3117       return SystemZ::CCMASK_TM_MSB_0;
3118     if (CCMask == SystemZ::CCMASK_CMP_GE)
3119       return SystemZ::CCMASK_TM_MSB_1;
3120   }
3121 
3122   // If there are just two bits, we can do equality checks for Low and High
3123   // as well.
3124   if (Mask == Low + High) {
3125     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
3126       return SystemZ::CCMASK_TM_MIXED_MSB_0;
3127     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
3128       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
3129     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
3130       return SystemZ::CCMASK_TM_MIXED_MSB_1;
3131     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
3132       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
3133   }
3134 
3135   // Looks like we've exhausted our options.
3136   return 0;
3137 }
3138 
3139 // See whether C can be implemented as a TEST UNDER MASK instruction.
3140 // Update the arguments with the TM version if so.
3141 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
3142                                    Comparison &C) {
3143   // Use VECTOR TEST UNDER MASK for i128 operations.
3144   if (C.Op0.getValueType() == MVT::i128) {
3145     // We can use VTM for EQ/NE comparisons of x & y against 0.
3146     if (C.Op0.getOpcode() == ISD::AND &&
3147         (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3148          C.CCMask == SystemZ::CCMASK_CMP_NE)) {
3149       auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
3150       if (Mask && Mask->getAPIntValue() == 0) {
3151         C.Opcode = SystemZISD::VTM;
3152         C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
3153         C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
3154         C.CCValid = SystemZ::CCMASK_VCMP;
3155         if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
3156           C.CCMask = SystemZ::CCMASK_VCMP_ALL;
3157         else
3158           C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
3159       }
3160     }
3161     return;
3162   }
3163 
3164   // Check that we have a comparison with a constant.
3165   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
3166   if (!ConstOp1)
3167     return;
3168   uint64_t CmpVal = ConstOp1->getZExtValue();
3169 
3170   // Check whether the nonconstant input is an AND with a constant mask.
3171   Comparison NewC(C);
3172   uint64_t MaskVal;
3173   ConstantSDNode *Mask = nullptr;
3174   if (C.Op0.getOpcode() == ISD::AND) {
3175     NewC.Op0 = C.Op0.getOperand(0);
3176     NewC.Op1 = C.Op0.getOperand(1);
3177     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
3178     if (!Mask)
3179       return;
3180     MaskVal = Mask->getZExtValue();
3181   } else {
3182     // There is no instruction to compare with a 64-bit immediate
3183     // so use TMHH instead if possible.  We need an unsigned ordered
3184     // comparison with an i64 immediate.
3185     if (NewC.Op0.getValueType() != MVT::i64 ||
3186         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
3187         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
3188         NewC.ICmpType == SystemZICMP::SignedOnly)
3189       return;
3190     // Convert LE and GT comparisons into LT and GE.
3191     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
3192         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
3193       if (CmpVal == uint64_t(-1))
3194         return;
3195       CmpVal += 1;
3196       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
3197     }
3198     // If the low N bits of Op1 are zero than the low N bits of Op0 can
3199     // be masked off without changing the result.
3200     MaskVal = -(CmpVal & -CmpVal);
3201     NewC.ICmpType = SystemZICMP::UnsignedOnly;
3202   }
3203   if (!MaskVal)
3204     return;
3205 
3206   // Check whether the combination of mask, comparison value and comparison
3207   // type are suitable.
3208   unsigned BitSize = NewC.Op0.getValueSizeInBits();
3209   unsigned NewCCMask, ShiftVal;
3210   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
3211       NewC.Op0.getOpcode() == ISD::SHL &&
3212       isSimpleShift(NewC.Op0, ShiftVal) &&
3213       (MaskVal >> ShiftVal != 0) &&
3214       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
3215       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
3216                                         MaskVal >> ShiftVal,
3217                                         CmpVal >> ShiftVal,
3218                                         SystemZICMP::Any))) {
3219     NewC.Op0 = NewC.Op0.getOperand(0);
3220     MaskVal >>= ShiftVal;
3221   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
3222              NewC.Op0.getOpcode() == ISD::SRL &&
3223              isSimpleShift(NewC.Op0, ShiftVal) &&
3224              (MaskVal << ShiftVal != 0) &&
3225              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
3226              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
3227                                                MaskVal << ShiftVal,
3228                                                CmpVal << ShiftVal,
3229                                                SystemZICMP::UnsignedOnly))) {
3230     NewC.Op0 = NewC.Op0.getOperand(0);
3231     MaskVal <<= ShiftVal;
3232   } else {
3233     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
3234                                      NewC.ICmpType);
3235     if (!NewCCMask)
3236       return;
3237   }
3238 
3239   // Go ahead and make the change.
3240   C.Opcode = SystemZISD::TM;
3241   C.Op0 = NewC.Op0;
3242   if (Mask && Mask->getZExtValue() == MaskVal)
3243     C.Op1 = SDValue(Mask, 0);
3244   else
3245     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
3246   C.CCValid = SystemZ::CCMASK_TM;
3247   C.CCMask = NewCCMask;
3248 }
3249 
3250 // Implement i128 comparison in vector registers.
3251 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
3252                           Comparison &C) {
3253   if (C.Opcode != SystemZISD::ICMP)
3254     return;
3255   if (C.Op0.getValueType() != MVT::i128)
3256     return;
3257   if (DAG.getSubtarget<SystemZSubtarget>().hasVectorEnhancements3())
3258     return;
3259 
3260   // (In-)Equality comparisons can be implemented via VCEQGS.
3261   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3262       C.CCMask == SystemZ::CCMASK_CMP_NE) {
3263     C.Opcode = SystemZISD::VICMPES;
3264     C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
3265     C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
3266     C.CCValid = SystemZ::CCMASK_VCMP;
3267     if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
3268       C.CCMask = SystemZ::CCMASK_VCMP_ALL;
3269     else
3270       C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
3271     return;
3272   }
3273 
3274   // Normalize other comparisons to GT.
3275   bool Swap = false, Invert = false;
3276   switch (C.CCMask) {
3277     case SystemZ::CCMASK_CMP_GT: break;
3278     case SystemZ::CCMASK_CMP_LT: Swap = true; break;
3279     case SystemZ::CCMASK_CMP_LE: Invert = true; break;
3280     case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
3281     default: llvm_unreachable("Invalid integer condition!");
3282   }
3283   if (Swap)
3284     std::swap(C.Op0, C.Op1);
3285 
3286   if (C.ICmpType == SystemZICMP::UnsignedOnly)
3287     C.Opcode = SystemZISD::UCMP128HI;
3288   else
3289     C.Opcode = SystemZISD::SCMP128HI;
3290   C.CCValid = SystemZ::CCMASK_ANY;
3291   C.CCMask = SystemZ::CCMASK_1;
3292 
3293   if (Invert)
3294     C.CCMask ^= C.CCValid;
3295 }
3296 
3297 // See whether the comparison argument contains a redundant AND
3298 // and remove it if so.  This sometimes happens due to the generic
3299 // BRCOND expansion.
3300 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
3301                                   Comparison &C) {
3302   if (C.Op0.getOpcode() != ISD::AND)
3303     return;
3304   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
3305   if (!Mask || Mask->getValueSizeInBits(0) > 64)
3306     return;
3307   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
3308   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
3309     return;
3310 
3311   C.Op0 = C.Op0.getOperand(0);
3312 }
3313 
3314 // Return a Comparison that tests the condition-code result of intrinsic
3315 // node Call against constant integer CC using comparison code Cond.
3316 // Opcode is the opcode of the SystemZISD operation for the intrinsic
3317 // and CCValid is the set of possible condition-code results.
3318 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3319                                   SDValue Call, unsigned CCValid, uint64_t CC,
3320                                   ISD::CondCode Cond) {
3321   Comparison C(Call, SDValue(), SDValue());
3322   C.Opcode = Opcode;
3323   C.CCValid = CCValid;
3324   if (Cond == ISD::SETEQ)
3325     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3326     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3327   else if (Cond == ISD::SETNE)
3328     // ...and the inverse of that.
3329     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3330   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3331     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3332     // always true for CC>3.
3333     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3334   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3335     // ...and the inverse of that.
3336     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3337   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3338     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3339     // always true for CC>3.
3340     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3341   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3342     // ...and the inverse of that.
3343     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3344   else
3345     llvm_unreachable("Unexpected integer comparison type");
3346   C.CCMask &= CCValid;
3347   return C;
3348 }
3349 
3350 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3351 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3352                          ISD::CondCode Cond, const SDLoc &DL,
3353                          SDValue Chain = SDValue(),
3354                          bool IsSignaling = false) {
3355   if (CmpOp1.getOpcode() == ISD::Constant) {
3356     assert(!Chain);
3357     unsigned Opcode, CCValid;
3358     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3359         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3360         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3361       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3362                              CmpOp1->getAsZExtVal(), Cond);
3363     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3364         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3365         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3366       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3367                              CmpOp1->getAsZExtVal(), Cond);
3368   }
3369   Comparison C(CmpOp0, CmpOp1, Chain);
3370   C.CCMask = CCMaskForCondCode(Cond);
3371   if (C.Op0.getValueType().isFloatingPoint()) {
3372     C.CCValid = SystemZ::CCMASK_FCMP;
3373     if (!C.Chain)
3374       C.Opcode = SystemZISD::FCMP;
3375     else if (!IsSignaling)
3376       C.Opcode = SystemZISD::STRICT_FCMP;
3377     else
3378       C.Opcode = SystemZISD::STRICT_FCMPS;
3379     adjustForFNeg(C);
3380   } else {
3381     assert(!C.Chain);
3382     C.CCValid = SystemZ::CCMASK_ICMP;
3383     C.Opcode = SystemZISD::ICMP;
3384     // Choose the type of comparison.  Equality and inequality tests can
3385     // use either signed or unsigned comparisons.  The choice also doesn't
3386     // matter if both sign bits are known to be clear.  In those cases we
3387     // want to give the main isel code the freedom to choose whichever
3388     // form fits best.
3389     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3390         C.CCMask == SystemZ::CCMASK_CMP_NE ||
3391         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3392       C.ICmpType = SystemZICMP::Any;
3393     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3394       C.ICmpType = SystemZICMP::UnsignedOnly;
3395     else
3396       C.ICmpType = SystemZICMP::SignedOnly;
3397     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3398     adjustForRedundantAnd(DAG, DL, C);
3399     adjustZeroCmp(DAG, DL, C);
3400     adjustSubwordCmp(DAG, DL, C);
3401     adjustForSubtraction(DAG, DL, C);
3402     adjustForLTGFR(C);
3403     adjustICmpTruncate(DAG, DL, C);
3404   }
3405 
3406   if (shouldSwapCmpOperands(C)) {
3407     std::swap(C.Op0, C.Op1);
3408     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3409   }
3410 
3411   adjustForTestUnderMask(DAG, DL, C);
3412   adjustICmp128(DAG, DL, C);
3413   return C;
3414 }
3415 
3416 // Emit the comparison instruction described by C.
3417 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3418   if (!C.Op1.getNode()) {
3419     SDNode *Node;
3420     switch (C.Op0.getOpcode()) {
3421     case ISD::INTRINSIC_W_CHAIN:
3422       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3423       return SDValue(Node, 0);
3424     case ISD::INTRINSIC_WO_CHAIN:
3425       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3426       return SDValue(Node, Node->getNumValues() - 1);
3427     default:
3428       llvm_unreachable("Invalid comparison operands");
3429     }
3430   }
3431   if (C.Opcode == SystemZISD::ICMP)
3432     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3433                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3434   if (C.Opcode == SystemZISD::TM) {
3435     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3436                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3437     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3438                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3439   }
3440   if (C.Opcode == SystemZISD::VICMPES) {
3441     SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3442     SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3443     return SDValue(Val.getNode(), 1);
3444   }
3445   if (C.Chain) {
3446     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3447     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3448   }
3449   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3450 }
3451 
3452 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
3453 // 64 bits.  Extend is the extension type to use.  Store the high part
3454 // in Hi and the low part in Lo.
3455 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3456                             SDValue Op0, SDValue Op1, SDValue &Hi,
3457                             SDValue &Lo) {
3458   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3459   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3460   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3461   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3462                    DAG.getConstant(32, DL, MVT::i64));
3463   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3464   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3465 }
3466 
3467 // Lower a binary operation that produces two VT results, one in each
3468 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
3469 // and Opcode performs the GR128 operation.  Store the even register result
3470 // in Even and the odd register result in Odd.
3471 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3472                              unsigned Opcode, SDValue Op0, SDValue Op1,
3473                              SDValue &Even, SDValue &Odd) {
3474   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3475   bool Is32Bit = is32Bit(VT);
3476   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3477   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3478 }
3479 
3480 // Return an i32 value that is 1 if the CC value produced by CCReg is
3481 // in the mask CCMask and 0 otherwise.  CC is known to have a value
3482 // in CCValid, so other values can be ignored.
3483 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3484                          unsigned CCValid, unsigned CCMask) {
3485   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3486                    DAG.getConstant(0, DL, MVT::i32),
3487                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
3488                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3489   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3490 }
3491 
3492 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3493 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3494 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3495 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3496 // floating-point comparisons.
3497 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3498 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3499   switch (CC) {
3500   case ISD::SETOEQ:
3501   case ISD::SETEQ:
3502     switch (Mode) {
3503     case CmpMode::Int:         return SystemZISD::VICMPE;
3504     case CmpMode::FP:          return SystemZISD::VFCMPE;
3505     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
3506     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3507     }
3508     llvm_unreachable("Bad mode");
3509 
3510   case ISD::SETOGE:
3511   case ISD::SETGE:
3512     switch (Mode) {
3513     case CmpMode::Int:         return 0;
3514     case CmpMode::FP:          return SystemZISD::VFCMPHE;
3515     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
3516     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3517     }
3518     llvm_unreachable("Bad mode");
3519 
3520   case ISD::SETOGT:
3521   case ISD::SETGT:
3522     switch (Mode) {
3523     case CmpMode::Int:         return SystemZISD::VICMPH;
3524     case CmpMode::FP:          return SystemZISD::VFCMPH;
3525     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
3526     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3527     }
3528     llvm_unreachable("Bad mode");
3529 
3530   case ISD::SETUGT:
3531     switch (Mode) {
3532     case CmpMode::Int:         return SystemZISD::VICMPHL;
3533     case CmpMode::FP:          return 0;
3534     case CmpMode::StrictFP:    return 0;
3535     case CmpMode::SignalingFP: return 0;
3536     }
3537     llvm_unreachable("Bad mode");
3538 
3539   default:
3540     return 0;
3541   }
3542 }
3543 
3544 // Return the SystemZISD vector comparison operation for CC or its inverse,
3545 // or 0 if neither can be done directly.  Indicate in Invert whether the
3546 // result is for the inverse of CC.  Mode is as above.
3547 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3548                                             bool &Invert) {
3549   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3550     Invert = false;
3551     return Opcode;
3552   }
3553 
3554   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3555   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3556     Invert = true;
3557     return Opcode;
3558   }
3559 
3560   return 0;
3561 }
3562 
3563 // Return a v2f64 that contains the extended form of elements Start and Start+1
3564 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
3565 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3566                                   SDValue Op, SDValue Chain) {
3567   int Mask[] = { Start, -1, Start + 1, -1 };
3568   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3569   if (Chain) {
3570     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3571     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3572   }
3573   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3574 }
3575 
3576 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3577 // producing a result of type VT.  If Chain is nonnull, return the strict form.
3578 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3579                                             const SDLoc &DL, EVT VT,
3580                                             SDValue CmpOp0,
3581                                             SDValue CmpOp1,
3582                                             SDValue Chain) const {
3583   // There is no hardware support for v4f32 (unless we have the vector
3584   // enhancements facility 1), so extend the vector into two v2f64s
3585   // and compare those.
3586   if (CmpOp0.getValueType() == MVT::v4f32 &&
3587       !Subtarget.hasVectorEnhancements1()) {
3588     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3589     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3590     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3591     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3592     if (Chain) {
3593       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3594       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3595       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3596       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3597       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3598                             H1.getValue(1), L1.getValue(1),
3599                             HRes.getValue(1), LRes.getValue(1) };
3600       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3601       SDValue Ops[2] = { Res, NewChain };
3602       return DAG.getMergeValues(Ops, DL);
3603     }
3604     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3605     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3606     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3607   }
3608   if (Chain) {
3609     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3610     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3611   }
3612   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3613 }
3614 
3615 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3616 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3617 // floating-point comparison.  If in addition IsSignaling is true, we have
3618 // a strict signaling floating-point comparison.
3619 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3620                                                 const SDLoc &DL, EVT VT,
3621                                                 ISD::CondCode CC,
3622                                                 SDValue CmpOp0,
3623                                                 SDValue CmpOp1,
3624                                                 SDValue Chain,
3625                                                 bool IsSignaling) const {
3626   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3627   assert (!Chain || IsFP);
3628   assert (!IsSignaling || Chain);
3629   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3630                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3631   bool Invert = false;
3632   SDValue Cmp;
3633   switch (CC) {
3634     // Handle tests for order using (or (ogt y x) (oge x y)).
3635   case ISD::SETUO:
3636     Invert = true;
3637     [[fallthrough]];
3638   case ISD::SETO: {
3639     assert(IsFP && "Unexpected integer comparison");
3640     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3641                               DL, VT, CmpOp1, CmpOp0, Chain);
3642     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3643                               DL, VT, CmpOp0, CmpOp1, Chain);
3644     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3645     if (Chain)
3646       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3647                           LT.getValue(1), GE.getValue(1));
3648     break;
3649   }
3650 
3651     // Handle <> tests using (or (ogt y x) (ogt x y)).
3652   case ISD::SETUEQ:
3653     Invert = true;
3654     [[fallthrough]];
3655   case ISD::SETONE: {
3656     assert(IsFP && "Unexpected integer comparison");
3657     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3658                               DL, VT, CmpOp1, CmpOp0, Chain);
3659     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3660                               DL, VT, CmpOp0, CmpOp1, Chain);
3661     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3662     if (Chain)
3663       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3664                           LT.getValue(1), GT.getValue(1));
3665     break;
3666   }
3667 
3668     // Otherwise a single comparison is enough.  It doesn't really
3669     // matter whether we try the inversion or the swap first, since
3670     // there are no cases where both work.
3671   default:
3672     // Optimize sign-bit comparisons to signed compares.
3673     if (Mode == CmpMode::Int && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3674         ISD::isConstantSplatVectorAllZeros(CmpOp1.getNode())) {
3675       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3676       APInt Mask;
3677       if (CmpOp0.getOpcode() == ISD::AND
3678           && ISD::isConstantSplatVector(CmpOp0.getOperand(1).getNode(), Mask)
3679           && Mask == APInt::getSignMask(EltSize)) {
3680         CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
3681         CmpOp0 = CmpOp0.getOperand(0);
3682       }
3683     }
3684     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3685       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3686     else {
3687       CC = ISD::getSetCCSwappedOperands(CC);
3688       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3689         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3690       else
3691         llvm_unreachable("Unhandled comparison");
3692     }
3693     if (Chain)
3694       Chain = Cmp.getValue(1);
3695     break;
3696   }
3697   if (Invert) {
3698     SDValue Mask =
3699         DAG.getSplatBuildVector(VT, DL, DAG.getAllOnesConstant(DL, MVT::i64));
3700     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3701   }
3702   if (Chain && Chain.getNode() != Cmp.getNode()) {
3703     SDValue Ops[2] = { Cmp, Chain };
3704     Cmp = DAG.getMergeValues(Ops, DL);
3705   }
3706   return Cmp;
3707 }
3708 
3709 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3710                                           SelectionDAG &DAG) const {
3711   SDValue CmpOp0   = Op.getOperand(0);
3712   SDValue CmpOp1   = Op.getOperand(1);
3713   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3714   SDLoc DL(Op);
3715   EVT VT = Op.getValueType();
3716   if (VT.isVector())
3717     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3718 
3719   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3720   SDValue CCReg = emitCmp(DAG, DL, C);
3721   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3722 }
3723 
3724 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3725                                                   SelectionDAG &DAG,
3726                                                   bool IsSignaling) const {
3727   SDValue Chain    = Op.getOperand(0);
3728   SDValue CmpOp0   = Op.getOperand(1);
3729   SDValue CmpOp1   = Op.getOperand(2);
3730   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3731   SDLoc DL(Op);
3732   EVT VT = Op.getNode()->getValueType(0);
3733   if (VT.isVector()) {
3734     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3735                                    Chain, IsSignaling);
3736     return Res.getValue(Op.getResNo());
3737   }
3738 
3739   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3740   SDValue CCReg = emitCmp(DAG, DL, C);
3741   CCReg->setFlags(Op->getFlags());
3742   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3743   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3744   return DAG.getMergeValues(Ops, DL);
3745 }
3746 
3747 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3748   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3749   SDValue CmpOp0   = Op.getOperand(2);
3750   SDValue CmpOp1   = Op.getOperand(3);
3751   SDValue Dest     = Op.getOperand(4);
3752   SDLoc DL(Op);
3753 
3754   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3755   SDValue CCReg = emitCmp(DAG, DL, C);
3756   return DAG.getNode(
3757       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3758       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3759       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3760 }
3761 
3762 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3763 // allowing Pos and Neg to be wider than CmpOp.
3764 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3765   return (Neg.getOpcode() == ISD::SUB &&
3766           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3767           Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3768           (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3769                             Pos.getOperand(0) == CmpOp)));
3770 }
3771 
3772 // Return the absolute or negative absolute of Op; IsNegative decides which.
3773 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3774                            bool IsNegative) {
3775   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3776   if (IsNegative)
3777     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3778                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3779   return Op;
3780 }
3781 
3782 static SDValue getI128Select(SelectionDAG &DAG, const SDLoc &DL,
3783                              Comparison C, SDValue TrueOp, SDValue FalseOp) {
3784   EVT VT = MVT::i128;
3785   unsigned Op;
3786 
3787   if (C.CCMask == SystemZ::CCMASK_CMP_NE ||
3788       C.CCMask == SystemZ::CCMASK_CMP_GE ||
3789       C.CCMask == SystemZ::CCMASK_CMP_LE) {
3790     std::swap(TrueOp, FalseOp);
3791     C.CCMask ^= C.CCValid;
3792   }
3793   if (C.CCMask == SystemZ::CCMASK_CMP_LT) {
3794     std::swap(C.Op0, C.Op1);
3795     C.CCMask = SystemZ::CCMASK_CMP_GT;
3796   }
3797   switch (C.CCMask) {
3798   case SystemZ::CCMASK_CMP_EQ:
3799     Op = SystemZISD::VICMPE;
3800     break;
3801   case SystemZ::CCMASK_CMP_GT:
3802     if (C.ICmpType == SystemZICMP::UnsignedOnly)
3803       Op = SystemZISD::VICMPHL;
3804     else
3805       Op = SystemZISD::VICMPH;
3806     break;
3807   default:
3808     llvm_unreachable("Unhandled comparison");
3809     break;
3810   }
3811 
3812   SDValue Mask = DAG.getNode(Op, DL, VT, C.Op0, C.Op1);
3813   TrueOp = DAG.getNode(ISD::AND, DL, VT, TrueOp, Mask);
3814   FalseOp = DAG.getNode(ISD::AND, DL, VT, FalseOp, DAG.getNOT(DL, Mask, VT));
3815   return DAG.getNode(ISD::OR, DL, VT, TrueOp, FalseOp);
3816 }
3817 
3818 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3819                                               SelectionDAG &DAG) const {
3820   SDValue CmpOp0   = Op.getOperand(0);
3821   SDValue CmpOp1   = Op.getOperand(1);
3822   SDValue TrueOp   = Op.getOperand(2);
3823   SDValue FalseOp  = Op.getOperand(3);
3824   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3825   SDLoc DL(Op);
3826 
3827   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3828 
3829   // Check for absolute and negative-absolute selections, including those
3830   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3831   // This check supplements the one in DAGCombiner.
3832   if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3833       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3834       C.Op1.getOpcode() == ISD::Constant &&
3835       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3836       C.Op1->getAsZExtVal() == 0) {
3837     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3838       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3839     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3840       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3841   }
3842 
3843   if (Subtarget.hasVectorEnhancements3() &&
3844       C.Opcode == SystemZISD::ICMP &&
3845       C.Op0.getValueType() == MVT::i128 &&
3846       TrueOp.getValueType() == MVT::i128) {
3847     return getI128Select(DAG, DL, C, TrueOp, FalseOp);
3848   }
3849 
3850   SDValue CCReg = emitCmp(DAG, DL, C);
3851   SDValue Ops[] = {TrueOp, FalseOp,
3852                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3853                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3854 
3855   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3856 }
3857 
3858 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3859                                                   SelectionDAG &DAG) const {
3860   SDLoc DL(Node);
3861   const GlobalValue *GV = Node->getGlobal();
3862   int64_t Offset = Node->getOffset();
3863   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3864   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3865 
3866   SDValue Result;
3867   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3868     if (isInt<32>(Offset)) {
3869       // Assign anchors at 1<<12 byte boundaries.
3870       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3871       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3872       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3873 
3874       // The offset can be folded into the address if it is aligned to a
3875       // halfword.
3876       Offset -= Anchor;
3877       if (Offset != 0 && (Offset & 1) == 0) {
3878         SDValue Full =
3879           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3880         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3881         Offset = 0;
3882       }
3883     } else {
3884       // Conservatively load a constant offset greater than 32 bits into a
3885       // register below.
3886       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3887       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3888     }
3889   } else if (Subtarget.isTargetELF()) {
3890     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3891     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3892     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3893                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3894   } else if (Subtarget.isTargetzOS()) {
3895     Result = getADAEntry(DAG, GV, DL, PtrVT);
3896   } else
3897     llvm_unreachable("Unexpected Subtarget");
3898 
3899   // If there was a non-zero offset that we didn't fold, create an explicit
3900   // addition for it.
3901   if (Offset != 0)
3902     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3903                          DAG.getSignedConstant(Offset, DL, PtrVT));
3904 
3905   return Result;
3906 }
3907 
3908 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3909                                                  SelectionDAG &DAG,
3910                                                  unsigned Opcode,
3911                                                  SDValue GOTOffset) const {
3912   SDLoc DL(Node);
3913   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3914   SDValue Chain = DAG.getEntryNode();
3915   SDValue Glue;
3916 
3917   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3918       CallingConv::GHC)
3919     report_fatal_error("In GHC calling convention TLS is not supported");
3920 
3921   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3922   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3923   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3924   Glue = Chain.getValue(1);
3925   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3926   Glue = Chain.getValue(1);
3927 
3928   // The first call operand is the chain and the second is the TLS symbol.
3929   SmallVector<SDValue, 8> Ops;
3930   Ops.push_back(Chain);
3931   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3932                                            Node->getValueType(0),
3933                                            0, 0));
3934 
3935   // Add argument registers to the end of the list so that they are
3936   // known live into the call.
3937   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3938   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3939 
3940   // Add a register mask operand representing the call-preserved registers.
3941   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3942   const uint32_t *Mask =
3943       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3944   assert(Mask && "Missing call preserved mask for calling convention");
3945   Ops.push_back(DAG.getRegisterMask(Mask));
3946 
3947   // Glue the call to the argument copies.
3948   Ops.push_back(Glue);
3949 
3950   // Emit the call.
3951   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3952   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3953   Glue = Chain.getValue(1);
3954 
3955   // Copy the return value from %r2.
3956   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3957 }
3958 
3959 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3960                                                   SelectionDAG &DAG) const {
3961   SDValue Chain = DAG.getEntryNode();
3962   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3963 
3964   // The high part of the thread pointer is in access register 0.
3965   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3966   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3967 
3968   // The low part of the thread pointer is in access register 1.
3969   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3970   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3971 
3972   // Merge them into a single 64-bit address.
3973   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3974                                     DAG.getConstant(32, DL, PtrVT));
3975   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3976 }
3977 
3978 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3979                                                      SelectionDAG &DAG) const {
3980   if (DAG.getTarget().useEmulatedTLS())
3981     return LowerToTLSEmulatedModel(Node, DAG);
3982   SDLoc DL(Node);
3983   const GlobalValue *GV = Node->getGlobal();
3984   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3985   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3986 
3987   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3988       CallingConv::GHC)
3989     report_fatal_error("In GHC calling convention TLS is not supported");
3990 
3991   SDValue TP = lowerThreadPointer(DL, DAG);
3992 
3993   // Get the offset of GA from the thread pointer, based on the TLS model.
3994   SDValue Offset;
3995   switch (model) {
3996     case TLSModel::GeneralDynamic: {
3997       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3998       SystemZConstantPoolValue *CPV =
3999         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
4000 
4001       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
4002       Offset = DAG.getLoad(
4003           PtrVT, DL, DAG.getEntryNode(), Offset,
4004           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4005 
4006       // Call __tls_get_offset to retrieve the offset.
4007       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
4008       break;
4009     }
4010 
4011     case TLSModel::LocalDynamic: {
4012       // Load the GOT offset of the module ID.
4013       SystemZConstantPoolValue *CPV =
4014         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
4015 
4016       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
4017       Offset = DAG.getLoad(
4018           PtrVT, DL, DAG.getEntryNode(), Offset,
4019           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4020 
4021       // Call __tls_get_offset to retrieve the module base offset.
4022       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
4023 
4024       // Note: The SystemZLDCleanupPass will remove redundant computations
4025       // of the module base offset.  Count total number of local-dynamic
4026       // accesses to trigger execution of that pass.
4027       SystemZMachineFunctionInfo* MFI =
4028         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
4029       MFI->incNumLocalDynamicTLSAccesses();
4030 
4031       // Add the per-symbol offset.
4032       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
4033 
4034       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
4035       DTPOffset = DAG.getLoad(
4036           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
4037           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4038 
4039       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
4040       break;
4041     }
4042 
4043     case TLSModel::InitialExec: {
4044       // Load the offset from the GOT.
4045       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
4046                                           SystemZII::MO_INDNTPOFF);
4047       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
4048       Offset =
4049           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
4050                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4051       break;
4052     }
4053 
4054     case TLSModel::LocalExec: {
4055       // Force the offset into the constant pool and load it from there.
4056       SystemZConstantPoolValue *CPV =
4057         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
4058 
4059       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
4060       Offset = DAG.getLoad(
4061           PtrVT, DL, DAG.getEntryNode(), Offset,
4062           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4063       break;
4064     }
4065   }
4066 
4067   // Add the base and offset together.
4068   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
4069 }
4070 
4071 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
4072                                                  SelectionDAG &DAG) const {
4073   SDLoc DL(Node);
4074   const BlockAddress *BA = Node->getBlockAddress();
4075   int64_t Offset = Node->getOffset();
4076   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4077 
4078   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
4079   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
4080   return Result;
4081 }
4082 
4083 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
4084                                               SelectionDAG &DAG) const {
4085   SDLoc DL(JT);
4086   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4087   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
4088 
4089   // Use LARL to load the address of the table.
4090   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
4091 }
4092 
4093 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
4094                                                  SelectionDAG &DAG) const {
4095   SDLoc DL(CP);
4096   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4097 
4098   SDValue Result;
4099   if (CP->isMachineConstantPoolEntry())
4100     Result =
4101         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
4102   else
4103     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
4104                                        CP->getOffset());
4105 
4106   // Use LARL to load the address of the constant pool entry.
4107   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
4108 }
4109 
4110 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
4111                                               SelectionDAG &DAG) const {
4112   auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
4113   MachineFunction &MF = DAG.getMachineFunction();
4114   MachineFrameInfo &MFI = MF.getFrameInfo();
4115   MFI.setFrameAddressIsTaken(true);
4116 
4117   SDLoc DL(Op);
4118   unsigned Depth = Op.getConstantOperandVal(0);
4119   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4120 
4121   // By definition, the frame address is the address of the back chain.  (In
4122   // the case of packed stack without backchain, return the address where the
4123   // backchain would have been stored. This will either be an unused space or
4124   // contain a saved register).
4125   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
4126   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
4127 
4128   if (Depth > 0) {
4129     // FIXME The frontend should detect this case.
4130     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
4131       report_fatal_error("Unsupported stack frame traversal count");
4132 
4133     SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
4134     while (Depth--) {
4135       BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
4136                               MachinePointerInfo());
4137       BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
4138     }
4139   }
4140 
4141   return BackChain;
4142 }
4143 
4144 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
4145                                                SelectionDAG &DAG) const {
4146   MachineFunction &MF = DAG.getMachineFunction();
4147   MachineFrameInfo &MFI = MF.getFrameInfo();
4148   MFI.setReturnAddressIsTaken(true);
4149 
4150   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4151     return SDValue();
4152 
4153   SDLoc DL(Op);
4154   unsigned Depth = Op.getConstantOperandVal(0);
4155   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4156 
4157   if (Depth > 0) {
4158     // FIXME The frontend should detect this case.
4159     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
4160       report_fatal_error("Unsupported stack frame traversal count");
4161 
4162     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4163     const auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
4164     int Offset = TFL->getReturnAddressOffset(MF);
4165     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
4166                               DAG.getSignedConstant(Offset, DL, PtrVT));
4167     return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
4168                        MachinePointerInfo());
4169   }
4170 
4171   // Return R14D (Elf) / R7D (XPLINK), which has the return address. Mark it an
4172   // implicit live-in.
4173   SystemZCallingConventionRegisters *CCR = Subtarget.getSpecialRegisters();
4174   Register LinkReg = MF.addLiveIn(CCR->getReturnFunctionAddressRegister(),
4175                                   &SystemZ::GR64BitRegClass);
4176   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
4177 }
4178 
4179 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
4180                                             SelectionDAG &DAG) const {
4181   SDLoc DL(Op);
4182   SDValue In = Op.getOperand(0);
4183   EVT InVT = In.getValueType();
4184   EVT ResVT = Op.getValueType();
4185 
4186   // Convert loads directly.  This is normally done by DAGCombiner,
4187   // but we need this case for bitcasts that are created during lowering
4188   // and which are then lowered themselves.
4189   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
4190     if (ISD::isNormalLoad(LoadN)) {
4191       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
4192                                     LoadN->getBasePtr(), LoadN->getMemOperand());
4193       // Update the chain uses.
4194       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
4195       return NewLoad;
4196     }
4197 
4198   if (InVT == MVT::i32 && ResVT == MVT::f32) {
4199     SDValue In64;
4200     if (Subtarget.hasHighWord()) {
4201       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
4202                                        MVT::i64);
4203       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
4204                                        MVT::i64, SDValue(U64, 0), In);
4205     } else {
4206       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
4207       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
4208                          DAG.getConstant(32, DL, MVT::i64));
4209     }
4210     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
4211     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
4212                                       DL, MVT::f32, Out64);
4213   }
4214   if (InVT == MVT::f32 && ResVT == MVT::i32) {
4215     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
4216     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
4217                                              MVT::f64, SDValue(U64, 0), In);
4218     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
4219     if (Subtarget.hasHighWord())
4220       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
4221                                         MVT::i32, Out64);
4222     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
4223                                 DAG.getConstant(32, DL, MVT::i64));
4224     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
4225   }
4226   llvm_unreachable("Unexpected bitcast combination");
4227 }
4228 
4229 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
4230                                             SelectionDAG &DAG) const {
4231 
4232   if (Subtarget.isTargetXPLINK64())
4233     return lowerVASTART_XPLINK(Op, DAG);
4234   else
4235     return lowerVASTART_ELF(Op, DAG);
4236 }
4237 
4238 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
4239                                                    SelectionDAG &DAG) const {
4240   MachineFunction &MF = DAG.getMachineFunction();
4241   SystemZMachineFunctionInfo *FuncInfo =
4242       MF.getInfo<SystemZMachineFunctionInfo>();
4243 
4244   SDLoc DL(Op);
4245 
4246   // vastart just stores the address of the VarArgsFrameIndex slot into the
4247   // memory location argument.
4248   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4249   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4250   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4251   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4252                       MachinePointerInfo(SV));
4253 }
4254 
4255 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
4256                                                 SelectionDAG &DAG) const {
4257   MachineFunction &MF = DAG.getMachineFunction();
4258   SystemZMachineFunctionInfo *FuncInfo =
4259     MF.getInfo<SystemZMachineFunctionInfo>();
4260   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4261 
4262   SDValue Chain   = Op.getOperand(0);
4263   SDValue Addr    = Op.getOperand(1);
4264   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4265   SDLoc DL(Op);
4266 
4267   // The initial values of each field.
4268   const unsigned NumFields = 4;
4269   SDValue Fields[NumFields] = {
4270     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
4271     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
4272     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
4273     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
4274   };
4275 
4276   // Store each field into its respective slot.
4277   SDValue MemOps[NumFields];
4278   unsigned Offset = 0;
4279   for (unsigned I = 0; I < NumFields; ++I) {
4280     SDValue FieldAddr = Addr;
4281     if (Offset != 0)
4282       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
4283                               DAG.getIntPtrConstant(Offset, DL));
4284     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
4285                              MachinePointerInfo(SV, Offset));
4286     Offset += 8;
4287   }
4288   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4289 }
4290 
4291 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
4292                                            SelectionDAG &DAG) const {
4293   SDValue Chain      = Op.getOperand(0);
4294   SDValue DstPtr     = Op.getOperand(1);
4295   SDValue SrcPtr     = Op.getOperand(2);
4296   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4297   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4298   SDLoc DL(Op);
4299 
4300   uint32_t Sz =
4301       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
4302   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
4303                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
4304                        /*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
4305                        MachinePointerInfo(SrcSV));
4306 }
4307 
4308 SDValue
4309 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
4310                                                SelectionDAG &DAG) const {
4311   if (Subtarget.isTargetXPLINK64())
4312     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
4313   else
4314     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
4315 }
4316 
4317 SDValue
4318 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
4319                                                       SelectionDAG &DAG) const {
4320   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4321   MachineFunction &MF = DAG.getMachineFunction();
4322   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4323   SDValue Chain = Op.getOperand(0);
4324   SDValue Size = Op.getOperand(1);
4325   SDValue Align = Op.getOperand(2);
4326   SDLoc DL(Op);
4327 
4328   // If user has set the no alignment function attribute, ignore
4329   // alloca alignments.
4330   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4331 
4332   uint64_t StackAlign = TFI->getStackAlignment();
4333   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4334   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4335 
4336   SDValue NeededSpace = Size;
4337 
4338   // Add extra space for alignment if needed.
4339   EVT PtrVT = getPointerTy(MF.getDataLayout());
4340   if (ExtraAlignSpace)
4341     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
4342                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
4343 
4344   bool IsSigned = false;
4345   bool DoesNotReturn = false;
4346   bool IsReturnValueUsed = false;
4347   EVT VT = Op.getValueType();
4348   SDValue AllocaCall =
4349       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
4350                        CallingConv::C, IsSigned, DL, DoesNotReturn,
4351                        IsReturnValueUsed)
4352           .first;
4353 
4354   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
4355   // to end of call in order to ensure it isn't broken up from the call
4356   // sequence.
4357   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
4358   Register SPReg = Regs.getStackPointerRegister();
4359   Chain = AllocaCall.getValue(1);
4360   SDValue Glue = AllocaCall.getValue(2);
4361   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
4362   Chain = NewSPRegNode.getValue(1);
4363 
4364   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
4365   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
4366   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
4367 
4368   // Dynamically realign if needed.
4369   if (ExtraAlignSpace) {
4370     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
4371                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
4372     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
4373                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
4374   }
4375 
4376   SDValue Ops[2] = {Result, Chain};
4377   return DAG.getMergeValues(Ops, DL);
4378 }
4379 
4380 SDValue
4381 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4382                                                    SelectionDAG &DAG) const {
4383   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4384   MachineFunction &MF = DAG.getMachineFunction();
4385   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4386   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4387 
4388   SDValue Chain = Op.getOperand(0);
4389   SDValue Size  = Op.getOperand(1);
4390   SDValue Align = Op.getOperand(2);
4391   SDLoc DL(Op);
4392 
4393   // If user has set the no alignment function attribute, ignore
4394   // alloca alignments.
4395   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4396 
4397   uint64_t StackAlign = TFI->getStackAlignment();
4398   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4399   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4400 
4401   Register SPReg = getStackPointerRegisterToSaveRestore();
4402   SDValue NeededSpace = Size;
4403 
4404   // Get a reference to the stack pointer.
4405   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4406 
4407   // If we need a backchain, save it now.
4408   SDValue Backchain;
4409   if (StoreBackchain)
4410     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4411                             MachinePointerInfo());
4412 
4413   // Add extra space for alignment if needed.
4414   if (ExtraAlignSpace)
4415     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4416                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4417 
4418   // Get the new stack pointer value.
4419   SDValue NewSP;
4420   if (hasInlineStackProbe(MF)) {
4421     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4422                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4423     Chain = NewSP.getValue(1);
4424   }
4425   else {
4426     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4427     // Copy the new stack pointer back.
4428     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4429   }
4430 
4431   // The allocated data lives above the 160 bytes allocated for the standard
4432   // frame, plus any outgoing stack arguments.  We don't know how much that
4433   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4434   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4435   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4436 
4437   // Dynamically realign if needed.
4438   if (RequiredAlign > StackAlign) {
4439     Result =
4440       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4441                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4442     Result =
4443       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4444                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4445   }
4446 
4447   if (StoreBackchain)
4448     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4449                          MachinePointerInfo());
4450 
4451   SDValue Ops[2] = { Result, Chain };
4452   return DAG.getMergeValues(Ops, DL);
4453 }
4454 
4455 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4456     SDValue Op, SelectionDAG &DAG) const {
4457   SDLoc DL(Op);
4458 
4459   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4460 }
4461 
4462 SDValue SystemZTargetLowering::lowerMULH(SDValue Op,
4463                                          SelectionDAG &DAG,
4464                                          unsigned Opcode) const {
4465   EVT VT = Op.getValueType();
4466   SDLoc DL(Op);
4467   SDValue Even, Odd;
4468 
4469   // This custom expander is only used on arch15 and later for 64-bit types.
4470   assert(!is32Bit(VT));
4471   assert(Subtarget.hasMiscellaneousExtensions2());
4472 
4473   // SystemZISD::xMUL_LOHI returns the low result in the odd register and
4474   // the high result in the even register.  Return the latter.
4475   lowerGR128Binary(DAG, DL, VT, Opcode,
4476                    Op.getOperand(0), Op.getOperand(1), Even, Odd);
4477   return Even;
4478 }
4479 
4480 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4481                                               SelectionDAG &DAG) const {
4482   EVT VT = Op.getValueType();
4483   SDLoc DL(Op);
4484   SDValue Ops[2];
4485   if (is32Bit(VT))
4486     // Just do a normal 64-bit multiplication and extract the results.
4487     // We define this so that it can be used for constant division.
4488     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4489                     Op.getOperand(1), Ops[1], Ops[0]);
4490   else if (Subtarget.hasMiscellaneousExtensions2())
4491     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4492     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4493     // return the low half first, so the results are in reverse order.
4494     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4495                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4496   else {
4497     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4498     //
4499     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4500     //
4501     // but using the fact that the upper halves are either all zeros
4502     // or all ones:
4503     //
4504     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4505     //
4506     // and grouping the right terms together since they are quicker than the
4507     // multiplication:
4508     //
4509     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4510     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4511     SDValue LL = Op.getOperand(0);
4512     SDValue RL = Op.getOperand(1);
4513     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4514     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4515     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4516     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4517     // return the low half first, so the results are in reverse order.
4518     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4519                      LL, RL, Ops[1], Ops[0]);
4520     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4521     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4522     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4523     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4524   }
4525   return DAG.getMergeValues(Ops, DL);
4526 }
4527 
4528 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4529                                               SelectionDAG &DAG) const {
4530   EVT VT = Op.getValueType();
4531   SDLoc DL(Op);
4532   SDValue Ops[2];
4533   if (is32Bit(VT))
4534     // Just do a normal 64-bit multiplication and extract the results.
4535     // We define this so that it can be used for constant division.
4536     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4537                     Op.getOperand(1), Ops[1], Ops[0]);
4538   else
4539     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4540     // the high result in the even register.  ISD::UMUL_LOHI is defined to
4541     // return the low half first, so the results are in reverse order.
4542     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4543                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4544   return DAG.getMergeValues(Ops, DL);
4545 }
4546 
4547 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4548                                             SelectionDAG &DAG) const {
4549   SDValue Op0 = Op.getOperand(0);
4550   SDValue Op1 = Op.getOperand(1);
4551   EVT VT = Op.getValueType();
4552   SDLoc DL(Op);
4553 
4554   // We use DSGF for 32-bit division.  This means the first operand must
4555   // always be 64-bit, and the second operand should be 32-bit whenever
4556   // that is possible, to improve performance.
4557   if (is32Bit(VT))
4558     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4559   else if (DAG.ComputeNumSignBits(Op1) > 32)
4560     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4561 
4562   // DSG(F) returns the remainder in the even register and the
4563   // quotient in the odd register.
4564   SDValue Ops[2];
4565   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4566   return DAG.getMergeValues(Ops, DL);
4567 }
4568 
4569 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4570                                             SelectionDAG &DAG) const {
4571   EVT VT = Op.getValueType();
4572   SDLoc DL(Op);
4573 
4574   // DL(G) returns the remainder in the even register and the
4575   // quotient in the odd register.
4576   SDValue Ops[2];
4577   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4578                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4579   return DAG.getMergeValues(Ops, DL);
4580 }
4581 
4582 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4583   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4584 
4585   // Get the known-zero masks for each operand.
4586   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4587   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4588                         DAG.computeKnownBits(Ops[1])};
4589 
4590   // See if the upper 32 bits of one operand and the lower 32 bits of the
4591   // other are known zero.  They are the low and high operands respectively.
4592   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4593                        Known[1].Zero.getZExtValue() };
4594   unsigned High, Low;
4595   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4596     High = 1, Low = 0;
4597   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4598     High = 0, Low = 1;
4599   else
4600     return Op;
4601 
4602   SDValue LowOp = Ops[Low];
4603   SDValue HighOp = Ops[High];
4604 
4605   // If the high part is a constant, we're better off using IILH.
4606   if (HighOp.getOpcode() == ISD::Constant)
4607     return Op;
4608 
4609   // If the low part is a constant that is outside the range of LHI,
4610   // then we're better off using IILF.
4611   if (LowOp.getOpcode() == ISD::Constant) {
4612     int64_t Value = int32_t(LowOp->getAsZExtVal());
4613     if (!isInt<16>(Value))
4614       return Op;
4615   }
4616 
4617   // Check whether the high part is an AND that doesn't change the
4618   // high 32 bits and just masks out low bits.  We can skip it if so.
4619   if (HighOp.getOpcode() == ISD::AND &&
4620       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4621     SDValue HighOp0 = HighOp.getOperand(0);
4622     uint64_t Mask = HighOp.getConstantOperandVal(1);
4623     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4624       HighOp = HighOp0;
4625   }
4626 
4627   // Take advantage of the fact that all GR32 operations only change the
4628   // low 32 bits by truncating Low to an i32 and inserting it directly
4629   // using a subreg.  The interesting cases are those where the truncation
4630   // can be folded.
4631   SDLoc DL(Op);
4632   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4633   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4634                                    MVT::i64, HighOp, Low32);
4635 }
4636 
4637 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
4638 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4639                                           SelectionDAG &DAG) const {
4640   SDNode *N = Op.getNode();
4641   SDValue LHS = N->getOperand(0);
4642   SDValue RHS = N->getOperand(1);
4643   SDLoc DL(N);
4644 
4645   if (N->getValueType(0) == MVT::i128) {
4646     unsigned BaseOp = 0;
4647     unsigned FlagOp = 0;
4648     bool IsBorrow = false;
4649     switch (Op.getOpcode()) {
4650     default: llvm_unreachable("Unknown instruction!");
4651     case ISD::UADDO:
4652       BaseOp = ISD::ADD;
4653       FlagOp = SystemZISD::VACC;
4654       break;
4655     case ISD::USUBO:
4656       BaseOp = ISD::SUB;
4657       FlagOp = SystemZISD::VSCBI;
4658       IsBorrow = true;
4659       break;
4660     }
4661     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4662     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4663     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4664                        DAG.getValueType(MVT::i1));
4665     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4666     if (IsBorrow)
4667       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4668                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4669     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4670   }
4671 
4672   unsigned BaseOp = 0;
4673   unsigned CCValid = 0;
4674   unsigned CCMask = 0;
4675 
4676   switch (Op.getOpcode()) {
4677   default: llvm_unreachable("Unknown instruction!");
4678   case ISD::SADDO:
4679     BaseOp = SystemZISD::SADDO;
4680     CCValid = SystemZ::CCMASK_ARITH;
4681     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4682     break;
4683   case ISD::SSUBO:
4684     BaseOp = SystemZISD::SSUBO;
4685     CCValid = SystemZ::CCMASK_ARITH;
4686     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4687     break;
4688   case ISD::UADDO:
4689     BaseOp = SystemZISD::UADDO;
4690     CCValid = SystemZ::CCMASK_LOGICAL;
4691     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4692     break;
4693   case ISD::USUBO:
4694     BaseOp = SystemZISD::USUBO;
4695     CCValid = SystemZ::CCMASK_LOGICAL;
4696     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4697     break;
4698   }
4699 
4700   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4701   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4702 
4703   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4704   if (N->getValueType(1) == MVT::i1)
4705     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4706 
4707   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4708 }
4709 
4710 static bool isAddCarryChain(SDValue Carry) {
4711   while (Carry.getOpcode() == ISD::UADDO_CARRY &&
4712          Carry->getValueType(0) != MVT::i128)
4713     Carry = Carry.getOperand(2);
4714   return Carry.getOpcode() == ISD::UADDO &&
4715          Carry->getValueType(0) != MVT::i128;
4716 }
4717 
4718 static bool isSubBorrowChain(SDValue Carry) {
4719   while (Carry.getOpcode() == ISD::USUBO_CARRY &&
4720          Carry->getValueType(0) != MVT::i128)
4721     Carry = Carry.getOperand(2);
4722   return Carry.getOpcode() == ISD::USUBO &&
4723          Carry->getValueType(0) != MVT::i128;
4724 }
4725 
4726 // Lower UADDO_CARRY/USUBO_CARRY nodes.
4727 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4728                                                    SelectionDAG &DAG) const {
4729 
4730   SDNode *N = Op.getNode();
4731   MVT VT = N->getSimpleValueType(0);
4732 
4733   // Let legalize expand this if it isn't a legal type yet.
4734   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4735     return SDValue();
4736 
4737   SDValue LHS = N->getOperand(0);
4738   SDValue RHS = N->getOperand(1);
4739   SDValue Carry = Op.getOperand(2);
4740   SDLoc DL(N);
4741 
4742   if (VT == MVT::i128) {
4743     unsigned BaseOp = 0;
4744     unsigned FlagOp = 0;
4745     bool IsBorrow = false;
4746     switch (Op.getOpcode()) {
4747     default: llvm_unreachable("Unknown instruction!");
4748     case ISD::UADDO_CARRY:
4749       BaseOp = SystemZISD::VAC;
4750       FlagOp = SystemZISD::VACCC;
4751       break;
4752     case ISD::USUBO_CARRY:
4753       BaseOp = SystemZISD::VSBI;
4754       FlagOp = SystemZISD::VSBCBI;
4755       IsBorrow = true;
4756       break;
4757     }
4758     if (IsBorrow)
4759       Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4760                           Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4761     Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4762     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4763     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4764     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4765                        DAG.getValueType(MVT::i1));
4766     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4767     if (IsBorrow)
4768       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4769                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4770     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4771   }
4772 
4773   unsigned BaseOp = 0;
4774   unsigned CCValid = 0;
4775   unsigned CCMask = 0;
4776 
4777   switch (Op.getOpcode()) {
4778   default: llvm_unreachable("Unknown instruction!");
4779   case ISD::UADDO_CARRY:
4780     if (!isAddCarryChain(Carry))
4781       return SDValue();
4782 
4783     BaseOp = SystemZISD::ADDCARRY;
4784     CCValid = SystemZ::CCMASK_LOGICAL;
4785     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4786     break;
4787   case ISD::USUBO_CARRY:
4788     if (!isSubBorrowChain(Carry))
4789       return SDValue();
4790 
4791     BaseOp = SystemZISD::SUBCARRY;
4792     CCValid = SystemZ::CCMASK_LOGICAL;
4793     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4794     break;
4795   }
4796 
4797   // Set the condition code from the carry flag.
4798   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4799                       DAG.getConstant(CCValid, DL, MVT::i32),
4800                       DAG.getConstant(CCMask, DL, MVT::i32));
4801 
4802   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4803   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4804 
4805   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4806   if (N->getValueType(1) == MVT::i1)
4807     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4808 
4809   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4810 }
4811 
4812 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4813                                           SelectionDAG &DAG) const {
4814   EVT VT = Op.getValueType();
4815   SDLoc DL(Op);
4816   Op = Op.getOperand(0);
4817 
4818   if (VT.getScalarSizeInBits() == 128) {
4819     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4820     Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4821     SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4822                                           DAG.getConstant(0, DL, MVT::i64));
4823     Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4824     return Op;
4825   }
4826 
4827   // Handle vector types via VPOPCT.
4828   if (VT.isVector()) {
4829     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4830     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4831     switch (VT.getScalarSizeInBits()) {
4832     case 8:
4833       break;
4834     case 16: {
4835       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4836       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4837       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4838       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4839       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4840       break;
4841     }
4842     case 32: {
4843       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4844                                             DAG.getConstant(0, DL, MVT::i32));
4845       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4846       break;
4847     }
4848     case 64: {
4849       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4850                                             DAG.getConstant(0, DL, MVT::i32));
4851       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4852       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4853       break;
4854     }
4855     default:
4856       llvm_unreachable("Unexpected type");
4857     }
4858     return Op;
4859   }
4860 
4861   // Get the known-zero mask for the operand.
4862   KnownBits Known = DAG.computeKnownBits(Op);
4863   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4864   if (NumSignificantBits == 0)
4865     return DAG.getConstant(0, DL, VT);
4866 
4867   // Skip known-zero high parts of the operand.
4868   int64_t OrigBitSize = VT.getSizeInBits();
4869   int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4870   BitSize = std::min(BitSize, OrigBitSize);
4871 
4872   // The POPCNT instruction counts the number of bits in each byte.
4873   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4874   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4875   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4876 
4877   // Add up per-byte counts in a binary tree.  All bits of Op at
4878   // position larger than BitSize remain zero throughout.
4879   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4880     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4881     if (BitSize != OrigBitSize)
4882       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4883                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4884     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4885   }
4886 
4887   // Extract overall result from high byte.
4888   if (BitSize > 8)
4889     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4890                      DAG.getConstant(BitSize - 8, DL, VT));
4891 
4892   return Op;
4893 }
4894 
4895 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4896                                                  SelectionDAG &DAG) const {
4897   SDLoc DL(Op);
4898   AtomicOrdering FenceOrdering =
4899       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4900   SyncScope::ID FenceSSID =
4901       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4902 
4903   // The only fence that needs an instruction is a sequentially-consistent
4904   // cross-thread fence.
4905   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4906       FenceSSID == SyncScope::System) {
4907     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4908                                       Op.getOperand(0)),
4909                    0);
4910   }
4911 
4912   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4913   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4914 }
4915 
4916 SDValue SystemZTargetLowering::lowerATOMIC_LDST_I128(SDValue Op,
4917                                                      SelectionDAG &DAG) const {
4918   auto *Node = cast<AtomicSDNode>(Op.getNode());
4919   assert(
4920       (Node->getMemoryVT() == MVT::i128 || Node->getMemoryVT() == MVT::f128) &&
4921       "Only custom lowering i128 or f128.");
4922   // Use same code to handle both legal and non-legal i128 types.
4923   SmallVector<SDValue, 2> Results;
4924   LowerOperationWrapper(Node, Results, DAG);
4925   return DAG.getMergeValues(Results, SDLoc(Op));
4926 }
4927 
4928 // Prepare for a Compare And Swap for a subword operation. This needs to be
4929 // done in memory with 4 bytes at natural alignment.
4930 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4931                                   SDValue &AlignedAddr, SDValue &BitShift,
4932                                   SDValue &NegBitShift) {
4933   EVT PtrVT = Addr.getValueType();
4934   EVT WideVT = MVT::i32;
4935 
4936   // Get the address of the containing word.
4937   AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4938                             DAG.getSignedConstant(-4, DL, PtrVT));
4939 
4940   // Get the number of bits that the word must be rotated left in order
4941   // to bring the field to the top bits of a GR32.
4942   BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4943                          DAG.getConstant(3, DL, PtrVT));
4944   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4945 
4946   // Get the complementing shift amount, for rotating a field in the top
4947   // bits back to its proper position.
4948   NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4949                             DAG.getConstant(0, DL, WideVT), BitShift);
4950 
4951 }
4952 
4953 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4954 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4955 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4956                                                    SelectionDAG &DAG,
4957                                                    unsigned Opcode) const {
4958   auto *Node = cast<AtomicSDNode>(Op.getNode());
4959 
4960   // 32-bit operations need no special handling.
4961   EVT NarrowVT = Node->getMemoryVT();
4962   EVT WideVT = MVT::i32;
4963   if (NarrowVT == WideVT)
4964     return Op;
4965 
4966   int64_t BitSize = NarrowVT.getSizeInBits();
4967   SDValue ChainIn = Node->getChain();
4968   SDValue Addr = Node->getBasePtr();
4969   SDValue Src2 = Node->getVal();
4970   MachineMemOperand *MMO = Node->getMemOperand();
4971   SDLoc DL(Node);
4972 
4973   // Convert atomic subtracts of constants into additions.
4974   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4975     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4976       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4977       Src2 = DAG.getSignedConstant(-Const->getSExtValue(), DL,
4978                                    Src2.getValueType());
4979     }
4980 
4981   SDValue AlignedAddr, BitShift, NegBitShift;
4982   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4983 
4984   // Extend the source operand to 32 bits and prepare it for the inner loop.
4985   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4986   // operations require the source to be shifted in advance.  (This shift
4987   // can be folded if the source is constant.)  For AND and NAND, the lower
4988   // bits must be set, while for other opcodes they should be left clear.
4989   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4990     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4991                        DAG.getConstant(32 - BitSize, DL, WideVT));
4992   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4993       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4994     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4995                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4996 
4997   // Construct the ATOMIC_LOADW_* node.
4998   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4999   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
5000                     DAG.getConstant(BitSize, DL, WideVT) };
5001   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
5002                                              NarrowVT, MMO);
5003 
5004   // Rotate the result of the final CS so that the field is in the lower
5005   // bits of a GR32, then truncate it.
5006   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
5007                                     DAG.getConstant(BitSize, DL, WideVT));
5008   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
5009 
5010   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
5011   return DAG.getMergeValues(RetOps, DL);
5012 }
5013 
5014 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations into
5015 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
5016 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
5017                                                     SelectionDAG &DAG) const {
5018   auto *Node = cast<AtomicSDNode>(Op.getNode());
5019   EVT MemVT = Node->getMemoryVT();
5020   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
5021     // A full-width operation: negate and use LAA(G).
5022     assert(Op.getValueType() == MemVT && "Mismatched VTs");
5023     assert(Subtarget.hasInterlockedAccess1() &&
5024            "Should have been expanded by AtomicExpand pass.");
5025     SDValue Src2 = Node->getVal();
5026     SDLoc DL(Src2);
5027     SDValue NegSrc2 =
5028       DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
5029     return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
5030                          Node->getChain(), Node->getBasePtr(), NegSrc2,
5031                          Node->getMemOperand());
5032   }
5033 
5034   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
5035 }
5036 
5037 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
5038 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
5039                                                     SelectionDAG &DAG) const {
5040   auto *Node = cast<AtomicSDNode>(Op.getNode());
5041   SDValue ChainIn = Node->getOperand(0);
5042   SDValue Addr = Node->getOperand(1);
5043   SDValue CmpVal = Node->getOperand(2);
5044   SDValue SwapVal = Node->getOperand(3);
5045   MachineMemOperand *MMO = Node->getMemOperand();
5046   SDLoc DL(Node);
5047 
5048   if (Node->getMemoryVT() == MVT::i128) {
5049     // Use same code to handle both legal and non-legal i128 types.
5050     SmallVector<SDValue, 3> Results;
5051     LowerOperationWrapper(Node, Results, DAG);
5052     return DAG.getMergeValues(Results, DL);
5053   }
5054 
5055   // We have native support for 32-bit and 64-bit compare and swap, but we
5056   // still need to expand extracting the "success" result from the CC.
5057   EVT NarrowVT = Node->getMemoryVT();
5058   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
5059   if (NarrowVT == WideVT) {
5060     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
5061     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
5062     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
5063                                                DL, Tys, Ops, NarrowVT, MMO);
5064     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
5065                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5066 
5067     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
5068     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
5069     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
5070     return SDValue();
5071   }
5072 
5073   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
5074   // via a fullword ATOMIC_CMP_SWAPW operation.
5075   int64_t BitSize = NarrowVT.getSizeInBits();
5076 
5077   SDValue AlignedAddr, BitShift, NegBitShift;
5078   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
5079 
5080   // Construct the ATOMIC_CMP_SWAPW node.
5081   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
5082   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
5083                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
5084   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
5085                                              VTList, Ops, NarrowVT, MMO);
5086   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
5087                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
5088 
5089   // emitAtomicCmpSwapW() will zero extend the result (original value).
5090   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
5091                                 DAG.getValueType(NarrowVT));
5092   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
5093   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
5094   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
5095   return SDValue();
5096 }
5097 
5098 MachineMemOperand::Flags
5099 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
5100   // Because of how we convert atomic_load and atomic_store to normal loads and
5101   // stores in the DAG, we need to ensure that the MMOs are marked volatile
5102   // since DAGCombine hasn't been updated to account for atomic, but non
5103   // volatile loads.  (See D57601)
5104   if (auto *SI = dyn_cast<StoreInst>(&I))
5105     if (SI->isAtomic())
5106       return MachineMemOperand::MOVolatile;
5107   if (auto *LI = dyn_cast<LoadInst>(&I))
5108     if (LI->isAtomic())
5109       return MachineMemOperand::MOVolatile;
5110   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
5111     if (AI->isAtomic())
5112       return MachineMemOperand::MOVolatile;
5113   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
5114     if (AI->isAtomic())
5115       return MachineMemOperand::MOVolatile;
5116   return MachineMemOperand::MONone;
5117 }
5118 
5119 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
5120                                               SelectionDAG &DAG) const {
5121   MachineFunction &MF = DAG.getMachineFunction();
5122   auto *Regs = Subtarget.getSpecialRegisters();
5123   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
5124     report_fatal_error("Variable-sized stack allocations are not supported "
5125                        "in GHC calling convention");
5126   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
5127                             Regs->getStackPointerRegister(), Op.getValueType());
5128 }
5129 
5130 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
5131                                                  SelectionDAG &DAG) const {
5132   MachineFunction &MF = DAG.getMachineFunction();
5133   auto *Regs = Subtarget.getSpecialRegisters();
5134   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
5135 
5136   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
5137     report_fatal_error("Variable-sized stack allocations are not supported "
5138                        "in GHC calling convention");
5139 
5140   SDValue Chain = Op.getOperand(0);
5141   SDValue NewSP = Op.getOperand(1);
5142   SDValue Backchain;
5143   SDLoc DL(Op);
5144 
5145   if (StoreBackchain) {
5146     SDValue OldSP = DAG.getCopyFromReg(
5147         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
5148     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
5149                             MachinePointerInfo());
5150   }
5151 
5152   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
5153 
5154   if (StoreBackchain)
5155     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
5156                          MachinePointerInfo());
5157 
5158   return Chain;
5159 }
5160 
5161 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
5162                                              SelectionDAG &DAG) const {
5163   bool IsData = Op.getConstantOperandVal(4);
5164   if (!IsData)
5165     // Just preserve the chain.
5166     return Op.getOperand(0);
5167 
5168   SDLoc DL(Op);
5169   bool IsWrite = Op.getConstantOperandVal(2);
5170   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
5171   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
5172   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
5173                    Op.getOperand(1)};
5174   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
5175                                  Node->getVTList(), Ops,
5176                                  Node->getMemoryVT(), Node->getMemOperand());
5177 }
5178 
5179 // Convert condition code in CCReg to an i32 value.
5180 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
5181   SDLoc DL(CCReg);
5182   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
5183   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
5184                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
5185 }
5186 
5187 SDValue
5188 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
5189                                               SelectionDAG &DAG) const {
5190   unsigned Opcode, CCValid;
5191   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
5192     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
5193     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
5194     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
5195     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
5196     return SDValue();
5197   }
5198 
5199   return SDValue();
5200 }
5201 
5202 SDValue
5203 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
5204                                                SelectionDAG &DAG) const {
5205   unsigned Opcode, CCValid;
5206   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
5207     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
5208     if (Op->getNumValues() == 1)
5209       return getCCResult(DAG, SDValue(Node, 0));
5210     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
5211     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
5212                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
5213   }
5214 
5215   unsigned Id = Op.getConstantOperandVal(0);
5216   switch (Id) {
5217   case Intrinsic::thread_pointer:
5218     return lowerThreadPointer(SDLoc(Op), DAG);
5219 
5220   case Intrinsic::s390_vpdi:
5221     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
5222                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5223 
5224   case Intrinsic::s390_vperm:
5225     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
5226                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5227 
5228   case Intrinsic::s390_vuphb:
5229   case Intrinsic::s390_vuphh:
5230   case Intrinsic::s390_vuphf:
5231   case Intrinsic::s390_vuphg:
5232     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
5233                        Op.getOperand(1));
5234 
5235   case Intrinsic::s390_vuplhb:
5236   case Intrinsic::s390_vuplhh:
5237   case Intrinsic::s390_vuplhf:
5238   case Intrinsic::s390_vuplhg:
5239     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
5240                        Op.getOperand(1));
5241 
5242   case Intrinsic::s390_vuplb:
5243   case Intrinsic::s390_vuplhw:
5244   case Intrinsic::s390_vuplf:
5245   case Intrinsic::s390_vuplg:
5246     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
5247                        Op.getOperand(1));
5248 
5249   case Intrinsic::s390_vupllb:
5250   case Intrinsic::s390_vupllh:
5251   case Intrinsic::s390_vupllf:
5252   case Intrinsic::s390_vupllg:
5253     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
5254                        Op.getOperand(1));
5255 
5256   case Intrinsic::s390_vsumb:
5257   case Intrinsic::s390_vsumh:
5258   case Intrinsic::s390_vsumgh:
5259   case Intrinsic::s390_vsumgf:
5260   case Intrinsic::s390_vsumqf:
5261   case Intrinsic::s390_vsumqg:
5262     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
5263                        Op.getOperand(1), Op.getOperand(2));
5264 
5265   case Intrinsic::s390_vaq:
5266     return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
5267                        Op.getOperand(1), Op.getOperand(2));
5268   case Intrinsic::s390_vaccb:
5269   case Intrinsic::s390_vacch:
5270   case Intrinsic::s390_vaccf:
5271   case Intrinsic::s390_vaccg:
5272   case Intrinsic::s390_vaccq:
5273     return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
5274                        Op.getOperand(1), Op.getOperand(2));
5275   case Intrinsic::s390_vacq:
5276     return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
5277                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5278   case Intrinsic::s390_vacccq:
5279     return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
5280                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5281 
5282   case Intrinsic::s390_vsq:
5283     return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
5284                        Op.getOperand(1), Op.getOperand(2));
5285   case Intrinsic::s390_vscbib:
5286   case Intrinsic::s390_vscbih:
5287   case Intrinsic::s390_vscbif:
5288   case Intrinsic::s390_vscbig:
5289   case Intrinsic::s390_vscbiq:
5290     return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
5291                        Op.getOperand(1), Op.getOperand(2));
5292   case Intrinsic::s390_vsbiq:
5293     return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
5294                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5295   case Intrinsic::s390_vsbcbiq:
5296     return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
5297                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5298   }
5299 
5300   return SDValue();
5301 }
5302 
5303 namespace {
5304 // Says that SystemZISD operation Opcode can be used to perform the equivalent
5305 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
5306 // Operand is the constant third operand, otherwise it is the number of
5307 // bytes in each element of the result.
5308 struct Permute {
5309   unsigned Opcode;
5310   unsigned Operand;
5311   unsigned char Bytes[SystemZ::VectorBytes];
5312 };
5313 }
5314 
5315 static const Permute PermuteForms[] = {
5316   // VMRHG
5317   { SystemZISD::MERGE_HIGH, 8,
5318     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
5319   // VMRHF
5320   { SystemZISD::MERGE_HIGH, 4,
5321     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
5322   // VMRHH
5323   { SystemZISD::MERGE_HIGH, 2,
5324     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
5325   // VMRHB
5326   { SystemZISD::MERGE_HIGH, 1,
5327     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
5328   // VMRLG
5329   { SystemZISD::MERGE_LOW, 8,
5330     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
5331   // VMRLF
5332   { SystemZISD::MERGE_LOW, 4,
5333     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
5334   // VMRLH
5335   { SystemZISD::MERGE_LOW, 2,
5336     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
5337   // VMRLB
5338   { SystemZISD::MERGE_LOW, 1,
5339     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
5340   // VPKG
5341   { SystemZISD::PACK, 4,
5342     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
5343   // VPKF
5344   { SystemZISD::PACK, 2,
5345     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
5346   // VPKH
5347   { SystemZISD::PACK, 1,
5348     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
5349   // VPDI V1, V2, 4  (low half of V1, high half of V2)
5350   { SystemZISD::PERMUTE_DWORDS, 4,
5351     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
5352   // VPDI V1, V2, 1  (high half of V1, low half of V2)
5353   { SystemZISD::PERMUTE_DWORDS, 1,
5354     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
5355 };
5356 
5357 // Called after matching a vector shuffle against a particular pattern.
5358 // Both the original shuffle and the pattern have two vector operands.
5359 // OpNos[0] is the operand of the original shuffle that should be used for
5360 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
5361 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
5362 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
5363 // for operands 0 and 1 of the pattern.
5364 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
5365   if (OpNos[0] < 0) {
5366     if (OpNos[1] < 0)
5367       return false;
5368     OpNo0 = OpNo1 = OpNos[1];
5369   } else if (OpNos[1] < 0) {
5370     OpNo0 = OpNo1 = OpNos[0];
5371   } else {
5372     OpNo0 = OpNos[0];
5373     OpNo1 = OpNos[1];
5374   }
5375   return true;
5376 }
5377 
5378 // Bytes is a VPERM-like permute vector, except that -1 is used for
5379 // undefined bytes.  Return true if the VPERM can be implemented using P.
5380 // When returning true set OpNo0 to the VPERM operand that should be
5381 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5382 //
5383 // For example, if swapping the VPERM operands allows P to match, OpNo0
5384 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
5385 // operand, but rewriting it to use two duplicated operands allows it to
5386 // match P, then OpNo0 and OpNo1 will be the same.
5387 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5388                          unsigned &OpNo0, unsigned &OpNo1) {
5389   int OpNos[] = { -1, -1 };
5390   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5391     int Elt = Bytes[I];
5392     if (Elt >= 0) {
5393       // Make sure that the two permute vectors use the same suboperand
5394       // byte number.  Only the operand numbers (the high bits) are
5395       // allowed to differ.
5396       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5397         return false;
5398       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5399       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5400       // Make sure that the operand mappings are consistent with previous
5401       // elements.
5402       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5403         return false;
5404       OpNos[ModelOpNo] = RealOpNo;
5405     }
5406   }
5407   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5408 }
5409 
5410 // As above, but search for a matching permute.
5411 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5412                                    unsigned &OpNo0, unsigned &OpNo1) {
5413   for (auto &P : PermuteForms)
5414     if (matchPermute(Bytes, P, OpNo0, OpNo1))
5415       return &P;
5416   return nullptr;
5417 }
5418 
5419 // Bytes is a VPERM-like permute vector, except that -1 is used for
5420 // undefined bytes.  This permute is an operand of an outer permute.
5421 // See whether redistributing the -1 bytes gives a shuffle that can be
5422 // implemented using P.  If so, set Transform to a VPERM-like permute vector
5423 // that, when applied to the result of P, gives the original permute in Bytes.
5424 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5425                                const Permute &P,
5426                                SmallVectorImpl<int> &Transform) {
5427   unsigned To = 0;
5428   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5429     int Elt = Bytes[From];
5430     if (Elt < 0)
5431       // Byte number From of the result is undefined.
5432       Transform[From] = -1;
5433     else {
5434       while (P.Bytes[To] != Elt) {
5435         To += 1;
5436         if (To == SystemZ::VectorBytes)
5437           return false;
5438       }
5439       Transform[From] = To;
5440     }
5441   }
5442   return true;
5443 }
5444 
5445 // As above, but search for a matching permute.
5446 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5447                                          SmallVectorImpl<int> &Transform) {
5448   for (auto &P : PermuteForms)
5449     if (matchDoublePermute(Bytes, P, Transform))
5450       return &P;
5451   return nullptr;
5452 }
5453 
5454 // Convert the mask of the given shuffle op into a byte-level mask,
5455 // as if it had type vNi8.
5456 static bool getVPermMask(SDValue ShuffleOp,
5457                          SmallVectorImpl<int> &Bytes) {
5458   EVT VT = ShuffleOp.getValueType();
5459   unsigned NumElements = VT.getVectorNumElements();
5460   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5461 
5462   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5463     Bytes.resize(NumElements * BytesPerElement, -1);
5464     for (unsigned I = 0; I < NumElements; ++I) {
5465       int Index = VSN->getMaskElt(I);
5466       if (Index >= 0)
5467         for (unsigned J = 0; J < BytesPerElement; ++J)
5468           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5469     }
5470     return true;
5471   }
5472   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5473       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5474     unsigned Index = ShuffleOp.getConstantOperandVal(1);
5475     Bytes.resize(NumElements * BytesPerElement, -1);
5476     for (unsigned I = 0; I < NumElements; ++I)
5477       for (unsigned J = 0; J < BytesPerElement; ++J)
5478         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5479     return true;
5480   }
5481   return false;
5482 }
5483 
5484 // Bytes is a VPERM-like permute vector, except that -1 is used for
5485 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
5486 // the result come from a contiguous sequence of bytes from one input.
5487 // Set Base to the selector for the first byte if so.
5488 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5489                             unsigned BytesPerElement, int &Base) {
5490   Base = -1;
5491   for (unsigned I = 0; I < BytesPerElement; ++I) {
5492     if (Bytes[Start + I] >= 0) {
5493       unsigned Elem = Bytes[Start + I];
5494       if (Base < 0) {
5495         Base = Elem - I;
5496         // Make sure the bytes would come from one input operand.
5497         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5498           return false;
5499       } else if (unsigned(Base) != Elem - I)
5500         return false;
5501     }
5502   }
5503   return true;
5504 }
5505 
5506 // Bytes is a VPERM-like permute vector, except that -1 is used for
5507 // undefined bytes.  Return true if it can be performed using VSLDB.
5508 // When returning true, set StartIndex to the shift amount and OpNo0
5509 // and OpNo1 to the VPERM operands that should be used as the first
5510 // and second shift operand respectively.
5511 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5512                                unsigned &StartIndex, unsigned &OpNo0,
5513                                unsigned &OpNo1) {
5514   int OpNos[] = { -1, -1 };
5515   int Shift = -1;
5516   for (unsigned I = 0; I < 16; ++I) {
5517     int Index = Bytes[I];
5518     if (Index >= 0) {
5519       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5520       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5521       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5522       if (Shift < 0)
5523         Shift = ExpectedShift;
5524       else if (Shift != ExpectedShift)
5525         return false;
5526       // Make sure that the operand mappings are consistent with previous
5527       // elements.
5528       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5529         return false;
5530       OpNos[ModelOpNo] = RealOpNo;
5531     }
5532   }
5533   StartIndex = Shift;
5534   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5535 }
5536 
5537 // Create a node that performs P on operands Op0 and Op1, casting the
5538 // operands to the appropriate type.  The type of the result is determined by P.
5539 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5540                               const Permute &P, SDValue Op0, SDValue Op1) {
5541   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
5542   // elements of a PACK are twice as wide as the outputs.
5543   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5544                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5545                       P.Operand);
5546   // Cast both operands to the appropriate type.
5547   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5548                               SystemZ::VectorBytes / InBytes);
5549   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5550   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5551   SDValue Op;
5552   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5553     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5554     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5555   } else if (P.Opcode == SystemZISD::PACK) {
5556     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5557                                  SystemZ::VectorBytes / P.Operand);
5558     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5559   } else {
5560     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5561   }
5562   return Op;
5563 }
5564 
5565 static bool isZeroVector(SDValue N) {
5566   if (N->getOpcode() == ISD::BITCAST)
5567     N = N->getOperand(0);
5568   if (N->getOpcode() == ISD::SPLAT_VECTOR)
5569     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5570       return Op->getZExtValue() == 0;
5571   return ISD::isBuildVectorAllZeros(N.getNode());
5572 }
5573 
5574 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
5575 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5576   for (unsigned I = 0; I < Num ; I++)
5577     if (isZeroVector(Ops[I]))
5578       return I;
5579   return UINT32_MAX;
5580 }
5581 
5582 // Bytes is a VPERM-like permute vector, except that -1 is used for
5583 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
5584 // VSLDB or VPERM.
5585 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5586                                      SDValue *Ops,
5587                                      const SmallVectorImpl<int> &Bytes) {
5588   for (unsigned I = 0; I < 2; ++I)
5589     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5590 
5591   // First see whether VSLDB can be used.
5592   unsigned StartIndex, OpNo0, OpNo1;
5593   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5594     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5595                        Ops[OpNo1],
5596                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5597 
5598   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
5599   // eliminate a zero vector by reusing any zero index in the permute vector.
5600   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5601   if (ZeroVecIdx != UINT32_MAX) {
5602     bool MaskFirst = true;
5603     int ZeroIdx = -1;
5604     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5605       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5606       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5607       if (OpNo == ZeroVecIdx && I == 0) {
5608         // If the first byte is zero, use mask as first operand.
5609         ZeroIdx = 0;
5610         break;
5611       }
5612       if (OpNo != ZeroVecIdx && Byte == 0) {
5613         // If mask contains a zero, use it by placing that vector first.
5614         ZeroIdx = I + SystemZ::VectorBytes;
5615         MaskFirst = false;
5616         break;
5617       }
5618     }
5619     if (ZeroIdx != -1) {
5620       SDValue IndexNodes[SystemZ::VectorBytes];
5621       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5622         if (Bytes[I] >= 0) {
5623           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5624           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5625           if (OpNo == ZeroVecIdx)
5626             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5627           else {
5628             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5629             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5630           }
5631         } else
5632           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5633       }
5634       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5635       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5636       if (MaskFirst)
5637         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5638                            Mask);
5639       else
5640         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5641                            Mask);
5642     }
5643   }
5644 
5645   SDValue IndexNodes[SystemZ::VectorBytes];
5646   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5647     if (Bytes[I] >= 0)
5648       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5649     else
5650       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5651   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5652   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5653                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5654 }
5655 
5656 namespace {
5657 // Describes a general N-operand vector shuffle.
5658 struct GeneralShuffle {
5659   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5660   void addUndef();
5661   bool add(SDValue, unsigned);
5662   SDValue getNode(SelectionDAG &, const SDLoc &);
5663   void tryPrepareForUnpack();
5664   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5665   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5666 
5667   // The operands of the shuffle.
5668   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5669 
5670   // Index I is -1 if byte I of the result is undefined.  Otherwise the
5671   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5672   // Bytes[I] / SystemZ::VectorBytes.
5673   SmallVector<int, SystemZ::VectorBytes> Bytes;
5674 
5675   // The type of the shuffle result.
5676   EVT VT;
5677 
5678   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5679   unsigned UnpackFromEltSize;
5680 };
5681 }
5682 
5683 // Add an extra undefined element to the shuffle.
5684 void GeneralShuffle::addUndef() {
5685   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5686   for (unsigned I = 0; I < BytesPerElement; ++I)
5687     Bytes.push_back(-1);
5688 }
5689 
5690 // Add an extra element to the shuffle, taking it from element Elem of Op.
5691 // A null Op indicates a vector input whose value will be calculated later;
5692 // there is at most one such input per shuffle and it always has the same
5693 // type as the result. Aborts and returns false if the source vector elements
5694 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5695 // LLVM they become implicitly extended, but this is rare and not optimized.
5696 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5697   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5698 
5699   // The source vector can have wider elements than the result,
5700   // either through an explicit TRUNCATE or because of type legalization.
5701   // We want the least significant part.
5702   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5703   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5704 
5705   // Return false if the source elements are smaller than their destination
5706   // elements.
5707   if (FromBytesPerElement < BytesPerElement)
5708     return false;
5709 
5710   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5711                    (FromBytesPerElement - BytesPerElement));
5712 
5713   // Look through things like shuffles and bitcasts.
5714   while (Op.getNode()) {
5715     if (Op.getOpcode() == ISD::BITCAST)
5716       Op = Op.getOperand(0);
5717     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5718       // See whether the bytes we need come from a contiguous part of one
5719       // operand.
5720       SmallVector<int, SystemZ::VectorBytes> OpBytes;
5721       if (!getVPermMask(Op, OpBytes))
5722         break;
5723       int NewByte;
5724       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5725         break;
5726       if (NewByte < 0) {
5727         addUndef();
5728         return true;
5729       }
5730       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5731       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5732     } else if (Op.isUndef()) {
5733       addUndef();
5734       return true;
5735     } else
5736       break;
5737   }
5738 
5739   // Make sure that the source of the extraction is in Ops.
5740   unsigned OpNo = 0;
5741   for (; OpNo < Ops.size(); ++OpNo)
5742     if (Ops[OpNo] == Op)
5743       break;
5744   if (OpNo == Ops.size())
5745     Ops.push_back(Op);
5746 
5747   // Add the element to Bytes.
5748   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5749   for (unsigned I = 0; I < BytesPerElement; ++I)
5750     Bytes.push_back(Base + I);
5751 
5752   return true;
5753 }
5754 
5755 // Return SDNodes for the completed shuffle.
5756 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5757   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5758 
5759   if (Ops.size() == 0)
5760     return DAG.getUNDEF(VT);
5761 
5762   // Use a single unpack if possible as the last operation.
5763   tryPrepareForUnpack();
5764 
5765   // Make sure that there are at least two shuffle operands.
5766   if (Ops.size() == 1)
5767     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5768 
5769   // Create a tree of shuffles, deferring root node until after the loop.
5770   // Try to redistribute the undefined elements of non-root nodes so that
5771   // the non-root shuffles match something like a pack or merge, then adjust
5772   // the parent node's permute vector to compensate for the new order.
5773   // Among other things, this copes with vectors like <2 x i16> that were
5774   // padded with undefined elements during type legalization.
5775   //
5776   // In the best case this redistribution will lead to the whole tree
5777   // using packs and merges.  It should rarely be a loss in other cases.
5778   unsigned Stride = 1;
5779   for (; Stride * 2 < Ops.size(); Stride *= 2) {
5780     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5781       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5782 
5783       // Create a mask for just these two operands.
5784       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5785       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5786         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5787         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5788         if (OpNo == I)
5789           NewBytes[J] = Byte;
5790         else if (OpNo == I + Stride)
5791           NewBytes[J] = SystemZ::VectorBytes + Byte;
5792         else
5793           NewBytes[J] = -1;
5794       }
5795       // See if it would be better to reorganize NewMask to avoid using VPERM.
5796       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5797       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5798         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5799         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5800         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5801           if (NewBytes[J] >= 0) {
5802             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5803                    "Invalid double permute");
5804             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5805           } else
5806             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5807         }
5808       } else {
5809         // Just use NewBytes on the operands.
5810         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5811         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5812           if (NewBytes[J] >= 0)
5813             Bytes[J] = I * SystemZ::VectorBytes + J;
5814       }
5815     }
5816   }
5817 
5818   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5819   if (Stride > 1) {
5820     Ops[1] = Ops[Stride];
5821     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5822       if (Bytes[I] >= int(SystemZ::VectorBytes))
5823         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5824   }
5825 
5826   // Look for an instruction that can do the permute without resorting
5827   // to VPERM.
5828   unsigned OpNo0, OpNo1;
5829   SDValue Op;
5830   if (unpackWasPrepared() && Ops[1].isUndef())
5831     Op = Ops[0];
5832   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5833     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5834   else
5835     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5836 
5837   Op = insertUnpackIfPrepared(DAG, DL, Op);
5838 
5839   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5840 }
5841 
5842 #ifndef NDEBUG
5843 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5844   dbgs() << Msg.c_str() << " { ";
5845   for (unsigned i = 0; i < Bytes.size(); i++)
5846     dbgs() << Bytes[i] << " ";
5847   dbgs() << "}\n";
5848 }
5849 #endif
5850 
5851 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5852 // after all else by removing the zero vector and the effect of the unpack on
5853 // Bytes.
5854 void GeneralShuffle::tryPrepareForUnpack() {
5855   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5856   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5857     return;
5858 
5859   // Only do this if removing the zero vector reduces the depth, otherwise
5860   // the critical path will increase with the final unpack.
5861   if (Ops.size() > 2 &&
5862       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5863     return;
5864 
5865   // Find an unpack that would allow removing the zero vector from Ops.
5866   UnpackFromEltSize = 1;
5867   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5868     bool MatchUnpack = true;
5869     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5870     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5871       unsigned ToEltSize = UnpackFromEltSize * 2;
5872       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5873       if (!IsZextByte)
5874         SrcBytes.push_back(Bytes[Elt]);
5875       if (Bytes[Elt] != -1) {
5876         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5877         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5878           MatchUnpack = false;
5879           break;
5880         }
5881       }
5882     }
5883     if (MatchUnpack) {
5884       if (Ops.size() == 2) {
5885         // Don't use unpack if a single source operand needs rearrangement.
5886         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5887           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5888             UnpackFromEltSize = UINT_MAX;
5889             return;
5890           }
5891       }
5892       break;
5893     }
5894   }
5895   if (UnpackFromEltSize > 4)
5896     return;
5897 
5898   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5899              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5900              << ".\n";
5901              dumpBytes(Bytes, "Original Bytes vector:"););
5902 
5903   // Apply the unpack in reverse to the Bytes array.
5904   unsigned B = 0;
5905   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5906     Elt += UnpackFromEltSize;
5907     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5908       Bytes[B] = Bytes[Elt];
5909   }
5910   while (B < SystemZ::VectorBytes)
5911     Bytes[B++] = -1;
5912 
5913   // Remove the zero vector from Ops
5914   Ops.erase(&Ops[ZeroVecOpNo]);
5915   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5916     if (Bytes[I] >= 0) {
5917       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5918       if (OpNo > ZeroVecOpNo)
5919         Bytes[I] -= SystemZ::VectorBytes;
5920     }
5921 
5922   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5923              dbgs() << "\n";);
5924 }
5925 
5926 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5927                                                const SDLoc &DL,
5928                                                SDValue Op) {
5929   if (!unpackWasPrepared())
5930     return Op;
5931   unsigned InBits = UnpackFromEltSize * 8;
5932   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5933                                 SystemZ::VectorBits / InBits);
5934   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5935   unsigned OutBits = InBits * 2;
5936   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5937                                SystemZ::VectorBits / OutBits);
5938   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5939 }
5940 
5941 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5942 static bool isScalarToVector(SDValue Op) {
5943   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5944     if (!Op.getOperand(I).isUndef())
5945       return false;
5946   return true;
5947 }
5948 
5949 // Return a vector of type VT that contains Value in the first element.
5950 // The other elements don't matter.
5951 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5952                                    SDValue Value) {
5953   // If we have a constant, replicate it to all elements and let the
5954   // BUILD_VECTOR lowering take care of it.
5955   if (Value.getOpcode() == ISD::Constant ||
5956       Value.getOpcode() == ISD::ConstantFP) {
5957     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5958     return DAG.getBuildVector(VT, DL, Ops);
5959   }
5960   if (Value.isUndef())
5961     return DAG.getUNDEF(VT);
5962   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5963 }
5964 
5965 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5966 // element 1.  Used for cases in which replication is cheap.
5967 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5968                                  SDValue Op0, SDValue Op1) {
5969   if (Op0.isUndef()) {
5970     if (Op1.isUndef())
5971       return DAG.getUNDEF(VT);
5972     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5973   }
5974   if (Op1.isUndef())
5975     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5976   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5977                      buildScalarToVector(DAG, DL, VT, Op0),
5978                      buildScalarToVector(DAG, DL, VT, Op1));
5979 }
5980 
5981 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5982 // vector for them.
5983 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5984                           SDValue Op1) {
5985   if (Op0.isUndef() && Op1.isUndef())
5986     return DAG.getUNDEF(MVT::v2i64);
5987   // If one of the two inputs is undefined then replicate the other one,
5988   // in order to avoid using another register unnecessarily.
5989   if (Op0.isUndef())
5990     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5991   else if (Op1.isUndef())
5992     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5993   else {
5994     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5995     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5996   }
5997   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5998 }
5999 
6000 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
6001 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
6002 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
6003 // would benefit from this representation and return it if so.
6004 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
6005                                      BuildVectorSDNode *BVN) {
6006   EVT VT = BVN->getValueType(0);
6007   unsigned NumElements = VT.getVectorNumElements();
6008 
6009   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
6010   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
6011   // need a BUILD_VECTOR, add an additional placeholder operand for that
6012   // BUILD_VECTOR and store its operands in ResidueOps.
6013   GeneralShuffle GS(VT);
6014   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
6015   bool FoundOne = false;
6016   for (unsigned I = 0; I < NumElements; ++I) {
6017     SDValue Op = BVN->getOperand(I);
6018     if (Op.getOpcode() == ISD::TRUNCATE)
6019       Op = Op.getOperand(0);
6020     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6021         Op.getOperand(1).getOpcode() == ISD::Constant) {
6022       unsigned Elem = Op.getConstantOperandVal(1);
6023       if (!GS.add(Op.getOperand(0), Elem))
6024         return SDValue();
6025       FoundOne = true;
6026     } else if (Op.isUndef()) {
6027       GS.addUndef();
6028     } else {
6029       if (!GS.add(SDValue(), ResidueOps.size()))
6030         return SDValue();
6031       ResidueOps.push_back(BVN->getOperand(I));
6032     }
6033   }
6034 
6035   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
6036   if (!FoundOne)
6037     return SDValue();
6038 
6039   // Create the BUILD_VECTOR for the remaining elements, if any.
6040   if (!ResidueOps.empty()) {
6041     while (ResidueOps.size() < NumElements)
6042       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
6043     for (auto &Op : GS.Ops) {
6044       if (!Op.getNode()) {
6045         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
6046         break;
6047       }
6048     }
6049   }
6050   return GS.getNode(DAG, SDLoc(BVN));
6051 }
6052 
6053 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
6054   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
6055     return true;
6056   if (auto *AL = dyn_cast<AtomicSDNode>(Op))
6057     if (AL->getOpcode() == ISD::ATOMIC_LOAD)
6058       return true;
6059   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
6060     return true;
6061   return false;
6062 }
6063 
6064 // Combine GPR scalar values Elems into a vector of type VT.
6065 SDValue
6066 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
6067                                    SmallVectorImpl<SDValue> &Elems) const {
6068   // See whether there is a single replicated value.
6069   SDValue Single;
6070   unsigned int NumElements = Elems.size();
6071   unsigned int Count = 0;
6072   for (auto Elem : Elems) {
6073     if (!Elem.isUndef()) {
6074       if (!Single.getNode())
6075         Single = Elem;
6076       else if (Elem != Single) {
6077         Single = SDValue();
6078         break;
6079       }
6080       Count += 1;
6081     }
6082   }
6083   // There are three cases here:
6084   //
6085   // - if the only defined element is a loaded one, the best sequence
6086   //   is a replicating load.
6087   //
6088   // - otherwise, if the only defined element is an i64 value, we will
6089   //   end up with the same VLVGP sequence regardless of whether we short-cut
6090   //   for replication or fall through to the later code.
6091   //
6092   // - otherwise, if the only defined element is an i32 or smaller value,
6093   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
6094   //   This is only a win if the single defined element is used more than once.
6095   //   In other cases we're better off using a single VLVGx.
6096   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
6097     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
6098 
6099   // If all elements are loads, use VLREP/VLEs (below).
6100   bool AllLoads = true;
6101   for (auto Elem : Elems)
6102     if (!isVectorElementLoad(Elem)) {
6103       AllLoads = false;
6104       break;
6105     }
6106 
6107   // The best way of building a v2i64 from two i64s is to use VLVGP.
6108   if (VT == MVT::v2i64 && !AllLoads)
6109     return joinDwords(DAG, DL, Elems[0], Elems[1]);
6110 
6111   // Use a 64-bit merge high to combine two doubles.
6112   if (VT == MVT::v2f64 && !AllLoads)
6113     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
6114 
6115   // Build v4f32 values directly from the FPRs:
6116   //
6117   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
6118   //         V              V         VMRHF
6119   //      <ABxx>         <CDxx>
6120   //                V                 VMRHG
6121   //              <ABCD>
6122   if (VT == MVT::v4f32 && !AllLoads) {
6123     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
6124     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
6125     // Avoid unnecessary undefs by reusing the other operand.
6126     if (Op01.isUndef())
6127       Op01 = Op23;
6128     else if (Op23.isUndef())
6129       Op23 = Op01;
6130     // Merging identical replications is a no-op.
6131     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
6132       return Op01;
6133     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
6134     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
6135     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
6136                              DL, MVT::v2i64, Op01, Op23);
6137     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
6138   }
6139 
6140   // Collect the constant terms.
6141   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
6142   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
6143 
6144   unsigned NumConstants = 0;
6145   for (unsigned I = 0; I < NumElements; ++I) {
6146     SDValue Elem = Elems[I];
6147     if (Elem.getOpcode() == ISD::Constant ||
6148         Elem.getOpcode() == ISD::ConstantFP) {
6149       NumConstants += 1;
6150       Constants[I] = Elem;
6151       Done[I] = true;
6152     }
6153   }
6154   // If there was at least one constant, fill in the other elements of
6155   // Constants with undefs to get a full vector constant and use that
6156   // as the starting point.
6157   SDValue Result;
6158   SDValue ReplicatedVal;
6159   if (NumConstants > 0) {
6160     for (unsigned I = 0; I < NumElements; ++I)
6161       if (!Constants[I].getNode())
6162         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
6163     Result = DAG.getBuildVector(VT, DL, Constants);
6164   } else {
6165     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
6166     // avoid a false dependency on any previous contents of the vector
6167     // register.
6168 
6169     // Use a VLREP if at least one element is a load. Make sure to replicate
6170     // the load with the most elements having its value.
6171     std::map<const SDNode*, unsigned> UseCounts;
6172     SDNode *LoadMaxUses = nullptr;
6173     for (unsigned I = 0; I < NumElements; ++I)
6174       if (isVectorElementLoad(Elems[I])) {
6175         SDNode *Ld = Elems[I].getNode();
6176         UseCounts[Ld]++;
6177         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
6178           LoadMaxUses = Ld;
6179       }
6180     if (LoadMaxUses != nullptr) {
6181       ReplicatedVal = SDValue(LoadMaxUses, 0);
6182       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
6183     } else {
6184       // Try to use VLVGP.
6185       unsigned I1 = NumElements / 2 - 1;
6186       unsigned I2 = NumElements - 1;
6187       bool Def1 = !Elems[I1].isUndef();
6188       bool Def2 = !Elems[I2].isUndef();
6189       if (Def1 || Def2) {
6190         SDValue Elem1 = Elems[Def1 ? I1 : I2];
6191         SDValue Elem2 = Elems[Def2 ? I2 : I1];
6192         Result = DAG.getNode(ISD::BITCAST, DL, VT,
6193                              joinDwords(DAG, DL, Elem1, Elem2));
6194         Done[I1] = true;
6195         Done[I2] = true;
6196       } else
6197         Result = DAG.getUNDEF(VT);
6198     }
6199   }
6200 
6201   // Use VLVGx to insert the other elements.
6202   for (unsigned I = 0; I < NumElements; ++I)
6203     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
6204       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
6205                            DAG.getConstant(I, DL, MVT::i32));
6206   return Result;
6207 }
6208 
6209 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
6210                                                  SelectionDAG &DAG) const {
6211   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
6212   SDLoc DL(Op);
6213   EVT VT = Op.getValueType();
6214 
6215   if (BVN->isConstant()) {
6216     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
6217       return Op;
6218 
6219     // Fall back to loading it from memory.
6220     return SDValue();
6221   }
6222 
6223   // See if we should use shuffles to construct the vector from other vectors.
6224   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
6225     return Res;
6226 
6227   // Detect SCALAR_TO_VECTOR conversions.
6228   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
6229     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
6230 
6231   // Otherwise use buildVector to build the vector up from GPRs.
6232   unsigned NumElements = Op.getNumOperands();
6233   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
6234   for (unsigned I = 0; I < NumElements; ++I)
6235     Ops[I] = Op.getOperand(I);
6236   return buildVector(DAG, DL, VT, Ops);
6237 }
6238 
6239 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
6240                                                    SelectionDAG &DAG) const {
6241   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
6242   SDLoc DL(Op);
6243   EVT VT = Op.getValueType();
6244   unsigned NumElements = VT.getVectorNumElements();
6245 
6246   if (VSN->isSplat()) {
6247     SDValue Op0 = Op.getOperand(0);
6248     unsigned Index = VSN->getSplatIndex();
6249     assert(Index < VT.getVectorNumElements() &&
6250            "Splat index should be defined and in first operand");
6251     // See whether the value we're splatting is directly available as a scalar.
6252     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6253         Op0.getOpcode() == ISD::BUILD_VECTOR)
6254       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
6255     // Otherwise keep it as a vector-to-vector operation.
6256     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
6257                        DAG.getTargetConstant(Index, DL, MVT::i32));
6258   }
6259 
6260   GeneralShuffle GS(VT);
6261   for (unsigned I = 0; I < NumElements; ++I) {
6262     int Elt = VSN->getMaskElt(I);
6263     if (Elt < 0)
6264       GS.addUndef();
6265     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
6266                      unsigned(Elt) % NumElements))
6267       return SDValue();
6268   }
6269   return GS.getNode(DAG, SDLoc(VSN));
6270 }
6271 
6272 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
6273                                                      SelectionDAG &DAG) const {
6274   SDLoc DL(Op);
6275   // Just insert the scalar into element 0 of an undefined vector.
6276   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
6277                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
6278                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
6279 }
6280 
6281 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
6282                                                       SelectionDAG &DAG) const {
6283   // Handle insertions of floating-point values.
6284   SDLoc DL(Op);
6285   SDValue Op0 = Op.getOperand(0);
6286   SDValue Op1 = Op.getOperand(1);
6287   SDValue Op2 = Op.getOperand(2);
6288   EVT VT = Op.getValueType();
6289 
6290   // Insertions into constant indices of a v2f64 can be done using VPDI.
6291   // However, if the inserted value is a bitcast or a constant then it's
6292   // better to use GPRs, as below.
6293   if (VT == MVT::v2f64 &&
6294       Op1.getOpcode() != ISD::BITCAST &&
6295       Op1.getOpcode() != ISD::ConstantFP &&
6296       Op2.getOpcode() == ISD::Constant) {
6297     uint64_t Index = Op2->getAsZExtVal();
6298     unsigned Mask = VT.getVectorNumElements() - 1;
6299     if (Index <= Mask)
6300       return Op;
6301   }
6302 
6303   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
6304   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
6305   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
6306   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
6307                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
6308                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
6309   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
6310 }
6311 
6312 SDValue
6313 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
6314                                                SelectionDAG &DAG) const {
6315   // Handle extractions of floating-point values.
6316   SDLoc DL(Op);
6317   SDValue Op0 = Op.getOperand(0);
6318   SDValue Op1 = Op.getOperand(1);
6319   EVT VT = Op.getValueType();
6320   EVT VecVT = Op0.getValueType();
6321 
6322   // Extractions of constant indices can be done directly.
6323   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
6324     uint64_t Index = CIndexN->getZExtValue();
6325     unsigned Mask = VecVT.getVectorNumElements() - 1;
6326     if (Index <= Mask)
6327       return Op;
6328   }
6329 
6330   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
6331   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
6332   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
6333   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
6334                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
6335   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
6336 }
6337 
6338 SDValue SystemZTargetLowering::
6339 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
6340   SDValue PackedOp = Op.getOperand(0);
6341   EVT OutVT = Op.getValueType();
6342   EVT InVT = PackedOp.getValueType();
6343   unsigned ToBits = OutVT.getScalarSizeInBits();
6344   unsigned FromBits = InVT.getScalarSizeInBits();
6345   do {
6346     FromBits *= 2;
6347     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
6348                                  SystemZ::VectorBits / FromBits);
6349     PackedOp =
6350       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
6351   } while (FromBits != ToBits);
6352   return PackedOp;
6353 }
6354 
6355 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
6356 SDValue SystemZTargetLowering::
6357 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
6358   SDValue PackedOp = Op.getOperand(0);
6359   SDLoc DL(Op);
6360   EVT OutVT = Op.getValueType();
6361   EVT InVT = PackedOp.getValueType();
6362   unsigned InNumElts = InVT.getVectorNumElements();
6363   unsigned OutNumElts = OutVT.getVectorNumElements();
6364   unsigned NumInPerOut = InNumElts / OutNumElts;
6365 
6366   SDValue ZeroVec =
6367     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
6368 
6369   SmallVector<int, 16> Mask(InNumElts);
6370   unsigned ZeroVecElt = InNumElts;
6371   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
6372     unsigned MaskElt = PackedElt * NumInPerOut;
6373     unsigned End = MaskElt + NumInPerOut - 1;
6374     for (; MaskElt < End; MaskElt++)
6375       Mask[MaskElt] = ZeroVecElt++;
6376     Mask[MaskElt] = PackedElt;
6377   }
6378   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
6379   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
6380 }
6381 
6382 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6383                                           unsigned ByScalar) const {
6384   // Look for cases where a vector shift can use the *_BY_SCALAR form.
6385   SDValue Op0 = Op.getOperand(0);
6386   SDValue Op1 = Op.getOperand(1);
6387   SDLoc DL(Op);
6388   EVT VT = Op.getValueType();
6389   unsigned ElemBitSize = VT.getScalarSizeInBits();
6390 
6391   // See whether the shift vector is a splat represented as BUILD_VECTOR.
6392   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6393     APInt SplatBits, SplatUndef;
6394     unsigned SplatBitSize;
6395     bool HasAnyUndefs;
6396     // Check for constant splats.  Use ElemBitSize as the minimum element
6397     // width and reject splats that need wider elements.
6398     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6399                              ElemBitSize, true) &&
6400         SplatBitSize == ElemBitSize) {
6401       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6402                                       DL, MVT::i32);
6403       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6404     }
6405     // Check for variable splats.
6406     BitVector UndefElements;
6407     SDValue Splat = BVN->getSplatValue(&UndefElements);
6408     if (Splat) {
6409       // Since i32 is the smallest legal type, we either need a no-op
6410       // or a truncation.
6411       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6412       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6413     }
6414   }
6415 
6416   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6417   // and the shift amount is directly available in a GPR.
6418   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6419     if (VSN->isSplat()) {
6420       SDValue VSNOp0 = VSN->getOperand(0);
6421       unsigned Index = VSN->getSplatIndex();
6422       assert(Index < VT.getVectorNumElements() &&
6423              "Splat index should be defined and in first operand");
6424       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6425           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6426         // Since i32 is the smallest legal type, we either need a no-op
6427         // or a truncation.
6428         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6429                                     VSNOp0.getOperand(Index));
6430         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6431       }
6432     }
6433   }
6434 
6435   // Otherwise just treat the current form as legal.
6436   return Op;
6437 }
6438 
6439 static SDValue lowerAddrSpaceCast(SDValue Op, SelectionDAG &DAG) {
6440   SDLoc dl(Op);
6441   SDValue Src = Op.getOperand(0);
6442   MVT DstVT = Op.getSimpleValueType();
6443 
6444   AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode());
6445   unsigned SrcAS = N->getSrcAddressSpace();
6446 
6447   assert(SrcAS != N->getDestAddressSpace() &&
6448          "addrspacecast must be between different address spaces");
6449 
6450   // addrspacecast [0 <- 1] : Assinging a ptr32 value to a 64-bit pointer.
6451   // addrspacecast [1 <- 0] : Assigining a 64-bit pointer to a ptr32 value.
6452   if (SrcAS == SYSTEMZAS::PTR32 && DstVT == MVT::i64) {
6453     Op = DAG.getNode(ISD::AND, dl, MVT::i32, Src,
6454                      DAG.getConstant(0x7fffffff, dl, MVT::i32));
6455     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op);
6456   } else if (DstVT == MVT::i32) {
6457     Op = DAG.getNode(ISD::TRUNCATE, dl, DstVT, Src);
6458     Op = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
6459                      DAG.getConstant(0x7fffffff, dl, MVT::i32));
6460     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op);
6461   } else {
6462     report_fatal_error("Bad address space in addrspacecast");
6463   }
6464   return Op;
6465 }
6466 
6467 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6468                                                SelectionDAG &DAG) const {
6469   SDLoc DL(Op);
6470   MVT ResultVT = Op.getSimpleValueType();
6471   SDValue Arg = Op.getOperand(0);
6472   unsigned Check = Op.getConstantOperandVal(1);
6473 
6474   unsigned TDCMask = 0;
6475   if (Check & fcSNan)
6476     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6477   if (Check & fcQNan)
6478     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6479   if (Check & fcPosInf)
6480     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6481   if (Check & fcNegInf)
6482     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6483   if (Check & fcPosNormal)
6484     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6485   if (Check & fcNegNormal)
6486     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6487   if (Check & fcPosSubnormal)
6488     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6489   if (Check & fcNegSubnormal)
6490     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6491   if (Check & fcPosZero)
6492     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6493   if (Check & fcNegZero)
6494     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6495   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6496 
6497   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6498   return getCCResult(DAG, Intr);
6499 }
6500 
6501 SDValue SystemZTargetLowering::lowerREADCYCLECOUNTER(SDValue Op,
6502                                                      SelectionDAG &DAG) const {
6503   SDLoc DL(Op);
6504   SDValue Chain = Op.getOperand(0);
6505 
6506   // STCKF only supports a memory operand, so we have to use a temporary.
6507   SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
6508   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6509   MachinePointerInfo MPI =
6510     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6511 
6512   // Use STCFK to store the TOD clock into the temporary.
6513   SDValue StoreOps[] = {Chain, StackPtr};
6514   Chain = DAG.getMemIntrinsicNode(
6515     SystemZISD::STCKF, DL, DAG.getVTList(MVT::Other), StoreOps, MVT::i64,
6516     MPI, MaybeAlign(), MachineMemOperand::MOStore);
6517 
6518   // And read it back from there.
6519   return DAG.getLoad(MVT::i64, DL, Chain, StackPtr, MPI);
6520 }
6521 
6522 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6523                                               SelectionDAG &DAG) const {
6524   switch (Op.getOpcode()) {
6525   case ISD::FRAMEADDR:
6526     return lowerFRAMEADDR(Op, DAG);
6527   case ISD::RETURNADDR:
6528     return lowerRETURNADDR(Op, DAG);
6529   case ISD::BR_CC:
6530     return lowerBR_CC(Op, DAG);
6531   case ISD::SELECT_CC:
6532     return lowerSELECT_CC(Op, DAG);
6533   case ISD::SETCC:
6534     return lowerSETCC(Op, DAG);
6535   case ISD::STRICT_FSETCC:
6536     return lowerSTRICT_FSETCC(Op, DAG, false);
6537   case ISD::STRICT_FSETCCS:
6538     return lowerSTRICT_FSETCC(Op, DAG, true);
6539   case ISD::GlobalAddress:
6540     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6541   case ISD::GlobalTLSAddress:
6542     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6543   case ISD::BlockAddress:
6544     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6545   case ISD::JumpTable:
6546     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6547   case ISD::ConstantPool:
6548     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6549   case ISD::BITCAST:
6550     return lowerBITCAST(Op, DAG);
6551   case ISD::VASTART:
6552     return lowerVASTART(Op, DAG);
6553   case ISD::VACOPY:
6554     return lowerVACOPY(Op, DAG);
6555   case ISD::DYNAMIC_STACKALLOC:
6556     return lowerDYNAMIC_STACKALLOC(Op, DAG);
6557   case ISD::GET_DYNAMIC_AREA_OFFSET:
6558     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6559   case ISD::MULHS:
6560     return lowerMULH(Op, DAG, SystemZISD::SMUL_LOHI);
6561   case ISD::MULHU:
6562     return lowerMULH(Op, DAG, SystemZISD::UMUL_LOHI);
6563   case ISD::SMUL_LOHI:
6564     return lowerSMUL_LOHI(Op, DAG);
6565   case ISD::UMUL_LOHI:
6566     return lowerUMUL_LOHI(Op, DAG);
6567   case ISD::SDIVREM:
6568     return lowerSDIVREM(Op, DAG);
6569   case ISD::UDIVREM:
6570     return lowerUDIVREM(Op, DAG);
6571   case ISD::SADDO:
6572   case ISD::SSUBO:
6573   case ISD::UADDO:
6574   case ISD::USUBO:
6575     return lowerXALUO(Op, DAG);
6576   case ISD::UADDO_CARRY:
6577   case ISD::USUBO_CARRY:
6578     return lowerUADDSUBO_CARRY(Op, DAG);
6579   case ISD::OR:
6580     return lowerOR(Op, DAG);
6581   case ISD::CTPOP:
6582     return lowerCTPOP(Op, DAG);
6583   case ISD::VECREDUCE_ADD:
6584     return lowerVECREDUCE_ADD(Op, DAG);
6585   case ISD::ATOMIC_FENCE:
6586     return lowerATOMIC_FENCE(Op, DAG);
6587   case ISD::ATOMIC_SWAP:
6588     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6589   case ISD::ATOMIC_STORE:
6590   case ISD::ATOMIC_LOAD:
6591     return lowerATOMIC_LDST_I128(Op, DAG);
6592   case ISD::ATOMIC_LOAD_ADD:
6593     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6594   case ISD::ATOMIC_LOAD_SUB:
6595     return lowerATOMIC_LOAD_SUB(Op, DAG);
6596   case ISD::ATOMIC_LOAD_AND:
6597     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6598   case ISD::ATOMIC_LOAD_OR:
6599     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6600   case ISD::ATOMIC_LOAD_XOR:
6601     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6602   case ISD::ATOMIC_LOAD_NAND:
6603     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6604   case ISD::ATOMIC_LOAD_MIN:
6605     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6606   case ISD::ATOMIC_LOAD_MAX:
6607     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6608   case ISD::ATOMIC_LOAD_UMIN:
6609     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6610   case ISD::ATOMIC_LOAD_UMAX:
6611     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6612   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6613     return lowerATOMIC_CMP_SWAP(Op, DAG);
6614   case ISD::STACKSAVE:
6615     return lowerSTACKSAVE(Op, DAG);
6616   case ISD::STACKRESTORE:
6617     return lowerSTACKRESTORE(Op, DAG);
6618   case ISD::PREFETCH:
6619     return lowerPREFETCH(Op, DAG);
6620   case ISD::INTRINSIC_W_CHAIN:
6621     return lowerINTRINSIC_W_CHAIN(Op, DAG);
6622   case ISD::INTRINSIC_WO_CHAIN:
6623     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6624   case ISD::BUILD_VECTOR:
6625     return lowerBUILD_VECTOR(Op, DAG);
6626   case ISD::VECTOR_SHUFFLE:
6627     return lowerVECTOR_SHUFFLE(Op, DAG);
6628   case ISD::SCALAR_TO_VECTOR:
6629     return lowerSCALAR_TO_VECTOR(Op, DAG);
6630   case ISD::INSERT_VECTOR_ELT:
6631     return lowerINSERT_VECTOR_ELT(Op, DAG);
6632   case ISD::EXTRACT_VECTOR_ELT:
6633     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6634   case ISD::SIGN_EXTEND_VECTOR_INREG:
6635     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6636   case ISD::ZERO_EXTEND_VECTOR_INREG:
6637     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6638   case ISD::SHL:
6639     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6640   case ISD::SRL:
6641     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6642   case ISD::SRA:
6643     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6644   case ISD::ADDRSPACECAST:
6645     return lowerAddrSpaceCast(Op, DAG);
6646   case ISD::ROTL:
6647     return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6648   case ISD::IS_FPCLASS:
6649     return lowerIS_FPCLASS(Op, DAG);
6650   case ISD::GET_ROUNDING:
6651     return lowerGET_ROUNDING(Op, DAG);
6652   case ISD::READCYCLECOUNTER:
6653     return lowerREADCYCLECOUNTER(Op, DAG);
6654   case ISD::EH_SJLJ_SETJMP:
6655   case ISD::EH_SJLJ_LONGJMP:
6656     // These operations are legal on our platform, but we cannot actually
6657     // set the operation action to Legal as common code would treat this
6658     // as equivalent to Expand. Instead, we keep the operation action to
6659     // Custom and just leave them unchanged here.
6660     return Op;
6661 
6662   default:
6663     llvm_unreachable("Unexpected node to lower");
6664   }
6665 }
6666 
6667 static SDValue expandBitCastI128ToF128(SelectionDAG &DAG, SDValue Src,
6668                                        const SDLoc &SL) {
6669   // If i128 is legal, just use a normal bitcast.
6670   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6671     return DAG.getBitcast(MVT::f128, Src);
6672 
6673   // Otherwise, f128 must live in FP128, so do a partwise move.
6674   assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6675          &SystemZ::FP128BitRegClass);
6676 
6677   SDValue Hi, Lo;
6678   std::tie(Lo, Hi) = DAG.SplitScalar(Src, SL, MVT::i64, MVT::i64);
6679 
6680   Hi = DAG.getBitcast(MVT::f64, Hi);
6681   Lo = DAG.getBitcast(MVT::f64, Lo);
6682 
6683   SDNode *Pair = DAG.getMachineNode(
6684       SystemZ::REG_SEQUENCE, SL, MVT::f128,
6685       {DAG.getTargetConstant(SystemZ::FP128BitRegClassID, SL, MVT::i32), Lo,
6686        DAG.getTargetConstant(SystemZ::subreg_l64, SL, MVT::i32), Hi,
6687        DAG.getTargetConstant(SystemZ::subreg_h64, SL, MVT::i32)});
6688   return SDValue(Pair, 0);
6689 }
6690 
6691 static SDValue expandBitCastF128ToI128(SelectionDAG &DAG, SDValue Src,
6692                                        const SDLoc &SL) {
6693   // If i128 is legal, just use a normal bitcast.
6694   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6695     return DAG.getBitcast(MVT::i128, Src);
6696 
6697   // Otherwise, f128 must live in FP128, so do a partwise move.
6698   assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6699          &SystemZ::FP128BitRegClass);
6700 
6701   SDValue LoFP =
6702       DAG.getTargetExtractSubreg(SystemZ::subreg_l64, SL, MVT::f64, Src);
6703   SDValue HiFP =
6704       DAG.getTargetExtractSubreg(SystemZ::subreg_h64, SL, MVT::f64, Src);
6705   SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i64, LoFP);
6706   SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i64, HiFP);
6707 
6708   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i128, Lo, Hi);
6709 }
6710 
6711 // Lower operations with invalid operand or result types (currently used
6712 // only for 128-bit integer types).
6713 void
6714 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6715                                              SmallVectorImpl<SDValue> &Results,
6716                                              SelectionDAG &DAG) const {
6717   switch (N->getOpcode()) {
6718   case ISD::ATOMIC_LOAD: {
6719     SDLoc DL(N);
6720     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6721     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6722     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6723     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6724                                           DL, Tys, Ops, MVT::i128, MMO);
6725 
6726     SDValue Lowered = lowerGR128ToI128(DAG, Res);
6727     if (N->getValueType(0) == MVT::f128)
6728       Lowered = expandBitCastI128ToF128(DAG, Lowered, DL);
6729     Results.push_back(Lowered);
6730     Results.push_back(Res.getValue(1));
6731     break;
6732   }
6733   case ISD::ATOMIC_STORE: {
6734     SDLoc DL(N);
6735     SDVTList Tys = DAG.getVTList(MVT::Other);
6736     SDValue Val = N->getOperand(1);
6737     if (Val.getValueType() == MVT::f128)
6738       Val = expandBitCastF128ToI128(DAG, Val, DL);
6739     Val = lowerI128ToGR128(DAG, Val);
6740 
6741     SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2)};
6742     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6743     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6744                                           DL, Tys, Ops, MVT::i128, MMO);
6745     // We have to enforce sequential consistency by performing a
6746     // serialization operation after the store.
6747     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6748         AtomicOrdering::SequentiallyConsistent)
6749       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6750                                        MVT::Other, Res), 0);
6751     Results.push_back(Res);
6752     break;
6753   }
6754   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6755     SDLoc DL(N);
6756     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6757     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6758                       lowerI128ToGR128(DAG, N->getOperand(2)),
6759                       lowerI128ToGR128(DAG, N->getOperand(3)) };
6760     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6761     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6762                                           DL, Tys, Ops, MVT::i128, MMO);
6763     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6764                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6765     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6766     Results.push_back(lowerGR128ToI128(DAG, Res));
6767     Results.push_back(Success);
6768     Results.push_back(Res.getValue(2));
6769     break;
6770   }
6771   case ISD::BITCAST: {
6772     SDValue Src = N->getOperand(0);
6773     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6774         !useSoftFloat()) {
6775       SDLoc DL(N);
6776       Results.push_back(expandBitCastF128ToI128(DAG, Src, DL));
6777     }
6778     break;
6779   }
6780   default:
6781     llvm_unreachable("Unexpected node to lower");
6782   }
6783 }
6784 
6785 void
6786 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6787                                           SmallVectorImpl<SDValue> &Results,
6788                                           SelectionDAG &DAG) const {
6789   return LowerOperationWrapper(N, Results, DAG);
6790 }
6791 
6792 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6793 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6794   switch ((SystemZISD::NodeType)Opcode) {
6795     case SystemZISD::FIRST_NUMBER: break;
6796     OPCODE(RET_GLUE);
6797     OPCODE(CALL);
6798     OPCODE(SIBCALL);
6799     OPCODE(TLS_GDCALL);
6800     OPCODE(TLS_LDCALL);
6801     OPCODE(PCREL_WRAPPER);
6802     OPCODE(PCREL_OFFSET);
6803     OPCODE(ICMP);
6804     OPCODE(FCMP);
6805     OPCODE(STRICT_FCMP);
6806     OPCODE(STRICT_FCMPS);
6807     OPCODE(TM);
6808     OPCODE(BR_CCMASK);
6809     OPCODE(SELECT_CCMASK);
6810     OPCODE(ADJDYNALLOC);
6811     OPCODE(PROBED_ALLOCA);
6812     OPCODE(POPCNT);
6813     OPCODE(SMUL_LOHI);
6814     OPCODE(UMUL_LOHI);
6815     OPCODE(SDIVREM);
6816     OPCODE(UDIVREM);
6817     OPCODE(SADDO);
6818     OPCODE(SSUBO);
6819     OPCODE(UADDO);
6820     OPCODE(USUBO);
6821     OPCODE(ADDCARRY);
6822     OPCODE(SUBCARRY);
6823     OPCODE(GET_CCMASK);
6824     OPCODE(MVC);
6825     OPCODE(NC);
6826     OPCODE(OC);
6827     OPCODE(XC);
6828     OPCODE(CLC);
6829     OPCODE(MEMSET_MVC);
6830     OPCODE(STPCPY);
6831     OPCODE(STRCMP);
6832     OPCODE(SEARCH_STRING);
6833     OPCODE(IPM);
6834     OPCODE(TBEGIN);
6835     OPCODE(TBEGIN_NOFLOAT);
6836     OPCODE(TEND);
6837     OPCODE(BYTE_MASK);
6838     OPCODE(ROTATE_MASK);
6839     OPCODE(REPLICATE);
6840     OPCODE(JOIN_DWORDS);
6841     OPCODE(SPLAT);
6842     OPCODE(MERGE_HIGH);
6843     OPCODE(MERGE_LOW);
6844     OPCODE(SHL_DOUBLE);
6845     OPCODE(PERMUTE_DWORDS);
6846     OPCODE(PERMUTE);
6847     OPCODE(PACK);
6848     OPCODE(PACKS_CC);
6849     OPCODE(PACKLS_CC);
6850     OPCODE(UNPACK_HIGH);
6851     OPCODE(UNPACKL_HIGH);
6852     OPCODE(UNPACK_LOW);
6853     OPCODE(UNPACKL_LOW);
6854     OPCODE(VSHL_BY_SCALAR);
6855     OPCODE(VSRL_BY_SCALAR);
6856     OPCODE(VSRA_BY_SCALAR);
6857     OPCODE(VROTL_BY_SCALAR);
6858     OPCODE(VSUM);
6859     OPCODE(VACC);
6860     OPCODE(VSCBI);
6861     OPCODE(VAC);
6862     OPCODE(VSBI);
6863     OPCODE(VACCC);
6864     OPCODE(VSBCBI);
6865     OPCODE(VICMPE);
6866     OPCODE(VICMPH);
6867     OPCODE(VICMPHL);
6868     OPCODE(VICMPES);
6869     OPCODE(VICMPHS);
6870     OPCODE(VICMPHLS);
6871     OPCODE(VFCMPE);
6872     OPCODE(STRICT_VFCMPE);
6873     OPCODE(STRICT_VFCMPES);
6874     OPCODE(VFCMPH);
6875     OPCODE(STRICT_VFCMPH);
6876     OPCODE(STRICT_VFCMPHS);
6877     OPCODE(VFCMPHE);
6878     OPCODE(STRICT_VFCMPHE);
6879     OPCODE(STRICT_VFCMPHES);
6880     OPCODE(VFCMPES);
6881     OPCODE(VFCMPHS);
6882     OPCODE(VFCMPHES);
6883     OPCODE(VFTCI);
6884     OPCODE(VEXTEND);
6885     OPCODE(STRICT_VEXTEND);
6886     OPCODE(VROUND);
6887     OPCODE(STRICT_VROUND);
6888     OPCODE(VTM);
6889     OPCODE(SCMP128HI);
6890     OPCODE(UCMP128HI);
6891     OPCODE(VFAE_CC);
6892     OPCODE(VFAEZ_CC);
6893     OPCODE(VFEE_CC);
6894     OPCODE(VFEEZ_CC);
6895     OPCODE(VFENE_CC);
6896     OPCODE(VFENEZ_CC);
6897     OPCODE(VISTR_CC);
6898     OPCODE(VSTRC_CC);
6899     OPCODE(VSTRCZ_CC);
6900     OPCODE(VSTRS_CC);
6901     OPCODE(VSTRSZ_CC);
6902     OPCODE(TDC);
6903     OPCODE(ATOMIC_SWAPW);
6904     OPCODE(ATOMIC_LOADW_ADD);
6905     OPCODE(ATOMIC_LOADW_SUB);
6906     OPCODE(ATOMIC_LOADW_AND);
6907     OPCODE(ATOMIC_LOADW_OR);
6908     OPCODE(ATOMIC_LOADW_XOR);
6909     OPCODE(ATOMIC_LOADW_NAND);
6910     OPCODE(ATOMIC_LOADW_MIN);
6911     OPCODE(ATOMIC_LOADW_MAX);
6912     OPCODE(ATOMIC_LOADW_UMIN);
6913     OPCODE(ATOMIC_LOADW_UMAX);
6914     OPCODE(ATOMIC_CMP_SWAPW);
6915     OPCODE(ATOMIC_CMP_SWAP);
6916     OPCODE(ATOMIC_LOAD_128);
6917     OPCODE(ATOMIC_STORE_128);
6918     OPCODE(ATOMIC_CMP_SWAP_128);
6919     OPCODE(LRV);
6920     OPCODE(STRV);
6921     OPCODE(VLER);
6922     OPCODE(VSTER);
6923     OPCODE(STCKF);
6924     OPCODE(PREFETCH);
6925     OPCODE(ADA_ENTRY);
6926   }
6927   return nullptr;
6928 #undef OPCODE
6929 }
6930 
6931 // Return true if VT is a vector whose elements are a whole number of bytes
6932 // in width. Also check for presence of vector support.
6933 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6934   if (!Subtarget.hasVector())
6935     return false;
6936 
6937   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6938 }
6939 
6940 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6941 // producing a result of type ResVT.  Op is a possibly bitcast version
6942 // of the input vector and Index is the index (based on type VecVT) that
6943 // should be extracted.  Return the new extraction if a simplification
6944 // was possible or if Force is true.
6945 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6946                                               EVT VecVT, SDValue Op,
6947                                               unsigned Index,
6948                                               DAGCombinerInfo &DCI,
6949                                               bool Force) const {
6950   SelectionDAG &DAG = DCI.DAG;
6951 
6952   // The number of bytes being extracted.
6953   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6954 
6955   for (;;) {
6956     unsigned Opcode = Op.getOpcode();
6957     if (Opcode == ISD::BITCAST)
6958       // Look through bitcasts.
6959       Op = Op.getOperand(0);
6960     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6961              canTreatAsByteVector(Op.getValueType())) {
6962       // Get a VPERM-like permute mask and see whether the bytes covered
6963       // by the extracted element are a contiguous sequence from one
6964       // source operand.
6965       SmallVector<int, SystemZ::VectorBytes> Bytes;
6966       if (!getVPermMask(Op, Bytes))
6967         break;
6968       int First;
6969       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6970                            BytesPerElement, First))
6971         break;
6972       if (First < 0)
6973         return DAG.getUNDEF(ResVT);
6974       // Make sure the contiguous sequence starts at a multiple of the
6975       // original element size.
6976       unsigned Byte = unsigned(First) % Bytes.size();
6977       if (Byte % BytesPerElement != 0)
6978         break;
6979       // We can get the extracted value directly from an input.
6980       Index = Byte / BytesPerElement;
6981       Op = Op.getOperand(unsigned(First) / Bytes.size());
6982       Force = true;
6983     } else if (Opcode == ISD::BUILD_VECTOR &&
6984                canTreatAsByteVector(Op.getValueType())) {
6985       // We can only optimize this case if the BUILD_VECTOR elements are
6986       // at least as wide as the extracted value.
6987       EVT OpVT = Op.getValueType();
6988       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6989       if (OpBytesPerElement < BytesPerElement)
6990         break;
6991       // Make sure that the least-significant bit of the extracted value
6992       // is the least significant bit of an input.
6993       unsigned End = (Index + 1) * BytesPerElement;
6994       if (End % OpBytesPerElement != 0)
6995         break;
6996       // We're extracting the low part of one operand of the BUILD_VECTOR.
6997       Op = Op.getOperand(End / OpBytesPerElement - 1);
6998       if (!Op.getValueType().isInteger()) {
6999         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
7000         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
7001         DCI.AddToWorklist(Op.getNode());
7002       }
7003       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
7004       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
7005       if (VT != ResVT) {
7006         DCI.AddToWorklist(Op.getNode());
7007         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
7008       }
7009       return Op;
7010     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
7011                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
7012                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
7013                canTreatAsByteVector(Op.getValueType()) &&
7014                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
7015       // Make sure that only the unextended bits are significant.
7016       EVT ExtVT = Op.getValueType();
7017       EVT OpVT = Op.getOperand(0).getValueType();
7018       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
7019       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
7020       unsigned Byte = Index * BytesPerElement;
7021       unsigned SubByte = Byte % ExtBytesPerElement;
7022       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
7023       if (SubByte < MinSubByte ||
7024           SubByte + BytesPerElement > ExtBytesPerElement)
7025         break;
7026       // Get the byte offset of the unextended element
7027       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
7028       // ...then add the byte offset relative to that element.
7029       Byte += SubByte - MinSubByte;
7030       if (Byte % BytesPerElement != 0)
7031         break;
7032       Op = Op.getOperand(0);
7033       Index = Byte / BytesPerElement;
7034       Force = true;
7035     } else
7036       break;
7037   }
7038   if (Force) {
7039     if (Op.getValueType() != VecVT) {
7040       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
7041       DCI.AddToWorklist(Op.getNode());
7042     }
7043     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
7044                        DAG.getConstant(Index, DL, MVT::i32));
7045   }
7046   return SDValue();
7047 }
7048 
7049 // Optimize vector operations in scalar value Op on the basis that Op
7050 // is truncated to TruncVT.
7051 SDValue SystemZTargetLowering::combineTruncateExtract(
7052     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
7053   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
7054   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
7055   // of type TruncVT.
7056   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7057       TruncVT.getSizeInBits() % 8 == 0) {
7058     SDValue Vec = Op.getOperand(0);
7059     EVT VecVT = Vec.getValueType();
7060     if (canTreatAsByteVector(VecVT)) {
7061       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7062         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
7063         unsigned TruncBytes = TruncVT.getStoreSize();
7064         if (BytesPerElement % TruncBytes == 0) {
7065           // Calculate the value of Y' in the above description.  We are
7066           // splitting the original elements into Scale equal-sized pieces
7067           // and for truncation purposes want the last (least-significant)
7068           // of these pieces for IndexN.  This is easiest to do by calculating
7069           // the start index of the following element and then subtracting 1.
7070           unsigned Scale = BytesPerElement / TruncBytes;
7071           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
7072 
7073           // Defer the creation of the bitcast from X to combineExtract,
7074           // which might be able to optimize the extraction.
7075           VecVT = EVT::getVectorVT(*DCI.DAG.getContext(),
7076                                    MVT::getIntegerVT(TruncBytes * 8),
7077                                    VecVT.getStoreSize() / TruncBytes);
7078           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
7079           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
7080         }
7081       }
7082     }
7083   }
7084   return SDValue();
7085 }
7086 
7087 SDValue SystemZTargetLowering::combineZERO_EXTEND(
7088     SDNode *N, DAGCombinerInfo &DCI) const {
7089   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
7090   SelectionDAG &DAG = DCI.DAG;
7091   SDValue N0 = N->getOperand(0);
7092   EVT VT = N->getValueType(0);
7093   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
7094     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
7095     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7096     if (TrueOp && FalseOp) {
7097       SDLoc DL(N0);
7098       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
7099                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
7100                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
7101       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
7102       // If N0 has multiple uses, change other uses as well.
7103       if (!N0.hasOneUse()) {
7104         SDValue TruncSelect =
7105           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
7106         DCI.CombineTo(N0.getNode(), TruncSelect);
7107       }
7108       return NewSelect;
7109     }
7110   }
7111   // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
7112   // of the result is smaller than the size of X and all the truncated bits
7113   // of X are already zero.
7114   if (N0.getOpcode() == ISD::XOR &&
7115       N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
7116       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
7117       N0.getOperand(1).getOpcode() == ISD::Constant) {
7118     SDValue X = N0.getOperand(0).getOperand(0);
7119     if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
7120       KnownBits Known = DAG.computeKnownBits(X);
7121       APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
7122                                               N0.getValueSizeInBits(),
7123                                               VT.getSizeInBits());
7124       if (TruncatedBits.isSubsetOf(Known.Zero)) {
7125         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
7126         APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
7127         return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
7128                            X, DAG.getConstant(Mask, SDLoc(N0), VT));
7129       }
7130     }
7131   }
7132 
7133   return SDValue();
7134 }
7135 
7136 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
7137     SDNode *N, DAGCombinerInfo &DCI) const {
7138   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
7139   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
7140   // into (select_cc LHS, RHS, -1, 0, COND)
7141   SelectionDAG &DAG = DCI.DAG;
7142   SDValue N0 = N->getOperand(0);
7143   EVT VT = N->getValueType(0);
7144   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
7145   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
7146     N0 = N0.getOperand(0);
7147   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
7148     SDLoc DL(N0);
7149     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
7150                       DAG.getAllOnesConstant(DL, VT),
7151                       DAG.getConstant(0, DL, VT), N0.getOperand(2) };
7152     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
7153   }
7154   return SDValue();
7155 }
7156 
7157 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
7158     SDNode *N, DAGCombinerInfo &DCI) const {
7159   // Convert (sext (ashr (shl X, C1), C2)) to
7160   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
7161   // cheap as narrower ones.
7162   SelectionDAG &DAG = DCI.DAG;
7163   SDValue N0 = N->getOperand(0);
7164   EVT VT = N->getValueType(0);
7165   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
7166     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7167     SDValue Inner = N0.getOperand(0);
7168     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
7169       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
7170         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
7171         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
7172         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
7173         EVT ShiftVT = N0.getOperand(1).getValueType();
7174         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
7175                                   Inner.getOperand(0));
7176         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
7177                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
7178                                                   ShiftVT));
7179         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
7180                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
7181       }
7182     }
7183   }
7184 
7185   return SDValue();
7186 }
7187 
7188 SDValue SystemZTargetLowering::combineMERGE(
7189     SDNode *N, DAGCombinerInfo &DCI) const {
7190   SelectionDAG &DAG = DCI.DAG;
7191   unsigned Opcode = N->getOpcode();
7192   SDValue Op0 = N->getOperand(0);
7193   SDValue Op1 = N->getOperand(1);
7194   if (Op0.getOpcode() == ISD::BITCAST)
7195     Op0 = Op0.getOperand(0);
7196   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
7197     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
7198     // for v4f32.
7199     if (Op1 == N->getOperand(0))
7200       return Op1;
7201     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
7202     EVT VT = Op1.getValueType();
7203     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
7204     if (ElemBytes <= 4) {
7205       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
7206                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
7207       EVT InVT = VT.changeVectorElementTypeToInteger();
7208       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
7209                                    SystemZ::VectorBytes / ElemBytes / 2);
7210       if (VT != InVT) {
7211         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
7212         DCI.AddToWorklist(Op1.getNode());
7213       }
7214       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
7215       DCI.AddToWorklist(Op.getNode());
7216       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
7217     }
7218   }
7219   return SDValue();
7220 }
7221 
7222 static bool isI128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
7223                                SDNode *&HiPart) {
7224   LoPart = HiPart = nullptr;
7225 
7226   // Scan through all users.
7227   for (SDUse &Use : LD->uses()) {
7228     // Skip the uses of the chain.
7229     if (Use.getResNo() != 0)
7230       continue;
7231 
7232     // Verify every user is a TRUNCATE to i64 of the low or high half.
7233     SDNode *User = Use.getUser();
7234     bool IsLoPart = true;
7235     if (User->getOpcode() == ISD::SRL &&
7236         User->getOperand(1).getOpcode() == ISD::Constant &&
7237         User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
7238       User = *User->user_begin();
7239       IsLoPart = false;
7240     }
7241     if (User->getOpcode() != ISD::TRUNCATE || User->getValueType(0) != MVT::i64)
7242       return false;
7243 
7244     if (IsLoPart) {
7245       if (LoPart)
7246         return false;
7247       LoPart = User;
7248     } else {
7249       if (HiPart)
7250         return false;
7251       HiPart = User;
7252     }
7253   }
7254   return true;
7255 }
7256 
7257 static bool isF128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
7258                                SDNode *&HiPart) {
7259   LoPart = HiPart = nullptr;
7260 
7261   // Scan through all users.
7262   for (SDUse &Use : LD->uses()) {
7263     // Skip the uses of the chain.
7264     if (Use.getResNo() != 0)
7265       continue;
7266 
7267     // Verify every user is an EXTRACT_SUBREG of the low or high half.
7268     SDNode *User = Use.getUser();
7269     if (!User->hasOneUse() || !User->isMachineOpcode() ||
7270         User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
7271       return false;
7272 
7273     switch (User->getConstantOperandVal(1)) {
7274     case SystemZ::subreg_l64:
7275       if (LoPart)
7276         return false;
7277       LoPart = User;
7278       break;
7279     case SystemZ::subreg_h64:
7280       if (HiPart)
7281         return false;
7282       HiPart = User;
7283       break;
7284     default:
7285       return false;
7286     }
7287   }
7288   return true;
7289 }
7290 
7291 SDValue SystemZTargetLowering::combineLOAD(
7292     SDNode *N, DAGCombinerInfo &DCI) const {
7293   SelectionDAG &DAG = DCI.DAG;
7294   EVT LdVT = N->getValueType(0);
7295   if (auto *LN = dyn_cast<LoadSDNode>(N)) {
7296     if (LN->getAddressSpace() == SYSTEMZAS::PTR32) {
7297       MVT PtrVT = getPointerTy(DAG.getDataLayout());
7298       MVT LoadNodeVT = LN->getBasePtr().getSimpleValueType();
7299       if (PtrVT != LoadNodeVT) {
7300         SDLoc DL(LN);
7301         SDValue AddrSpaceCast = DAG.getAddrSpaceCast(
7302             DL, PtrVT, LN->getBasePtr(), SYSTEMZAS::PTR32, 0);
7303         return DAG.getExtLoad(LN->getExtensionType(), DL, LN->getValueType(0),
7304                               LN->getChain(), AddrSpaceCast, LN->getMemoryVT(),
7305                               LN->getMemOperand());
7306       }
7307     }
7308   }
7309   SDLoc DL(N);
7310 
7311   // Replace a 128-bit load that is used solely to move its value into GPRs
7312   // by separate loads of both halves.
7313   LoadSDNode *LD = cast<LoadSDNode>(N);
7314   if (LD->isSimple() && ISD::isNormalLoad(LD)) {
7315     SDNode *LoPart, *HiPart;
7316     if ((LdVT == MVT::i128 && isI128MovedToParts(LD, LoPart, HiPart)) ||
7317         (LdVT == MVT::f128 && isF128MovedToParts(LD, LoPart, HiPart))) {
7318       // Rewrite each extraction as an independent load.
7319       SmallVector<SDValue, 2> ArgChains;
7320       if (HiPart) {
7321         SDValue EltLoad = DAG.getLoad(
7322             HiPart->getValueType(0), DL, LD->getChain(), LD->getBasePtr(),
7323             LD->getPointerInfo(), LD->getOriginalAlign(),
7324             LD->getMemOperand()->getFlags(), LD->getAAInfo());
7325 
7326         DCI.CombineTo(HiPart, EltLoad, true);
7327         ArgChains.push_back(EltLoad.getValue(1));
7328       }
7329       if (LoPart) {
7330         SDValue EltLoad = DAG.getLoad(
7331             LoPart->getValueType(0), DL, LD->getChain(),
7332             DAG.getObjectPtrOffset(DL, LD->getBasePtr(), TypeSize::getFixed(8)),
7333             LD->getPointerInfo().getWithOffset(8), LD->getOriginalAlign(),
7334             LD->getMemOperand()->getFlags(), LD->getAAInfo());
7335 
7336         DCI.CombineTo(LoPart, EltLoad, true);
7337         ArgChains.push_back(EltLoad.getValue(1));
7338       }
7339 
7340       // Collect all chains via TokenFactor.
7341       SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArgChains);
7342       DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7343       DCI.AddToWorklist(Chain.getNode());
7344       return SDValue(N, 0);
7345     }
7346   }
7347 
7348   if (LdVT.isVector() || LdVT.isInteger())
7349     return SDValue();
7350   // Transform a scalar load that is REPLICATEd as well as having other
7351   // use(s) to the form where the other use(s) use the first element of the
7352   // REPLICATE instead of the load. Otherwise instruction selection will not
7353   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
7354   // point loads.
7355 
7356   SDValue Replicate;
7357   SmallVector<SDNode*, 8> OtherUses;
7358   for (SDUse &Use : N->uses()) {
7359     if (Use.getUser()->getOpcode() == SystemZISD::REPLICATE) {
7360       if (Replicate)
7361         return SDValue(); // Should never happen
7362       Replicate = SDValue(Use.getUser(), 0);
7363     } else if (Use.getResNo() == 0)
7364       OtherUses.push_back(Use.getUser());
7365   }
7366   if (!Replicate || OtherUses.empty())
7367     return SDValue();
7368 
7369   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
7370                               Replicate, DAG.getConstant(0, DL, MVT::i32));
7371   // Update uses of the loaded Value while preserving old chains.
7372   for (SDNode *U : OtherUses) {
7373     SmallVector<SDValue, 8> Ops;
7374     for (SDValue Op : U->ops())
7375       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
7376     DAG.UpdateNodeOperands(U, Ops);
7377   }
7378   return SDValue(N, 0);
7379 }
7380 
7381 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
7382   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
7383     return true;
7384   if (Subtarget.hasVectorEnhancements2())
7385     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
7386       return true;
7387   return false;
7388 }
7389 
7390 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
7391   if (!VT.isVector() || !VT.isSimple() ||
7392       VT.getSizeInBits() != 128 ||
7393       VT.getScalarSizeInBits() % 8 != 0)
7394     return false;
7395 
7396   unsigned NumElts = VT.getVectorNumElements();
7397   for (unsigned i = 0; i < NumElts; ++i) {
7398     if (M[i] < 0) continue; // ignore UNDEF indices
7399     if ((unsigned) M[i] != NumElts - 1 - i)
7400       return false;
7401   }
7402 
7403   return true;
7404 }
7405 
7406 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
7407   for (auto *U : StoredVal->users()) {
7408     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
7409       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
7410       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
7411         continue;
7412     } else if (isa<BuildVectorSDNode>(U)) {
7413       SDValue BuildVector = SDValue(U, 0);
7414       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
7415           isOnlyUsedByStores(BuildVector, DAG))
7416         continue;
7417     }
7418     return false;
7419   }
7420   return true;
7421 }
7422 
7423 static bool isI128MovedFromParts(SDValue Val, SDValue &LoPart,
7424                                  SDValue &HiPart) {
7425   if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
7426     return false;
7427 
7428   SDValue Op0 = Val.getOperand(0);
7429   SDValue Op1 = Val.getOperand(1);
7430 
7431   if (Op0.getOpcode() == ISD::SHL)
7432     std::swap(Op0, Op1);
7433   if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
7434       Op1.getOperand(1).getOpcode() != ISD::Constant ||
7435       Op1.getConstantOperandVal(1) != 64)
7436     return false;
7437   Op1 = Op1.getOperand(0);
7438 
7439   if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
7440       Op0.getOperand(0).getValueType() != MVT::i64)
7441     return false;
7442   if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
7443       Op1.getOperand(0).getValueType() != MVT::i64)
7444     return false;
7445 
7446   LoPart = Op0.getOperand(0);
7447   HiPart = Op1.getOperand(0);
7448   return true;
7449 }
7450 
7451 static bool isF128MovedFromParts(SDValue Val, SDValue &LoPart,
7452                                  SDValue &HiPart) {
7453   if (!Val.getNode()->hasOneUse() || !Val.isMachineOpcode() ||
7454       Val.getMachineOpcode() != TargetOpcode::REG_SEQUENCE)
7455     return false;
7456 
7457   if (Val->getNumOperands() != 5 ||
7458       Val->getOperand(0)->getAsZExtVal() != SystemZ::FP128BitRegClassID ||
7459       Val->getOperand(2)->getAsZExtVal() != SystemZ::subreg_l64 ||
7460       Val->getOperand(4)->getAsZExtVal() != SystemZ::subreg_h64)
7461     return false;
7462 
7463   LoPart = Val->getOperand(1);
7464   HiPart = Val->getOperand(3);
7465   return true;
7466 }
7467 
7468 SDValue SystemZTargetLowering::combineSTORE(
7469     SDNode *N, DAGCombinerInfo &DCI) const {
7470   SelectionDAG &DAG = DCI.DAG;
7471   auto *SN = cast<StoreSDNode>(N);
7472   auto &Op1 = N->getOperand(1);
7473   EVT MemVT = SN->getMemoryVT();
7474 
7475   if (SN->getAddressSpace() == SYSTEMZAS::PTR32) {
7476     MVT PtrVT = getPointerTy(DAG.getDataLayout());
7477     MVT StoreNodeVT = SN->getBasePtr().getSimpleValueType();
7478     if (PtrVT != StoreNodeVT) {
7479       SDLoc DL(SN);
7480       SDValue AddrSpaceCast = DAG.getAddrSpaceCast(DL, PtrVT, SN->getBasePtr(),
7481                                                    SYSTEMZAS::PTR32, 0);
7482       return DAG.getStore(SN->getChain(), DL, SN->getValue(), AddrSpaceCast,
7483                           SN->getPointerInfo(), SN->getOriginalAlign(),
7484                           SN->getMemOperand()->getFlags(), SN->getAAInfo());
7485     }
7486   }
7487 
7488   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
7489   // for the extraction to be done on a vMiN value, so that we can use VSTE.
7490   // If X has wider elements then convert it to:
7491   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
7492   if (MemVT.isInteger() && SN->isTruncatingStore()) {
7493     if (SDValue Value =
7494             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
7495       DCI.AddToWorklist(Value.getNode());
7496 
7497       // Rewrite the store with the new form of stored value.
7498       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
7499                                SN->getBasePtr(), SN->getMemoryVT(),
7500                                SN->getMemOperand());
7501     }
7502   }
7503   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
7504   if (!SN->isTruncatingStore() &&
7505       Op1.getOpcode() == ISD::BSWAP &&
7506       Op1.getNode()->hasOneUse() &&
7507       canLoadStoreByteSwapped(Op1.getValueType())) {
7508 
7509       SDValue BSwapOp = Op1.getOperand(0);
7510 
7511       if (BSwapOp.getValueType() == MVT::i16)
7512         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
7513 
7514       SDValue Ops[] = {
7515         N->getOperand(0), BSwapOp, N->getOperand(2)
7516       };
7517 
7518       return
7519         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
7520                                 Ops, MemVT, SN->getMemOperand());
7521     }
7522   // Combine STORE (element-swap) into VSTER
7523   if (!SN->isTruncatingStore() &&
7524       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
7525       Op1.getNode()->hasOneUse() &&
7526       Subtarget.hasVectorEnhancements2()) {
7527     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
7528     ArrayRef<int> ShuffleMask = SVN->getMask();
7529     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
7530       SDValue Ops[] = {
7531         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
7532       };
7533 
7534       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
7535                                      DAG.getVTList(MVT::Other),
7536                                      Ops, MemVT, SN->getMemOperand());
7537     }
7538   }
7539 
7540   // Combine STORE (READCYCLECOUNTER) into STCKF.
7541   if (!SN->isTruncatingStore() &&
7542       Op1.getOpcode() == ISD::READCYCLECOUNTER &&
7543       Op1.hasOneUse() &&
7544       N->getOperand(0).reachesChainWithoutSideEffects(SDValue(Op1.getNode(), 1))) {
7545       SDValue Ops[] = { Op1.getOperand(0), N->getOperand(2) };
7546       return DAG.getMemIntrinsicNode(SystemZISD::STCKF, SDLoc(N),
7547                                      DAG.getVTList(MVT::Other),
7548                                      Ops, MemVT, SN->getMemOperand());
7549   }
7550 
7551   // Transform a store of a 128-bit value moved from parts into two stores.
7552   if (SN->isSimple() && ISD::isNormalStore(SN)) {
7553     SDValue LoPart, HiPart;
7554     if ((MemVT == MVT::i128 && isI128MovedFromParts(Op1, LoPart, HiPart)) ||
7555         (MemVT == MVT::f128 && isF128MovedFromParts(Op1, LoPart, HiPart))) {
7556       SDLoc DL(SN);
7557       SDValue Chain0 =
7558         DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
7559                      SN->getPointerInfo(), SN->getOriginalAlign(),
7560                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
7561       SDValue Chain1 =
7562         DAG.getStore(SN->getChain(), DL, LoPart,
7563                      DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
7564                                                 TypeSize::getFixed(8)),
7565                      SN->getPointerInfo().getWithOffset(8),
7566                      SN->getOriginalAlign(),
7567                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
7568 
7569       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
7570     }
7571   }
7572 
7573   // Replicate a reg or immediate with VREP instead of scalar multiply or
7574   // immediate load. It seems best to do this during the first DAGCombine as
7575   // it is straight-forward to handle the zero-extend node in the initial
7576   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
7577   // extracting an i16 element from a v16i8 vector).
7578   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
7579       isOnlyUsedByStores(Op1, DAG)) {
7580     SDValue Word = SDValue();
7581     EVT WordVT;
7582 
7583     // Find a replicated immediate and return it if found in Word and its
7584     // type in WordVT.
7585     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7586       // Some constants are better handled with a scalar store.
7587       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7588           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7589         return;
7590 
7591       APInt Val = C->getAPIntValue();
7592       // Truncate Val in case of a truncating store.
7593       if (!llvm::isUIntN(TotBytes * 8, Val.getZExtValue())) {
7594         assert(SN->isTruncatingStore() &&
7595                "Non-truncating store and immediate value does not fit?");
7596         Val = Val.trunc(TotBytes * 8);
7597       }
7598 
7599       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, Val.getZExtValue()));
7600       if (VCI.isVectorConstantLegal(Subtarget) &&
7601           VCI.Opcode == SystemZISD::REPLICATE) {
7602         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7603         WordVT = VCI.VecVT.getScalarType();
7604       }
7605     };
7606 
7607     // Find a replicated register and return it if found in Word and its type
7608     // in WordVT.
7609     auto FindReplicatedReg = [&](SDValue MulOp) {
7610       EVT MulVT = MulOp.getValueType();
7611       if (MulOp->getOpcode() == ISD::MUL &&
7612           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7613         // Find a zero extended value and its type.
7614         SDValue LHS = MulOp->getOperand(0);
7615         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7616           WordVT = LHS->getOperand(0).getValueType();
7617         else if (LHS->getOpcode() == ISD::AssertZext)
7618           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7619         else
7620           return;
7621         // Find a replicating constant, e.g. 0x00010001.
7622         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7623           SystemZVectorConstantInfo VCI(
7624               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7625           if (VCI.isVectorConstantLegal(Subtarget) &&
7626               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7627               WordVT == VCI.VecVT.getScalarType())
7628             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7629         }
7630       }
7631     };
7632 
7633     if (isa<BuildVectorSDNode>(Op1) &&
7634         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7635       SDValue SplatVal = Op1->getOperand(0);
7636       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7637         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7638       else
7639         FindReplicatedReg(SplatVal);
7640     } else {
7641       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7642         FindReplicatedImm(C, MemVT.getStoreSize());
7643       else
7644         FindReplicatedReg(Op1);
7645     }
7646 
7647     if (Word != SDValue()) {
7648       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7649              "Bad type handling");
7650       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7651       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7652       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7653       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7654                           SN->getBasePtr(), SN->getMemOperand());
7655     }
7656   }
7657 
7658   return SDValue();
7659 }
7660 
7661 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7662     SDNode *N, DAGCombinerInfo &DCI) const {
7663   SelectionDAG &DAG = DCI.DAG;
7664   // Combine element-swap (LOAD) into VLER
7665   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7666       N->getOperand(0).hasOneUse() &&
7667       Subtarget.hasVectorEnhancements2()) {
7668     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7669     ArrayRef<int> ShuffleMask = SVN->getMask();
7670     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7671       SDValue Load = N->getOperand(0);
7672       LoadSDNode *LD = cast<LoadSDNode>(Load);
7673 
7674       // Create the element-swapping load.
7675       SDValue Ops[] = {
7676         LD->getChain(),    // Chain
7677         LD->getBasePtr()   // Ptr
7678       };
7679       SDValue ESLoad =
7680         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7681                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
7682                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7683 
7684       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
7685       // by the load dead.
7686       DCI.CombineTo(N, ESLoad);
7687 
7688       // Next, combine the load away, we give it a bogus result value but a real
7689       // chain result.  The result value is dead because the shuffle is dead.
7690       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7691 
7692       // Return N so it doesn't get rechecked!
7693       return SDValue(N, 0);
7694     }
7695   }
7696 
7697   return SDValue();
7698 }
7699 
7700 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7701     SDNode *N, DAGCombinerInfo &DCI) const {
7702   SelectionDAG &DAG = DCI.DAG;
7703 
7704   if (!Subtarget.hasVector())
7705     return SDValue();
7706 
7707   // Look through bitcasts that retain the number of vector elements.
7708   SDValue Op = N->getOperand(0);
7709   if (Op.getOpcode() == ISD::BITCAST &&
7710       Op.getValueType().isVector() &&
7711       Op.getOperand(0).getValueType().isVector() &&
7712       Op.getValueType().getVectorNumElements() ==
7713       Op.getOperand(0).getValueType().getVectorNumElements())
7714     Op = Op.getOperand(0);
7715 
7716   // Pull BSWAP out of a vector extraction.
7717   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7718     EVT VecVT = Op.getValueType();
7719     EVT EltVT = VecVT.getVectorElementType();
7720     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7721                      Op.getOperand(0), N->getOperand(1));
7722     DCI.AddToWorklist(Op.getNode());
7723     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7724     if (EltVT != N->getValueType(0)) {
7725       DCI.AddToWorklist(Op.getNode());
7726       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7727     }
7728     return Op;
7729   }
7730 
7731   // Try to simplify a vector extraction.
7732   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7733     SDValue Op0 = N->getOperand(0);
7734     EVT VecVT = Op0.getValueType();
7735     if (canTreatAsByteVector(VecVT))
7736       return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7737                             IndexN->getZExtValue(), DCI, false);
7738   }
7739   return SDValue();
7740 }
7741 
7742 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7743     SDNode *N, DAGCombinerInfo &DCI) const {
7744   SelectionDAG &DAG = DCI.DAG;
7745   // (join_dwords X, X) == (replicate X)
7746   if (N->getOperand(0) == N->getOperand(1))
7747     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7748                        N->getOperand(0));
7749   return SDValue();
7750 }
7751 
7752 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7753   SDValue Chain1 = N1->getOperand(0);
7754   SDValue Chain2 = N2->getOperand(0);
7755 
7756   // Trivial case: both nodes take the same chain.
7757   if (Chain1 == Chain2)
7758     return Chain1;
7759 
7760   // FIXME - we could handle more complex cases via TokenFactor,
7761   // assuming we can verify that this would not create a cycle.
7762   return SDValue();
7763 }
7764 
7765 SDValue SystemZTargetLowering::combineFP_ROUND(
7766     SDNode *N, DAGCombinerInfo &DCI) const {
7767 
7768   if (!Subtarget.hasVector())
7769     return SDValue();
7770 
7771   // (fpround (extract_vector_elt X 0))
7772   // (fpround (extract_vector_elt X 1)) ->
7773   // (extract_vector_elt (VROUND X) 0)
7774   // (extract_vector_elt (VROUND X) 2)
7775   //
7776   // This is a special case since the target doesn't really support v2f32s.
7777   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7778   SelectionDAG &DAG = DCI.DAG;
7779   SDValue Op0 = N->getOperand(OpNo);
7780   if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7781       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7782       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7783       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7784       Op0.getConstantOperandVal(1) == 0) {
7785     SDValue Vec = Op0.getOperand(0);
7786     for (auto *U : Vec->users()) {
7787       if (U != Op0.getNode() && U->hasOneUse() &&
7788           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7789           U->getOperand(0) == Vec &&
7790           U->getOperand(1).getOpcode() == ISD::Constant &&
7791           U->getConstantOperandVal(1) == 1) {
7792         SDValue OtherRound = SDValue(*U->user_begin(), 0);
7793         if (OtherRound.getOpcode() == N->getOpcode() &&
7794             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7795             OtherRound.getValueType() == MVT::f32) {
7796           SDValue VRound, Chain;
7797           if (N->isStrictFPOpcode()) {
7798             Chain = MergeInputChains(N, OtherRound.getNode());
7799             if (!Chain)
7800               continue;
7801             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7802                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
7803             Chain = VRound.getValue(1);
7804           } else
7805             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7806                                  MVT::v4f32, Vec);
7807           DCI.AddToWorklist(VRound.getNode());
7808           SDValue Extract1 =
7809             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7810                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7811           DCI.AddToWorklist(Extract1.getNode());
7812           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7813           if (Chain)
7814             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7815           SDValue Extract0 =
7816             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7817                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7818           if (Chain)
7819             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7820                                N->getVTList(), Extract0, Chain);
7821           return Extract0;
7822         }
7823       }
7824     }
7825   }
7826   return SDValue();
7827 }
7828 
7829 SDValue SystemZTargetLowering::combineFP_EXTEND(
7830     SDNode *N, DAGCombinerInfo &DCI) const {
7831 
7832   if (!Subtarget.hasVector())
7833     return SDValue();
7834 
7835   // (fpextend (extract_vector_elt X 0))
7836   // (fpextend (extract_vector_elt X 2)) ->
7837   // (extract_vector_elt (VEXTEND X) 0)
7838   // (extract_vector_elt (VEXTEND X) 1)
7839   //
7840   // This is a special case since the target doesn't really support v2f32s.
7841   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7842   SelectionDAG &DAG = DCI.DAG;
7843   SDValue Op0 = N->getOperand(OpNo);
7844   if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7845       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7846       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7847       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7848       Op0.getConstantOperandVal(1) == 0) {
7849     SDValue Vec = Op0.getOperand(0);
7850     for (auto *U : Vec->users()) {
7851       if (U != Op0.getNode() && U->hasOneUse() &&
7852           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7853           U->getOperand(0) == Vec &&
7854           U->getOperand(1).getOpcode() == ISD::Constant &&
7855           U->getConstantOperandVal(1) == 2) {
7856         SDValue OtherExtend = SDValue(*U->user_begin(), 0);
7857         if (OtherExtend.getOpcode() == N->getOpcode() &&
7858             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7859             OtherExtend.getValueType() == MVT::f64) {
7860           SDValue VExtend, Chain;
7861           if (N->isStrictFPOpcode()) {
7862             Chain = MergeInputChains(N, OtherExtend.getNode());
7863             if (!Chain)
7864               continue;
7865             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7866                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
7867             Chain = VExtend.getValue(1);
7868           } else
7869             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7870                                   MVT::v2f64, Vec);
7871           DCI.AddToWorklist(VExtend.getNode());
7872           SDValue Extract1 =
7873             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7874                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7875           DCI.AddToWorklist(Extract1.getNode());
7876           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7877           if (Chain)
7878             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7879           SDValue Extract0 =
7880             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7881                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7882           if (Chain)
7883             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7884                                N->getVTList(), Extract0, Chain);
7885           return Extract0;
7886         }
7887       }
7888     }
7889   }
7890   return SDValue();
7891 }
7892 
7893 SDValue SystemZTargetLowering::combineINT_TO_FP(
7894     SDNode *N, DAGCombinerInfo &DCI) const {
7895   if (DCI.Level != BeforeLegalizeTypes)
7896     return SDValue();
7897   SelectionDAG &DAG = DCI.DAG;
7898   LLVMContext &Ctx = *DAG.getContext();
7899   unsigned Opcode = N->getOpcode();
7900   EVT OutVT = N->getValueType(0);
7901   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7902   SDValue Op = N->getOperand(0);
7903   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7904   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7905 
7906   // Insert an extension before type-legalization to avoid scalarization, e.g.:
7907   // v2f64 = uint_to_fp v2i16
7908   // =>
7909   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7910   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7911       OutScalarBits <= 64) {
7912     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7913     EVT ExtVT = EVT::getVectorVT(
7914         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7915     unsigned ExtOpcode =
7916         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7917     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7918     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7919   }
7920   return SDValue();
7921 }
7922 
7923 SDValue SystemZTargetLowering::combineBSWAP(
7924     SDNode *N, DAGCombinerInfo &DCI) const {
7925   SelectionDAG &DAG = DCI.DAG;
7926   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7927   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7928       N->getOperand(0).hasOneUse() &&
7929       canLoadStoreByteSwapped(N->getValueType(0))) {
7930       SDValue Load = N->getOperand(0);
7931       LoadSDNode *LD = cast<LoadSDNode>(Load);
7932 
7933       // Create the byte-swapping load.
7934       SDValue Ops[] = {
7935         LD->getChain(),    // Chain
7936         LD->getBasePtr()   // Ptr
7937       };
7938       EVT LoadVT = N->getValueType(0);
7939       if (LoadVT == MVT::i16)
7940         LoadVT = MVT::i32;
7941       SDValue BSLoad =
7942         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7943                                 DAG.getVTList(LoadVT, MVT::Other),
7944                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7945 
7946       // If this is an i16 load, insert the truncate.
7947       SDValue ResVal = BSLoad;
7948       if (N->getValueType(0) == MVT::i16)
7949         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7950 
7951       // First, combine the bswap away.  This makes the value produced by the
7952       // load dead.
7953       DCI.CombineTo(N, ResVal);
7954 
7955       // Next, combine the load away, we give it a bogus result value but a real
7956       // chain result.  The result value is dead because the bswap is dead.
7957       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7958 
7959       // Return N so it doesn't get rechecked!
7960       return SDValue(N, 0);
7961     }
7962 
7963   // Look through bitcasts that retain the number of vector elements.
7964   SDValue Op = N->getOperand(0);
7965   if (Op.getOpcode() == ISD::BITCAST &&
7966       Op.getValueType().isVector() &&
7967       Op.getOperand(0).getValueType().isVector() &&
7968       Op.getValueType().getVectorNumElements() ==
7969       Op.getOperand(0).getValueType().getVectorNumElements())
7970     Op = Op.getOperand(0);
7971 
7972   // Push BSWAP into a vector insertion if at least one side then simplifies.
7973   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7974     SDValue Vec = Op.getOperand(0);
7975     SDValue Elt = Op.getOperand(1);
7976     SDValue Idx = Op.getOperand(2);
7977 
7978     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7979         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7980         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7981         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7982         (canLoadStoreByteSwapped(N->getValueType(0)) &&
7983          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7984       EVT VecVT = N->getValueType(0);
7985       EVT EltVT = N->getValueType(0).getVectorElementType();
7986       if (VecVT != Vec.getValueType()) {
7987         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7988         DCI.AddToWorklist(Vec.getNode());
7989       }
7990       if (EltVT != Elt.getValueType()) {
7991         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7992         DCI.AddToWorklist(Elt.getNode());
7993       }
7994       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7995       DCI.AddToWorklist(Vec.getNode());
7996       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7997       DCI.AddToWorklist(Elt.getNode());
7998       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7999                          Vec, Elt, Idx);
8000     }
8001   }
8002 
8003   // Push BSWAP into a vector shuffle if at least one side then simplifies.
8004   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
8005   if (SV && Op.hasOneUse()) {
8006     SDValue Op0 = Op.getOperand(0);
8007     SDValue Op1 = Op.getOperand(1);
8008 
8009     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
8010         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
8011         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
8012         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
8013       EVT VecVT = N->getValueType(0);
8014       if (VecVT != Op0.getValueType()) {
8015         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
8016         DCI.AddToWorklist(Op0.getNode());
8017       }
8018       if (VecVT != Op1.getValueType()) {
8019         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
8020         DCI.AddToWorklist(Op1.getNode());
8021       }
8022       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
8023       DCI.AddToWorklist(Op0.getNode());
8024       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
8025       DCI.AddToWorklist(Op1.getNode());
8026       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
8027     }
8028   }
8029 
8030   return SDValue();
8031 }
8032 
8033 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
8034   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
8035   // set by the CCReg instruction using the CCValid / CCMask masks,
8036   // If the CCReg instruction is itself a ICMP testing the condition
8037   // code set by some other instruction, see whether we can directly
8038   // use that condition code.
8039 
8040   // Verify that we have an ICMP against some constant.
8041   if (CCValid != SystemZ::CCMASK_ICMP)
8042     return false;
8043   auto *ICmp = CCReg.getNode();
8044   if (ICmp->getOpcode() != SystemZISD::ICMP)
8045     return false;
8046   auto *CompareLHS = ICmp->getOperand(0).getNode();
8047   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
8048   if (!CompareRHS)
8049     return false;
8050 
8051   // Optimize the case where CompareLHS is a SELECT_CCMASK.
8052   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
8053     // Verify that we have an appropriate mask for a EQ or NE comparison.
8054     bool Invert = false;
8055     if (CCMask == SystemZ::CCMASK_CMP_NE)
8056       Invert = !Invert;
8057     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
8058       return false;
8059 
8060     // Verify that the ICMP compares against one of select values.
8061     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
8062     if (!TrueVal)
8063       return false;
8064     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
8065     if (!FalseVal)
8066       return false;
8067     if (CompareRHS->getAPIntValue() == FalseVal->getAPIntValue())
8068       Invert = !Invert;
8069     else if (CompareRHS->getAPIntValue() != TrueVal->getAPIntValue())
8070       return false;
8071 
8072     // Compute the effective CC mask for the new branch or select.
8073     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
8074     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
8075     if (!NewCCValid || !NewCCMask)
8076       return false;
8077     CCValid = NewCCValid->getZExtValue();
8078     CCMask = NewCCMask->getZExtValue();
8079     if (Invert)
8080       CCMask ^= CCValid;
8081 
8082     // Return the updated CCReg link.
8083     CCReg = CompareLHS->getOperand(4);
8084     return true;
8085   }
8086 
8087   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
8088   if (CompareLHS->getOpcode() == ISD::SRA) {
8089     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
8090     if (!SRACount || SRACount->getZExtValue() != 30)
8091       return false;
8092     auto *SHL = CompareLHS->getOperand(0).getNode();
8093     if (SHL->getOpcode() != ISD::SHL)
8094       return false;
8095     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
8096     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
8097       return false;
8098     auto *IPM = SHL->getOperand(0).getNode();
8099     if (IPM->getOpcode() != SystemZISD::IPM)
8100       return false;
8101 
8102     // Avoid introducing CC spills (because SRA would clobber CC).
8103     if (!CompareLHS->hasOneUse())
8104       return false;
8105     // Verify that the ICMP compares against zero.
8106     if (CompareRHS->getZExtValue() != 0)
8107       return false;
8108 
8109     // Compute the effective CC mask for the new branch or select.
8110     CCMask = SystemZ::reverseCCMask(CCMask);
8111 
8112     // Return the updated CCReg link.
8113     CCReg = IPM->getOperand(0);
8114     return true;
8115   }
8116 
8117   return false;
8118 }
8119 
8120 SDValue SystemZTargetLowering::combineBR_CCMASK(
8121     SDNode *N, DAGCombinerInfo &DCI) const {
8122   SelectionDAG &DAG = DCI.DAG;
8123 
8124   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
8125   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
8126   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
8127   if (!CCValid || !CCMask)
8128     return SDValue();
8129 
8130   int CCValidVal = CCValid->getZExtValue();
8131   int CCMaskVal = CCMask->getZExtValue();
8132   SDValue Chain = N->getOperand(0);
8133   SDValue CCReg = N->getOperand(4);
8134 
8135   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
8136     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
8137                        Chain,
8138                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
8139                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
8140                        N->getOperand(3), CCReg);
8141   return SDValue();
8142 }
8143 
8144 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
8145     SDNode *N, DAGCombinerInfo &DCI) const {
8146   SelectionDAG &DAG = DCI.DAG;
8147 
8148   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
8149   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
8150   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
8151   if (!CCValid || !CCMask)
8152     return SDValue();
8153 
8154   int CCValidVal = CCValid->getZExtValue();
8155   int CCMaskVal = CCMask->getZExtValue();
8156   SDValue CCReg = N->getOperand(4);
8157 
8158   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
8159     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
8160                        N->getOperand(0), N->getOperand(1),
8161                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
8162                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
8163                        CCReg);
8164   return SDValue();
8165 }
8166 
8167 
8168 SDValue SystemZTargetLowering::combineGET_CCMASK(
8169     SDNode *N, DAGCombinerInfo &DCI) const {
8170 
8171   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
8172   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
8173   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
8174   if (!CCValid || !CCMask)
8175     return SDValue();
8176   int CCValidVal = CCValid->getZExtValue();
8177   int CCMaskVal = CCMask->getZExtValue();
8178 
8179   SDValue Select = N->getOperand(0);
8180   if (Select->getOpcode() == ISD::TRUNCATE)
8181     Select = Select->getOperand(0);
8182   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
8183     return SDValue();
8184 
8185   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
8186   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
8187   if (!SelectCCValid || !SelectCCMask)
8188     return SDValue();
8189   int SelectCCValidVal = SelectCCValid->getZExtValue();
8190   int SelectCCMaskVal = SelectCCMask->getZExtValue();
8191 
8192   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
8193   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
8194   if (!TrueVal || !FalseVal)
8195     return SDValue();
8196   if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
8197     ;
8198   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
8199     SelectCCMaskVal ^= SelectCCValidVal;
8200   else
8201     return SDValue();
8202 
8203   if (SelectCCValidVal & ~CCValidVal)
8204     return SDValue();
8205   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
8206     return SDValue();
8207 
8208   return Select->getOperand(4);
8209 }
8210 
8211 SDValue SystemZTargetLowering::combineIntDIVREM(
8212     SDNode *N, DAGCombinerInfo &DCI) const {
8213   SelectionDAG &DAG = DCI.DAG;
8214   EVT VT = N->getValueType(0);
8215   // In the case where the divisor is a vector of constants a cheaper
8216   // sequence of instructions can replace the divide. BuildSDIV is called to
8217   // do this during DAG combining, but it only succeeds when it can build a
8218   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
8219   // since it is not Legal but Custom it can only happen before
8220   // legalization. Therefore we must scalarize this early before Combine
8221   // 1. For widened vectors, this is already the result of type legalization.
8222   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
8223       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
8224     return DAG.UnrollVectorOp(N);
8225   return SDValue();
8226 }
8227 
8228 SDValue SystemZTargetLowering::combineINTRINSIC(
8229     SDNode *N, DAGCombinerInfo &DCI) const {
8230   SelectionDAG &DAG = DCI.DAG;
8231 
8232   unsigned Id = N->getConstantOperandVal(1);
8233   switch (Id) {
8234   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
8235   // or larger is simply a vector load.
8236   case Intrinsic::s390_vll:
8237   case Intrinsic::s390_vlrl:
8238     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
8239       if (C->getZExtValue() >= 15)
8240         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
8241                            N->getOperand(3), MachinePointerInfo());
8242     break;
8243   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
8244   case Intrinsic::s390_vstl:
8245   case Intrinsic::s390_vstrl:
8246     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
8247       if (C->getZExtValue() >= 15)
8248         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
8249                             N->getOperand(4), MachinePointerInfo());
8250     break;
8251   }
8252 
8253   return SDValue();
8254 }
8255 
8256 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
8257   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
8258     return N->getOperand(0);
8259   return N;
8260 }
8261 
8262 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
8263                                                  DAGCombinerInfo &DCI) const {
8264   switch(N->getOpcode()) {
8265   default: break;
8266   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
8267   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
8268   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
8269   case SystemZISD::MERGE_HIGH:
8270   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
8271   case ISD::LOAD:               return combineLOAD(N, DCI);
8272   case ISD::STORE:              return combineSTORE(N, DCI);
8273   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
8274   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
8275   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
8276   case ISD::STRICT_FP_ROUND:
8277   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
8278   case ISD::STRICT_FP_EXTEND:
8279   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
8280   case ISD::SINT_TO_FP:
8281   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
8282   case ISD::BSWAP:              return combineBSWAP(N, DCI);
8283   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
8284   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
8285   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
8286   case ISD::SDIV:
8287   case ISD::UDIV:
8288   case ISD::SREM:
8289   case ISD::UREM:               return combineIntDIVREM(N, DCI);
8290   case ISD::INTRINSIC_W_CHAIN:
8291   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
8292   }
8293 
8294   return SDValue();
8295 }
8296 
8297 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
8298 // are for Op.
8299 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
8300                                     unsigned OpNo) {
8301   EVT VT = Op.getValueType();
8302   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
8303   APInt SrcDemE;
8304   unsigned Opcode = Op.getOpcode();
8305   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8306     unsigned Id = Op.getConstantOperandVal(0);
8307     switch (Id) {
8308     case Intrinsic::s390_vpksh:   // PACKS
8309     case Intrinsic::s390_vpksf:
8310     case Intrinsic::s390_vpksg:
8311     case Intrinsic::s390_vpkshs:  // PACKS_CC
8312     case Intrinsic::s390_vpksfs:
8313     case Intrinsic::s390_vpksgs:
8314     case Intrinsic::s390_vpklsh:  // PACKLS
8315     case Intrinsic::s390_vpklsf:
8316     case Intrinsic::s390_vpklsg:
8317     case Intrinsic::s390_vpklshs: // PACKLS_CC
8318     case Intrinsic::s390_vpklsfs:
8319     case Intrinsic::s390_vpklsgs:
8320       // VECTOR PACK truncates the elements of two source vectors into one.
8321       SrcDemE = DemandedElts;
8322       if (OpNo == 2)
8323         SrcDemE.lshrInPlace(NumElts / 2);
8324       SrcDemE = SrcDemE.trunc(NumElts / 2);
8325       break;
8326       // VECTOR UNPACK extends half the elements of the source vector.
8327     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
8328     case Intrinsic::s390_vuphh:
8329     case Intrinsic::s390_vuphf:
8330     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
8331     case Intrinsic::s390_vuplhh:
8332     case Intrinsic::s390_vuplhf:
8333       SrcDemE = APInt(NumElts * 2, 0);
8334       SrcDemE.insertBits(DemandedElts, 0);
8335       break;
8336     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
8337     case Intrinsic::s390_vuplhw:
8338     case Intrinsic::s390_vuplf:
8339     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
8340     case Intrinsic::s390_vupllh:
8341     case Intrinsic::s390_vupllf:
8342       SrcDemE = APInt(NumElts * 2, 0);
8343       SrcDemE.insertBits(DemandedElts, NumElts);
8344       break;
8345     case Intrinsic::s390_vpdi: {
8346       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
8347       SrcDemE = APInt(NumElts, 0);
8348       if (!DemandedElts[OpNo - 1])
8349         break;
8350       unsigned Mask = Op.getConstantOperandVal(3);
8351       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
8352       // Demand input element 0 or 1, given by the mask bit value.
8353       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
8354       break;
8355     }
8356     case Intrinsic::s390_vsldb: {
8357       // VECTOR SHIFT LEFT DOUBLE BY BYTE
8358       assert(VT == MVT::v16i8 && "Unexpected type.");
8359       unsigned FirstIdx = Op.getConstantOperandVal(3);
8360       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
8361       unsigned NumSrc0Els = 16 - FirstIdx;
8362       SrcDemE = APInt(NumElts, 0);
8363       if (OpNo == 1) {
8364         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
8365         SrcDemE.insertBits(DemEls, FirstIdx);
8366       } else {
8367         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
8368         SrcDemE.insertBits(DemEls, 0);
8369       }
8370       break;
8371     }
8372     case Intrinsic::s390_vperm:
8373       SrcDemE = APInt::getAllOnes(NumElts);
8374       break;
8375     default:
8376       llvm_unreachable("Unhandled intrinsic.");
8377       break;
8378     }
8379   } else {
8380     switch (Opcode) {
8381     case SystemZISD::JOIN_DWORDS:
8382       // Scalar operand.
8383       SrcDemE = APInt(1, 1);
8384       break;
8385     case SystemZISD::SELECT_CCMASK:
8386       SrcDemE = DemandedElts;
8387       break;
8388     default:
8389       llvm_unreachable("Unhandled opcode.");
8390       break;
8391     }
8392   }
8393   return SrcDemE;
8394 }
8395 
8396 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
8397                                   const APInt &DemandedElts,
8398                                   const SelectionDAG &DAG, unsigned Depth,
8399                                   unsigned OpNo) {
8400   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
8401   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
8402   KnownBits LHSKnown =
8403       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
8404   KnownBits RHSKnown =
8405       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
8406   Known = LHSKnown.intersectWith(RHSKnown);
8407 }
8408 
8409 void
8410 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8411                                                      KnownBits &Known,
8412                                                      const APInt &DemandedElts,
8413                                                      const SelectionDAG &DAG,
8414                                                      unsigned Depth) const {
8415   Known.resetAll();
8416 
8417   // Intrinsic CC result is returned in the two low bits.
8418   unsigned tmp0, tmp1; // not used
8419   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
8420     Known.Zero.setBitsFrom(2);
8421     return;
8422   }
8423   EVT VT = Op.getValueType();
8424   if (Op.getResNo() != 0 || VT == MVT::Untyped)
8425     return;
8426   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
8427           "KnownBits does not match VT in bitwidth");
8428   assert ((!VT.isVector() ||
8429            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
8430           "DemandedElts does not match VT number of elements");
8431   unsigned BitWidth = Known.getBitWidth();
8432   unsigned Opcode = Op.getOpcode();
8433   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8434     bool IsLogical = false;
8435     unsigned Id = Op.getConstantOperandVal(0);
8436     switch (Id) {
8437     case Intrinsic::s390_vpksh:   // PACKS
8438     case Intrinsic::s390_vpksf:
8439     case Intrinsic::s390_vpksg:
8440     case Intrinsic::s390_vpkshs:  // PACKS_CC
8441     case Intrinsic::s390_vpksfs:
8442     case Intrinsic::s390_vpksgs:
8443     case Intrinsic::s390_vpklsh:  // PACKLS
8444     case Intrinsic::s390_vpklsf:
8445     case Intrinsic::s390_vpklsg:
8446     case Intrinsic::s390_vpklshs: // PACKLS_CC
8447     case Intrinsic::s390_vpklsfs:
8448     case Intrinsic::s390_vpklsgs:
8449     case Intrinsic::s390_vpdi:
8450     case Intrinsic::s390_vsldb:
8451     case Intrinsic::s390_vperm:
8452       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
8453       break;
8454     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
8455     case Intrinsic::s390_vuplhh:
8456     case Intrinsic::s390_vuplhf:
8457     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
8458     case Intrinsic::s390_vupllh:
8459     case Intrinsic::s390_vupllf:
8460       IsLogical = true;
8461       [[fallthrough]];
8462     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
8463     case Intrinsic::s390_vuphh:
8464     case Intrinsic::s390_vuphf:
8465     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
8466     case Intrinsic::s390_vuplhw:
8467     case Intrinsic::s390_vuplf: {
8468       SDValue SrcOp = Op.getOperand(1);
8469       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
8470       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
8471       if (IsLogical) {
8472         Known = Known.zext(BitWidth);
8473       } else
8474         Known = Known.sext(BitWidth);
8475       break;
8476     }
8477     default:
8478       break;
8479     }
8480   } else {
8481     switch (Opcode) {
8482     case SystemZISD::JOIN_DWORDS:
8483     case SystemZISD::SELECT_CCMASK:
8484       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
8485       break;
8486     case SystemZISD::REPLICATE: {
8487       SDValue SrcOp = Op.getOperand(0);
8488       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
8489       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
8490         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
8491       break;
8492     }
8493     default:
8494       break;
8495     }
8496   }
8497 
8498   // Known has the width of the source operand(s). Adjust if needed to match
8499   // the passed bitwidth.
8500   if (Known.getBitWidth() != BitWidth)
8501     Known = Known.anyextOrTrunc(BitWidth);
8502 }
8503 
8504 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
8505                                         const SelectionDAG &DAG, unsigned Depth,
8506                                         unsigned OpNo) {
8507   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
8508   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
8509   if (LHS == 1) return 1; // Early out.
8510   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
8511   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
8512   if (RHS == 1) return 1; // Early out.
8513   unsigned Common = std::min(LHS, RHS);
8514   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
8515   EVT VT = Op.getValueType();
8516   unsigned VTBits = VT.getScalarSizeInBits();
8517   if (SrcBitWidth > VTBits) { // PACK
8518     unsigned SrcExtraBits = SrcBitWidth - VTBits;
8519     if (Common > SrcExtraBits)
8520       return (Common - SrcExtraBits);
8521     return 1;
8522   }
8523   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
8524   return Common;
8525 }
8526 
8527 unsigned
8528 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
8529     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8530     unsigned Depth) const {
8531   if (Op.getResNo() != 0)
8532     return 1;
8533   unsigned Opcode = Op.getOpcode();
8534   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8535     unsigned Id = Op.getConstantOperandVal(0);
8536     switch (Id) {
8537     case Intrinsic::s390_vpksh:   // PACKS
8538     case Intrinsic::s390_vpksf:
8539     case Intrinsic::s390_vpksg:
8540     case Intrinsic::s390_vpkshs:  // PACKS_CC
8541     case Intrinsic::s390_vpksfs:
8542     case Intrinsic::s390_vpksgs:
8543     case Intrinsic::s390_vpklsh:  // PACKLS
8544     case Intrinsic::s390_vpklsf:
8545     case Intrinsic::s390_vpklsg:
8546     case Intrinsic::s390_vpklshs: // PACKLS_CC
8547     case Intrinsic::s390_vpklsfs:
8548     case Intrinsic::s390_vpklsgs:
8549     case Intrinsic::s390_vpdi:
8550     case Intrinsic::s390_vsldb:
8551     case Intrinsic::s390_vperm:
8552       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
8553     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
8554     case Intrinsic::s390_vuphh:
8555     case Intrinsic::s390_vuphf:
8556     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
8557     case Intrinsic::s390_vuplhw:
8558     case Intrinsic::s390_vuplf: {
8559       SDValue PackedOp = Op.getOperand(1);
8560       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
8561       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
8562       EVT VT = Op.getValueType();
8563       unsigned VTBits = VT.getScalarSizeInBits();
8564       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
8565       return Tmp;
8566     }
8567     default:
8568       break;
8569     }
8570   } else {
8571     switch (Opcode) {
8572     case SystemZISD::SELECT_CCMASK:
8573       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
8574     default:
8575       break;
8576     }
8577   }
8578 
8579   return 1;
8580 }
8581 
8582 bool SystemZTargetLowering::
8583 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
8584          const APInt &DemandedElts, const SelectionDAG &DAG,
8585          bool PoisonOnly, unsigned Depth) const {
8586   switch (Op->getOpcode()) {
8587   case SystemZISD::PCREL_WRAPPER:
8588   case SystemZISD::PCREL_OFFSET:
8589     return true;
8590   }
8591   return false;
8592 }
8593 
8594 unsigned
8595 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8596   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8597   unsigned StackAlign = TFI->getStackAlignment();
8598   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8599          "Unexpected stack alignment");
8600   // The default stack probe size is 4096 if the function has no
8601   // stack-probe-size attribute.
8602   unsigned StackProbeSize =
8603       MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8604   // Round down to the stack alignment.
8605   StackProbeSize &= ~(StackAlign - 1);
8606   return StackProbeSize ? StackProbeSize : StackAlign;
8607 }
8608 
8609 //===----------------------------------------------------------------------===//
8610 // Custom insertion
8611 //===----------------------------------------------------------------------===//
8612 
8613 // Force base value Base into a register before MI.  Return the register.
8614 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8615                          const SystemZInstrInfo *TII) {
8616   MachineBasicBlock *MBB = MI.getParent();
8617   MachineFunction &MF = *MBB->getParent();
8618   MachineRegisterInfo &MRI = MF.getRegInfo();
8619 
8620   if (Base.isReg()) {
8621     // Copy Base into a new virtual register to help register coalescing in
8622     // cases with multiple uses.
8623     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8624     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8625       .add(Base);
8626     return Reg;
8627   }
8628 
8629   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8630   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8631       .add(Base)
8632       .addImm(0)
8633       .addReg(0);
8634   return Reg;
8635 }
8636 
8637 // The CC operand of MI might be missing a kill marker because there
8638 // were multiple uses of CC, and ISel didn't know which to mark.
8639 // Figure out whether MI should have had a kill marker.
8640 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8641   // Scan forward through BB for a use/def of CC.
8642   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8643   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8644     const MachineInstr& mi = *miI;
8645     if (mi.readsRegister(SystemZ::CC, /*TRI=*/nullptr))
8646       return false;
8647     if (mi.definesRegister(SystemZ::CC, /*TRI=*/nullptr))
8648       break; // Should have kill-flag - update below.
8649   }
8650 
8651   // If we hit the end of the block, check whether CC is live into a
8652   // successor.
8653   if (miI == MBB->end()) {
8654     for (const MachineBasicBlock *Succ : MBB->successors())
8655       if (Succ->isLiveIn(SystemZ::CC))
8656         return false;
8657   }
8658 
8659   return true;
8660 }
8661 
8662 // Return true if it is OK for this Select pseudo-opcode to be cascaded
8663 // together with other Select pseudo-opcodes into a single basic-block with
8664 // a conditional jump around it.
8665 static bool isSelectPseudo(MachineInstr &MI) {
8666   switch (MI.getOpcode()) {
8667   case SystemZ::Select32:
8668   case SystemZ::Select64:
8669   case SystemZ::Select128:
8670   case SystemZ::SelectF32:
8671   case SystemZ::SelectF64:
8672   case SystemZ::SelectF128:
8673   case SystemZ::SelectVR32:
8674   case SystemZ::SelectVR64:
8675   case SystemZ::SelectVR128:
8676     return true;
8677 
8678   default:
8679     return false;
8680   }
8681 }
8682 
8683 // Helper function, which inserts PHI functions into SinkMBB:
8684 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8685 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8686 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8687                                  MachineBasicBlock *TrueMBB,
8688                                  MachineBasicBlock *FalseMBB,
8689                                  MachineBasicBlock *SinkMBB) {
8690   MachineFunction *MF = TrueMBB->getParent();
8691   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8692 
8693   MachineInstr *FirstMI = Selects.front();
8694   unsigned CCValid = FirstMI->getOperand(3).getImm();
8695   unsigned CCMask = FirstMI->getOperand(4).getImm();
8696 
8697   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8698 
8699   // As we are creating the PHIs, we have to be careful if there is more than
8700   // one.  Later Selects may reference the results of earlier Selects, but later
8701   // PHIs have to reference the individual true/false inputs from earlier PHIs.
8702   // That also means that PHI construction must work forward from earlier to
8703   // later, and that the code must maintain a mapping from earlier PHI's
8704   // destination registers, and the registers that went into the PHI.
8705   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8706 
8707   for (auto *MI : Selects) {
8708     Register DestReg = MI->getOperand(0).getReg();
8709     Register TrueReg = MI->getOperand(1).getReg();
8710     Register FalseReg = MI->getOperand(2).getReg();
8711 
8712     // If this Select we are generating is the opposite condition from
8713     // the jump we generated, then we have to swap the operands for the
8714     // PHI that is going to be generated.
8715     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8716       std::swap(TrueReg, FalseReg);
8717 
8718     if (auto It = RegRewriteTable.find(TrueReg); It != RegRewriteTable.end())
8719       TrueReg = It->second.first;
8720 
8721     if (auto It = RegRewriteTable.find(FalseReg); It != RegRewriteTable.end())
8722       FalseReg = It->second.second;
8723 
8724     DebugLoc DL = MI->getDebugLoc();
8725     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8726       .addReg(TrueReg).addMBB(TrueMBB)
8727       .addReg(FalseReg).addMBB(FalseMBB);
8728 
8729     // Add this PHI to the rewrite table.
8730     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8731   }
8732 
8733   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8734 }
8735 
8736 MachineBasicBlock *
8737 SystemZTargetLowering::emitAdjCallStack(MachineInstr &MI,
8738                                         MachineBasicBlock *BB) const {
8739   MachineFunction &MF = *BB->getParent();
8740   MachineFrameInfo &MFI = MF.getFrameInfo();
8741   auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
8742   assert(TFL->hasReservedCallFrame(MF) &&
8743          "ADJSTACKDOWN and ADJSTACKUP should be no-ops");
8744   (void)TFL;
8745   // Get the MaxCallFrameSize value and erase MI since it serves no further
8746   // purpose as the call frame is statically reserved in the prolog. Set
8747   // AdjustsStack as MI is *not* mapped as a frame instruction.
8748   uint32_t NumBytes = MI.getOperand(0).getImm();
8749   if (NumBytes > MFI.getMaxCallFrameSize())
8750     MFI.setMaxCallFrameSize(NumBytes);
8751   MFI.setAdjustsStack(true);
8752 
8753   MI.eraseFromParent();
8754   return BB;
8755 }
8756 
8757 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8758 MachineBasicBlock *
8759 SystemZTargetLowering::emitSelect(MachineInstr &MI,
8760                                   MachineBasicBlock *MBB) const {
8761   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8762   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8763 
8764   unsigned CCValid = MI.getOperand(3).getImm();
8765   unsigned CCMask = MI.getOperand(4).getImm();
8766 
8767   // If we have a sequence of Select* pseudo instructions using the
8768   // same condition code value, we want to expand all of them into
8769   // a single pair of basic blocks using the same condition.
8770   SmallVector<MachineInstr*, 8> Selects;
8771   SmallVector<MachineInstr*, 8> DbgValues;
8772   Selects.push_back(&MI);
8773   unsigned Count = 0;
8774   for (MachineInstr &NextMI : llvm::make_range(
8775            std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8776     if (isSelectPseudo(NextMI)) {
8777       assert(NextMI.getOperand(3).getImm() == CCValid &&
8778              "Bad CCValid operands since CC was not redefined.");
8779       if (NextMI.getOperand(4).getImm() == CCMask ||
8780           NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8781         Selects.push_back(&NextMI);
8782         continue;
8783       }
8784       break;
8785     }
8786     if (NextMI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8787         NextMI.usesCustomInsertionHook())
8788       break;
8789     bool User = false;
8790     for (auto *SelMI : Selects)
8791       if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8792         User = true;
8793         break;
8794       }
8795     if (NextMI.isDebugInstr()) {
8796       if (User) {
8797         assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8798         DbgValues.push_back(&NextMI);
8799       }
8800     } else if (User || ++Count > 20)
8801       break;
8802   }
8803 
8804   MachineInstr *LastMI = Selects.back();
8805   bool CCKilled = (LastMI->killsRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8806                    checkCCKill(*LastMI, MBB));
8807   MachineBasicBlock *StartMBB = MBB;
8808   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
8809   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8810 
8811   // Unless CC was killed in the last Select instruction, mark it as
8812   // live-in to both FalseMBB and JoinMBB.
8813   if (!CCKilled) {
8814     FalseMBB->addLiveIn(SystemZ::CC);
8815     JoinMBB->addLiveIn(SystemZ::CC);
8816   }
8817 
8818   //  StartMBB:
8819   //   BRC CCMask, JoinMBB
8820   //   # fallthrough to FalseMBB
8821   MBB = StartMBB;
8822   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8823     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8824   MBB->addSuccessor(JoinMBB);
8825   MBB->addSuccessor(FalseMBB);
8826 
8827   //  FalseMBB:
8828   //   # fallthrough to JoinMBB
8829   MBB = FalseMBB;
8830   MBB->addSuccessor(JoinMBB);
8831 
8832   //  JoinMBB:
8833   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8834   //  ...
8835   MBB = JoinMBB;
8836   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8837   for (auto *SelMI : Selects)
8838     SelMI->eraseFromParent();
8839 
8840   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8841   for (auto *DbgMI : DbgValues)
8842     MBB->splice(InsertPos, StartMBB, DbgMI);
8843 
8844   return JoinMBB;
8845 }
8846 
8847 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8848 // StoreOpcode is the store to use and Invert says whether the store should
8849 // happen when the condition is false rather than true.  If a STORE ON
8850 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8851 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8852                                                         MachineBasicBlock *MBB,
8853                                                         unsigned StoreOpcode,
8854                                                         unsigned STOCOpcode,
8855                                                         bool Invert) const {
8856   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8857 
8858   Register SrcReg = MI.getOperand(0).getReg();
8859   MachineOperand Base = MI.getOperand(1);
8860   int64_t Disp = MI.getOperand(2).getImm();
8861   Register IndexReg = MI.getOperand(3).getReg();
8862   unsigned CCValid = MI.getOperand(4).getImm();
8863   unsigned CCMask = MI.getOperand(5).getImm();
8864   DebugLoc DL = MI.getDebugLoc();
8865 
8866   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8867 
8868   // ISel pattern matching also adds a load memory operand of the same
8869   // address, so take special care to find the storing memory operand.
8870   MachineMemOperand *MMO = nullptr;
8871   for (auto *I : MI.memoperands())
8872     if (I->isStore()) {
8873       MMO = I;
8874       break;
8875     }
8876 
8877   // Use STOCOpcode if possible.  We could use different store patterns in
8878   // order to avoid matching the index register, but the performance trade-offs
8879   // might be more complicated in that case.
8880   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8881     if (Invert)
8882       CCMask ^= CCValid;
8883 
8884     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8885       .addReg(SrcReg)
8886       .add(Base)
8887       .addImm(Disp)
8888       .addImm(CCValid)
8889       .addImm(CCMask)
8890       .addMemOperand(MMO);
8891 
8892     MI.eraseFromParent();
8893     return MBB;
8894   }
8895 
8896   // Get the condition needed to branch around the store.
8897   if (!Invert)
8898     CCMask ^= CCValid;
8899 
8900   MachineBasicBlock *StartMBB = MBB;
8901   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
8902   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8903 
8904   // Unless CC was killed in the CondStore instruction, mark it as
8905   // live-in to both FalseMBB and JoinMBB.
8906   if (!MI.killsRegister(SystemZ::CC, /*TRI=*/nullptr) &&
8907       !checkCCKill(MI, JoinMBB)) {
8908     FalseMBB->addLiveIn(SystemZ::CC);
8909     JoinMBB->addLiveIn(SystemZ::CC);
8910   }
8911 
8912   //  StartMBB:
8913   //   BRC CCMask, JoinMBB
8914   //   # fallthrough to FalseMBB
8915   MBB = StartMBB;
8916   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8917     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8918   MBB->addSuccessor(JoinMBB);
8919   MBB->addSuccessor(FalseMBB);
8920 
8921   //  FalseMBB:
8922   //   store %SrcReg, %Disp(%Index,%Base)
8923   //   # fallthrough to JoinMBB
8924   MBB = FalseMBB;
8925   BuildMI(MBB, DL, TII->get(StoreOpcode))
8926       .addReg(SrcReg)
8927       .add(Base)
8928       .addImm(Disp)
8929       .addReg(IndexReg)
8930       .addMemOperand(MMO);
8931   MBB->addSuccessor(JoinMBB);
8932 
8933   MI.eraseFromParent();
8934   return JoinMBB;
8935 }
8936 
8937 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8938 MachineBasicBlock *
8939 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8940                                      MachineBasicBlock *MBB,
8941                                      bool Unsigned) const {
8942   MachineFunction &MF = *MBB->getParent();
8943   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8944   MachineRegisterInfo &MRI = MF.getRegInfo();
8945 
8946   // Synthetic instruction to compare 128-bit values.
8947   // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8948   Register Op0 = MI.getOperand(0).getReg();
8949   Register Op1 = MI.getOperand(1).getReg();
8950 
8951   MachineBasicBlock *StartMBB = MBB;
8952   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(MI, MBB);
8953   MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8954 
8955   //  StartMBB:
8956   //
8957   //  Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8958   //  Swap the inputs to get:
8959   //    CC 1 if high(Op0) > high(Op1)
8960   //    CC 2 if high(Op0) < high(Op1)
8961   //    CC 0 if high(Op0) == high(Op1)
8962   //
8963   //  If CC != 0, we'd done, so jump over the next instruction.
8964   //
8965   //   VEC[L]G Op1, Op0
8966   //   JNE JoinMBB
8967   //   # fallthrough to HiEqMBB
8968   MBB = StartMBB;
8969   int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8970   BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8971     .addReg(Op1).addReg(Op0);
8972   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8973     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8974   MBB->addSuccessor(JoinMBB);
8975   MBB->addSuccessor(HiEqMBB);
8976 
8977   //  HiEqMBB:
8978   //
8979   //  Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8980   //  Since we already know the high parts are equal, the CC
8981   //  result will only depend on the low parts:
8982   //     CC 1 if low(Op0) > low(Op1)
8983   //     CC 3 if low(Op0) <= low(Op1)
8984   //
8985   //   VCHLGS Tmp, Op0, Op1
8986   //   # fallthrough to JoinMBB
8987   MBB = HiEqMBB;
8988   Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8989   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8990     .addReg(Op0).addReg(Op1);
8991   MBB->addSuccessor(JoinMBB);
8992 
8993   // Mark CC as live-in to JoinMBB.
8994   JoinMBB->addLiveIn(SystemZ::CC);
8995 
8996   MI.eraseFromParent();
8997   return JoinMBB;
8998 }
8999 
9000 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
9001 // ATOMIC_SWAPW instruction MI.  BinOpcode is the instruction that performs
9002 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW.  Invert says
9003 // whether the field should be inverted after performing BinOpcode (e.g. for
9004 // NAND).
9005 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
9006     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
9007     bool Invert) const {
9008   MachineFunction &MF = *MBB->getParent();
9009   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9010   MachineRegisterInfo &MRI = MF.getRegInfo();
9011 
9012   // Extract the operands.  Base can be a register or a frame index.
9013   // Src2 can be a register or immediate.
9014   Register Dest = MI.getOperand(0).getReg();
9015   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
9016   int64_t Disp = MI.getOperand(2).getImm();
9017   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
9018   Register BitShift = MI.getOperand(4).getReg();
9019   Register NegBitShift = MI.getOperand(5).getReg();
9020   unsigned BitSize = MI.getOperand(6).getImm();
9021   DebugLoc DL = MI.getDebugLoc();
9022 
9023   // Get the right opcodes for the displacement.
9024   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
9025   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
9026   assert(LOpcode && CSOpcode && "Displacement out of range");
9027 
9028   // Create virtual registers for temporary results.
9029   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9030   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9031   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9032   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9033   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9034 
9035   // Insert a basic block for the main loop.
9036   MachineBasicBlock *StartMBB = MBB;
9037   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
9038   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
9039 
9040   //  StartMBB:
9041   //   ...
9042   //   %OrigVal = L Disp(%Base)
9043   //   # fall through to LoopMBB
9044   MBB = StartMBB;
9045   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
9046   MBB->addSuccessor(LoopMBB);
9047 
9048   //  LoopMBB:
9049   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
9050   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
9051   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
9052   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
9053   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
9054   //   JNE LoopMBB
9055   //   # fall through to DoneMBB
9056   MBB = LoopMBB;
9057   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
9058     .addReg(OrigVal).addMBB(StartMBB)
9059     .addReg(Dest).addMBB(LoopMBB);
9060   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
9061     .addReg(OldVal).addReg(BitShift).addImm(0);
9062   if (Invert) {
9063     // Perform the operation normally and then invert every bit of the field.
9064     Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9065     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
9066     // XILF with the upper BitSize bits set.
9067     BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
9068       .addReg(Tmp).addImm(-1U << (32 - BitSize));
9069   } else if (BinOpcode)
9070     // A simply binary operation.
9071     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
9072         .addReg(RotatedOldVal)
9073         .add(Src2);
9074   else
9075     // Use RISBG to rotate Src2 into position and use it to replace the
9076     // field in RotatedOldVal.
9077     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
9078       .addReg(RotatedOldVal).addReg(Src2.getReg())
9079       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
9080   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
9081     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
9082   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
9083       .addReg(OldVal)
9084       .addReg(NewVal)
9085       .add(Base)
9086       .addImm(Disp);
9087   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9088     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
9089   MBB->addSuccessor(LoopMBB);
9090   MBB->addSuccessor(DoneMBB);
9091 
9092   MI.eraseFromParent();
9093   return DoneMBB;
9094 }
9095 
9096 // Implement EmitInstrWithCustomInserter for subword pseudo
9097 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
9098 // instruction that should be used to compare the current field with the
9099 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
9100 // for when the current field should be kept.
9101 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
9102     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
9103     unsigned KeepOldMask) const {
9104   MachineFunction &MF = *MBB->getParent();
9105   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9106   MachineRegisterInfo &MRI = MF.getRegInfo();
9107 
9108   // Extract the operands.  Base can be a register or a frame index.
9109   Register Dest = MI.getOperand(0).getReg();
9110   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
9111   int64_t Disp = MI.getOperand(2).getImm();
9112   Register Src2 = MI.getOperand(3).getReg();
9113   Register BitShift = MI.getOperand(4).getReg();
9114   Register NegBitShift = MI.getOperand(5).getReg();
9115   unsigned BitSize = MI.getOperand(6).getImm();
9116   DebugLoc DL = MI.getDebugLoc();
9117 
9118   // Get the right opcodes for the displacement.
9119   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
9120   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
9121   assert(LOpcode && CSOpcode && "Displacement out of range");
9122 
9123   // Create virtual registers for temporary results.
9124   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9125   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9126   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9127   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9128   Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9129   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
9130 
9131   // Insert 3 basic blocks for the loop.
9132   MachineBasicBlock *StartMBB  = MBB;
9133   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
9134   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
9135   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
9136   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
9137 
9138   //  StartMBB:
9139   //   ...
9140   //   %OrigVal     = L Disp(%Base)
9141   //   # fall through to LoopMBB
9142   MBB = StartMBB;
9143   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
9144   MBB->addSuccessor(LoopMBB);
9145 
9146   //  LoopMBB:
9147   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
9148   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
9149   //   CompareOpcode %RotatedOldVal, %Src2
9150   //   BRC KeepOldMask, UpdateMBB
9151   MBB = LoopMBB;
9152   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
9153     .addReg(OrigVal).addMBB(StartMBB)
9154     .addReg(Dest).addMBB(UpdateMBB);
9155   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
9156     .addReg(OldVal).addReg(BitShift).addImm(0);
9157   BuildMI(MBB, DL, TII->get(CompareOpcode))
9158     .addReg(RotatedOldVal).addReg(Src2);
9159   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9160     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
9161   MBB->addSuccessor(UpdateMBB);
9162   MBB->addSuccessor(UseAltMBB);
9163 
9164   //  UseAltMBB:
9165   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
9166   //   # fall through to UpdateMBB
9167   MBB = UseAltMBB;
9168   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
9169     .addReg(RotatedOldVal).addReg(Src2)
9170     .addImm(32).addImm(31 + BitSize).addImm(0);
9171   MBB->addSuccessor(UpdateMBB);
9172 
9173   //  UpdateMBB:
9174   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
9175   //                        [ %RotatedAltVal, UseAltMBB ]
9176   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
9177   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
9178   //   JNE LoopMBB
9179   //   # fall through to DoneMBB
9180   MBB = UpdateMBB;
9181   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
9182     .addReg(RotatedOldVal).addMBB(LoopMBB)
9183     .addReg(RotatedAltVal).addMBB(UseAltMBB);
9184   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
9185     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
9186   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
9187       .addReg(OldVal)
9188       .addReg(NewVal)
9189       .add(Base)
9190       .addImm(Disp);
9191   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9192     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
9193   MBB->addSuccessor(LoopMBB);
9194   MBB->addSuccessor(DoneMBB);
9195 
9196   MI.eraseFromParent();
9197   return DoneMBB;
9198 }
9199 
9200 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
9201 // instruction MI.
9202 MachineBasicBlock *
9203 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
9204                                           MachineBasicBlock *MBB) const {
9205   MachineFunction &MF = *MBB->getParent();
9206   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9207   MachineRegisterInfo &MRI = MF.getRegInfo();
9208 
9209   // Extract the operands.  Base can be a register or a frame index.
9210   Register Dest = MI.getOperand(0).getReg();
9211   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
9212   int64_t Disp = MI.getOperand(2).getImm();
9213   Register CmpVal = MI.getOperand(3).getReg();
9214   Register OrigSwapVal = MI.getOperand(4).getReg();
9215   Register BitShift = MI.getOperand(5).getReg();
9216   Register NegBitShift = MI.getOperand(6).getReg();
9217   int64_t BitSize = MI.getOperand(7).getImm();
9218   DebugLoc DL = MI.getDebugLoc();
9219 
9220   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
9221 
9222   // Get the right opcodes for the displacement and zero-extension.
9223   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
9224   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
9225   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
9226   assert(LOpcode && CSOpcode && "Displacement out of range");
9227 
9228   // Create virtual registers for temporary results.
9229   Register OrigOldVal = MRI.createVirtualRegister(RC);
9230   Register OldVal = MRI.createVirtualRegister(RC);
9231   Register SwapVal = MRI.createVirtualRegister(RC);
9232   Register StoreVal = MRI.createVirtualRegister(RC);
9233   Register OldValRot = MRI.createVirtualRegister(RC);
9234   Register RetryOldVal = MRI.createVirtualRegister(RC);
9235   Register RetrySwapVal = MRI.createVirtualRegister(RC);
9236 
9237   // Insert 2 basic blocks for the loop.
9238   MachineBasicBlock *StartMBB = MBB;
9239   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
9240   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
9241   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
9242 
9243   //  StartMBB:
9244   //   ...
9245   //   %OrigOldVal     = L Disp(%Base)
9246   //   # fall through to LoopMBB
9247   MBB = StartMBB;
9248   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
9249       .add(Base)
9250       .addImm(Disp)
9251       .addReg(0);
9252   MBB->addSuccessor(LoopMBB);
9253 
9254   //  LoopMBB:
9255   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
9256   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
9257   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
9258   //                      ^^ The low BitSize bits contain the field
9259   //                         of interest.
9260   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
9261   //                      ^^ Replace the upper 32-BitSize bits of the
9262   //                         swap value with those that we loaded and rotated.
9263   //   %Dest = LL[CH] %OldValRot
9264   //   CR %Dest, %CmpVal
9265   //   JNE DoneMBB
9266   //   # Fall through to SetMBB
9267   MBB = LoopMBB;
9268   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
9269     .addReg(OrigOldVal).addMBB(StartMBB)
9270     .addReg(RetryOldVal).addMBB(SetMBB);
9271   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
9272     .addReg(OrigSwapVal).addMBB(StartMBB)
9273     .addReg(RetrySwapVal).addMBB(SetMBB);
9274   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
9275     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
9276   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
9277     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
9278   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
9279     .addReg(OldValRot);
9280   BuildMI(MBB, DL, TII->get(SystemZ::CR))
9281     .addReg(Dest).addReg(CmpVal);
9282   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9283     .addImm(SystemZ::CCMASK_ICMP)
9284     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
9285   MBB->addSuccessor(DoneMBB);
9286   MBB->addSuccessor(SetMBB);
9287 
9288   //  SetMBB:
9289   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
9290   //                      ^^ Rotate the new field to its proper position.
9291   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
9292   //   JNE LoopMBB
9293   //   # fall through to ExitMBB
9294   MBB = SetMBB;
9295   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
9296     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
9297   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
9298       .addReg(OldVal)
9299       .addReg(StoreVal)
9300       .add(Base)
9301       .addImm(Disp);
9302   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9303     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
9304   MBB->addSuccessor(LoopMBB);
9305   MBB->addSuccessor(DoneMBB);
9306 
9307   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
9308   // to the block after the loop.  At this point, CC may have been defined
9309   // either by the CR in LoopMBB or by the CS in SetMBB.
9310   if (!MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
9311     DoneMBB->addLiveIn(SystemZ::CC);
9312 
9313   MI.eraseFromParent();
9314   return DoneMBB;
9315 }
9316 
9317 // Emit a move from two GR64s to a GR128.
9318 MachineBasicBlock *
9319 SystemZTargetLowering::emitPair128(MachineInstr &MI,
9320                                    MachineBasicBlock *MBB) const {
9321   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9322   const DebugLoc &DL = MI.getDebugLoc();
9323 
9324   Register Dest = MI.getOperand(0).getReg();
9325   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest)
9326       .add(MI.getOperand(1))
9327       .addImm(SystemZ::subreg_h64)
9328       .add(MI.getOperand(2))
9329       .addImm(SystemZ::subreg_l64);
9330   MI.eraseFromParent();
9331   return MBB;
9332 }
9333 
9334 // Emit an extension from a GR64 to a GR128.  ClearEven is true
9335 // if the high register of the GR128 value must be cleared or false if
9336 // it's "don't care".
9337 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
9338                                                      MachineBasicBlock *MBB,
9339                                                      bool ClearEven) const {
9340   MachineFunction &MF = *MBB->getParent();
9341   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9342   MachineRegisterInfo &MRI = MF.getRegInfo();
9343   DebugLoc DL = MI.getDebugLoc();
9344 
9345   Register Dest = MI.getOperand(0).getReg();
9346   Register Src = MI.getOperand(1).getReg();
9347   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
9348 
9349   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
9350   if (ClearEven) {
9351     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
9352     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
9353 
9354     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
9355       .addImm(0);
9356     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
9357       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
9358     In128 = NewIn128;
9359   }
9360   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
9361     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
9362 
9363   MI.eraseFromParent();
9364   return MBB;
9365 }
9366 
9367 MachineBasicBlock *
9368 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
9369                                          MachineBasicBlock *MBB,
9370                                          unsigned Opcode, bool IsMemset) const {
9371   MachineFunction &MF = *MBB->getParent();
9372   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9373   MachineRegisterInfo &MRI = MF.getRegInfo();
9374   DebugLoc DL = MI.getDebugLoc();
9375 
9376   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
9377   uint64_t DestDisp = MI.getOperand(1).getImm();
9378   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
9379   uint64_t SrcDisp;
9380 
9381   // Fold the displacement Disp if it is out of range.
9382   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
9383     if (!isUInt<12>(Disp)) {
9384       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9385       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
9386       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
9387         .add(Base).addImm(Disp).addReg(0);
9388       Base = MachineOperand::CreateReg(Reg, false);
9389       Disp = 0;
9390     }
9391   };
9392 
9393   if (!IsMemset) {
9394     SrcBase = earlyUseOperand(MI.getOperand(2));
9395     SrcDisp = MI.getOperand(3).getImm();
9396   } else {
9397     SrcBase = DestBase;
9398     SrcDisp = DestDisp++;
9399     foldDisplIfNeeded(DestBase, DestDisp);
9400   }
9401 
9402   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
9403   bool IsImmForm = LengthMO.isImm();
9404   bool IsRegForm = !IsImmForm;
9405 
9406   // Build and insert one Opcode of Length, with special treatment for memset.
9407   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
9408                             MachineBasicBlock::iterator InsPos,
9409                             MachineOperand DBase, uint64_t DDisp,
9410                             MachineOperand SBase, uint64_t SDisp,
9411                             unsigned Length) -> void {
9412     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
9413     if (IsMemset) {
9414       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
9415       if (ByteMO.isImm())
9416         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
9417           .add(SBase).addImm(SDisp).add(ByteMO);
9418       else
9419         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
9420           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
9421       if (--Length == 0)
9422         return;
9423     }
9424     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
9425       .add(DBase).addImm(DDisp).addImm(Length)
9426       .add(SBase).addImm(SDisp)
9427       .setMemRefs(MI.memoperands());
9428   };
9429 
9430   bool NeedsLoop = false;
9431   uint64_t ImmLength = 0;
9432   Register LenAdjReg = SystemZ::NoRegister;
9433   if (IsImmForm) {
9434     ImmLength = LengthMO.getImm();
9435     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
9436     if (ImmLength == 0) {
9437       MI.eraseFromParent();
9438       return MBB;
9439     }
9440     if (Opcode == SystemZ::CLC) {
9441       if (ImmLength > 3 * 256)
9442         // A two-CLC sequence is a clear win over a loop, not least because
9443         // it needs only one branch.  A three-CLC sequence needs the same
9444         // number of branches as a loop (i.e. 2), but is shorter.  That
9445         // brings us to lengths greater than 768 bytes.  It seems relatively
9446         // likely that a difference will be found within the first 768 bytes,
9447         // so we just optimize for the smallest number of branch
9448         // instructions, in order to avoid polluting the prediction buffer
9449         // too much.
9450         NeedsLoop = true;
9451     } else if (ImmLength > 6 * 256)
9452       // The heuristic we use is to prefer loops for anything that would
9453       // require 7 or more MVCs.  With these kinds of sizes there isn't much
9454       // to choose between straight-line code and looping code, since the
9455       // time will be dominated by the MVCs themselves.
9456       NeedsLoop = true;
9457   } else {
9458     NeedsLoop = true;
9459     LenAdjReg = LengthMO.getReg();
9460   }
9461 
9462   // When generating more than one CLC, all but the last will need to
9463   // branch to the end when a difference is found.
9464   MachineBasicBlock *EndMBB =
9465       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
9466            ? SystemZ::splitBlockAfter(MI, MBB)
9467            : nullptr);
9468 
9469   if (NeedsLoop) {
9470     Register StartCountReg =
9471       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
9472     if (IsImmForm) {
9473       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
9474       ImmLength &= 255;
9475     } else {
9476       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
9477         .addReg(LenAdjReg)
9478         .addReg(0)
9479         .addImm(8);
9480     }
9481 
9482     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
9483     auto loadZeroAddress = [&]() -> MachineOperand {
9484       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9485       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
9486       return MachineOperand::CreateReg(Reg, false);
9487     };
9488     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
9489       DestBase = loadZeroAddress();
9490     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
9491       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
9492 
9493     MachineBasicBlock *StartMBB = nullptr;
9494     MachineBasicBlock *LoopMBB = nullptr;
9495     MachineBasicBlock *NextMBB = nullptr;
9496     MachineBasicBlock *DoneMBB = nullptr;
9497     MachineBasicBlock *AllDoneMBB = nullptr;
9498 
9499     Register StartSrcReg = forceReg(MI, SrcBase, TII);
9500     Register StartDestReg =
9501         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
9502 
9503     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
9504     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
9505     Register ThisDestReg =
9506         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
9507     Register NextSrcReg  = MRI.createVirtualRegister(RC);
9508     Register NextDestReg =
9509         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
9510     RC = &SystemZ::GR64BitRegClass;
9511     Register ThisCountReg = MRI.createVirtualRegister(RC);
9512     Register NextCountReg = MRI.createVirtualRegister(RC);
9513 
9514     if (IsRegForm) {
9515       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9516       StartMBB = SystemZ::emitBlockAfter(MBB);
9517       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9518       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9519       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
9520 
9521       //  MBB:
9522       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
9523       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9524         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
9525       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9526         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9527         .addMBB(AllDoneMBB);
9528       MBB->addSuccessor(AllDoneMBB);
9529       if (!IsMemset)
9530         MBB->addSuccessor(StartMBB);
9531       else {
9532         // MemsetOneCheckMBB:
9533         // # Jump to MemsetOneMBB for a memset of length 1, or
9534         // # fall thru to StartMBB.
9535         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
9536         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
9537         MBB->addSuccessor(MemsetOneCheckMBB);
9538         MBB = MemsetOneCheckMBB;
9539         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9540           .addReg(LenAdjReg).addImm(-1);
9541         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9542           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9543           .addMBB(MemsetOneMBB);
9544         MBB->addSuccessor(MemsetOneMBB, {10, 100});
9545         MBB->addSuccessor(StartMBB, {90, 100});
9546 
9547         // MemsetOneMBB:
9548         // # Jump back to AllDoneMBB after a single MVI or STC.
9549         MBB = MemsetOneMBB;
9550         insertMemMemOp(MBB, MBB->end(),
9551                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
9552                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
9553                        1);
9554         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
9555         MBB->addSuccessor(AllDoneMBB);
9556       }
9557 
9558       // StartMBB:
9559       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
9560       MBB = StartMBB;
9561       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9562         .addReg(StartCountReg).addImm(0);
9563       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9564         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9565         .addMBB(DoneMBB);
9566       MBB->addSuccessor(DoneMBB);
9567       MBB->addSuccessor(LoopMBB);
9568     }
9569     else {
9570       StartMBB = MBB;
9571       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9572       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9573       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9574 
9575       //  StartMBB:
9576       //   # fall through to LoopMBB
9577       MBB->addSuccessor(LoopMBB);
9578 
9579       DestBase = MachineOperand::CreateReg(NextDestReg, false);
9580       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
9581       if (EndMBB && !ImmLength)
9582         // If the loop handled the whole CLC range, DoneMBB will be empty with
9583         // CC live-through into EndMBB, so add it as live-in.
9584         DoneMBB->addLiveIn(SystemZ::CC);
9585     }
9586 
9587     //  LoopMBB:
9588     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
9589     //                      [ %NextDestReg, NextMBB ]
9590     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
9591     //                     [ %NextSrcReg, NextMBB ]
9592     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
9593     //                       [ %NextCountReg, NextMBB ]
9594     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
9595     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
9596     //   ( JLH EndMBB )
9597     //
9598     // The prefetch is used only for MVC.  The JLH is used only for CLC.
9599     MBB = LoopMBB;
9600     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
9601       .addReg(StartDestReg).addMBB(StartMBB)
9602       .addReg(NextDestReg).addMBB(NextMBB);
9603     if (!HaveSingleBase)
9604       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
9605         .addReg(StartSrcReg).addMBB(StartMBB)
9606         .addReg(NextSrcReg).addMBB(NextMBB);
9607     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
9608       .addReg(StartCountReg).addMBB(StartMBB)
9609       .addReg(NextCountReg).addMBB(NextMBB);
9610     if (Opcode == SystemZ::MVC)
9611       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9612         .addImm(SystemZ::PFD_WRITE)
9613         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9614     insertMemMemOp(MBB, MBB->end(),
9615                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9616                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9617     if (EndMBB) {
9618       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9619         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9620         .addMBB(EndMBB);
9621       MBB->addSuccessor(EndMBB);
9622       MBB->addSuccessor(NextMBB);
9623     }
9624 
9625     // NextMBB:
9626     //   %NextDestReg = LA 256(%ThisDestReg)
9627     //   %NextSrcReg = LA 256(%ThisSrcReg)
9628     //   %NextCountReg = AGHI %ThisCountReg, -1
9629     //   CGHI %NextCountReg, 0
9630     //   JLH LoopMBB
9631     //   # fall through to DoneMBB
9632     //
9633     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9634     MBB = NextMBB;
9635     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9636       .addReg(ThisDestReg).addImm(256).addReg(0);
9637     if (!HaveSingleBase)
9638       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9639         .addReg(ThisSrcReg).addImm(256).addReg(0);
9640     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9641       .addReg(ThisCountReg).addImm(-1);
9642     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9643       .addReg(NextCountReg).addImm(0);
9644     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9645       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9646       .addMBB(LoopMBB);
9647     MBB->addSuccessor(LoopMBB);
9648     MBB->addSuccessor(DoneMBB);
9649 
9650     MBB = DoneMBB;
9651     if (IsRegForm) {
9652       // DoneMBB:
9653       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9654       // # Use EXecute Relative Long for the remainder of the bytes. The target
9655       //   instruction of the EXRL will have a length field of 1 since 0 is an
9656       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
9657       //   0xff) + 1.
9658       // # Fall through to AllDoneMBB.
9659       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9660       Register RemDestReg = HaveSingleBase ? RemSrcReg
9661         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9662       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9663         .addReg(StartDestReg).addMBB(StartMBB)
9664         .addReg(NextDestReg).addMBB(NextMBB);
9665       if (!HaveSingleBase)
9666         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9667           .addReg(StartSrcReg).addMBB(StartMBB)
9668           .addReg(NextSrcReg).addMBB(NextMBB);
9669       if (IsMemset)
9670         insertMemMemOp(MBB, MBB->end(),
9671                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9672                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9673       MachineInstrBuilder EXRL_MIB =
9674         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9675           .addImm(Opcode)
9676           .addReg(LenAdjReg)
9677           .addReg(RemDestReg).addImm(DestDisp)
9678           .addReg(RemSrcReg).addImm(SrcDisp);
9679       MBB->addSuccessor(AllDoneMBB);
9680       MBB = AllDoneMBB;
9681       if (Opcode != SystemZ::MVC) {
9682         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9683         if (EndMBB)
9684           MBB->addLiveIn(SystemZ::CC);
9685       }
9686     }
9687     MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9688   }
9689 
9690   // Handle any remaining bytes with straight-line code.
9691   while (ImmLength > 0) {
9692     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9693     // The previous iteration might have created out-of-range displacements.
9694     // Apply them using LA/LAY if so.
9695     foldDisplIfNeeded(DestBase, DestDisp);
9696     foldDisplIfNeeded(SrcBase, SrcDisp);
9697     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9698     DestDisp += ThisLength;
9699     SrcDisp += ThisLength;
9700     ImmLength -= ThisLength;
9701     // If there's another CLC to go, branch to the end if a difference
9702     // was found.
9703     if (EndMBB && ImmLength > 0) {
9704       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9705       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9706         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9707         .addMBB(EndMBB);
9708       MBB->addSuccessor(EndMBB);
9709       MBB->addSuccessor(NextMBB);
9710       MBB = NextMBB;
9711     }
9712   }
9713   if (EndMBB) {
9714     MBB->addSuccessor(EndMBB);
9715     MBB = EndMBB;
9716     MBB->addLiveIn(SystemZ::CC);
9717   }
9718 
9719   MI.eraseFromParent();
9720   return MBB;
9721 }
9722 
9723 // Decompose string pseudo-instruction MI into a loop that continually performs
9724 // Opcode until CC != 3.
9725 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9726     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9727   MachineFunction &MF = *MBB->getParent();
9728   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9729   MachineRegisterInfo &MRI = MF.getRegInfo();
9730   DebugLoc DL = MI.getDebugLoc();
9731 
9732   uint64_t End1Reg = MI.getOperand(0).getReg();
9733   uint64_t Start1Reg = MI.getOperand(1).getReg();
9734   uint64_t Start2Reg = MI.getOperand(2).getReg();
9735   uint64_t CharReg = MI.getOperand(3).getReg();
9736 
9737   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9738   uint64_t This1Reg = MRI.createVirtualRegister(RC);
9739   uint64_t This2Reg = MRI.createVirtualRegister(RC);
9740   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
9741 
9742   MachineBasicBlock *StartMBB = MBB;
9743   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9744   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9745 
9746   //  StartMBB:
9747   //   # fall through to LoopMBB
9748   MBB->addSuccessor(LoopMBB);
9749 
9750   //  LoopMBB:
9751   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9752   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9753   //   R0L = %CharReg
9754   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9755   //   JO LoopMBB
9756   //   # fall through to DoneMBB
9757   //
9758   // The load of R0L can be hoisted by post-RA LICM.
9759   MBB = LoopMBB;
9760 
9761   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9762     .addReg(Start1Reg).addMBB(StartMBB)
9763     .addReg(End1Reg).addMBB(LoopMBB);
9764   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9765     .addReg(Start2Reg).addMBB(StartMBB)
9766     .addReg(End2Reg).addMBB(LoopMBB);
9767   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9768   BuildMI(MBB, DL, TII->get(Opcode))
9769     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9770     .addReg(This1Reg).addReg(This2Reg);
9771   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9772     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9773   MBB->addSuccessor(LoopMBB);
9774   MBB->addSuccessor(DoneMBB);
9775 
9776   DoneMBB->addLiveIn(SystemZ::CC);
9777 
9778   MI.eraseFromParent();
9779   return DoneMBB;
9780 }
9781 
9782 // Update TBEGIN instruction with final opcode and register clobbers.
9783 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9784     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9785     bool NoFloat) const {
9786   MachineFunction &MF = *MBB->getParent();
9787   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9788   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9789 
9790   // Update opcode.
9791   MI.setDesc(TII->get(Opcode));
9792 
9793   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9794   // Make sure to add the corresponding GRSM bits if they are missing.
9795   uint64_t Control = MI.getOperand(2).getImm();
9796   static const unsigned GPRControlBit[16] = {
9797     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9798     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9799   };
9800   Control |= GPRControlBit[15];
9801   if (TFI->hasFP(MF))
9802     Control |= GPRControlBit[11];
9803   MI.getOperand(2).setImm(Control);
9804 
9805   // Add GPR clobbers.
9806   for (int I = 0; I < 16; I++) {
9807     if ((Control & GPRControlBit[I]) == 0) {
9808       unsigned Reg = SystemZMC::GR64Regs[I];
9809       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9810     }
9811   }
9812 
9813   // Add FPR/VR clobbers.
9814   if (!NoFloat && (Control & 4) != 0) {
9815     if (Subtarget.hasVector()) {
9816       for (unsigned Reg : SystemZMC::VR128Regs) {
9817         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9818       }
9819     } else {
9820       for (unsigned Reg : SystemZMC::FP64Regs) {
9821         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9822       }
9823     }
9824   }
9825 
9826   return MBB;
9827 }
9828 
9829 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9830     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9831   MachineFunction &MF = *MBB->getParent();
9832   MachineRegisterInfo *MRI = &MF.getRegInfo();
9833   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9834   DebugLoc DL = MI.getDebugLoc();
9835 
9836   Register SrcReg = MI.getOperand(0).getReg();
9837 
9838   // Create new virtual register of the same class as source.
9839   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9840   Register DstReg = MRI->createVirtualRegister(RC);
9841 
9842   // Replace pseudo with a normal load-and-test that models the def as
9843   // well.
9844   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9845     .addReg(SrcReg)
9846     .setMIFlags(MI.getFlags());
9847   MI.eraseFromParent();
9848 
9849   return MBB;
9850 }
9851 
9852 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9853     MachineInstr &MI, MachineBasicBlock *MBB) const {
9854   MachineFunction &MF = *MBB->getParent();
9855   MachineRegisterInfo *MRI = &MF.getRegInfo();
9856   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9857   DebugLoc DL = MI.getDebugLoc();
9858   const unsigned ProbeSize = getStackProbeSize(MF);
9859   Register DstReg = MI.getOperand(0).getReg();
9860   Register SizeReg = MI.getOperand(2).getReg();
9861 
9862   MachineBasicBlock *StartMBB = MBB;
9863   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
9864   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
9865   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9866   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9867   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9868 
9869   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9870     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9871 
9872   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9873   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9874 
9875   //  LoopTestMBB
9876   //  BRC TailTestMBB
9877   //  # fallthrough to LoopBodyMBB
9878   StartMBB->addSuccessor(LoopTestMBB);
9879   MBB = LoopTestMBB;
9880   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9881     .addReg(SizeReg)
9882     .addMBB(StartMBB)
9883     .addReg(IncReg)
9884     .addMBB(LoopBodyMBB);
9885   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9886     .addReg(PHIReg)
9887     .addImm(ProbeSize);
9888   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9889     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9890     .addMBB(TailTestMBB);
9891   MBB->addSuccessor(LoopBodyMBB);
9892   MBB->addSuccessor(TailTestMBB);
9893 
9894   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
9895   //  J LoopTestMBB
9896   MBB = LoopBodyMBB;
9897   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9898     .addReg(PHIReg)
9899     .addImm(ProbeSize);
9900   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9901     .addReg(SystemZ::R15D)
9902     .addImm(ProbeSize);
9903   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9904     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9905     .setMemRefs(VolLdMMO);
9906   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9907   MBB->addSuccessor(LoopTestMBB);
9908 
9909   //  TailTestMBB
9910   //  BRC DoneMBB
9911   //  # fallthrough to TailMBB
9912   MBB = TailTestMBB;
9913   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9914     .addReg(PHIReg)
9915     .addImm(0);
9916   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9917     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9918     .addMBB(DoneMBB);
9919   MBB->addSuccessor(TailMBB);
9920   MBB->addSuccessor(DoneMBB);
9921 
9922   //  TailMBB
9923   //  # fallthrough to DoneMBB
9924   MBB = TailMBB;
9925   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9926     .addReg(SystemZ::R15D)
9927     .addReg(PHIReg);
9928   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9929     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9930     .setMemRefs(VolLdMMO);
9931   MBB->addSuccessor(DoneMBB);
9932 
9933   //  DoneMBB
9934   MBB = DoneMBB;
9935   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9936     .addReg(SystemZ::R15D);
9937 
9938   MI.eraseFromParent();
9939   return DoneMBB;
9940 }
9941 
9942 SDValue SystemZTargetLowering::
9943 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9944   MachineFunction &MF = DAG.getMachineFunction();
9945   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9946   SDLoc DL(SP);
9947   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9948                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9949 }
9950 
9951 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9952     MachineInstr &MI, MachineBasicBlock *MBB) const {
9953   switch (MI.getOpcode()) {
9954   case SystemZ::ADJCALLSTACKDOWN:
9955   case SystemZ::ADJCALLSTACKUP:
9956     return emitAdjCallStack(MI, MBB);
9957 
9958   case SystemZ::Select32:
9959   case SystemZ::Select64:
9960   case SystemZ::Select128:
9961   case SystemZ::SelectF32:
9962   case SystemZ::SelectF64:
9963   case SystemZ::SelectF128:
9964   case SystemZ::SelectVR32:
9965   case SystemZ::SelectVR64:
9966   case SystemZ::SelectVR128:
9967     return emitSelect(MI, MBB);
9968 
9969   case SystemZ::CondStore8Mux:
9970     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9971   case SystemZ::CondStore8MuxInv:
9972     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9973   case SystemZ::CondStore16Mux:
9974     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9975   case SystemZ::CondStore16MuxInv:
9976     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9977   case SystemZ::CondStore32Mux:
9978     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9979   case SystemZ::CondStore32MuxInv:
9980     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9981   case SystemZ::CondStore8:
9982     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9983   case SystemZ::CondStore8Inv:
9984     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9985   case SystemZ::CondStore16:
9986     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9987   case SystemZ::CondStore16Inv:
9988     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9989   case SystemZ::CondStore32:
9990     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9991   case SystemZ::CondStore32Inv:
9992     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9993   case SystemZ::CondStore64:
9994     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9995   case SystemZ::CondStore64Inv:
9996     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9997   case SystemZ::CondStoreF32:
9998     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9999   case SystemZ::CondStoreF32Inv:
10000     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
10001   case SystemZ::CondStoreF64:
10002     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
10003   case SystemZ::CondStoreF64Inv:
10004     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
10005 
10006   case SystemZ::SCmp128Hi:
10007     return emitICmp128Hi(MI, MBB, false);
10008   case SystemZ::UCmp128Hi:
10009     return emitICmp128Hi(MI, MBB, true);
10010 
10011   case SystemZ::PAIR128:
10012     return emitPair128(MI, MBB);
10013   case SystemZ::AEXT128:
10014     return emitExt128(MI, MBB, false);
10015   case SystemZ::ZEXT128:
10016     return emitExt128(MI, MBB, true);
10017 
10018   case SystemZ::ATOMIC_SWAPW:
10019     return emitAtomicLoadBinary(MI, MBB, 0);
10020 
10021   case SystemZ::ATOMIC_LOADW_AR:
10022     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
10023   case SystemZ::ATOMIC_LOADW_AFI:
10024     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
10025 
10026   case SystemZ::ATOMIC_LOADW_SR:
10027     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
10028 
10029   case SystemZ::ATOMIC_LOADW_NR:
10030     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
10031   case SystemZ::ATOMIC_LOADW_NILH:
10032     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
10033 
10034   case SystemZ::ATOMIC_LOADW_OR:
10035     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
10036   case SystemZ::ATOMIC_LOADW_OILH:
10037     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
10038 
10039   case SystemZ::ATOMIC_LOADW_XR:
10040     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
10041   case SystemZ::ATOMIC_LOADW_XILF:
10042     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
10043 
10044   case SystemZ::ATOMIC_LOADW_NRi:
10045     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
10046   case SystemZ::ATOMIC_LOADW_NILHi:
10047     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
10048 
10049   case SystemZ::ATOMIC_LOADW_MIN:
10050     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
10051   case SystemZ::ATOMIC_LOADW_MAX:
10052     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
10053   case SystemZ::ATOMIC_LOADW_UMIN:
10054     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
10055   case SystemZ::ATOMIC_LOADW_UMAX:
10056     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
10057 
10058   case SystemZ::ATOMIC_CMP_SWAPW:
10059     return emitAtomicCmpSwapW(MI, MBB);
10060   case SystemZ::MVCImm:
10061   case SystemZ::MVCReg:
10062     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
10063   case SystemZ::NCImm:
10064     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
10065   case SystemZ::OCImm:
10066     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
10067   case SystemZ::XCImm:
10068   case SystemZ::XCReg:
10069     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
10070   case SystemZ::CLCImm:
10071   case SystemZ::CLCReg:
10072     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
10073   case SystemZ::MemsetImmImm:
10074   case SystemZ::MemsetImmReg:
10075   case SystemZ::MemsetRegImm:
10076   case SystemZ::MemsetRegReg:
10077     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
10078   case SystemZ::CLSTLoop:
10079     return emitStringWrapper(MI, MBB, SystemZ::CLST);
10080   case SystemZ::MVSTLoop:
10081     return emitStringWrapper(MI, MBB, SystemZ::MVST);
10082   case SystemZ::SRSTLoop:
10083     return emitStringWrapper(MI, MBB, SystemZ::SRST);
10084   case SystemZ::TBEGIN:
10085     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
10086   case SystemZ::TBEGIN_nofloat:
10087     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
10088   case SystemZ::TBEGINC:
10089     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
10090   case SystemZ::LTEBRCompare_Pseudo:
10091     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
10092   case SystemZ::LTDBRCompare_Pseudo:
10093     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
10094   case SystemZ::LTXBRCompare_Pseudo:
10095     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
10096 
10097   case SystemZ::PROBED_ALLOCA:
10098     return emitProbedAlloca(MI, MBB);
10099   case SystemZ::EH_SjLj_SetJmp:
10100     return emitEHSjLjSetJmp(MI, MBB);
10101   case SystemZ::EH_SjLj_LongJmp:
10102     return emitEHSjLjLongJmp(MI, MBB);
10103 
10104   case TargetOpcode::STACKMAP:
10105   case TargetOpcode::PATCHPOINT:
10106     return emitPatchPoint(MI, MBB);
10107 
10108   default:
10109     llvm_unreachable("Unexpected instr type to insert");
10110   }
10111 }
10112 
10113 // This is only used by the isel schedulers, and is needed only to prevent
10114 // compiler from crashing when list-ilp is used.
10115 const TargetRegisterClass *
10116 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
10117   if (VT == MVT::Untyped)
10118     return &SystemZ::ADDR128BitRegClass;
10119   return TargetLowering::getRepRegClassFor(VT);
10120 }
10121 
10122 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
10123                                                  SelectionDAG &DAG) const {
10124   SDLoc dl(Op);
10125   /*
10126    The rounding method is in FPC Byte 3 bits 6-7, and has the following
10127    settings:
10128      00 Round to nearest
10129      01 Round to 0
10130      10 Round to +inf
10131      11 Round to -inf
10132 
10133   FLT_ROUNDS, on the other hand, expects the following:
10134     -1 Undefined
10135      0 Round to 0
10136      1 Round to nearest
10137      2 Round to +inf
10138      3 Round to -inf
10139   */
10140 
10141   // Save FPC to register.
10142   SDValue Chain = Op.getOperand(0);
10143   SDValue EFPC(
10144       DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
10145   Chain = EFPC.getValue(1);
10146 
10147   // Transform as necessary
10148   SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
10149                              DAG.getConstant(3, dl, MVT::i32));
10150   // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
10151   SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
10152                              DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
10153                                          DAG.getConstant(1, dl, MVT::i32)));
10154 
10155   SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
10156                                DAG.getConstant(1, dl, MVT::i32));
10157   RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
10158 
10159   return DAG.getMergeValues({RetVal, Chain}, dl);
10160 }
10161 
10162 SDValue SystemZTargetLowering::lowerVECREDUCE_ADD(SDValue Op,
10163                                                   SelectionDAG &DAG) const {
10164   EVT VT = Op.getValueType();
10165   Op = Op.getOperand(0);
10166   EVT OpVT = Op.getValueType();
10167 
10168   assert(OpVT.isVector() && "Operand type for VECREDUCE_ADD is not a vector.");
10169 
10170   SDLoc DL(Op);
10171 
10172   // load a 0 vector for the third operand of VSUM.
10173   SDValue Zero = DAG.getSplatBuildVector(OpVT, DL, DAG.getConstant(0, DL, VT));
10174 
10175   // execute VSUM.
10176   switch (OpVT.getScalarSizeInBits()) {
10177   case 8:
10178   case 16:
10179     Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Zero);
10180     [[fallthrough]];
10181   case 32:
10182   case 64:
10183     Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::i128, Op,
10184                      DAG.getBitcast(Op.getValueType(), Zero));
10185     break;
10186   case 128:
10187     break; // VSUM over v1i128 should not happen and would be a noop
10188   default:
10189     llvm_unreachable("Unexpected scalar size.");
10190   }
10191   // Cast to original vector type, retrieve last element.
10192   return DAG.getNode(
10193       ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getBitcast(OpVT, Op),
10194       DAG.getConstant(OpVT.getVectorNumElements() - 1, DL, MVT::i32));
10195 }
10196 
10197 // Only consider a function fully internal as long as it has local linkage
10198 // and is not used in any other way than acting as the called function at
10199 // call sites.
10200 bool SystemZTargetLowering::isFullyInternal(const Function *Fn) const {
10201   if (!Fn->hasLocalLinkage())
10202     return false;
10203   for (const User *U : Fn->users()) {
10204     if (auto *CB = dyn_cast<CallBase>(U)) {
10205       if (CB->getCalledFunction() != Fn)
10206         return false;
10207     } else
10208       return false;
10209   }
10210   return true;
10211 }
10212 
10213 static void printFunctionArgExts(const Function *F, raw_fd_ostream &OS) {
10214   FunctionType *FT = F->getFunctionType();
10215   const AttributeList &Attrs = F->getAttributes();
10216   if (Attrs.hasRetAttrs())
10217     OS << Attrs.getAsString(AttributeList::ReturnIndex) << " ";
10218   OS << *F->getReturnType() << " @" << F->getName() << "(";
10219   for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
10220     if (I)
10221       OS << ", ";
10222     OS << *FT->getParamType(I);
10223     AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
10224     for (auto A : {Attribute::SExt, Attribute::ZExt, Attribute::NoExt})
10225       if (ArgAttrs.hasAttribute(A))
10226         OS << " " << Attribute::getNameFromAttrKind(A);
10227   }
10228   OS << ")\n";
10229 }
10230 
10231 void SystemZTargetLowering::
10232 verifyNarrowIntegerArgs_Call(const SmallVectorImpl<ISD::OutputArg> &Outs,
10233                              const Function *F, SDValue Callee) const {
10234   bool IsInternal = false;
10235   const Function *CalleeFn = nullptr;
10236   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
10237     if ((CalleeFn = dyn_cast<Function>(G->getGlobal())))
10238       IsInternal = isFullyInternal(CalleeFn);
10239   if (!verifyNarrowIntegerArgs(Outs, IsInternal)) {
10240     errs() << "ERROR: Missing extension attribute of passed "
10241            << "value in call to function:\n" << "Callee:  ";
10242     if (CalleeFn != nullptr)
10243       printFunctionArgExts(CalleeFn, errs());
10244     else
10245       errs() << "-\n";
10246     errs() << "Caller:  ";
10247     printFunctionArgExts(F, errs());
10248     llvm_unreachable("");
10249   }
10250 }
10251 
10252 void SystemZTargetLowering::
10253 verifyNarrowIntegerArgs_Ret(const SmallVectorImpl<ISD::OutputArg> &Outs,
10254                             const Function *F) const {
10255   if (!verifyNarrowIntegerArgs(Outs, isFullyInternal(F))) {
10256     errs() << "ERROR: Missing extension attribute of returned "
10257            << "value from function:\n";
10258     printFunctionArgExts(F, errs());
10259     llvm_unreachable("");
10260   }
10261 }
10262 
10263 // Verify that narrow integer arguments are extended as required by the ABI.
10264 // Return false if an error is found.
10265 bool SystemZTargetLowering::
10266 verifyNarrowIntegerArgs(const SmallVectorImpl<ISD::OutputArg> &Outs,
10267                         bool IsInternal) const {
10268   if (IsInternal || !Subtarget.isTargetELF())
10269     return true;
10270 
10271   // Temporarily only do the check when explicitly requested, until it can be
10272   // enabled by default.
10273   if (!EnableIntArgExtCheck)
10274     return true;
10275 
10276   if (EnableIntArgExtCheck.getNumOccurrences()) {
10277     if (!EnableIntArgExtCheck)
10278       return true;
10279   } else if (!getTargetMachine().Options.VerifyArgABICompliance)
10280     return true;
10281 
10282   for (unsigned i = 0; i < Outs.size(); ++i) {
10283     MVT VT = Outs[i].VT;
10284     ISD::ArgFlagsTy Flags = Outs[i].Flags;
10285     if (VT.isInteger()) {
10286       assert((VT == MVT::i32 || VT.getSizeInBits() >= 64) &&
10287              "Unexpected integer argument VT.");
10288       if (VT == MVT::i32 &&
10289           !Flags.isSExt() && !Flags.isZExt() && !Flags.isNoExt())
10290         return false;
10291     }
10292   }
10293 
10294   return true;
10295 }
10296