1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZGNUInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/MC/MCAsmInfo.h" 19 #include "llvm/MC/MCContext.h" 20 #include "llvm/MC/MCExpr.h" 21 #include "llvm/MC/MCInst.h" 22 #include "llvm/MC/MCInstBuilder.h" 23 #include "llvm/MC/MCInstrInfo.h" 24 #include "llvm/MC/MCParser/MCAsmLexer.h" 25 #include "llvm/MC/MCParser/MCAsmParser.h" 26 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 27 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 28 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 29 #include "llvm/MC/MCStreamer.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/TargetRegistry.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SMLoc.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <iterator> 40 #include <memory> 41 #include <string> 42 43 using namespace llvm; 44 45 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 46 // is true any MCExpr is accepted (address displacement). 47 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 48 bool AllowSymbol = false) { 49 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 50 int64_t Value = CE->getValue(); 51 return Value >= MinValue && Value <= MaxValue; 52 } 53 return AllowSymbol; 54 } 55 56 namespace { 57 58 enum RegisterKind { 59 GR32Reg, 60 GRH32Reg, 61 GR64Reg, 62 GR128Reg, 63 FP32Reg, 64 FP64Reg, 65 FP128Reg, 66 VR32Reg, 67 VR64Reg, 68 VR128Reg, 69 AR32Reg, 70 CR64Reg, 71 }; 72 73 enum MemoryKind { 74 BDMem, 75 BDXMem, 76 BDLMem, 77 BDRMem, 78 BDVMem 79 }; 80 81 class SystemZOperand : public MCParsedAsmOperand { 82 private: 83 enum OperandKind { 84 KindInvalid, 85 KindToken, 86 KindReg, 87 KindImm, 88 KindImmTLS, 89 KindMem 90 }; 91 92 OperandKind Kind; 93 SMLoc StartLoc, EndLoc; 94 95 // A string of length Length, starting at Data. 96 struct TokenOp { 97 const char *Data; 98 unsigned Length; 99 }; 100 101 // LLVM register Num, which has kind Kind. In some ways it might be 102 // easier for this class to have a register bank (general, floating-point 103 // or access) and a raw register number (0-15). This would postpone the 104 // interpretation of the operand to the add*() methods and avoid the need 105 // for context-dependent parsing. However, we do things the current way 106 // because of the virtual getReg() method, which needs to distinguish 107 // between (say) %r0 used as a single register and %r0 used as a pair. 108 // Context-dependent parsing can also give us slightly better error 109 // messages when invalid pairs like %r1 are used. 110 struct RegOp { 111 RegisterKind Kind; 112 unsigned Num; 113 }; 114 115 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 116 // MemKind says what type of memory this is and RegKind says what type 117 // the base register has (GR32Reg or GR64Reg). Length is the operand 118 // length for D(L,B)-style operands, otherwise it is null. 119 struct MemOp { 120 unsigned Base : 12; 121 unsigned Index : 12; 122 unsigned MemKind : 4; 123 unsigned RegKind : 4; 124 const MCExpr *Disp; 125 union { 126 const MCExpr *Imm; 127 unsigned Reg; 128 } Length; 129 }; 130 131 // Imm is an immediate operand, and Sym is an optional TLS symbol 132 // for use with a __tls_get_offset marker relocation. 133 struct ImmTLSOp { 134 const MCExpr *Imm; 135 const MCExpr *Sym; 136 }; 137 138 union { 139 TokenOp Token; 140 RegOp Reg; 141 const MCExpr *Imm; 142 ImmTLSOp ImmTLS; 143 MemOp Mem; 144 }; 145 146 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 147 // Add as immediates when possible. Null MCExpr = 0. 148 if (!Expr) 149 Inst.addOperand(MCOperand::createImm(0)); 150 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 151 Inst.addOperand(MCOperand::createImm(CE->getValue())); 152 else 153 Inst.addOperand(MCOperand::createExpr(Expr)); 154 } 155 156 public: 157 SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) 158 : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} 159 160 // Create particular kinds of operand. 161 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 162 SMLoc EndLoc) { 163 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 164 } 165 166 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 167 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 168 Op->Token.Data = Str.data(); 169 Op->Token.Length = Str.size(); 170 return Op; 171 } 172 173 static std::unique_ptr<SystemZOperand> 174 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 175 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 176 Op->Reg.Kind = Kind; 177 Op->Reg.Num = Num; 178 return Op; 179 } 180 181 static std::unique_ptr<SystemZOperand> 182 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 183 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 184 Op->Imm = Expr; 185 return Op; 186 } 187 188 static std::unique_ptr<SystemZOperand> 189 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 190 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 191 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 192 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 193 Op->Mem.MemKind = MemKind; 194 Op->Mem.RegKind = RegKind; 195 Op->Mem.Base = Base; 196 Op->Mem.Index = Index; 197 Op->Mem.Disp = Disp; 198 if (MemKind == BDLMem) 199 Op->Mem.Length.Imm = LengthImm; 200 if (MemKind == BDRMem) 201 Op->Mem.Length.Reg = LengthReg; 202 return Op; 203 } 204 205 static std::unique_ptr<SystemZOperand> 206 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 207 SMLoc StartLoc, SMLoc EndLoc) { 208 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 209 Op->ImmTLS.Imm = Imm; 210 Op->ImmTLS.Sym = Sym; 211 return Op; 212 } 213 214 // Token operands 215 bool isToken() const override { 216 return Kind == KindToken; 217 } 218 StringRef getToken() const { 219 assert(Kind == KindToken && "Not a token"); 220 return StringRef(Token.Data, Token.Length); 221 } 222 223 // Register operands. 224 bool isReg() const override { 225 return Kind == KindReg; 226 } 227 bool isReg(RegisterKind RegKind) const { 228 return Kind == KindReg && Reg.Kind == RegKind; 229 } 230 MCRegister getReg() const override { 231 assert(Kind == KindReg && "Not a register"); 232 return Reg.Num; 233 } 234 235 // Immediate operands. 236 bool isImm() const override { 237 return Kind == KindImm; 238 } 239 bool isImm(int64_t MinValue, int64_t MaxValue) const { 240 return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true); 241 } 242 const MCExpr *getImm() const { 243 assert(Kind == KindImm && "Not an immediate"); 244 return Imm; 245 } 246 247 // Immediate operands with optional TLS symbol. 248 bool isImmTLS() const { 249 return Kind == KindImmTLS; 250 } 251 252 const ImmTLSOp getImmTLS() const { 253 assert(Kind == KindImmTLS && "Not a TLS immediate"); 254 return ImmTLS; 255 } 256 257 // Memory operands. 258 bool isMem() const override { 259 return Kind == KindMem; 260 } 261 bool isMem(MemoryKind MemKind) const { 262 return (Kind == KindMem && 263 (Mem.MemKind == MemKind || 264 // A BDMem can be treated as a BDXMem in which the index 265 // register field is 0. 266 (Mem.MemKind == BDMem && MemKind == BDXMem))); 267 } 268 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 269 return isMem(MemKind) && Mem.RegKind == RegKind; 270 } 271 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 272 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 273 } 274 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 275 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 276 } 277 bool isMemDisp12Len4(RegisterKind RegKind) const { 278 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 279 } 280 bool isMemDisp12Len8(RegisterKind RegKind) const { 281 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 282 } 283 284 const MemOp& getMem() const { 285 assert(Kind == KindMem && "Not a Mem operand"); 286 return Mem; 287 } 288 289 // Override MCParsedAsmOperand. 290 SMLoc getStartLoc() const override { return StartLoc; } 291 SMLoc getEndLoc() const override { return EndLoc; } 292 void print(raw_ostream &OS) const override; 293 294 /// getLocRange - Get the range between the first and last token of this 295 /// operand. 296 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 297 298 // Used by the TableGen code to add particular types of operand 299 // to an instruction. 300 void addRegOperands(MCInst &Inst, unsigned N) const { 301 assert(N == 1 && "Invalid number of operands"); 302 Inst.addOperand(MCOperand::createReg(getReg())); 303 } 304 void addImmOperands(MCInst &Inst, unsigned N) const { 305 assert(N == 1 && "Invalid number of operands"); 306 addExpr(Inst, getImm()); 307 } 308 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 309 assert(N == 2 && "Invalid number of operands"); 310 assert(isMem(BDMem) && "Invalid operand type"); 311 Inst.addOperand(MCOperand::createReg(Mem.Base)); 312 addExpr(Inst, Mem.Disp); 313 } 314 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 315 assert(N == 3 && "Invalid number of operands"); 316 assert(isMem(BDXMem) && "Invalid operand type"); 317 Inst.addOperand(MCOperand::createReg(Mem.Base)); 318 addExpr(Inst, Mem.Disp); 319 Inst.addOperand(MCOperand::createReg(Mem.Index)); 320 } 321 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 322 assert(N == 3 && "Invalid number of operands"); 323 assert(isMem(BDLMem) && "Invalid operand type"); 324 Inst.addOperand(MCOperand::createReg(Mem.Base)); 325 addExpr(Inst, Mem.Disp); 326 addExpr(Inst, Mem.Length.Imm); 327 } 328 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 329 assert(N == 3 && "Invalid number of operands"); 330 assert(isMem(BDRMem) && "Invalid operand type"); 331 Inst.addOperand(MCOperand::createReg(Mem.Base)); 332 addExpr(Inst, Mem.Disp); 333 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 334 } 335 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 336 assert(N == 3 && "Invalid number of operands"); 337 assert(isMem(BDVMem) && "Invalid operand type"); 338 Inst.addOperand(MCOperand::createReg(Mem.Base)); 339 addExpr(Inst, Mem.Disp); 340 Inst.addOperand(MCOperand::createReg(Mem.Index)); 341 } 342 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 343 assert(N == 2 && "Invalid number of operands"); 344 assert(Kind == KindImmTLS && "Invalid operand type"); 345 addExpr(Inst, ImmTLS.Imm); 346 if (ImmTLS.Sym) 347 addExpr(Inst, ImmTLS.Sym); 348 } 349 350 // Used by the TableGen code to check for particular operand types. 351 bool isGR32() const { return isReg(GR32Reg); } 352 bool isGRH32() const { return isReg(GRH32Reg); } 353 bool isGRX32() const { return false; } 354 bool isGR64() const { return isReg(GR64Reg); } 355 bool isGR128() const { return isReg(GR128Reg); } 356 bool isADDR32() const { return isReg(GR32Reg); } 357 bool isADDR64() const { return isReg(GR64Reg); } 358 bool isADDR128() const { return false; } 359 bool isFP32() const { return isReg(FP32Reg); } 360 bool isFP64() const { return isReg(FP64Reg); } 361 bool isFP128() const { return isReg(FP128Reg); } 362 bool isVR32() const { return isReg(VR32Reg); } 363 bool isVR64() const { return isReg(VR64Reg); } 364 bool isVF128() const { return false; } 365 bool isVR128() const { return isReg(VR128Reg); } 366 bool isAR32() const { return isReg(AR32Reg); } 367 bool isCR64() const { return isReg(CR64Reg); } 368 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 369 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 370 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 371 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 372 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 373 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 374 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 375 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 376 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 377 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 378 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 379 bool isU1Imm() const { return isImm(0, 1); } 380 bool isU2Imm() const { return isImm(0, 3); } 381 bool isU3Imm() const { return isImm(0, 7); } 382 bool isU4Imm() const { return isImm(0, 15); } 383 bool isU8Imm() const { return isImm(0, 255); } 384 bool isS8Imm() const { return isImm(-128, 127); } 385 bool isU12Imm() const { return isImm(0, 4095); } 386 bool isU16Imm() const { return isImm(0, 65535); } 387 bool isS16Imm() const { return isImm(-32768, 32767); } 388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 391 }; 392 393 class SystemZAsmParser : public MCTargetAsmParser { 394 #define GET_ASSEMBLER_HEADER 395 #include "SystemZGenAsmMatcher.inc" 396 397 private: 398 MCAsmParser &Parser; 399 enum RegisterGroup { 400 RegGR, 401 RegFP, 402 RegV, 403 RegAR, 404 RegCR 405 }; 406 struct Register { 407 RegisterGroup Group; 408 unsigned Num; 409 SMLoc StartLoc, EndLoc; 410 }; 411 412 SystemZTargetStreamer &getTargetStreamer() { 413 assert(getParser().getStreamer().getTargetStreamer() && 414 "do not have a target streamer"); 415 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 416 return static_cast<SystemZTargetStreamer &>(TS); 417 } 418 419 bool parseRegister(Register &Reg, bool RequirePercent, 420 bool RestoreOnFailure = false); 421 422 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 423 424 ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); 425 426 ParseStatus parseAnyRegister(OperandVector &Operands); 427 428 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 429 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 430 bool HasLength = false, bool HasVectorIndex = false); 431 bool parseAddressRegister(Register &Reg); 432 433 bool ParseDirectiveInsn(SMLoc L); 434 bool ParseDirectiveMachine(SMLoc L); 435 bool ParseGNUAttribute(SMLoc L); 436 437 ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, 438 RegisterKind RegKind); 439 440 ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, 441 int64_t MaxVal, bool AllowTLS); 442 443 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 444 445 // Both the hlasm and gnu variants still rely on the basic gnu asm 446 // format with respect to inputs, clobbers, outputs etc. 447 // 448 // However, calling the overriden getAssemblerDialect() method in 449 // AsmParser is problematic. It either returns the AssemblerDialect field 450 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 451 // unset, otherwise it returns the private AssemblerDialect field in 452 // AsmParser. 453 // 454 // The problematic part is because, we forcibly set the inline asm dialect 455 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 456 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 457 // not return the assembler dialect set in the respective MCAsmInfo instance. 458 // 459 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 460 // here, to get the "correct" assembler dialect, and use it in various 461 // functions. 462 unsigned getMAIAssemblerDialect() { 463 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 464 } 465 466 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 467 // or from 'a' through 'z', or '$', '_','#', or '@'. 468 inline bool isHLASMAlpha(char C) { 469 return isAlpha(C) || llvm::is_contained("_@#$", C); 470 } 471 472 // A digit in HLASM is a number from 0 to 9. 473 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 474 475 // Are we parsing using the AD_HLASM dialect? 476 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 477 478 // Are we parsing using the AD_GNU dialect? 479 inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; } 480 481 public: 482 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 483 const MCInstrInfo &MII, 484 const MCTargetOptions &Options) 485 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 486 MCAsmParserExtension::Initialize(Parser); 487 488 // Alias the .word directive to .short. 489 parser.addAliasForDirective(".word", ".short"); 490 491 // Initialize the set of available features. 492 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 493 } 494 495 // Override MCTargetAsmParser. 496 ParseStatus parseDirective(AsmToken DirectiveID) override; 497 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; 498 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 499 bool RequirePercent, bool RestoreOnFailure); 500 ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 501 SMLoc &EndLoc) override; 502 bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, 503 SMLoc NameLoc, OperandVector &Operands) override; 504 bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 505 OperandVector &Operands, MCStreamer &Out, 506 uint64_t &ErrorInfo, 507 bool MatchingInlineAsm) override; 508 bool isLabel(AsmToken &Token) override; 509 510 // Used by the TableGen code to parse particular operand types. 511 ParseStatus parseGR32(OperandVector &Operands) { 512 return parseRegister(Operands, GR32Reg); 513 } 514 ParseStatus parseGRH32(OperandVector &Operands) { 515 return parseRegister(Operands, GRH32Reg); 516 } 517 ParseStatus parseGRX32(OperandVector &Operands) { 518 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 519 } 520 ParseStatus parseGR64(OperandVector &Operands) { 521 return parseRegister(Operands, GR64Reg); 522 } 523 ParseStatus parseGR128(OperandVector &Operands) { 524 return parseRegister(Operands, GR128Reg); 525 } 526 ParseStatus parseADDR32(OperandVector &Operands) { 527 // For the AsmParser, we will accept %r0 for ADDR32 as well. 528 return parseRegister(Operands, GR32Reg); 529 } 530 ParseStatus parseADDR64(OperandVector &Operands) { 531 // For the AsmParser, we will accept %r0 for ADDR64 as well. 532 return parseRegister(Operands, GR64Reg); 533 } 534 ParseStatus parseADDR128(OperandVector &Operands) { 535 llvm_unreachable("Shouldn't be used as an operand"); 536 } 537 ParseStatus parseFP32(OperandVector &Operands) { 538 return parseRegister(Operands, FP32Reg); 539 } 540 ParseStatus parseFP64(OperandVector &Operands) { 541 return parseRegister(Operands, FP64Reg); 542 } 543 ParseStatus parseFP128(OperandVector &Operands) { 544 return parseRegister(Operands, FP128Reg); 545 } 546 ParseStatus parseVR32(OperandVector &Operands) { 547 return parseRegister(Operands, VR32Reg); 548 } 549 ParseStatus parseVR64(OperandVector &Operands) { 550 return parseRegister(Operands, VR64Reg); 551 } 552 ParseStatus parseVF128(OperandVector &Operands) { 553 llvm_unreachable("Shouldn't be used as an operand"); 554 } 555 ParseStatus parseVR128(OperandVector &Operands) { 556 return parseRegister(Operands, VR128Reg); 557 } 558 ParseStatus parseAR32(OperandVector &Operands) { 559 return parseRegister(Operands, AR32Reg); 560 } 561 ParseStatus parseCR64(OperandVector &Operands) { 562 return parseRegister(Operands, CR64Reg); 563 } 564 ParseStatus parseAnyReg(OperandVector &Operands) { 565 return parseAnyRegister(Operands); 566 } 567 ParseStatus parseBDAddr32(OperandVector &Operands) { 568 return parseAddress(Operands, BDMem, GR32Reg); 569 } 570 ParseStatus parseBDAddr64(OperandVector &Operands) { 571 return parseAddress(Operands, BDMem, GR64Reg); 572 } 573 ParseStatus parseBDXAddr64(OperandVector &Operands) { 574 return parseAddress(Operands, BDXMem, GR64Reg); 575 } 576 ParseStatus parseBDLAddr64(OperandVector &Operands) { 577 return parseAddress(Operands, BDLMem, GR64Reg); 578 } 579 ParseStatus parseBDRAddr64(OperandVector &Operands) { 580 return parseAddress(Operands, BDRMem, GR64Reg); 581 } 582 ParseStatus parseBDVAddr64(OperandVector &Operands) { 583 return parseAddress(Operands, BDVMem, GR64Reg); 584 } 585 ParseStatus parsePCRel12(OperandVector &Operands) { 586 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 587 } 588 ParseStatus parsePCRel16(OperandVector &Operands) { 589 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 590 } 591 ParseStatus parsePCRel24(OperandVector &Operands) { 592 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 593 } 594 ParseStatus parsePCRel32(OperandVector &Operands) { 595 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 596 } 597 ParseStatus parsePCRelTLS16(OperandVector &Operands) { 598 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 599 } 600 ParseStatus parsePCRelTLS32(OperandVector &Operands) { 601 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 602 } 603 }; 604 605 } // end anonymous namespace 606 607 #define GET_REGISTER_MATCHER 608 #define GET_SUBTARGET_FEATURE_NAME 609 #define GET_MATCHER_IMPLEMENTATION 610 #define GET_MNEMONIC_SPELL_CHECKER 611 #include "SystemZGenAsmMatcher.inc" 612 613 // Used for the .insn directives; contains information needed to parse the 614 // operands in the directive. 615 struct InsnMatchEntry { 616 StringRef Format; 617 uint64_t Opcode; 618 int32_t NumOperands; 619 MatchClassKind OperandKinds[7]; 620 }; 621 622 // For equal_range comparison. 623 struct CompareInsn { 624 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 625 return LHS.Format < RHS; 626 } 627 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 628 return LHS < RHS.Format; 629 } 630 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 631 return LHS.Format < RHS.Format; 632 } 633 }; 634 635 // Table initializing information for parsing the .insn directive. 636 static struct InsnMatchEntry InsnMatchTable[] = { 637 /* Format, Opcode, NumOperands, OperandKinds */ 638 { "e", SystemZ::InsnE, 1, 639 { MCK_U16Imm } }, 640 { "ri", SystemZ::InsnRI, 3, 641 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 642 { "rie", SystemZ::InsnRIE, 4, 643 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 644 { "ril", SystemZ::InsnRIL, 3, 645 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 646 { "rilu", SystemZ::InsnRILU, 3, 647 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 648 { "ris", SystemZ::InsnRIS, 5, 649 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 650 { "rr", SystemZ::InsnRR, 3, 651 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 652 { "rre", SystemZ::InsnRRE, 3, 653 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 654 { "rrf", SystemZ::InsnRRF, 5, 655 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 656 { "rrs", SystemZ::InsnRRS, 5, 657 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 658 { "rs", SystemZ::InsnRS, 4, 659 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 660 { "rse", SystemZ::InsnRSE, 4, 661 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 662 { "rsi", SystemZ::InsnRSI, 4, 663 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 664 { "rsy", SystemZ::InsnRSY, 4, 665 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 666 { "rx", SystemZ::InsnRX, 3, 667 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 668 { "rxe", SystemZ::InsnRXE, 3, 669 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 670 { "rxf", SystemZ::InsnRXF, 4, 671 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 672 { "rxy", SystemZ::InsnRXY, 3, 673 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 674 { "s", SystemZ::InsnS, 2, 675 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 676 { "si", SystemZ::InsnSI, 3, 677 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 678 { "sil", SystemZ::InsnSIL, 3, 679 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 680 { "siy", SystemZ::InsnSIY, 3, 681 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 682 { "ss", SystemZ::InsnSS, 4, 683 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 684 { "sse", SystemZ::InsnSSE, 3, 685 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 686 { "ssf", SystemZ::InsnSSF, 4, 687 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 688 { "vri", SystemZ::InsnVRI, 6, 689 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 690 { "vrr", SystemZ::InsnVRR, 7, 691 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 692 MCK_U4Imm } }, 693 { "vrs", SystemZ::InsnVRS, 5, 694 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 695 { "vrv", SystemZ::InsnVRV, 4, 696 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 697 { "vrx", SystemZ::InsnVRX, 4, 698 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 699 { "vsi", SystemZ::InsnVSI, 4, 700 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 701 }; 702 703 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 704 if (!E) 705 return; 706 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 707 OS << *CE; 708 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 709 OS << *UE; 710 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 711 OS << *BE; 712 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 713 OS << *SRE; 714 else 715 OS << *E; 716 } 717 718 void SystemZOperand::print(raw_ostream &OS) const { 719 switch (Kind) { 720 case KindToken: 721 OS << "Token:" << getToken(); 722 break; 723 case KindReg: 724 OS << "Reg:" << SystemZGNUInstPrinter::getRegisterName(getReg()); 725 break; 726 case KindImm: 727 OS << "Imm:"; 728 printMCExpr(getImm(), OS); 729 break; 730 case KindImmTLS: 731 OS << "ImmTLS:"; 732 printMCExpr(getImmTLS().Imm, OS); 733 if (getImmTLS().Sym) { 734 OS << ", "; 735 printMCExpr(getImmTLS().Sym, OS); 736 } 737 break; 738 case KindMem: { 739 const MemOp &Op = getMem(); 740 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 741 if (Op.Base) { 742 OS << "("; 743 if (Op.MemKind == BDLMem) 744 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 745 else if (Op.MemKind == BDRMem) 746 OS << SystemZGNUInstPrinter::getRegisterName(Op.Length.Reg) << ","; 747 if (Op.Index) 748 OS << SystemZGNUInstPrinter::getRegisterName(Op.Index) << ","; 749 OS << SystemZGNUInstPrinter::getRegisterName(Op.Base); 750 OS << ")"; 751 } 752 break; 753 } 754 case KindInvalid: 755 break; 756 } 757 } 758 759 // Parse one register of the form %<prefix><number>. 760 bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent, 761 bool RestoreOnFailure) { 762 const AsmToken &PercentTok = Parser.getTok(); 763 bool HasPercent = PercentTok.is(AsmToken::Percent); 764 765 Reg.StartLoc = PercentTok.getLoc(); 766 767 if (RequirePercent && PercentTok.isNot(AsmToken::Percent)) 768 return Error(PercentTok.getLoc(), "register expected"); 769 770 if (HasPercent) { 771 Parser.Lex(); // Eat percent token. 772 } 773 774 // Expect a register name. 775 if (Parser.getTok().isNot(AsmToken::Identifier)) { 776 if (RestoreOnFailure && HasPercent) 777 getLexer().UnLex(PercentTok); 778 return Error(Reg.StartLoc, 779 HasPercent ? "invalid register" : "register expected"); 780 } 781 782 // Check that there's a prefix. 783 StringRef Name = Parser.getTok().getString(); 784 if (Name.size() < 2) { 785 if (RestoreOnFailure && HasPercent) 786 getLexer().UnLex(PercentTok); 787 return Error(Reg.StartLoc, "invalid register"); 788 } 789 char Prefix = Name[0]; 790 791 // Treat the rest of the register name as a register number. 792 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 793 if (RestoreOnFailure && HasPercent) 794 getLexer().UnLex(PercentTok); 795 return Error(Reg.StartLoc, "invalid register"); 796 } 797 798 // Look for valid combinations of prefix and number. 799 if (Prefix == 'r' && Reg.Num < 16) 800 Reg.Group = RegGR; 801 else if (Prefix == 'f' && Reg.Num < 16) 802 Reg.Group = RegFP; 803 else if (Prefix == 'v' && Reg.Num < 32) 804 Reg.Group = RegV; 805 else if (Prefix == 'a' && Reg.Num < 16) 806 Reg.Group = RegAR; 807 else if (Prefix == 'c' && Reg.Num < 16) 808 Reg.Group = RegCR; 809 else { 810 if (RestoreOnFailure && HasPercent) 811 getLexer().UnLex(PercentTok); 812 return Error(Reg.StartLoc, "invalid register"); 813 } 814 815 Reg.EndLoc = Parser.getTok().getLoc(); 816 Parser.Lex(); 817 return false; 818 } 819 820 // Parse a register of kind Kind and add it to Operands. 821 ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, 822 RegisterKind Kind) { 823 Register Reg; 824 RegisterGroup Group; 825 switch (Kind) { 826 case GR32Reg: 827 case GRH32Reg: 828 case GR64Reg: 829 case GR128Reg: 830 Group = RegGR; 831 break; 832 case FP32Reg: 833 case FP64Reg: 834 case FP128Reg: 835 Group = RegFP; 836 break; 837 case VR32Reg: 838 case VR64Reg: 839 case VR128Reg: 840 Group = RegV; 841 break; 842 case AR32Reg: 843 Group = RegAR; 844 break; 845 case CR64Reg: 846 Group = RegCR; 847 break; 848 } 849 850 // Handle register names of the form %<prefix><number> 851 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) { 852 if (parseRegister(Reg, /*RequirePercent=*/true)) 853 return ParseStatus::Failure; 854 855 // Check the parsed register group "Reg.Group" with the expected "Group" 856 // Have to error out if user specified wrong prefix. 857 switch (Group) { 858 case RegGR: 859 case RegFP: 860 case RegAR: 861 case RegCR: 862 if (Group != Reg.Group) 863 return Error(Reg.StartLoc, "invalid operand for instruction"); 864 break; 865 case RegV: 866 if (Reg.Group != RegV && Reg.Group != RegFP) 867 return Error(Reg.StartLoc, "invalid operand for instruction"); 868 break; 869 } 870 } else if (Parser.getTok().is(AsmToken::Integer)) { 871 if (parseIntegerRegister(Reg, Group)) 872 return ParseStatus::Failure; 873 } 874 // Otherwise we didn't match a register operand. 875 else 876 return ParseStatus::NoMatch; 877 878 // Determine the LLVM register number according to Kind. 879 const unsigned *Regs; 880 switch (Kind) { 881 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 882 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 883 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 884 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 885 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 886 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 887 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 888 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 889 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 890 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 891 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 892 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 893 } 894 if (Regs[Reg.Num] == 0) 895 return Error(Reg.StartLoc, "invalid register pair"); 896 897 Operands.push_back( 898 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 899 return ParseStatus::Success; 900 } 901 902 // Parse any type of register (including integers) and add it to Operands. 903 ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 904 SMLoc StartLoc = Parser.getTok().getLoc(); 905 906 // Handle integer values. 907 if (Parser.getTok().is(AsmToken::Integer)) { 908 const MCExpr *Register; 909 if (Parser.parseExpression(Register)) 910 return ParseStatus::Failure; 911 912 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 913 int64_t Value = CE->getValue(); 914 if (Value < 0 || Value > 15) 915 return Error(StartLoc, "invalid register"); 916 } 917 918 SMLoc EndLoc = 919 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 920 921 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 922 } 923 else { 924 if (isParsingHLASM()) 925 return ParseStatus::NoMatch; 926 927 Register Reg; 928 if (parseRegister(Reg, /*RequirePercent=*/true)) 929 return ParseStatus::Failure; 930 931 if (Reg.Num > 15) 932 return Error(StartLoc, "invalid register"); 933 934 // Map to the correct register kind. 935 RegisterKind Kind; 936 unsigned RegNo; 937 if (Reg.Group == RegGR) { 938 Kind = GR64Reg; 939 RegNo = SystemZMC::GR64Regs[Reg.Num]; 940 } 941 else if (Reg.Group == RegFP) { 942 Kind = FP64Reg; 943 RegNo = SystemZMC::FP64Regs[Reg.Num]; 944 } 945 else if (Reg.Group == RegV) { 946 Kind = VR128Reg; 947 RegNo = SystemZMC::VR128Regs[Reg.Num]; 948 } 949 else if (Reg.Group == RegAR) { 950 Kind = AR32Reg; 951 RegNo = SystemZMC::AR32Regs[Reg.Num]; 952 } 953 else if (Reg.Group == RegCR) { 954 Kind = CR64Reg; 955 RegNo = SystemZMC::CR64Regs[Reg.Num]; 956 } 957 else { 958 return ParseStatus::Failure; 959 } 960 961 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 962 Reg.StartLoc, Reg.EndLoc)); 963 } 964 return ParseStatus::Success; 965 } 966 967 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 968 RegisterGroup Group) { 969 Reg.StartLoc = Parser.getTok().getLoc(); 970 // We have an integer token 971 const MCExpr *Register; 972 if (Parser.parseExpression(Register)) 973 return true; 974 975 const auto *CE = dyn_cast<MCConstantExpr>(Register); 976 if (!CE) 977 return true; 978 979 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 980 int64_t Value = CE->getValue(); 981 if (Value < 0 || Value > MaxRegNum) { 982 Error(Parser.getTok().getLoc(), "invalid register"); 983 return true; 984 } 985 986 // Assign the Register Number 987 Reg.Num = (unsigned)Value; 988 Reg.Group = Group; 989 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 990 991 // At this point, successfully parsed an integer register. 992 return false; 993 } 994 995 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 996 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 997 bool &HaveReg2, Register &Reg2, 998 const MCExpr *&Disp, const MCExpr *&Length, 999 bool HasLength, bool HasVectorIndex) { 1000 // Parse the displacement, which must always be present. 1001 if (getParser().parseExpression(Disp)) 1002 return true; 1003 1004 // Parse the optional base and index. 1005 HaveReg1 = false; 1006 HaveReg2 = false; 1007 Length = nullptr; 1008 1009 // If we have a scenario as below: 1010 // vgef %v0, 0(0), 0 1011 // This is an example of a "BDVMem" instruction type. 1012 // 1013 // So when we parse this as an integer register, the register group 1014 // needs to be tied to "RegV". Usually when the prefix is passed in 1015 // as %<prefix><reg-number> its easy to check which group it should belong to 1016 // However, if we're passing in just the integer there's no real way to 1017 // "check" what register group it should belong to. 1018 // 1019 // When the user passes in the register as an integer, the user assumes that 1020 // the compiler is responsible for substituting it as the right kind of 1021 // register. Whereas, when the user specifies a "prefix", the onus is on 1022 // the user to make sure they pass in the right kind of register. 1023 // 1024 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1025 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1026 // (i.e. insn is of type BDVMem) is true. 1027 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1028 1029 if (getLexer().is(AsmToken::LParen)) { 1030 Parser.Lex(); 1031 1032 if (isParsingGNU() && getLexer().is(AsmToken::Percent)) { 1033 // Parse the first register. 1034 HaveReg1 = true; 1035 if (parseRegister(Reg1, /*RequirePercent=*/true)) 1036 return true; 1037 } 1038 // So if we have an integer as the first token in ([tok1], ..), it could: 1039 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1040 // instructions) 1041 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1042 else if (getLexer().is(AsmToken::Integer)) { 1043 if (HasLength) { 1044 // Instruction has a "Length" field, safe to parse the first token as 1045 // the "Length" field 1046 if (getParser().parseExpression(Length)) 1047 return true; 1048 } else { 1049 // Otherwise, if the instruction has no "Length" field, parse the 1050 // token as a "Register". We don't have to worry about whether the 1051 // instruction is invalid here, because the caller will take care of 1052 // error reporting. 1053 HaveReg1 = true; 1054 if (parseIntegerRegister(Reg1, RegGroup)) 1055 return true; 1056 } 1057 } else { 1058 // If its not an integer or a percent token, then if the instruction 1059 // is reported to have a "Length" then, parse it as "Length". 1060 if (HasLength) { 1061 if (getParser().parseExpression(Length)) 1062 return true; 1063 } 1064 } 1065 1066 // Check whether there's a second register. 1067 if (getLexer().is(AsmToken::Comma)) { 1068 Parser.Lex(); 1069 HaveReg2 = true; 1070 1071 if (getLexer().is(AsmToken::Integer)) { 1072 if (parseIntegerRegister(Reg2, RegGR)) 1073 return true; 1074 } else if (isParsingGNU()) { 1075 if (Parser.getTok().is(AsmToken::Percent)) { 1076 if (parseRegister(Reg2, /*RequirePercent=*/true)) 1077 return true; 1078 } else { 1079 // GAS allows ",)" to indicate a missing base register. 1080 Reg2.Num = 0; 1081 Reg2.Group = RegGR; 1082 Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc(); 1083 } 1084 } 1085 } 1086 1087 // Consume the closing bracket. 1088 if (getLexer().isNot(AsmToken::RParen)) 1089 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1090 Parser.Lex(); 1091 } 1092 return false; 1093 } 1094 1095 // Verify that Reg is a valid address register (base or index). 1096 bool 1097 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1098 if (Reg.Group == RegV) { 1099 Error(Reg.StartLoc, "invalid use of vector addressing"); 1100 return true; 1101 } 1102 if (Reg.Group != RegGR) { 1103 Error(Reg.StartLoc, "invalid address register"); 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 // Parse a memory operand and add it to Operands. The other arguments 1110 // are as above. 1111 ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, 1112 MemoryKind MemKind, 1113 RegisterKind RegKind) { 1114 SMLoc StartLoc = Parser.getTok().getLoc(); 1115 unsigned Base = 0, Index = 0, LengthReg = 0; 1116 Register Reg1, Reg2; 1117 bool HaveReg1, HaveReg2; 1118 const MCExpr *Disp; 1119 const MCExpr *Length; 1120 1121 bool HasLength = (MemKind == BDLMem) ? true : false; 1122 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1123 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1124 HasVectorIndex)) 1125 return ParseStatus::Failure; 1126 1127 const unsigned *Regs; 1128 switch (RegKind) { 1129 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1130 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1131 default: llvm_unreachable("invalid RegKind"); 1132 } 1133 1134 switch (MemKind) { 1135 case BDMem: 1136 // If we have Reg1, it must be an address register. 1137 if (HaveReg1) { 1138 if (parseAddressRegister(Reg1)) 1139 return ParseStatus::Failure; 1140 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1141 } 1142 // There must be no Reg2. 1143 if (HaveReg2) 1144 return Error(StartLoc, "invalid use of indexed addressing"); 1145 break; 1146 case BDXMem: 1147 // If we have Reg1, it must be an address register. 1148 if (HaveReg1) { 1149 if (parseAddressRegister(Reg1)) 1150 return ParseStatus::Failure; 1151 // If there are two registers, the first one is the index and the 1152 // second is the base. If there is only a single register, it is 1153 // used as base with GAS and as index with HLASM. 1154 if (HaveReg2 || isParsingHLASM()) 1155 Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1156 else 1157 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1158 } 1159 // If we have Reg2, it must be an address register. 1160 if (HaveReg2) { 1161 if (parseAddressRegister(Reg2)) 1162 return ParseStatus::Failure; 1163 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1164 } 1165 break; 1166 case BDLMem: 1167 // If we have Reg2, it must be an address register. 1168 if (HaveReg2) { 1169 if (parseAddressRegister(Reg2)) 1170 return ParseStatus::Failure; 1171 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1172 } 1173 // We cannot support base+index addressing. 1174 if (HaveReg1 && HaveReg2) 1175 return Error(StartLoc, "invalid use of indexed addressing"); 1176 // We must have a length. 1177 if (!Length) 1178 return Error(StartLoc, "missing length in address"); 1179 break; 1180 case BDRMem: 1181 // We must have Reg1, and it must be a GPR. 1182 if (!HaveReg1 || Reg1.Group != RegGR) 1183 return Error(StartLoc, "invalid operand for instruction"); 1184 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1185 // If we have Reg2, it must be an address register. 1186 if (HaveReg2) { 1187 if (parseAddressRegister(Reg2)) 1188 return ParseStatus::Failure; 1189 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1190 } 1191 break; 1192 case BDVMem: 1193 // We must have Reg1, and it must be a vector register. 1194 if (!HaveReg1 || Reg1.Group != RegV) 1195 return Error(StartLoc, "vector index required in address"); 1196 Index = SystemZMC::VR128Regs[Reg1.Num]; 1197 // In GAS mode, we must have Reg2, since a single register would be 1198 // interpreted as base register, which cannot be a vector register. 1199 if (isParsingGNU() && !HaveReg2) 1200 return Error(Reg1.StartLoc, "invalid use of vector addressing"); 1201 // If we have Reg2, it must be an address register. 1202 if (HaveReg2) { 1203 if (parseAddressRegister(Reg2)) 1204 return ParseStatus::Failure; 1205 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1206 } 1207 break; 1208 } 1209 1210 SMLoc EndLoc = 1211 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1212 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1213 Index, Length, LengthReg, 1214 StartLoc, EndLoc)); 1215 return ParseStatus::Success; 1216 } 1217 1218 ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { 1219 StringRef IDVal = DirectiveID.getIdentifier(); 1220 1221 if (IDVal == ".insn") 1222 return ParseDirectiveInsn(DirectiveID.getLoc()); 1223 if (IDVal == ".machine") 1224 return ParseDirectiveMachine(DirectiveID.getLoc()); 1225 if (IDVal.starts_with(".gnu_attribute")) 1226 return ParseGNUAttribute(DirectiveID.getLoc()); 1227 1228 return ParseStatus::NoMatch; 1229 } 1230 1231 /// ParseDirectiveInsn 1232 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1233 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1234 MCAsmParser &Parser = getParser(); 1235 1236 // Expect instruction format as identifier. 1237 StringRef Format; 1238 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1239 if (Parser.parseIdentifier(Format)) 1240 return Error(ErrorLoc, "expected instruction format"); 1241 1242 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1243 1244 // Find entry for this format in InsnMatchTable. 1245 auto EntryRange = 1246 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1247 Format, CompareInsn()); 1248 1249 // If first == second, couldn't find a match in the table. 1250 if (EntryRange.first == EntryRange.second) 1251 return Error(ErrorLoc, "unrecognized format"); 1252 1253 struct InsnMatchEntry *Entry = EntryRange.first; 1254 1255 // Format should match from equal_range. 1256 assert(Entry->Format == Format); 1257 1258 // Parse the following operands using the table's information. 1259 for (int I = 0; I < Entry->NumOperands; I++) { 1260 MatchClassKind Kind = Entry->OperandKinds[I]; 1261 1262 SMLoc StartLoc = Parser.getTok().getLoc(); 1263 1264 // Always expect commas as separators for operands. 1265 if (getLexer().isNot(AsmToken::Comma)) 1266 return Error(StartLoc, "unexpected token in directive"); 1267 Lex(); 1268 1269 // Parse operands. 1270 ParseStatus ResTy; 1271 if (Kind == MCK_AnyReg) 1272 ResTy = parseAnyReg(Operands); 1273 else if (Kind == MCK_VR128) 1274 ResTy = parseVR128(Operands); 1275 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1276 ResTy = parseBDXAddr64(Operands); 1277 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1278 ResTy = parseBDAddr64(Operands); 1279 else if (Kind == MCK_BDVAddr64Disp12) 1280 ResTy = parseBDVAddr64(Operands); 1281 else if (Kind == MCK_PCRel32) 1282 ResTy = parsePCRel32(Operands); 1283 else if (Kind == MCK_PCRel16) 1284 ResTy = parsePCRel16(Operands); 1285 else { 1286 // Only remaining operand kind is an immediate. 1287 const MCExpr *Expr; 1288 SMLoc StartLoc = Parser.getTok().getLoc(); 1289 1290 // Expect immediate expression. 1291 if (Parser.parseExpression(Expr)) 1292 return Error(StartLoc, "unexpected token in directive"); 1293 1294 SMLoc EndLoc = 1295 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1296 1297 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1298 ResTy = ParseStatus::Success; 1299 } 1300 1301 if (!ResTy.isSuccess()) 1302 return true; 1303 } 1304 1305 // Build the instruction with the parsed operands. 1306 MCInst Inst = MCInstBuilder(Entry->Opcode); 1307 1308 for (size_t I = 0; I < Operands.size(); I++) { 1309 MCParsedAsmOperand &Operand = *Operands[I]; 1310 MatchClassKind Kind = Entry->OperandKinds[I]; 1311 1312 // Verify operand. 1313 unsigned Res = validateOperandClass(Operand, Kind); 1314 if (Res != Match_Success) 1315 return Error(Operand.getStartLoc(), "unexpected operand type"); 1316 1317 // Add operands to instruction. 1318 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1319 if (ZOperand.isReg()) 1320 ZOperand.addRegOperands(Inst, 1); 1321 else if (ZOperand.isMem(BDMem)) 1322 ZOperand.addBDAddrOperands(Inst, 2); 1323 else if (ZOperand.isMem(BDXMem)) 1324 ZOperand.addBDXAddrOperands(Inst, 3); 1325 else if (ZOperand.isMem(BDVMem)) 1326 ZOperand.addBDVAddrOperands(Inst, 3); 1327 else if (ZOperand.isImm()) 1328 ZOperand.addImmOperands(Inst, 1); 1329 else 1330 llvm_unreachable("unexpected operand type"); 1331 } 1332 1333 // Emit as a regular instruction. 1334 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1335 1336 return false; 1337 } 1338 1339 /// ParseDirectiveMachine 1340 /// ::= .machine [ mcpu ] 1341 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1342 MCAsmParser &Parser = getParser(); 1343 if (Parser.getTok().isNot(AsmToken::Identifier) && 1344 Parser.getTok().isNot(AsmToken::String)) 1345 return TokError("unexpected token in '.machine' directive"); 1346 1347 StringRef CPU = Parser.getTok().getIdentifier(); 1348 Parser.Lex(); 1349 if (parseEOL()) 1350 return true; 1351 1352 MCSubtargetInfo &STI = copySTI(); 1353 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1354 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1355 1356 getTargetStreamer().emitMachine(CPU); 1357 1358 return false; 1359 } 1360 1361 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { 1362 int64_t Tag; 1363 int64_t IntegerValue; 1364 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) 1365 return Error(L, "malformed .gnu_attribute directive"); 1366 1367 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. 1368 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) 1369 return Error(L, "unrecognized .gnu_attribute tag/value pair."); 1370 1371 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); 1372 1373 return parseEOL(); 1374 } 1375 1376 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1377 SMLoc &EndLoc, bool RequirePercent, 1378 bool RestoreOnFailure) { 1379 Register Reg; 1380 if (parseRegister(Reg, RequirePercent, RestoreOnFailure)) 1381 return true; 1382 if (Reg.Group == RegGR) 1383 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1384 else if (Reg.Group == RegFP) 1385 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1386 else if (Reg.Group == RegV) 1387 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1388 else if (Reg.Group == RegAR) 1389 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1390 else if (Reg.Group == RegCR) 1391 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1392 StartLoc = Reg.StartLoc; 1393 EndLoc = Reg.EndLoc; 1394 return false; 1395 } 1396 1397 bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, 1398 SMLoc &EndLoc) { 1399 return ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false, 1400 /*RestoreOnFailure=*/false); 1401 } 1402 1403 ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 1404 SMLoc &EndLoc) { 1405 bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false, 1406 /*RestoreOnFailure=*/true); 1407 bool PendingErrors = getParser().hasPendingError(); 1408 getParser().clearPendingErrors(); 1409 if (PendingErrors) 1410 return ParseStatus::Failure; 1411 if (Result) 1412 return ParseStatus::NoMatch; 1413 return ParseStatus::Success; 1414 } 1415 1416 bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info, 1417 StringRef Name, SMLoc NameLoc, 1418 OperandVector &Operands) { 1419 1420 // Apply mnemonic aliases first, before doing anything else, in 1421 // case the target uses it. 1422 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1423 1424 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1425 1426 // Read the remaining operands. 1427 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1428 // Read the first operand. 1429 if (parseOperand(Operands, Name)) { 1430 return true; 1431 } 1432 1433 // Read any subsequent operands. 1434 while (getLexer().is(AsmToken::Comma)) { 1435 Parser.Lex(); 1436 1437 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1438 return Error( 1439 Parser.getTok().getLoc(), 1440 "No space allowed between comma that separates operand entries"); 1441 1442 if (parseOperand(Operands, Name)) { 1443 return true; 1444 } 1445 } 1446 1447 // Under the HLASM variant, we could have the remark field 1448 // The remark field occurs after the operation entries 1449 // There is a space that separates the operation entries and the 1450 // remark field. 1451 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1452 // We've confirmed that there is a Remark field. 1453 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1454 Parser.Lex(); 1455 1456 // If there is nothing after the space, then there is nothing to emit 1457 // We could have a situation as this: 1458 // " \n" 1459 // After lexing above, we will have 1460 // "\n" 1461 // This isn't an explicit remark field, so we don't have to output 1462 // this as a comment. 1463 if (Remark.size()) 1464 // Output the entire Remarks Field as a comment 1465 getStreamer().AddComment(Remark); 1466 } 1467 1468 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1469 SMLoc Loc = getLexer().getLoc(); 1470 return Error(Loc, "unexpected token in argument list"); 1471 } 1472 } 1473 1474 // Consume the EndOfStatement. 1475 Parser.Lex(); 1476 return false; 1477 } 1478 1479 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1480 StringRef Mnemonic) { 1481 // Check if the current operand has a custom associated parser, if so, try to 1482 // custom parse the operand, or fallback to the general approach. Force all 1483 // features to be available during the operand check, or else we will fail to 1484 // find the custom parser, and then we will later get an InvalidOperand error 1485 // instead of a MissingFeature errror. 1486 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1487 FeatureBitset All; 1488 All.set(); 1489 setAvailableFeatures(All); 1490 ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); 1491 setAvailableFeatures(AvailableFeatures); 1492 if (Res.isSuccess()) 1493 return false; 1494 1495 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1496 // there was a match, but an error occurred, in which case, just return that 1497 // the operand parsing failed. 1498 if (Res.isFailure()) 1499 return true; 1500 1501 // Check for a register. All real register operands should have used 1502 // a context-dependent parse routine, which gives the required register 1503 // class. The code is here to mop up other cases, like those where 1504 // the instruction isn't recognized. 1505 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) { 1506 Register Reg; 1507 if (parseRegister(Reg, /*RequirePercent=*/true)) 1508 return true; 1509 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1510 return false; 1511 } 1512 1513 // The only other type of operand is an immediate or address. As above, 1514 // real address operands should have used a context-dependent parse routine, 1515 // so we treat any plain expression as an immediate. 1516 SMLoc StartLoc = Parser.getTok().getLoc(); 1517 Register Reg1, Reg2; 1518 bool HaveReg1, HaveReg2; 1519 const MCExpr *Expr; 1520 const MCExpr *Length; 1521 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1522 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1523 return true; 1524 // If the register combination is not valid for any instruction, reject it. 1525 // Otherwise, fall back to reporting an unrecognized instruction. 1526 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1527 && parseAddressRegister(Reg1)) 1528 return true; 1529 if (HaveReg2 && parseAddressRegister(Reg2)) 1530 return true; 1531 1532 SMLoc EndLoc = 1533 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1534 if (HaveReg1 || HaveReg2 || Length) 1535 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1536 else 1537 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1538 return false; 1539 } 1540 1541 bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1542 OperandVector &Operands, 1543 MCStreamer &Out, 1544 uint64_t &ErrorInfo, 1545 bool MatchingInlineAsm) { 1546 MCInst Inst; 1547 unsigned MatchResult; 1548 1549 unsigned Dialect = getMAIAssemblerDialect(); 1550 1551 FeatureBitset MissingFeatures; 1552 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1553 MatchingInlineAsm, Dialect); 1554 switch (MatchResult) { 1555 case Match_Success: 1556 Inst.setLoc(IDLoc); 1557 Out.emitInstruction(Inst, getSTI()); 1558 return false; 1559 1560 case Match_MissingFeature: { 1561 assert(MissingFeatures.any() && "Unknown missing feature!"); 1562 // Special case the error message for the very common case where only 1563 // a single subtarget feature is missing 1564 std::string Msg = "instruction requires:"; 1565 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1566 if (MissingFeatures[I]) { 1567 Msg += " "; 1568 Msg += getSubtargetFeatureName(I); 1569 } 1570 } 1571 return Error(IDLoc, Msg); 1572 } 1573 1574 case Match_InvalidOperand: { 1575 SMLoc ErrorLoc = IDLoc; 1576 if (ErrorInfo != ~0ULL) { 1577 if (ErrorInfo >= Operands.size()) 1578 return Error(IDLoc, "too few operands for instruction"); 1579 1580 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1581 if (ErrorLoc == SMLoc()) 1582 ErrorLoc = IDLoc; 1583 } 1584 return Error(ErrorLoc, "invalid operand for instruction"); 1585 } 1586 1587 case Match_MnemonicFail: { 1588 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1589 std::string Suggestion = SystemZMnemonicSpellCheck( 1590 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1591 return Error(IDLoc, "invalid instruction" + Suggestion, 1592 ((SystemZOperand &)*Operands[0]).getLocRange()); 1593 } 1594 } 1595 1596 llvm_unreachable("Unexpected match type"); 1597 } 1598 1599 ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, 1600 int64_t MinVal, int64_t MaxVal, 1601 bool AllowTLS) { 1602 MCContext &Ctx = getContext(); 1603 MCStreamer &Out = getStreamer(); 1604 const MCExpr *Expr; 1605 SMLoc StartLoc = Parser.getTok().getLoc(); 1606 if (getParser().parseExpression(Expr)) 1607 return ParseStatus::NoMatch; 1608 1609 auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1610 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1611 int64_t Value = CE->getValue(); 1612 if (Negate) 1613 Value = -Value; 1614 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1615 return true; 1616 } 1617 return false; 1618 }; 1619 1620 // For consistency with the GNU assembler, treat immediates as offsets 1621 // from ".". 1622 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1623 if (isParsingHLASM()) 1624 return Error(StartLoc, "Expected PC-relative expression"); 1625 if (IsOutOfRangeConstant(CE, false)) 1626 return Error(StartLoc, "offset out of range"); 1627 int64_t Value = CE->getValue(); 1628 MCSymbol *Sym = Ctx.createTempSymbol(); 1629 Out.emitLabel(Sym); 1630 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1631 Ctx); 1632 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1633 } 1634 1635 // For consistency with the GNU assembler, conservatively assume that a 1636 // constant offset must by itself be within the given size range. 1637 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1638 if (IsOutOfRangeConstant(BE->getLHS(), false) || 1639 IsOutOfRangeConstant(BE->getRHS(), 1640 BE->getOpcode() == MCBinaryExpr::Sub)) 1641 return Error(StartLoc, "offset out of range"); 1642 1643 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1644 const MCExpr *Sym = nullptr; 1645 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1646 Parser.Lex(); 1647 1648 if (Parser.getTok().isNot(AsmToken::Identifier)) 1649 return Error(Parser.getTok().getLoc(), "unexpected token"); 1650 1651 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1652 StringRef Name = Parser.getTok().getString(); 1653 if (Name == "tls_gdcall") 1654 Kind = MCSymbolRefExpr::VK_TLSGD; 1655 else if (Name == "tls_ldcall") 1656 Kind = MCSymbolRefExpr::VK_TLSLDM; 1657 else 1658 return Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1659 Parser.Lex(); 1660 1661 if (Parser.getTok().isNot(AsmToken::Colon)) 1662 return Error(Parser.getTok().getLoc(), "unexpected token"); 1663 Parser.Lex(); 1664 1665 if (Parser.getTok().isNot(AsmToken::Identifier)) 1666 return Error(Parser.getTok().getLoc(), "unexpected token"); 1667 1668 StringRef Identifier = Parser.getTok().getString(); 1669 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1670 Kind, Ctx); 1671 Parser.Lex(); 1672 } 1673 1674 SMLoc EndLoc = 1675 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1676 1677 if (AllowTLS) 1678 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1679 StartLoc, EndLoc)); 1680 else 1681 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1682 1683 return ParseStatus::Success; 1684 } 1685 1686 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1687 if (isParsingGNU()) 1688 return true; 1689 1690 // HLASM labels are ordinary symbols. 1691 // An HLASM label always starts at column 1. 1692 // An ordinary symbol syntax is laid out as follows: 1693 // Rules: 1694 // 1. Has to start with an "alphabetic character". Can be followed by up to 1695 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1696 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1697 // or '$', '_', '#', or '@' 1698 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1699 // are all treated as the same symbol. However, the processing for the case 1700 // folding will not be done in this function. 1701 StringRef RawLabel = Token.getString(); 1702 SMLoc Loc = Token.getLoc(); 1703 1704 // An HLASM label cannot be empty. 1705 if (!RawLabel.size()) 1706 return !Error(Loc, "HLASM Label cannot be empty"); 1707 1708 // An HLASM label cannot exceed greater than 63 characters. 1709 if (RawLabel.size() > 63) 1710 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1711 1712 // A label must start with an "alphabetic character". 1713 if (!isHLASMAlpha(RawLabel[0])) 1714 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1715 "character or the underscore character"); 1716 1717 // Now, we've established that the length is valid 1718 // and the first character is alphabetic. 1719 // Check whether remaining string is alphanumeric. 1720 for (unsigned I = 1; I < RawLabel.size(); ++I) 1721 if (!isHLASMAlnum(RawLabel[I])) 1722 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1723 1724 return true; 1725 } 1726 1727 // Force static initialization. 1728 // NOLINTNEXTLINE(readability-identifier-naming) 1729 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1730 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1731 } 1732