xref: /llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision c726c920e04046da29e403d55aa9c0e466b13959)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "TargetInfo/SystemZTargetInfo.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstBuilder.h"
19 #include "llvm/MC/MCParser/MCAsmLexer.h"
20 #include "llvm/MC/MCParser/MCAsmParser.h"
21 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
23 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/SMLoc.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <iterator>
35 #include <memory>
36 #include <string>
37 
38 using namespace llvm;
39 
40 // Return true if Expr is in the range [MinValue, MaxValue].
41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
42   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
43     int64_t Value = CE->getValue();
44     return Value >= MinValue && Value <= MaxValue;
45   }
46   return false;
47 }
48 
49 namespace {
50 
51 enum RegisterKind {
52   GR32Reg,
53   GRH32Reg,
54   GR64Reg,
55   GR128Reg,
56   FP32Reg,
57   FP64Reg,
58   FP128Reg,
59   VR32Reg,
60   VR64Reg,
61   VR128Reg,
62   AR32Reg,
63   CR64Reg,
64 };
65 
66 enum MemoryKind {
67   BDMem,
68   BDXMem,
69   BDLMem,
70   BDRMem,
71   BDVMem
72 };
73 
74 class SystemZOperand : public MCParsedAsmOperand {
75 private:
76   enum OperandKind {
77     KindInvalid,
78     KindToken,
79     KindReg,
80     KindImm,
81     KindImmTLS,
82     KindMem
83   };
84 
85   OperandKind Kind;
86   SMLoc StartLoc, EndLoc;
87 
88   // A string of length Length, starting at Data.
89   struct TokenOp {
90     const char *Data;
91     unsigned Length;
92   };
93 
94   // LLVM register Num, which has kind Kind.  In some ways it might be
95   // easier for this class to have a register bank (general, floating-point
96   // or access) and a raw register number (0-15).  This would postpone the
97   // interpretation of the operand to the add*() methods and avoid the need
98   // for context-dependent parsing.  However, we do things the current way
99   // because of the virtual getReg() method, which needs to distinguish
100   // between (say) %r0 used as a single register and %r0 used as a pair.
101   // Context-dependent parsing can also give us slightly better error
102   // messages when invalid pairs like %r1 are used.
103   struct RegOp {
104     RegisterKind Kind;
105     unsigned Num;
106   };
107 
108   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
109   // MemKind says what type of memory this is and RegKind says what type
110   // the base register has (GR32Reg or GR64Reg).  Length is the operand
111   // length for D(L,B)-style operands, otherwise it is null.
112   struct MemOp {
113     unsigned Base : 12;
114     unsigned Index : 12;
115     unsigned MemKind : 4;
116     unsigned RegKind : 4;
117     const MCExpr *Disp;
118     union {
119       const MCExpr *Imm;
120       unsigned Reg;
121     } Length;
122   };
123 
124   // Imm is an immediate operand, and Sym is an optional TLS symbol
125   // for use with a __tls_get_offset marker relocation.
126   struct ImmTLSOp {
127     const MCExpr *Imm;
128     const MCExpr *Sym;
129   };
130 
131   union {
132     TokenOp Token;
133     RegOp Reg;
134     const MCExpr *Imm;
135     ImmTLSOp ImmTLS;
136     MemOp Mem;
137   };
138 
139   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
140     // Add as immediates when possible.  Null MCExpr = 0.
141     if (!Expr)
142       Inst.addOperand(MCOperand::createImm(0));
143     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
144       Inst.addOperand(MCOperand::createImm(CE->getValue()));
145     else
146       Inst.addOperand(MCOperand::createExpr(Expr));
147   }
148 
149 public:
150   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
151       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
152 
153   // Create particular kinds of operand.
154   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
155                                                        SMLoc EndLoc) {
156     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
157   }
158 
159   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
160     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
161     Op->Token.Data = Str.data();
162     Op->Token.Length = Str.size();
163     return Op;
164   }
165 
166   static std::unique_ptr<SystemZOperand>
167   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
168     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
169     Op->Reg.Kind = Kind;
170     Op->Reg.Num = Num;
171     return Op;
172   }
173 
174   static std::unique_ptr<SystemZOperand>
175   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
176     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
177     Op->Imm = Expr;
178     return Op;
179   }
180 
181   static std::unique_ptr<SystemZOperand>
182   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
183             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
184             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
185     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
186     Op->Mem.MemKind = MemKind;
187     Op->Mem.RegKind = RegKind;
188     Op->Mem.Base = Base;
189     Op->Mem.Index = Index;
190     Op->Mem.Disp = Disp;
191     if (MemKind == BDLMem)
192       Op->Mem.Length.Imm = LengthImm;
193     if (MemKind == BDRMem)
194       Op->Mem.Length.Reg = LengthReg;
195     return Op;
196   }
197 
198   static std::unique_ptr<SystemZOperand>
199   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
200                SMLoc StartLoc, SMLoc EndLoc) {
201     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
202     Op->ImmTLS.Imm = Imm;
203     Op->ImmTLS.Sym = Sym;
204     return Op;
205   }
206 
207   // Token operands
208   bool isToken() const override {
209     return Kind == KindToken;
210   }
211   StringRef getToken() const {
212     assert(Kind == KindToken && "Not a token");
213     return StringRef(Token.Data, Token.Length);
214   }
215 
216   // Register operands.
217   bool isReg() const override {
218     return Kind == KindReg;
219   }
220   bool isReg(RegisterKind RegKind) const {
221     return Kind == KindReg && Reg.Kind == RegKind;
222   }
223   unsigned getReg() const override {
224     assert(Kind == KindReg && "Not a register");
225     return Reg.Num;
226   }
227 
228   // Immediate operands.
229   bool isImm() const override {
230     return Kind == KindImm;
231   }
232   bool isImm(int64_t MinValue, int64_t MaxValue) const {
233     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
234   }
235   const MCExpr *getImm() const {
236     assert(Kind == KindImm && "Not an immediate");
237     return Imm;
238   }
239 
240   // Immediate operands with optional TLS symbol.
241   bool isImmTLS() const {
242     return Kind == KindImmTLS;
243   }
244 
245   const ImmTLSOp getImmTLS() const {
246     assert(Kind == KindImmTLS && "Not a TLS immediate");
247     return ImmTLS;
248   }
249 
250   // Memory operands.
251   bool isMem() const override {
252     return Kind == KindMem;
253   }
254   bool isMem(MemoryKind MemKind) const {
255     return (Kind == KindMem &&
256             (Mem.MemKind == MemKind ||
257              // A BDMem can be treated as a BDXMem in which the index
258              // register field is 0.
259              (Mem.MemKind == BDMem && MemKind == BDXMem)));
260   }
261   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
262     return isMem(MemKind) && Mem.RegKind == RegKind;
263   }
264   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
265     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
266   }
267   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
268     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
269   }
270   bool isMemDisp12Len4(RegisterKind RegKind) const {
271     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
272   }
273   bool isMemDisp12Len8(RegisterKind RegKind) const {
274     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
275   }
276 
277   const MemOp& getMem() const {
278     assert(Kind == KindMem && "Not a Mem operand");
279     return Mem;
280   }
281 
282   // Override MCParsedAsmOperand.
283   SMLoc getStartLoc() const override { return StartLoc; }
284   SMLoc getEndLoc() const override { return EndLoc; }
285   void print(raw_ostream &OS) const override;
286 
287   /// getLocRange - Get the range between the first and last token of this
288   /// operand.
289   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
290 
291   // Used by the TableGen code to add particular types of operand
292   // to an instruction.
293   void addRegOperands(MCInst &Inst, unsigned N) const {
294     assert(N == 1 && "Invalid number of operands");
295     Inst.addOperand(MCOperand::createReg(getReg()));
296   }
297   void addImmOperands(MCInst &Inst, unsigned N) const {
298     assert(N == 1 && "Invalid number of operands");
299     addExpr(Inst, getImm());
300   }
301   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
302     assert(N == 2 && "Invalid number of operands");
303     assert(isMem(BDMem) && "Invalid operand type");
304     Inst.addOperand(MCOperand::createReg(Mem.Base));
305     addExpr(Inst, Mem.Disp);
306   }
307   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
308     assert(N == 3 && "Invalid number of operands");
309     assert(isMem(BDXMem) && "Invalid operand type");
310     Inst.addOperand(MCOperand::createReg(Mem.Base));
311     addExpr(Inst, Mem.Disp);
312     Inst.addOperand(MCOperand::createReg(Mem.Index));
313   }
314   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
315     assert(N == 3 && "Invalid number of operands");
316     assert(isMem(BDLMem) && "Invalid operand type");
317     Inst.addOperand(MCOperand::createReg(Mem.Base));
318     addExpr(Inst, Mem.Disp);
319     addExpr(Inst, Mem.Length.Imm);
320   }
321   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
322     assert(N == 3 && "Invalid number of operands");
323     assert(isMem(BDRMem) && "Invalid operand type");
324     Inst.addOperand(MCOperand::createReg(Mem.Base));
325     addExpr(Inst, Mem.Disp);
326     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
327   }
328   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
329     assert(N == 3 && "Invalid number of operands");
330     assert(isMem(BDVMem) && "Invalid operand type");
331     Inst.addOperand(MCOperand::createReg(Mem.Base));
332     addExpr(Inst, Mem.Disp);
333     Inst.addOperand(MCOperand::createReg(Mem.Index));
334   }
335   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
336     assert(N == 2 && "Invalid number of operands");
337     assert(Kind == KindImmTLS && "Invalid operand type");
338     addExpr(Inst, ImmTLS.Imm);
339     if (ImmTLS.Sym)
340       addExpr(Inst, ImmTLS.Sym);
341   }
342 
343   // Used by the TableGen code to check for particular operand types.
344   bool isGR32() const { return isReg(GR32Reg); }
345   bool isGRH32() const { return isReg(GRH32Reg); }
346   bool isGRX32() const { return false; }
347   bool isGR64() const { return isReg(GR64Reg); }
348   bool isGR128() const { return isReg(GR128Reg); }
349   bool isADDR32() const { return isReg(GR32Reg); }
350   bool isADDR64() const { return isReg(GR64Reg); }
351   bool isADDR128() const { return false; }
352   bool isFP32() const { return isReg(FP32Reg); }
353   bool isFP64() const { return isReg(FP64Reg); }
354   bool isFP128() const { return isReg(FP128Reg); }
355   bool isVR32() const { return isReg(VR32Reg); }
356   bool isVR64() const { return isReg(VR64Reg); }
357   bool isVF128() const { return false; }
358   bool isVR128() const { return isReg(VR128Reg); }
359   bool isAR32() const { return isReg(AR32Reg); }
360   bool isCR64() const { return isReg(CR64Reg); }
361   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
362   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
363   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
364   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
365   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
366   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
367   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
368   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
369   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
370   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
371   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
372   bool isU1Imm() const { return isImm(0, 1); }
373   bool isU2Imm() const { return isImm(0, 3); }
374   bool isU3Imm() const { return isImm(0, 7); }
375   bool isU4Imm() const { return isImm(0, 15); }
376   bool isU6Imm() const { return isImm(0, 63); }
377   bool isU8Imm() const { return isImm(0, 255); }
378   bool isS8Imm() const { return isImm(-128, 127); }
379   bool isU12Imm() const { return isImm(0, 4095); }
380   bool isU16Imm() const { return isImm(0, 65535); }
381   bool isS16Imm() const { return isImm(-32768, 32767); }
382   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
383   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
384   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
385 };
386 
387 class SystemZAsmParser : public MCTargetAsmParser {
388 #define GET_ASSEMBLER_HEADER
389 #include "SystemZGenAsmMatcher.inc"
390 
391 private:
392   MCAsmParser &Parser;
393   enum RegisterGroup {
394     RegGR,
395     RegFP,
396     RegV,
397     RegAR,
398     RegCR
399   };
400   struct Register {
401     RegisterGroup Group;
402     unsigned Num;
403     SMLoc StartLoc, EndLoc;
404   };
405 
406   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
407 
408   bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs);
409 
410   OperandMatchResultTy parseRegister(OperandVector &Operands,
411                                      RegisterGroup Group, const unsigned *Regs,
412                                      RegisterKind Kind);
413 
414   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
415 
416   bool parseAddress(bool &HaveReg1, Register &Reg1,
417                     bool &HaveReg2, Register &Reg2,
418                     const MCExpr *&Disp, const MCExpr *&Length);
419   bool parseAddressRegister(Register &Reg);
420 
421   bool ParseDirectiveInsn(SMLoc L);
422 
423   OperandMatchResultTy parseAddress(OperandVector &Operands,
424                                     MemoryKind MemKind, const unsigned *Regs,
425                                     RegisterKind RegKind);
426 
427   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
428                                   int64_t MaxVal, bool AllowTLS);
429 
430   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
431 
432 public:
433   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
434                    const MCInstrInfo &MII,
435                    const MCTargetOptions &Options)
436     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
437     MCAsmParserExtension::Initialize(Parser);
438 
439     // Alias the .word directive to .short.
440     parser.addAliasForDirective(".word", ".short");
441 
442     // Initialize the set of available features.
443     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
444   }
445 
446   // Override MCTargetAsmParser.
447   bool ParseDirective(AsmToken DirectiveID) override;
448   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
449   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
450                      bool RestoreOnFailure);
451   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
452                                         SMLoc &EndLoc) override;
453   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
454                         SMLoc NameLoc, OperandVector &Operands) override;
455   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
456                                OperandVector &Operands, MCStreamer &Out,
457                                uint64_t &ErrorInfo,
458                                bool MatchingInlineAsm) override;
459 
460   // Used by the TableGen code to parse particular operand types.
461   OperandMatchResultTy parseGR32(OperandVector &Operands) {
462     return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
463   }
464   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
465     return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
466   }
467   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
468     llvm_unreachable("GRX32 should only be used for pseudo instructions");
469   }
470   OperandMatchResultTy parseGR64(OperandVector &Operands) {
471     return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
472   }
473   OperandMatchResultTy parseGR128(OperandVector &Operands) {
474     return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
475   }
476   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
477     // For the AsmParser, we will accept %r0 for ADDR32 as well.
478     return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
479   }
480   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
481     // For the AsmParser, we will accept %r0 for ADDR64 as well.
482     return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
483   }
484   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
485     llvm_unreachable("Shouldn't be used as an operand");
486   }
487   OperandMatchResultTy parseFP32(OperandVector &Operands) {
488     return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
489   }
490   OperandMatchResultTy parseFP64(OperandVector &Operands) {
491     return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
492   }
493   OperandMatchResultTy parseFP128(OperandVector &Operands) {
494     return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
495   }
496   OperandMatchResultTy parseVR32(OperandVector &Operands) {
497     return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
498   }
499   OperandMatchResultTy parseVR64(OperandVector &Operands) {
500     return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
501   }
502   OperandMatchResultTy parseVF128(OperandVector &Operands) {
503     llvm_unreachable("Shouldn't be used as an operand");
504   }
505   OperandMatchResultTy parseVR128(OperandVector &Operands) {
506     return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
507   }
508   OperandMatchResultTy parseAR32(OperandVector &Operands) {
509     return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg);
510   }
511   OperandMatchResultTy parseCR64(OperandVector &Operands) {
512     return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg);
513   }
514   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
515     return parseAnyRegister(Operands);
516   }
517   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
518     return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, GR32Reg);
519   }
520   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
521     return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, GR64Reg);
522   }
523   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
524     return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, GR64Reg);
525   }
526   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
527     return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, GR64Reg);
528   }
529   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
530     return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, GR64Reg);
531   }
532   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
533     return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, GR64Reg);
534   }
535   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
536     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
537   }
538   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
539     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
540   }
541   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
542     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
543   }
544   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
545     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
546   }
547   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
548     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
549   }
550   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
551     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
552   }
553 };
554 
555 } // end anonymous namespace
556 
557 #define GET_REGISTER_MATCHER
558 #define GET_SUBTARGET_FEATURE_NAME
559 #define GET_MATCHER_IMPLEMENTATION
560 #define GET_MNEMONIC_SPELL_CHECKER
561 #include "SystemZGenAsmMatcher.inc"
562 
563 // Used for the .insn directives; contains information needed to parse the
564 // operands in the directive.
565 struct InsnMatchEntry {
566   StringRef Format;
567   uint64_t Opcode;
568   int32_t NumOperands;
569   MatchClassKind OperandKinds[5];
570 };
571 
572 // For equal_range comparison.
573 struct CompareInsn {
574   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
575     return LHS.Format < RHS;
576   }
577   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
578     return LHS < RHS.Format;
579   }
580   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
581     return LHS.Format < RHS.Format;
582   }
583 };
584 
585 // Table initializing information for parsing the .insn directive.
586 static struct InsnMatchEntry InsnMatchTable[] = {
587   /* Format, Opcode, NumOperands, OperandKinds */
588   { "e", SystemZ::InsnE, 1,
589     { MCK_U16Imm } },
590   { "ri", SystemZ::InsnRI, 3,
591     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
592   { "rie", SystemZ::InsnRIE, 4,
593     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
594   { "ril", SystemZ::InsnRIL, 3,
595     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
596   { "rilu", SystemZ::InsnRILU, 3,
597     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
598   { "ris", SystemZ::InsnRIS, 5,
599     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
600   { "rr", SystemZ::InsnRR, 3,
601     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
602   { "rre", SystemZ::InsnRRE, 3,
603     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
604   { "rrf", SystemZ::InsnRRF, 5,
605     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
606   { "rrs", SystemZ::InsnRRS, 5,
607     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
608   { "rs", SystemZ::InsnRS, 4,
609     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
610   { "rse", SystemZ::InsnRSE, 4,
611     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
612   { "rsi", SystemZ::InsnRSI, 4,
613     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
614   { "rsy", SystemZ::InsnRSY, 4,
615     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
616   { "rx", SystemZ::InsnRX, 3,
617     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
618   { "rxe", SystemZ::InsnRXE, 3,
619     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
620   { "rxf", SystemZ::InsnRXF, 4,
621     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
622   { "rxy", SystemZ::InsnRXY, 3,
623     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
624   { "s", SystemZ::InsnS, 2,
625     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
626   { "si", SystemZ::InsnSI, 3,
627     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
628   { "sil", SystemZ::InsnSIL, 3,
629     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
630   { "siy", SystemZ::InsnSIY, 3,
631     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
632   { "ss", SystemZ::InsnSS, 4,
633     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
634   { "sse", SystemZ::InsnSSE, 3,
635     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
636   { "ssf", SystemZ::InsnSSF, 4,
637     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
638 };
639 
640 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
641   if (!E)
642     return;
643   if (auto *CE = dyn_cast<MCConstantExpr>(E))
644     OS << *CE;
645   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
646     OS << *UE;
647   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
648     OS << *BE;
649   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
650     OS << *SRE;
651   else
652     OS << *E;
653 }
654 
655 void SystemZOperand::print(raw_ostream &OS) const {
656   switch (Kind) {
657   case KindToken:
658     OS << "Token:" << getToken();
659     break;
660   case KindReg:
661     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
662     break;
663   case KindImm:
664     OS << "Imm:";
665     printMCExpr(getImm(), OS);
666     break;
667   case KindImmTLS:
668     OS << "ImmTLS:";
669     printMCExpr(getImmTLS().Imm, OS);
670     if (getImmTLS().Sym) {
671       OS << ", ";
672       printMCExpr(getImmTLS().Sym, OS);
673     }
674     break;
675   case KindMem: {
676     const MemOp &Op = getMem();
677     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
678     if (Op.Base) {
679       OS << "(";
680       if (Op.MemKind == BDLMem)
681         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
682       else if (Op.MemKind == BDRMem)
683         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
684       if (Op.Index)
685         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
686       OS << SystemZInstPrinter::getRegisterName(Op.Base);
687       OS << ")";
688     }
689     break;
690   }
691   case KindInvalid:
692     break;
693   }
694 }
695 
696 // Parse one register of the form %<prefix><number>.
697 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
698   Reg.StartLoc = Parser.getTok().getLoc();
699 
700   // Eat the % prefix.
701   if (Parser.getTok().isNot(AsmToken::Percent))
702     return Error(Parser.getTok().getLoc(), "register expected");
703   const AsmToken &PercentTok = Parser.getTok();
704   Parser.Lex();
705 
706   // Expect a register name.
707   if (Parser.getTok().isNot(AsmToken::Identifier)) {
708     if (RestoreOnFailure)
709       getLexer().UnLex(PercentTok);
710     return Error(Reg.StartLoc, "invalid register");
711   }
712 
713   // Check that there's a prefix.
714   StringRef Name = Parser.getTok().getString();
715   if (Name.size() < 2) {
716     if (RestoreOnFailure)
717       getLexer().UnLex(PercentTok);
718     return Error(Reg.StartLoc, "invalid register");
719   }
720   char Prefix = Name[0];
721 
722   // Treat the rest of the register name as a register number.
723   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
724     if (RestoreOnFailure)
725       getLexer().UnLex(PercentTok);
726     return Error(Reg.StartLoc, "invalid register");
727   }
728 
729   // Look for valid combinations of prefix and number.
730   if (Prefix == 'r' && Reg.Num < 16)
731     Reg.Group = RegGR;
732   else if (Prefix == 'f' && Reg.Num < 16)
733     Reg.Group = RegFP;
734   else if (Prefix == 'v' && Reg.Num < 32)
735     Reg.Group = RegV;
736   else if (Prefix == 'a' && Reg.Num < 16)
737     Reg.Group = RegAR;
738   else if (Prefix == 'c' && Reg.Num < 16)
739     Reg.Group = RegCR;
740   else {
741     if (RestoreOnFailure)
742       getLexer().UnLex(PercentTok);
743     return Error(Reg.StartLoc, "invalid register");
744   }
745 
746   Reg.EndLoc = Parser.getTok().getLoc();
747   Parser.Lex();
748   return false;
749 }
750 
751 // Parse a register of group Group.  If Regs is nonnull, use it to map
752 // the raw register number to LLVM numbering, with zero entries
753 // indicating an invalid register.  Allow FP Group if expecting
754 // RegV Group, since the f-prefix yields the FP group even while used
755 // with vector instructions.
756 bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
757                                      const unsigned *Regs) {
758   if (parseRegister(Reg))
759     return true;
760   if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
761     return Error(Reg.StartLoc, "invalid operand for instruction");
762   if (Regs && Regs[Reg.Num] == 0)
763     return Error(Reg.StartLoc, "invalid register pair");
764   if (Regs)
765     Reg.Num = Regs[Reg.Num];
766   return false;
767 }
768 
769 // Parse a register and add it to Operands.  The other arguments are as above.
770 OperandMatchResultTy
771 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
772                                 const unsigned *Regs, RegisterKind Kind) {
773   if (Parser.getTok().isNot(AsmToken::Percent))
774     return MatchOperand_NoMatch;
775 
776   Register Reg;
777   if (parseRegister(Reg, Group, Regs))
778     return MatchOperand_ParseFail;
779 
780   Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
781                                                Reg.StartLoc, Reg.EndLoc));
782   return MatchOperand_Success;
783 }
784 
785 // Parse any type of register (including integers) and add it to Operands.
786 OperandMatchResultTy
787 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
788   // Handle integer values.
789   if (Parser.getTok().is(AsmToken::Integer)) {
790     const MCExpr *Register;
791     SMLoc StartLoc = Parser.getTok().getLoc();
792     if (Parser.parseExpression(Register))
793       return MatchOperand_ParseFail;
794 
795     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
796       int64_t Value = CE->getValue();
797       if (Value < 0 || Value > 15) {
798         Error(StartLoc, "invalid register");
799         return MatchOperand_ParseFail;
800       }
801     }
802 
803     SMLoc EndLoc =
804       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
805 
806     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
807   }
808   else {
809     Register Reg;
810     if (parseRegister(Reg))
811       return MatchOperand_ParseFail;
812 
813     // Map to the correct register kind.
814     RegisterKind Kind;
815     unsigned RegNo;
816     if (Reg.Group == RegGR) {
817       Kind = GR64Reg;
818       RegNo = SystemZMC::GR64Regs[Reg.Num];
819     }
820     else if (Reg.Group == RegFP) {
821       Kind = FP64Reg;
822       RegNo = SystemZMC::FP64Regs[Reg.Num];
823     }
824     else if (Reg.Group == RegV) {
825       Kind = VR128Reg;
826       RegNo = SystemZMC::VR128Regs[Reg.Num];
827     }
828     else if (Reg.Group == RegAR) {
829       Kind = AR32Reg;
830       RegNo = SystemZMC::AR32Regs[Reg.Num];
831     }
832     else if (Reg.Group == RegCR) {
833       Kind = CR64Reg;
834       RegNo = SystemZMC::CR64Regs[Reg.Num];
835     }
836     else {
837       return MatchOperand_ParseFail;
838     }
839 
840     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
841                                                  Reg.StartLoc, Reg.EndLoc));
842   }
843   return MatchOperand_Success;
844 }
845 
846 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
847 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
848                                     bool &HaveReg2, Register &Reg2,
849                                     const MCExpr *&Disp,
850                                     const MCExpr *&Length) {
851   // Parse the displacement, which must always be present.
852   if (getParser().parseExpression(Disp))
853     return true;
854 
855   // Parse the optional base and index.
856   HaveReg1 = false;
857   HaveReg2 = false;
858   Length = nullptr;
859   if (getLexer().is(AsmToken::LParen)) {
860     Parser.Lex();
861 
862     if (getLexer().is(AsmToken::Percent)) {
863       // Parse the first register.
864       HaveReg1 = true;
865       if (parseRegister(Reg1))
866         return true;
867     } else {
868       // Parse the length.
869       if (getParser().parseExpression(Length))
870         return true;
871     }
872 
873     // Check whether there's a second register.
874     if (getLexer().is(AsmToken::Comma)) {
875       Parser.Lex();
876       HaveReg2 = true;
877       if (parseRegister(Reg2))
878         return true;
879     }
880 
881     // Consume the closing bracket.
882     if (getLexer().isNot(AsmToken::RParen))
883       return Error(Parser.getTok().getLoc(), "unexpected token in address");
884     Parser.Lex();
885   }
886   return false;
887 }
888 
889 // Verify that Reg is a valid address register (base or index).
890 bool
891 SystemZAsmParser::parseAddressRegister(Register &Reg) {
892   if (Reg.Group == RegV) {
893     Error(Reg.StartLoc, "invalid use of vector addressing");
894     return true;
895   } else if (Reg.Group != RegGR) {
896     Error(Reg.StartLoc, "invalid address register");
897     return true;
898   }
899   return false;
900 }
901 
902 // Parse a memory operand and add it to Operands.  The other arguments
903 // are as above.
904 OperandMatchResultTy
905 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
906                                const unsigned *Regs, RegisterKind RegKind) {
907   SMLoc StartLoc = Parser.getTok().getLoc();
908   unsigned Base = 0, Index = 0, LengthReg = 0;
909   Register Reg1, Reg2;
910   bool HaveReg1, HaveReg2;
911   const MCExpr *Disp;
912   const MCExpr *Length;
913   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
914     return MatchOperand_ParseFail;
915 
916   switch (MemKind) {
917   case BDMem:
918     // If we have Reg1, it must be an address register.
919     if (HaveReg1) {
920       if (parseAddressRegister(Reg1))
921         return MatchOperand_ParseFail;
922       Base = Regs[Reg1.Num];
923     }
924     // There must be no Reg2 or length.
925     if (Length) {
926       Error(StartLoc, "invalid use of length addressing");
927       return MatchOperand_ParseFail;
928     }
929     if (HaveReg2) {
930       Error(StartLoc, "invalid use of indexed addressing");
931       return MatchOperand_ParseFail;
932     }
933     break;
934   case BDXMem:
935     // If we have Reg1, it must be an address register.
936     if (HaveReg1) {
937       if (parseAddressRegister(Reg1))
938         return MatchOperand_ParseFail;
939       // If the are two registers, the first one is the index and the
940       // second is the base.
941       if (HaveReg2)
942         Index = Regs[Reg1.Num];
943       else
944         Base = Regs[Reg1.Num];
945     }
946     // If we have Reg2, it must be an address register.
947     if (HaveReg2) {
948       if (parseAddressRegister(Reg2))
949         return MatchOperand_ParseFail;
950       Base = Regs[Reg2.Num];
951     }
952     // There must be no length.
953     if (Length) {
954       Error(StartLoc, "invalid use of length addressing");
955       return MatchOperand_ParseFail;
956     }
957     break;
958   case BDLMem:
959     // If we have Reg2, it must be an address register.
960     if (HaveReg2) {
961       if (parseAddressRegister(Reg2))
962         return MatchOperand_ParseFail;
963       Base = Regs[Reg2.Num];
964     }
965     // We cannot support base+index addressing.
966     if (HaveReg1 && HaveReg2) {
967       Error(StartLoc, "invalid use of indexed addressing");
968       return MatchOperand_ParseFail;
969     }
970     // We must have a length.
971     if (!Length) {
972       Error(StartLoc, "missing length in address");
973       return MatchOperand_ParseFail;
974     }
975     break;
976   case BDRMem:
977     // We must have Reg1, and it must be a GPR.
978     if (!HaveReg1 || Reg1.Group != RegGR) {
979       Error(StartLoc, "invalid operand for instruction");
980       return MatchOperand_ParseFail;
981     }
982     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
983     // If we have Reg2, it must be an address register.
984     if (HaveReg2) {
985       if (parseAddressRegister(Reg2))
986         return MatchOperand_ParseFail;
987       Base = Regs[Reg2.Num];
988     }
989     // There must be no length.
990     if (Length) {
991       Error(StartLoc, "invalid use of length addressing");
992       return MatchOperand_ParseFail;
993     }
994     break;
995   case BDVMem:
996     // We must have Reg1, and it must be a vector register.
997     if (!HaveReg1 || Reg1.Group != RegV) {
998       Error(StartLoc, "vector index required in address");
999       return MatchOperand_ParseFail;
1000     }
1001     Index = SystemZMC::VR128Regs[Reg1.Num];
1002     // If we have Reg2, it must be an address register.
1003     if (HaveReg2) {
1004       if (parseAddressRegister(Reg2))
1005         return MatchOperand_ParseFail;
1006       Base = Regs[Reg2.Num];
1007     }
1008     // There must be no length.
1009     if (Length) {
1010       Error(StartLoc, "invalid use of length addressing");
1011       return MatchOperand_ParseFail;
1012     }
1013     break;
1014   }
1015 
1016   SMLoc EndLoc =
1017     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1018   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1019                                                Index, Length, LengthReg,
1020                                                StartLoc, EndLoc));
1021   return MatchOperand_Success;
1022 }
1023 
1024 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1025   StringRef IDVal = DirectiveID.getIdentifier();
1026 
1027   if (IDVal == ".insn")
1028     return ParseDirectiveInsn(DirectiveID.getLoc());
1029 
1030   return true;
1031 }
1032 
1033 /// ParseDirectiveInsn
1034 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1035 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1036   MCAsmParser &Parser = getParser();
1037 
1038   // Expect instruction format as identifier.
1039   StringRef Format;
1040   SMLoc ErrorLoc = Parser.getTok().getLoc();
1041   if (Parser.parseIdentifier(Format))
1042     return Error(ErrorLoc, "expected instruction format");
1043 
1044   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1045 
1046   // Find entry for this format in InsnMatchTable.
1047   auto EntryRange =
1048     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1049                      Format, CompareInsn());
1050 
1051   // If first == second, couldn't find a match in the table.
1052   if (EntryRange.first == EntryRange.second)
1053     return Error(ErrorLoc, "unrecognized format");
1054 
1055   struct InsnMatchEntry *Entry = EntryRange.first;
1056 
1057   // Format should match from equal_range.
1058   assert(Entry->Format == Format);
1059 
1060   // Parse the following operands using the table's information.
1061   for (int i = 0; i < Entry->NumOperands; i++) {
1062     MatchClassKind Kind = Entry->OperandKinds[i];
1063 
1064     SMLoc StartLoc = Parser.getTok().getLoc();
1065 
1066     // Always expect commas as separators for operands.
1067     if (getLexer().isNot(AsmToken::Comma))
1068       return Error(StartLoc, "unexpected token in directive");
1069     Lex();
1070 
1071     // Parse operands.
1072     OperandMatchResultTy ResTy;
1073     if (Kind == MCK_AnyReg)
1074       ResTy = parseAnyReg(Operands);
1075     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1076       ResTy = parseBDXAddr64(Operands);
1077     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1078       ResTy = parseBDAddr64(Operands);
1079     else if (Kind == MCK_PCRel32)
1080       ResTy = parsePCRel32(Operands);
1081     else if (Kind == MCK_PCRel16)
1082       ResTy = parsePCRel16(Operands);
1083     else {
1084       // Only remaining operand kind is an immediate.
1085       const MCExpr *Expr;
1086       SMLoc StartLoc = Parser.getTok().getLoc();
1087 
1088       // Expect immediate expression.
1089       if (Parser.parseExpression(Expr))
1090         return Error(StartLoc, "unexpected token in directive");
1091 
1092       SMLoc EndLoc =
1093         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1094 
1095       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1096       ResTy = MatchOperand_Success;
1097     }
1098 
1099     if (ResTy != MatchOperand_Success)
1100       return true;
1101   }
1102 
1103   // Build the instruction with the parsed operands.
1104   MCInst Inst = MCInstBuilder(Entry->Opcode);
1105 
1106   for (size_t i = 0; i < Operands.size(); i++) {
1107     MCParsedAsmOperand &Operand = *Operands[i];
1108     MatchClassKind Kind = Entry->OperandKinds[i];
1109 
1110     // Verify operand.
1111     unsigned Res = validateOperandClass(Operand, Kind);
1112     if (Res != Match_Success)
1113       return Error(Operand.getStartLoc(), "unexpected operand type");
1114 
1115     // Add operands to instruction.
1116     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1117     if (ZOperand.isReg())
1118       ZOperand.addRegOperands(Inst, 1);
1119     else if (ZOperand.isMem(BDMem))
1120       ZOperand.addBDAddrOperands(Inst, 2);
1121     else if (ZOperand.isMem(BDXMem))
1122       ZOperand.addBDXAddrOperands(Inst, 3);
1123     else if (ZOperand.isImm())
1124       ZOperand.addImmOperands(Inst, 1);
1125     else
1126       llvm_unreachable("unexpected operand type");
1127   }
1128 
1129   // Emit as a regular instruction.
1130   Parser.getStreamer().emitInstruction(Inst, getSTI());
1131 
1132   return false;
1133 }
1134 
1135 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1136                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1137   Register Reg;
1138   if (parseRegister(Reg, RestoreOnFailure))
1139     return true;
1140   if (Reg.Group == RegGR)
1141     RegNo = SystemZMC::GR64Regs[Reg.Num];
1142   else if (Reg.Group == RegFP)
1143     RegNo = SystemZMC::FP64Regs[Reg.Num];
1144   else if (Reg.Group == RegV)
1145     RegNo = SystemZMC::VR128Regs[Reg.Num];
1146   else if (Reg.Group == RegAR)
1147     RegNo = SystemZMC::AR32Regs[Reg.Num];
1148   else if (Reg.Group == RegCR)
1149     RegNo = SystemZMC::CR64Regs[Reg.Num];
1150   StartLoc = Reg.StartLoc;
1151   EndLoc = Reg.EndLoc;
1152   return false;
1153 }
1154 
1155 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1156                                      SMLoc &EndLoc) {
1157   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1158 }
1159 
1160 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
1161                                                         SMLoc &StartLoc,
1162                                                         SMLoc &EndLoc) {
1163   bool Result =
1164       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1165   bool PendingErrors = getParser().hasPendingError();
1166   getParser().clearPendingErrors();
1167   if (PendingErrors)
1168     return MatchOperand_ParseFail;
1169   if (Result)
1170     return MatchOperand_NoMatch;
1171   return MatchOperand_Success;
1172 }
1173 
1174 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1175                                         StringRef Name, SMLoc NameLoc,
1176                                         OperandVector &Operands) {
1177   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1178 
1179   // Read the remaining operands.
1180   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1181     // Read the first operand.
1182     if (parseOperand(Operands, Name)) {
1183       return true;
1184     }
1185 
1186     // Read any subsequent operands.
1187     while (getLexer().is(AsmToken::Comma)) {
1188       Parser.Lex();
1189       if (parseOperand(Operands, Name)) {
1190         return true;
1191       }
1192     }
1193     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1194       SMLoc Loc = getLexer().getLoc();
1195       return Error(Loc, "unexpected token in argument list");
1196     }
1197   }
1198 
1199   // Consume the EndOfStatement.
1200   Parser.Lex();
1201   return false;
1202 }
1203 
1204 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1205                                     StringRef Mnemonic) {
1206   // Check if the current operand has a custom associated parser, if so, try to
1207   // custom parse the operand, or fallback to the general approach.  Force all
1208   // features to be available during the operand check, or else we will fail to
1209   // find the custom parser, and then we will later get an InvalidOperand error
1210   // instead of a MissingFeature errror.
1211   FeatureBitset AvailableFeatures = getAvailableFeatures();
1212   FeatureBitset All;
1213   All.set();
1214   setAvailableFeatures(All);
1215   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1216   setAvailableFeatures(AvailableFeatures);
1217   if (ResTy == MatchOperand_Success)
1218     return false;
1219 
1220   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1221   // there was a match, but an error occurred, in which case, just return that
1222   // the operand parsing failed.
1223   if (ResTy == MatchOperand_ParseFail)
1224     return true;
1225 
1226   // Check for a register.  All real register operands should have used
1227   // a context-dependent parse routine, which gives the required register
1228   // class.  The code is here to mop up other cases, like those where
1229   // the instruction isn't recognized.
1230   if (Parser.getTok().is(AsmToken::Percent)) {
1231     Register Reg;
1232     if (parseRegister(Reg))
1233       return true;
1234     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1235     return false;
1236   }
1237 
1238   // The only other type of operand is an immediate or address.  As above,
1239   // real address operands should have used a context-dependent parse routine,
1240   // so we treat any plain expression as an immediate.
1241   SMLoc StartLoc = Parser.getTok().getLoc();
1242   Register Reg1, Reg2;
1243   bool HaveReg1, HaveReg2;
1244   const MCExpr *Expr;
1245   const MCExpr *Length;
1246   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
1247     return true;
1248   // If the register combination is not valid for any instruction, reject it.
1249   // Otherwise, fall back to reporting an unrecognized instruction.
1250   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1251       && parseAddressRegister(Reg1))
1252     return true;
1253   if (HaveReg2 && parseAddressRegister(Reg2))
1254     return true;
1255 
1256   SMLoc EndLoc =
1257     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1258   if (HaveReg1 || HaveReg2 || Length)
1259     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1260   else
1261     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1262   return false;
1263 }
1264 
1265 static std::string SystemZMnemonicSpellCheck(StringRef S,
1266                                              const FeatureBitset &FBS,
1267                                              unsigned VariantID = 0);
1268 
1269 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1270                                                OperandVector &Operands,
1271                                                MCStreamer &Out,
1272                                                uint64_t &ErrorInfo,
1273                                                bool MatchingInlineAsm) {
1274   MCInst Inst;
1275   unsigned MatchResult;
1276 
1277   FeatureBitset MissingFeatures;
1278   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
1279                                      MissingFeatures, MatchingInlineAsm);
1280   switch (MatchResult) {
1281   case Match_Success:
1282     Inst.setLoc(IDLoc);
1283     Out.emitInstruction(Inst, getSTI());
1284     return false;
1285 
1286   case Match_MissingFeature: {
1287     assert(MissingFeatures.any() && "Unknown missing feature!");
1288     // Special case the error message for the very common case where only
1289     // a single subtarget feature is missing
1290     std::string Msg = "instruction requires:";
1291     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1292       if (MissingFeatures[I]) {
1293         Msg += " ";
1294         Msg += getSubtargetFeatureName(I);
1295       }
1296     }
1297     return Error(IDLoc, Msg);
1298   }
1299 
1300   case Match_InvalidOperand: {
1301     SMLoc ErrorLoc = IDLoc;
1302     if (ErrorInfo != ~0ULL) {
1303       if (ErrorInfo >= Operands.size())
1304         return Error(IDLoc, "too few operands for instruction");
1305 
1306       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1307       if (ErrorLoc == SMLoc())
1308         ErrorLoc = IDLoc;
1309     }
1310     return Error(ErrorLoc, "invalid operand for instruction");
1311   }
1312 
1313   case Match_MnemonicFail: {
1314     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1315     std::string Suggestion = SystemZMnemonicSpellCheck(
1316       ((SystemZOperand &)*Operands[0]).getToken(), FBS);
1317     return Error(IDLoc, "invalid instruction" + Suggestion,
1318                  ((SystemZOperand &)*Operands[0]).getLocRange());
1319   }
1320   }
1321 
1322   llvm_unreachable("Unexpected match type");
1323 }
1324 
1325 OperandMatchResultTy
1326 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1327                              int64_t MaxVal, bool AllowTLS) {
1328   MCContext &Ctx = getContext();
1329   MCStreamer &Out = getStreamer();
1330   const MCExpr *Expr;
1331   SMLoc StartLoc = Parser.getTok().getLoc();
1332   if (getParser().parseExpression(Expr))
1333     return MatchOperand_NoMatch;
1334 
1335   auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
1336     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1337       int64_t Value = CE->getValue();
1338       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1339         return true;
1340     }
1341     return false;
1342   };
1343 
1344   // For consistency with the GNU assembler, treat immediates as offsets
1345   // from ".".
1346   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1347     if (isOutOfRangeConstant(CE)) {
1348       Error(StartLoc, "offset out of range");
1349       return MatchOperand_ParseFail;
1350     }
1351     int64_t Value = CE->getValue();
1352     MCSymbol *Sym = Ctx.createTempSymbol();
1353     Out.emitLabel(Sym);
1354     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1355                                                  Ctx);
1356     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1357   }
1358 
1359   // For consistency with the GNU assembler, conservatively assume that a
1360   // constant offset must by itself be within the given size range.
1361   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1362     if (isOutOfRangeConstant(BE->getLHS()) ||
1363         isOutOfRangeConstant(BE->getRHS())) {
1364       Error(StartLoc, "offset out of range");
1365       return MatchOperand_ParseFail;
1366     }
1367 
1368   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1369   const MCExpr *Sym = nullptr;
1370   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1371     Parser.Lex();
1372 
1373     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1374       Error(Parser.getTok().getLoc(), "unexpected token");
1375       return MatchOperand_ParseFail;
1376     }
1377 
1378     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1379     StringRef Name = Parser.getTok().getString();
1380     if (Name == "tls_gdcall")
1381       Kind = MCSymbolRefExpr::VK_TLSGD;
1382     else if (Name == "tls_ldcall")
1383       Kind = MCSymbolRefExpr::VK_TLSLDM;
1384     else {
1385       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1386       return MatchOperand_ParseFail;
1387     }
1388     Parser.Lex();
1389 
1390     if (Parser.getTok().isNot(AsmToken::Colon)) {
1391       Error(Parser.getTok().getLoc(), "unexpected token");
1392       return MatchOperand_ParseFail;
1393     }
1394     Parser.Lex();
1395 
1396     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1397       Error(Parser.getTok().getLoc(), "unexpected token");
1398       return MatchOperand_ParseFail;
1399     }
1400 
1401     StringRef Identifier = Parser.getTok().getString();
1402     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1403                                   Kind, Ctx);
1404     Parser.Lex();
1405   }
1406 
1407   SMLoc EndLoc =
1408     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1409 
1410   if (AllowTLS)
1411     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1412                                                     StartLoc, EndLoc));
1413   else
1414     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1415 
1416   return MatchOperand_Success;
1417 }
1418 
1419 // Force static initialization.
1420 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1421   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1422 }
1423