1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "TargetInfo/SystemZTargetInfo.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/MC/MCAsmInfo.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCExpr.h" 19 #include "llvm/MC/MCInst.h" 20 #include "llvm/MC/MCInstBuilder.h" 21 #include "llvm/MC/MCParser/MCAsmLexer.h" 22 #include "llvm/MC/MCParser/MCAsmParser.h" 23 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/SMLoc.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <iterator> 37 #include <memory> 38 #include <string> 39 40 using namespace llvm; 41 42 // Return true if Expr is in the range [MinValue, MaxValue]. 43 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 44 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 45 int64_t Value = CE->getValue(); 46 return Value >= MinValue && Value <= MaxValue; 47 } 48 return false; 49 } 50 51 namespace { 52 53 enum RegisterKind { 54 GR32Reg, 55 GRH32Reg, 56 GR64Reg, 57 GR128Reg, 58 FP32Reg, 59 FP64Reg, 60 FP128Reg, 61 VR32Reg, 62 VR64Reg, 63 VR128Reg, 64 AR32Reg, 65 CR64Reg, 66 }; 67 68 enum MemoryKind { 69 BDMem, 70 BDXMem, 71 BDLMem, 72 BDRMem, 73 BDVMem 74 }; 75 76 class SystemZOperand : public MCParsedAsmOperand { 77 private: 78 enum OperandKind { 79 KindInvalid, 80 KindToken, 81 KindReg, 82 KindImm, 83 KindImmTLS, 84 KindMem 85 }; 86 87 OperandKind Kind; 88 SMLoc StartLoc, EndLoc; 89 90 // A string of length Length, starting at Data. 91 struct TokenOp { 92 const char *Data; 93 unsigned Length; 94 }; 95 96 // LLVM register Num, which has kind Kind. In some ways it might be 97 // easier for this class to have a register bank (general, floating-point 98 // or access) and a raw register number (0-15). This would postpone the 99 // interpretation of the operand to the add*() methods and avoid the need 100 // for context-dependent parsing. However, we do things the current way 101 // because of the virtual getReg() method, which needs to distinguish 102 // between (say) %r0 used as a single register and %r0 used as a pair. 103 // Context-dependent parsing can also give us slightly better error 104 // messages when invalid pairs like %r1 are used. 105 struct RegOp { 106 RegisterKind Kind; 107 unsigned Num; 108 }; 109 110 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 111 // MemKind says what type of memory this is and RegKind says what type 112 // the base register has (GR32Reg or GR64Reg). Length is the operand 113 // length for D(L,B)-style operands, otherwise it is null. 114 struct MemOp { 115 unsigned Base : 12; 116 unsigned Index : 12; 117 unsigned MemKind : 4; 118 unsigned RegKind : 4; 119 const MCExpr *Disp; 120 union { 121 const MCExpr *Imm; 122 unsigned Reg; 123 } Length; 124 }; 125 126 // Imm is an immediate operand, and Sym is an optional TLS symbol 127 // for use with a __tls_get_offset marker relocation. 128 struct ImmTLSOp { 129 const MCExpr *Imm; 130 const MCExpr *Sym; 131 }; 132 133 union { 134 TokenOp Token; 135 RegOp Reg; 136 const MCExpr *Imm; 137 ImmTLSOp ImmTLS; 138 MemOp Mem; 139 }; 140 141 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 142 // Add as immediates when possible. Null MCExpr = 0. 143 if (!Expr) 144 Inst.addOperand(MCOperand::createImm(0)); 145 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 146 Inst.addOperand(MCOperand::createImm(CE->getValue())); 147 else 148 Inst.addOperand(MCOperand::createExpr(Expr)); 149 } 150 151 public: 152 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 153 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 154 155 // Create particular kinds of operand. 156 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 157 SMLoc EndLoc) { 158 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 159 } 160 161 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 162 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 163 Op->Token.Data = Str.data(); 164 Op->Token.Length = Str.size(); 165 return Op; 166 } 167 168 static std::unique_ptr<SystemZOperand> 169 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 170 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 171 Op->Reg.Kind = Kind; 172 Op->Reg.Num = Num; 173 return Op; 174 } 175 176 static std::unique_ptr<SystemZOperand> 177 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 178 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 179 Op->Imm = Expr; 180 return Op; 181 } 182 183 static std::unique_ptr<SystemZOperand> 184 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 185 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 186 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 187 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 188 Op->Mem.MemKind = MemKind; 189 Op->Mem.RegKind = RegKind; 190 Op->Mem.Base = Base; 191 Op->Mem.Index = Index; 192 Op->Mem.Disp = Disp; 193 if (MemKind == BDLMem) 194 Op->Mem.Length.Imm = LengthImm; 195 if (MemKind == BDRMem) 196 Op->Mem.Length.Reg = LengthReg; 197 return Op; 198 } 199 200 static std::unique_ptr<SystemZOperand> 201 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 202 SMLoc StartLoc, SMLoc EndLoc) { 203 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 204 Op->ImmTLS.Imm = Imm; 205 Op->ImmTLS.Sym = Sym; 206 return Op; 207 } 208 209 // Token operands 210 bool isToken() const override { 211 return Kind == KindToken; 212 } 213 StringRef getToken() const { 214 assert(Kind == KindToken && "Not a token"); 215 return StringRef(Token.Data, Token.Length); 216 } 217 218 // Register operands. 219 bool isReg() const override { 220 return Kind == KindReg; 221 } 222 bool isReg(RegisterKind RegKind) const { 223 return Kind == KindReg && Reg.Kind == RegKind; 224 } 225 unsigned getReg() const override { 226 assert(Kind == KindReg && "Not a register"); 227 return Reg.Num; 228 } 229 230 // Immediate operands. 231 bool isImm() const override { 232 return Kind == KindImm; 233 } 234 bool isImm(int64_t MinValue, int64_t MaxValue) const { 235 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 236 } 237 const MCExpr *getImm() const { 238 assert(Kind == KindImm && "Not an immediate"); 239 return Imm; 240 } 241 242 // Immediate operands with optional TLS symbol. 243 bool isImmTLS() const { 244 return Kind == KindImmTLS; 245 } 246 247 const ImmTLSOp getImmTLS() const { 248 assert(Kind == KindImmTLS && "Not a TLS immediate"); 249 return ImmTLS; 250 } 251 252 // Memory operands. 253 bool isMem() const override { 254 return Kind == KindMem; 255 } 256 bool isMem(MemoryKind MemKind) const { 257 return (Kind == KindMem && 258 (Mem.MemKind == MemKind || 259 // A BDMem can be treated as a BDXMem in which the index 260 // register field is 0. 261 (Mem.MemKind == BDMem && MemKind == BDXMem))); 262 } 263 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 264 return isMem(MemKind) && Mem.RegKind == RegKind; 265 } 266 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 267 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 268 } 269 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 270 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 271 } 272 bool isMemDisp12Len4(RegisterKind RegKind) const { 273 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 274 } 275 bool isMemDisp12Len8(RegisterKind RegKind) const { 276 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 277 } 278 279 const MemOp& getMem() const { 280 assert(Kind == KindMem && "Not a Mem operand"); 281 return Mem; 282 } 283 284 // Override MCParsedAsmOperand. 285 SMLoc getStartLoc() const override { return StartLoc; } 286 SMLoc getEndLoc() const override { return EndLoc; } 287 void print(raw_ostream &OS) const override; 288 289 /// getLocRange - Get the range between the first and last token of this 290 /// operand. 291 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 292 293 // Used by the TableGen code to add particular types of operand 294 // to an instruction. 295 void addRegOperands(MCInst &Inst, unsigned N) const { 296 assert(N == 1 && "Invalid number of operands"); 297 Inst.addOperand(MCOperand::createReg(getReg())); 298 } 299 void addImmOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 addExpr(Inst, getImm()); 302 } 303 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 2 && "Invalid number of operands"); 305 assert(isMem(BDMem) && "Invalid operand type"); 306 Inst.addOperand(MCOperand::createReg(Mem.Base)); 307 addExpr(Inst, Mem.Disp); 308 } 309 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 310 assert(N == 3 && "Invalid number of operands"); 311 assert(isMem(BDXMem) && "Invalid operand type"); 312 Inst.addOperand(MCOperand::createReg(Mem.Base)); 313 addExpr(Inst, Mem.Disp); 314 Inst.addOperand(MCOperand::createReg(Mem.Index)); 315 } 316 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 317 assert(N == 3 && "Invalid number of operands"); 318 assert(isMem(BDLMem) && "Invalid operand type"); 319 Inst.addOperand(MCOperand::createReg(Mem.Base)); 320 addExpr(Inst, Mem.Disp); 321 addExpr(Inst, Mem.Length.Imm); 322 } 323 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 324 assert(N == 3 && "Invalid number of operands"); 325 assert(isMem(BDRMem) && "Invalid operand type"); 326 Inst.addOperand(MCOperand::createReg(Mem.Base)); 327 addExpr(Inst, Mem.Disp); 328 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 329 } 330 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 331 assert(N == 3 && "Invalid number of operands"); 332 assert(isMem(BDVMem) && "Invalid operand type"); 333 Inst.addOperand(MCOperand::createReg(Mem.Base)); 334 addExpr(Inst, Mem.Disp); 335 Inst.addOperand(MCOperand::createReg(Mem.Index)); 336 } 337 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 338 assert(N == 2 && "Invalid number of operands"); 339 assert(Kind == KindImmTLS && "Invalid operand type"); 340 addExpr(Inst, ImmTLS.Imm); 341 if (ImmTLS.Sym) 342 addExpr(Inst, ImmTLS.Sym); 343 } 344 345 // Used by the TableGen code to check for particular operand types. 346 bool isGR32() const { return isReg(GR32Reg); } 347 bool isGRH32() const { return isReg(GRH32Reg); } 348 bool isGRX32() const { return false; } 349 bool isGR64() const { return isReg(GR64Reg); } 350 bool isGR128() const { return isReg(GR128Reg); } 351 bool isADDR32() const { return isReg(GR32Reg); } 352 bool isADDR64() const { return isReg(GR64Reg); } 353 bool isADDR128() const { return false; } 354 bool isFP32() const { return isReg(FP32Reg); } 355 bool isFP64() const { return isReg(FP64Reg); } 356 bool isFP128() const { return isReg(FP128Reg); } 357 bool isVR32() const { return isReg(VR32Reg); } 358 bool isVR64() const { return isReg(VR64Reg); } 359 bool isVF128() const { return false; } 360 bool isVR128() const { return isReg(VR128Reg); } 361 bool isAR32() const { return isReg(AR32Reg); } 362 bool isCR64() const { return isReg(CR64Reg); } 363 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 364 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 365 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 366 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 367 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 368 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 369 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 370 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 371 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 372 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 373 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 374 bool isU1Imm() const { return isImm(0, 1); } 375 bool isU2Imm() const { return isImm(0, 3); } 376 bool isU3Imm() const { return isImm(0, 7); } 377 bool isU4Imm() const { return isImm(0, 15); } 378 bool isU6Imm() const { return isImm(0, 63); } 379 bool isU8Imm() const { return isImm(0, 255); } 380 bool isS8Imm() const { return isImm(-128, 127); } 381 bool isU12Imm() const { return isImm(0, 4095); } 382 bool isU16Imm() const { return isImm(0, 65535); } 383 bool isS16Imm() const { return isImm(-32768, 32767); } 384 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 385 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 386 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 387 }; 388 389 class SystemZAsmParser : public MCTargetAsmParser { 390 #define GET_ASSEMBLER_HEADER 391 #include "SystemZGenAsmMatcher.inc" 392 393 private: 394 MCAsmParser &Parser; 395 enum RegisterGroup { 396 RegGR, 397 RegFP, 398 RegV, 399 RegAR, 400 RegCR 401 }; 402 struct Register { 403 RegisterGroup Group; 404 unsigned Num; 405 SMLoc StartLoc, EndLoc; 406 }; 407 408 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 409 410 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 411 412 OperandMatchResultTy parseRegister(OperandVector &Operands, 413 RegisterKind Kind); 414 415 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 416 417 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 418 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 419 bool HasLength = false, bool HasVectorIndex = false); 420 bool parseAddressRegister(Register &Reg); 421 422 bool ParseDirectiveInsn(SMLoc L); 423 424 OperandMatchResultTy parseAddress(OperandVector &Operands, 425 MemoryKind MemKind, 426 RegisterKind RegKind); 427 428 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 429 int64_t MaxVal, bool AllowTLS); 430 431 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 432 433 // Both the hlasm and att variants still rely on the basic gnu asm 434 // format with respect to inputs, clobbers, outputs etc. 435 // 436 // However, calling the overriden getAssemblerDialect() method in 437 // AsmParser is problematic. It either returns the AssemblerDialect field 438 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 439 // unset, otherwise it returns the private AssemblerDialect field in 440 // AsmParser. 441 // 442 // The problematic part is because, we forcibly set the inline asm dialect 443 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 444 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 445 // not return the assembler dialect set in the respective MCAsmInfo instance. 446 // 447 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 448 // here, to get the "correct" assembler dialect, and use it in various 449 // functions. 450 unsigned getMAIAssemblerDialect() { 451 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 452 } 453 454 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 455 // or from 'a' through 'z', or '$', '_','#', or '@'. 456 inline bool isHLASMAlpha(char C) { 457 return isAlpha(C) || llvm::is_contained("_@#$", C); 458 } 459 460 // A digit in HLASM is a number from 0 to 9. 461 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 462 463 public: 464 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 465 const MCInstrInfo &MII, 466 const MCTargetOptions &Options) 467 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 468 MCAsmParserExtension::Initialize(Parser); 469 470 // Alias the .word directive to .short. 471 parser.addAliasForDirective(".word", ".short"); 472 473 // Initialize the set of available features. 474 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 475 } 476 477 // Override MCTargetAsmParser. 478 bool ParseDirective(AsmToken DirectiveID) override; 479 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 480 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 481 bool RestoreOnFailure); 482 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 483 SMLoc &EndLoc) override; 484 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 485 SMLoc NameLoc, OperandVector &Operands) override; 486 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 487 OperandVector &Operands, MCStreamer &Out, 488 uint64_t &ErrorInfo, 489 bool MatchingInlineAsm) override; 490 bool isLabel(AsmToken &Token) override; 491 492 // Used by the TableGen code to parse particular operand types. 493 OperandMatchResultTy parseGR32(OperandVector &Operands) { 494 return parseRegister(Operands, GR32Reg); 495 } 496 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 497 return parseRegister(Operands, GRH32Reg); 498 } 499 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 500 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 501 } 502 OperandMatchResultTy parseGR64(OperandVector &Operands) { 503 return parseRegister(Operands, GR64Reg); 504 } 505 OperandMatchResultTy parseGR128(OperandVector &Operands) { 506 return parseRegister(Operands, GR128Reg); 507 } 508 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 509 // For the AsmParser, we will accept %r0 for ADDR32 as well. 510 return parseRegister(Operands, GR32Reg); 511 } 512 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 513 // For the AsmParser, we will accept %r0 for ADDR64 as well. 514 return parseRegister(Operands, GR64Reg); 515 } 516 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 517 llvm_unreachable("Shouldn't be used as an operand"); 518 } 519 OperandMatchResultTy parseFP32(OperandVector &Operands) { 520 return parseRegister(Operands, FP32Reg); 521 } 522 OperandMatchResultTy parseFP64(OperandVector &Operands) { 523 return parseRegister(Operands, FP64Reg); 524 } 525 OperandMatchResultTy parseFP128(OperandVector &Operands) { 526 return parseRegister(Operands, FP128Reg); 527 } 528 OperandMatchResultTy parseVR32(OperandVector &Operands) { 529 return parseRegister(Operands, VR32Reg); 530 } 531 OperandMatchResultTy parseVR64(OperandVector &Operands) { 532 return parseRegister(Operands, VR64Reg); 533 } 534 OperandMatchResultTy parseVF128(OperandVector &Operands) { 535 llvm_unreachable("Shouldn't be used as an operand"); 536 } 537 OperandMatchResultTy parseVR128(OperandVector &Operands) { 538 return parseRegister(Operands, VR128Reg); 539 } 540 OperandMatchResultTy parseAR32(OperandVector &Operands) { 541 return parseRegister(Operands, AR32Reg); 542 } 543 OperandMatchResultTy parseCR64(OperandVector &Operands) { 544 return parseRegister(Operands, CR64Reg); 545 } 546 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 547 return parseAnyRegister(Operands); 548 } 549 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 550 return parseAddress(Operands, BDMem, GR32Reg); 551 } 552 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 553 return parseAddress(Operands, BDMem, GR64Reg); 554 } 555 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 556 return parseAddress(Operands, BDXMem, GR64Reg); 557 } 558 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 559 return parseAddress(Operands, BDLMem, GR64Reg); 560 } 561 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 562 return parseAddress(Operands, BDRMem, GR64Reg); 563 } 564 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 565 return parseAddress(Operands, BDVMem, GR64Reg); 566 } 567 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 568 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 569 } 570 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 571 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 572 } 573 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 574 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 575 } 576 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 577 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 578 } 579 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 580 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 581 } 582 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 583 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 584 } 585 }; 586 587 } // end anonymous namespace 588 589 #define GET_REGISTER_MATCHER 590 #define GET_SUBTARGET_FEATURE_NAME 591 #define GET_MATCHER_IMPLEMENTATION 592 #define GET_MNEMONIC_SPELL_CHECKER 593 #include "SystemZGenAsmMatcher.inc" 594 595 // Used for the .insn directives; contains information needed to parse the 596 // operands in the directive. 597 struct InsnMatchEntry { 598 StringRef Format; 599 uint64_t Opcode; 600 int32_t NumOperands; 601 MatchClassKind OperandKinds[7]; 602 }; 603 604 // For equal_range comparison. 605 struct CompareInsn { 606 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 607 return LHS.Format < RHS; 608 } 609 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 610 return LHS < RHS.Format; 611 } 612 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 613 return LHS.Format < RHS.Format; 614 } 615 }; 616 617 // Table initializing information for parsing the .insn directive. 618 static struct InsnMatchEntry InsnMatchTable[] = { 619 /* Format, Opcode, NumOperands, OperandKinds */ 620 { "e", SystemZ::InsnE, 1, 621 { MCK_U16Imm } }, 622 { "ri", SystemZ::InsnRI, 3, 623 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 624 { "rie", SystemZ::InsnRIE, 4, 625 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 626 { "ril", SystemZ::InsnRIL, 3, 627 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 628 { "rilu", SystemZ::InsnRILU, 3, 629 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 630 { "ris", SystemZ::InsnRIS, 5, 631 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 632 { "rr", SystemZ::InsnRR, 3, 633 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 634 { "rre", SystemZ::InsnRRE, 3, 635 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 636 { "rrf", SystemZ::InsnRRF, 5, 637 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 638 { "rrs", SystemZ::InsnRRS, 5, 639 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 640 { "rs", SystemZ::InsnRS, 4, 641 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 642 { "rse", SystemZ::InsnRSE, 4, 643 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 644 { "rsi", SystemZ::InsnRSI, 4, 645 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 646 { "rsy", SystemZ::InsnRSY, 4, 647 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 648 { "rx", SystemZ::InsnRX, 3, 649 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 650 { "rxe", SystemZ::InsnRXE, 3, 651 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 652 { "rxf", SystemZ::InsnRXF, 4, 653 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 654 { "rxy", SystemZ::InsnRXY, 3, 655 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 656 { "s", SystemZ::InsnS, 2, 657 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 658 { "si", SystemZ::InsnSI, 3, 659 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 660 { "sil", SystemZ::InsnSIL, 3, 661 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 662 { "siy", SystemZ::InsnSIY, 3, 663 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 664 { "ss", SystemZ::InsnSS, 4, 665 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 666 { "sse", SystemZ::InsnSSE, 3, 667 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 668 { "ssf", SystemZ::InsnSSF, 4, 669 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 670 { "vri", SystemZ::InsnVRI, 6, 671 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 672 { "vrr", SystemZ::InsnVRR, 7, 673 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 674 MCK_U4Imm } }, 675 { "vrs", SystemZ::InsnVRS, 5, 676 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 677 { "vrv", SystemZ::InsnVRV, 4, 678 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 679 { "vrx", SystemZ::InsnVRX, 4, 680 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 681 { "vsi", SystemZ::InsnVSI, 4, 682 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 683 }; 684 685 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 686 if (!E) 687 return; 688 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 689 OS << *CE; 690 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 691 OS << *UE; 692 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 693 OS << *BE; 694 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 695 OS << *SRE; 696 else 697 OS << *E; 698 } 699 700 void SystemZOperand::print(raw_ostream &OS) const { 701 switch (Kind) { 702 case KindToken: 703 OS << "Token:" << getToken(); 704 break; 705 case KindReg: 706 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 707 break; 708 case KindImm: 709 OS << "Imm:"; 710 printMCExpr(getImm(), OS); 711 break; 712 case KindImmTLS: 713 OS << "ImmTLS:"; 714 printMCExpr(getImmTLS().Imm, OS); 715 if (getImmTLS().Sym) { 716 OS << ", "; 717 printMCExpr(getImmTLS().Sym, OS); 718 } 719 break; 720 case KindMem: { 721 const MemOp &Op = getMem(); 722 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 723 if (Op.Base) { 724 OS << "("; 725 if (Op.MemKind == BDLMem) 726 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 727 else if (Op.MemKind == BDRMem) 728 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 729 if (Op.Index) 730 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 731 OS << SystemZInstPrinter::getRegisterName(Op.Base); 732 OS << ")"; 733 } 734 break; 735 } 736 case KindInvalid: 737 break; 738 } 739 } 740 741 // Parse one register of the form %<prefix><number>. 742 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 743 Reg.StartLoc = Parser.getTok().getLoc(); 744 745 // Eat the % prefix. 746 if (Parser.getTok().isNot(AsmToken::Percent)) 747 return Error(Parser.getTok().getLoc(), "register expected"); 748 const AsmToken &PercentTok = Parser.getTok(); 749 Parser.Lex(); 750 751 // Expect a register name. 752 if (Parser.getTok().isNot(AsmToken::Identifier)) { 753 if (RestoreOnFailure) 754 getLexer().UnLex(PercentTok); 755 return Error(Reg.StartLoc, "invalid register"); 756 } 757 758 // Check that there's a prefix. 759 StringRef Name = Parser.getTok().getString(); 760 if (Name.size() < 2) { 761 if (RestoreOnFailure) 762 getLexer().UnLex(PercentTok); 763 return Error(Reg.StartLoc, "invalid register"); 764 } 765 char Prefix = Name[0]; 766 767 // Treat the rest of the register name as a register number. 768 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 769 if (RestoreOnFailure) 770 getLexer().UnLex(PercentTok); 771 return Error(Reg.StartLoc, "invalid register"); 772 } 773 774 // Look for valid combinations of prefix and number. 775 if (Prefix == 'r' && Reg.Num < 16) 776 Reg.Group = RegGR; 777 else if (Prefix == 'f' && Reg.Num < 16) 778 Reg.Group = RegFP; 779 else if (Prefix == 'v' && Reg.Num < 32) 780 Reg.Group = RegV; 781 else if (Prefix == 'a' && Reg.Num < 16) 782 Reg.Group = RegAR; 783 else if (Prefix == 'c' && Reg.Num < 16) 784 Reg.Group = RegCR; 785 else { 786 if (RestoreOnFailure) 787 getLexer().UnLex(PercentTok); 788 return Error(Reg.StartLoc, "invalid register"); 789 } 790 791 Reg.EndLoc = Parser.getTok().getLoc(); 792 Parser.Lex(); 793 return false; 794 } 795 796 // Parse a register of kind Kind and add it to Operands. 797 OperandMatchResultTy 798 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 799 Register Reg; 800 RegisterGroup Group; 801 switch (Kind) { 802 case GR32Reg: 803 case GRH32Reg: 804 case GR64Reg: 805 case GR128Reg: 806 Group = RegGR; 807 break; 808 case FP32Reg: 809 case FP64Reg: 810 case FP128Reg: 811 Group = RegFP; 812 break; 813 case VR32Reg: 814 case VR64Reg: 815 case VR128Reg: 816 Group = RegV; 817 break; 818 case AR32Reg: 819 Group = RegAR; 820 break; 821 case CR64Reg: 822 Group = RegCR; 823 break; 824 } 825 826 // Handle register names of the form %<prefix><number> 827 if (Parser.getTok().is(AsmToken::Percent)) { 828 if (parseRegister(Reg)) 829 return MatchOperand_ParseFail; 830 831 // Check the parsed register group "Reg.Group" with the expected "Group" 832 // Have to error out if user specified wrong prefix. 833 switch (Group) { 834 case RegGR: 835 case RegFP: 836 case RegAR: 837 case RegCR: 838 if (Group != Reg.Group) { 839 Error(Reg.StartLoc, "invalid operand for instruction"); 840 return MatchOperand_ParseFail; 841 } 842 break; 843 case RegV: 844 if (Reg.Group != RegV && Reg.Group != RegFP) { 845 Error(Reg.StartLoc, "invalid operand for instruction"); 846 return MatchOperand_ParseFail; 847 } 848 break; 849 } 850 } else if (Parser.getTok().is(AsmToken::Integer)) { 851 if (parseIntegerRegister(Reg, Group)) 852 return MatchOperand_ParseFail; 853 } 854 // Otherwise we didn't match a register operand. 855 else 856 return MatchOperand_NoMatch; 857 858 // Determine the LLVM register number according to Kind. 859 const unsigned *Regs; 860 switch (Kind) { 861 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 862 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 863 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 864 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 865 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 866 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 867 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 868 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 869 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 870 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 871 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 872 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 873 } 874 if (Regs[Reg.Num] == 0) { 875 Error(Reg.StartLoc, "invalid register pair"); 876 return MatchOperand_ParseFail; 877 } 878 879 Operands.push_back( 880 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 881 return MatchOperand_Success; 882 } 883 884 // Parse any type of register (including integers) and add it to Operands. 885 OperandMatchResultTy 886 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 887 SMLoc StartLoc = Parser.getTok().getLoc(); 888 889 // Handle integer values. 890 if (Parser.getTok().is(AsmToken::Integer)) { 891 const MCExpr *Register; 892 if (Parser.parseExpression(Register)) 893 return MatchOperand_ParseFail; 894 895 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 896 int64_t Value = CE->getValue(); 897 if (Value < 0 || Value > 15) { 898 Error(StartLoc, "invalid register"); 899 return MatchOperand_ParseFail; 900 } 901 } 902 903 SMLoc EndLoc = 904 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 905 906 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 907 } 908 else { 909 Register Reg; 910 if (parseRegister(Reg)) 911 return MatchOperand_ParseFail; 912 913 if (Reg.Num > 15) { 914 Error(StartLoc, "invalid register"); 915 return MatchOperand_ParseFail; 916 } 917 918 // Map to the correct register kind. 919 RegisterKind Kind; 920 unsigned RegNo; 921 if (Reg.Group == RegGR) { 922 Kind = GR64Reg; 923 RegNo = SystemZMC::GR64Regs[Reg.Num]; 924 } 925 else if (Reg.Group == RegFP) { 926 Kind = FP64Reg; 927 RegNo = SystemZMC::FP64Regs[Reg.Num]; 928 } 929 else if (Reg.Group == RegV) { 930 Kind = VR128Reg; 931 RegNo = SystemZMC::VR128Regs[Reg.Num]; 932 } 933 else if (Reg.Group == RegAR) { 934 Kind = AR32Reg; 935 RegNo = SystemZMC::AR32Regs[Reg.Num]; 936 } 937 else if (Reg.Group == RegCR) { 938 Kind = CR64Reg; 939 RegNo = SystemZMC::CR64Regs[Reg.Num]; 940 } 941 else { 942 return MatchOperand_ParseFail; 943 } 944 945 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 946 Reg.StartLoc, Reg.EndLoc)); 947 } 948 return MatchOperand_Success; 949 } 950 951 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 952 RegisterGroup Group) { 953 Reg.StartLoc = Parser.getTok().getLoc(); 954 // We have an integer token 955 const MCExpr *Register; 956 if (Parser.parseExpression(Register)) 957 return true; 958 959 const auto *CE = dyn_cast<MCConstantExpr>(Register); 960 if (!CE) 961 return true; 962 963 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 964 int64_t Value = CE->getValue(); 965 if (Value < 0 || Value > MaxRegNum) { 966 Error(Parser.getTok().getLoc(), "invalid register"); 967 return true; 968 } 969 970 // Assign the Register Number 971 Reg.Num = (unsigned)Value; 972 Reg.Group = Group; 973 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 974 975 // At this point, successfully parsed an integer register. 976 return false; 977 } 978 979 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 980 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 981 bool &HaveReg2, Register &Reg2, 982 const MCExpr *&Disp, const MCExpr *&Length, 983 bool HasLength, bool HasVectorIndex) { 984 // Parse the displacement, which must always be present. 985 if (getParser().parseExpression(Disp)) 986 return true; 987 988 // Parse the optional base and index. 989 HaveReg1 = false; 990 HaveReg2 = false; 991 Length = nullptr; 992 993 // If we have a scenario as below: 994 // vgef %v0, 0(0), 0 995 // This is an example of a "BDVMem" instruction type. 996 // 997 // So when we parse this as an integer register, the register group 998 // needs to be tied to "RegV". Usually when the prefix is passed in 999 // as %<prefix><reg-number> its easy to check which group it should belong to 1000 // However, if we're passing in just the integer there's no real way to 1001 // "check" what register group it should belong to. 1002 // 1003 // When the user passes in the register as an integer, the user assumes that 1004 // the compiler is responsible for substituting it as the right kind of 1005 // register. Whereas, when the user specifies a "prefix", the onus is on 1006 // the user to make sure they pass in the right kind of register. 1007 // 1008 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1009 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1010 // (i.e. insn is of type BDVMem) is true. 1011 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1012 1013 if (getLexer().is(AsmToken::LParen)) { 1014 Parser.Lex(); 1015 1016 if (getLexer().is(AsmToken::Percent)) { 1017 // Parse the first register. 1018 HaveReg1 = true; 1019 if (parseRegister(Reg1)) 1020 return true; 1021 } 1022 // So if we have an integer as the first token in ([tok1], ..), it could: 1023 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1024 // instructions) 1025 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1026 else if (getLexer().is(AsmToken::Integer)) { 1027 if (HasLength) { 1028 // Instruction has a "Length" field, safe to parse the first token as 1029 // the "Length" field 1030 if (getParser().parseExpression(Length)) 1031 return true; 1032 } else { 1033 // Otherwise, if the instruction has no "Length" field, parse the 1034 // token as a "Register". We don't have to worry about whether the 1035 // instruction is invalid here, because the caller will take care of 1036 // error reporting. 1037 HaveReg1 = true; 1038 if (parseIntegerRegister(Reg1, RegGroup)) 1039 return true; 1040 } 1041 } else { 1042 // If its not an integer or a percent token, then if the instruction 1043 // is reported to have a "Length" then, parse it as "Length". 1044 if (HasLength) { 1045 if (getParser().parseExpression(Length)) 1046 return true; 1047 } 1048 } 1049 1050 // Check whether there's a second register. 1051 if (getLexer().is(AsmToken::Comma)) { 1052 Parser.Lex(); 1053 HaveReg2 = true; 1054 1055 if (getLexer().is(AsmToken::Integer)) { 1056 if (parseIntegerRegister(Reg2, RegGR)) 1057 return true; 1058 } else { 1059 if (parseRegister(Reg2)) 1060 return true; 1061 } 1062 } 1063 1064 // Consume the closing bracket. 1065 if (getLexer().isNot(AsmToken::RParen)) 1066 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1067 Parser.Lex(); 1068 } 1069 return false; 1070 } 1071 1072 // Verify that Reg is a valid address register (base or index). 1073 bool 1074 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1075 if (Reg.Group == RegV) { 1076 Error(Reg.StartLoc, "invalid use of vector addressing"); 1077 return true; 1078 } else if (Reg.Group != RegGR) { 1079 Error(Reg.StartLoc, "invalid address register"); 1080 return true; 1081 } 1082 return false; 1083 } 1084 1085 // Parse a memory operand and add it to Operands. The other arguments 1086 // are as above. 1087 OperandMatchResultTy 1088 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1089 RegisterKind RegKind) { 1090 SMLoc StartLoc = Parser.getTok().getLoc(); 1091 unsigned Base = 0, Index = 0, LengthReg = 0; 1092 Register Reg1, Reg2; 1093 bool HaveReg1, HaveReg2; 1094 const MCExpr *Disp; 1095 const MCExpr *Length; 1096 1097 bool HasLength = (MemKind == BDLMem) ? true : false; 1098 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1099 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1100 HasVectorIndex)) 1101 return MatchOperand_ParseFail; 1102 1103 const unsigned *Regs; 1104 switch (RegKind) { 1105 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1106 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1107 default: llvm_unreachable("invalid RegKind"); 1108 } 1109 1110 switch (MemKind) { 1111 case BDMem: 1112 // If we have Reg1, it must be an address register. 1113 if (HaveReg1) { 1114 if (parseAddressRegister(Reg1)) 1115 return MatchOperand_ParseFail; 1116 Base = Regs[Reg1.Num]; 1117 } 1118 // There must be no Reg2. 1119 if (HaveReg2) { 1120 Error(StartLoc, "invalid use of indexed addressing"); 1121 return MatchOperand_ParseFail; 1122 } 1123 break; 1124 case BDXMem: 1125 // If we have Reg1, it must be an address register. 1126 if (HaveReg1) { 1127 if (parseAddressRegister(Reg1)) 1128 return MatchOperand_ParseFail; 1129 // If the are two registers, the first one is the index and the 1130 // second is the base. 1131 if (HaveReg2) 1132 Index = Regs[Reg1.Num]; 1133 else 1134 Base = Regs[Reg1.Num]; 1135 } 1136 // If we have Reg2, it must be an address register. 1137 if (HaveReg2) { 1138 if (parseAddressRegister(Reg2)) 1139 return MatchOperand_ParseFail; 1140 Base = Regs[Reg2.Num]; 1141 } 1142 break; 1143 case BDLMem: 1144 // If we have Reg2, it must be an address register. 1145 if (HaveReg2) { 1146 if (parseAddressRegister(Reg2)) 1147 return MatchOperand_ParseFail; 1148 Base = Regs[Reg2.Num]; 1149 } 1150 // We cannot support base+index addressing. 1151 if (HaveReg1 && HaveReg2) { 1152 Error(StartLoc, "invalid use of indexed addressing"); 1153 return MatchOperand_ParseFail; 1154 } 1155 // We must have a length. 1156 if (!Length) { 1157 Error(StartLoc, "missing length in address"); 1158 return MatchOperand_ParseFail; 1159 } 1160 break; 1161 case BDRMem: 1162 // We must have Reg1, and it must be a GPR. 1163 if (!HaveReg1 || Reg1.Group != RegGR) { 1164 Error(StartLoc, "invalid operand for instruction"); 1165 return MatchOperand_ParseFail; 1166 } 1167 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1168 // If we have Reg2, it must be an address register. 1169 if (HaveReg2) { 1170 if (parseAddressRegister(Reg2)) 1171 return MatchOperand_ParseFail; 1172 Base = Regs[Reg2.Num]; 1173 } 1174 break; 1175 case BDVMem: 1176 // We must have Reg1, and it must be a vector register. 1177 if (!HaveReg1 || Reg1.Group != RegV) { 1178 Error(StartLoc, "vector index required in address"); 1179 return MatchOperand_ParseFail; 1180 } 1181 Index = SystemZMC::VR128Regs[Reg1.Num]; 1182 // If we have Reg2, it must be an address register. 1183 if (HaveReg2) { 1184 if (parseAddressRegister(Reg2)) 1185 return MatchOperand_ParseFail; 1186 Base = Regs[Reg2.Num]; 1187 } 1188 break; 1189 } 1190 1191 SMLoc EndLoc = 1192 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1193 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1194 Index, Length, LengthReg, 1195 StartLoc, EndLoc)); 1196 return MatchOperand_Success; 1197 } 1198 1199 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1200 StringRef IDVal = DirectiveID.getIdentifier(); 1201 1202 if (IDVal == ".insn") 1203 return ParseDirectiveInsn(DirectiveID.getLoc()); 1204 1205 return true; 1206 } 1207 1208 /// ParseDirectiveInsn 1209 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1210 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1211 MCAsmParser &Parser = getParser(); 1212 1213 // Expect instruction format as identifier. 1214 StringRef Format; 1215 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1216 if (Parser.parseIdentifier(Format)) 1217 return Error(ErrorLoc, "expected instruction format"); 1218 1219 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1220 1221 // Find entry for this format in InsnMatchTable. 1222 auto EntryRange = 1223 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1224 Format, CompareInsn()); 1225 1226 // If first == second, couldn't find a match in the table. 1227 if (EntryRange.first == EntryRange.second) 1228 return Error(ErrorLoc, "unrecognized format"); 1229 1230 struct InsnMatchEntry *Entry = EntryRange.first; 1231 1232 // Format should match from equal_range. 1233 assert(Entry->Format == Format); 1234 1235 // Parse the following operands using the table's information. 1236 for (int i = 0; i < Entry->NumOperands; i++) { 1237 MatchClassKind Kind = Entry->OperandKinds[i]; 1238 1239 SMLoc StartLoc = Parser.getTok().getLoc(); 1240 1241 // Always expect commas as separators for operands. 1242 if (getLexer().isNot(AsmToken::Comma)) 1243 return Error(StartLoc, "unexpected token in directive"); 1244 Lex(); 1245 1246 // Parse operands. 1247 OperandMatchResultTy ResTy; 1248 if (Kind == MCK_AnyReg) 1249 ResTy = parseAnyReg(Operands); 1250 else if (Kind == MCK_VR128) 1251 ResTy = parseVR128(Operands); 1252 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1253 ResTy = parseBDXAddr64(Operands); 1254 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1255 ResTy = parseBDAddr64(Operands); 1256 else if (Kind == MCK_BDVAddr64Disp12) 1257 ResTy = parseBDVAddr64(Operands); 1258 else if (Kind == MCK_PCRel32) 1259 ResTy = parsePCRel32(Operands); 1260 else if (Kind == MCK_PCRel16) 1261 ResTy = parsePCRel16(Operands); 1262 else { 1263 // Only remaining operand kind is an immediate. 1264 const MCExpr *Expr; 1265 SMLoc StartLoc = Parser.getTok().getLoc(); 1266 1267 // Expect immediate expression. 1268 if (Parser.parseExpression(Expr)) 1269 return Error(StartLoc, "unexpected token in directive"); 1270 1271 SMLoc EndLoc = 1272 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1273 1274 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1275 ResTy = MatchOperand_Success; 1276 } 1277 1278 if (ResTy != MatchOperand_Success) 1279 return true; 1280 } 1281 1282 // Build the instruction with the parsed operands. 1283 MCInst Inst = MCInstBuilder(Entry->Opcode); 1284 1285 for (size_t i = 0; i < Operands.size(); i++) { 1286 MCParsedAsmOperand &Operand = *Operands[i]; 1287 MatchClassKind Kind = Entry->OperandKinds[i]; 1288 1289 // Verify operand. 1290 unsigned Res = validateOperandClass(Operand, Kind); 1291 if (Res != Match_Success) 1292 return Error(Operand.getStartLoc(), "unexpected operand type"); 1293 1294 // Add operands to instruction. 1295 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1296 if (ZOperand.isReg()) 1297 ZOperand.addRegOperands(Inst, 1); 1298 else if (ZOperand.isMem(BDMem)) 1299 ZOperand.addBDAddrOperands(Inst, 2); 1300 else if (ZOperand.isMem(BDXMem)) 1301 ZOperand.addBDXAddrOperands(Inst, 3); 1302 else if (ZOperand.isMem(BDVMem)) 1303 ZOperand.addBDVAddrOperands(Inst, 3); 1304 else if (ZOperand.isImm()) 1305 ZOperand.addImmOperands(Inst, 1); 1306 else 1307 llvm_unreachable("unexpected operand type"); 1308 } 1309 1310 // Emit as a regular instruction. 1311 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1312 1313 return false; 1314 } 1315 1316 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1317 SMLoc &EndLoc, bool RestoreOnFailure) { 1318 Register Reg; 1319 if (parseRegister(Reg, RestoreOnFailure)) 1320 return true; 1321 if (Reg.Group == RegGR) 1322 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1323 else if (Reg.Group == RegFP) 1324 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1325 else if (Reg.Group == RegV) 1326 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1327 else if (Reg.Group == RegAR) 1328 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1329 else if (Reg.Group == RegCR) 1330 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1331 StartLoc = Reg.StartLoc; 1332 EndLoc = Reg.EndLoc; 1333 return false; 1334 } 1335 1336 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1337 SMLoc &EndLoc) { 1338 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1339 } 1340 1341 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1342 SMLoc &StartLoc, 1343 SMLoc &EndLoc) { 1344 bool Result = 1345 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1346 bool PendingErrors = getParser().hasPendingError(); 1347 getParser().clearPendingErrors(); 1348 if (PendingErrors) 1349 return MatchOperand_ParseFail; 1350 if (Result) 1351 return MatchOperand_NoMatch; 1352 return MatchOperand_Success; 1353 } 1354 1355 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1356 StringRef Name, SMLoc NameLoc, 1357 OperandVector &Operands) { 1358 1359 // Apply mnemonic aliases first, before doing anything else, in 1360 // case the target uses it. 1361 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1362 1363 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1364 1365 // Read the remaining operands. 1366 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1367 // Read the first operand. 1368 if (parseOperand(Operands, Name)) { 1369 return true; 1370 } 1371 1372 // Read any subsequent operands. 1373 while (getLexer().is(AsmToken::Comma)) { 1374 Parser.Lex(); 1375 if (parseOperand(Operands, Name)) { 1376 return true; 1377 } 1378 } 1379 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1380 SMLoc Loc = getLexer().getLoc(); 1381 return Error(Loc, "unexpected token in argument list"); 1382 } 1383 } 1384 1385 // Consume the EndOfStatement. 1386 Parser.Lex(); 1387 return false; 1388 } 1389 1390 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1391 StringRef Mnemonic) { 1392 // Check if the current operand has a custom associated parser, if so, try to 1393 // custom parse the operand, or fallback to the general approach. Force all 1394 // features to be available during the operand check, or else we will fail to 1395 // find the custom parser, and then we will later get an InvalidOperand error 1396 // instead of a MissingFeature errror. 1397 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1398 FeatureBitset All; 1399 All.set(); 1400 setAvailableFeatures(All); 1401 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1402 setAvailableFeatures(AvailableFeatures); 1403 if (ResTy == MatchOperand_Success) 1404 return false; 1405 1406 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1407 // there was a match, but an error occurred, in which case, just return that 1408 // the operand parsing failed. 1409 if (ResTy == MatchOperand_ParseFail) 1410 return true; 1411 1412 // Check for a register. All real register operands should have used 1413 // a context-dependent parse routine, which gives the required register 1414 // class. The code is here to mop up other cases, like those where 1415 // the instruction isn't recognized. 1416 if (Parser.getTok().is(AsmToken::Percent)) { 1417 Register Reg; 1418 if (parseRegister(Reg)) 1419 return true; 1420 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1421 return false; 1422 } 1423 1424 // The only other type of operand is an immediate or address. As above, 1425 // real address operands should have used a context-dependent parse routine, 1426 // so we treat any plain expression as an immediate. 1427 SMLoc StartLoc = Parser.getTok().getLoc(); 1428 Register Reg1, Reg2; 1429 bool HaveReg1, HaveReg2; 1430 const MCExpr *Expr; 1431 const MCExpr *Length; 1432 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1433 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1434 return true; 1435 // If the register combination is not valid for any instruction, reject it. 1436 // Otherwise, fall back to reporting an unrecognized instruction. 1437 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1438 && parseAddressRegister(Reg1)) 1439 return true; 1440 if (HaveReg2 && parseAddressRegister(Reg2)) 1441 return true; 1442 1443 SMLoc EndLoc = 1444 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1445 if (HaveReg1 || HaveReg2 || Length) 1446 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1447 else 1448 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1449 return false; 1450 } 1451 1452 static std::string SystemZMnemonicSpellCheck(StringRef S, 1453 const FeatureBitset &FBS, 1454 unsigned VariantID = 0); 1455 1456 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1457 OperandVector &Operands, 1458 MCStreamer &Out, 1459 uint64_t &ErrorInfo, 1460 bool MatchingInlineAsm) { 1461 MCInst Inst; 1462 unsigned MatchResult; 1463 1464 unsigned Dialect = getMAIAssemblerDialect(); 1465 1466 FeatureBitset MissingFeatures; 1467 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1468 MatchingInlineAsm, Dialect); 1469 switch (MatchResult) { 1470 case Match_Success: 1471 Inst.setLoc(IDLoc); 1472 Out.emitInstruction(Inst, getSTI()); 1473 return false; 1474 1475 case Match_MissingFeature: { 1476 assert(MissingFeatures.any() && "Unknown missing feature!"); 1477 // Special case the error message for the very common case where only 1478 // a single subtarget feature is missing 1479 std::string Msg = "instruction requires:"; 1480 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1481 if (MissingFeatures[I]) { 1482 Msg += " "; 1483 Msg += getSubtargetFeatureName(I); 1484 } 1485 } 1486 return Error(IDLoc, Msg); 1487 } 1488 1489 case Match_InvalidOperand: { 1490 SMLoc ErrorLoc = IDLoc; 1491 if (ErrorInfo != ~0ULL) { 1492 if (ErrorInfo >= Operands.size()) 1493 return Error(IDLoc, "too few operands for instruction"); 1494 1495 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1496 if (ErrorLoc == SMLoc()) 1497 ErrorLoc = IDLoc; 1498 } 1499 return Error(ErrorLoc, "invalid operand for instruction"); 1500 } 1501 1502 case Match_MnemonicFail: { 1503 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1504 std::string Suggestion = SystemZMnemonicSpellCheck( 1505 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1506 return Error(IDLoc, "invalid instruction" + Suggestion, 1507 ((SystemZOperand &)*Operands[0]).getLocRange()); 1508 } 1509 } 1510 1511 llvm_unreachable("Unexpected match type"); 1512 } 1513 1514 OperandMatchResultTy 1515 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1516 int64_t MaxVal, bool AllowTLS) { 1517 MCContext &Ctx = getContext(); 1518 MCStreamer &Out = getStreamer(); 1519 const MCExpr *Expr; 1520 SMLoc StartLoc = Parser.getTok().getLoc(); 1521 if (getParser().parseExpression(Expr)) 1522 return MatchOperand_NoMatch; 1523 1524 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool { 1525 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1526 int64_t Value = CE->getValue(); 1527 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1528 return true; 1529 } 1530 return false; 1531 }; 1532 1533 // For consistency with the GNU assembler, treat immediates as offsets 1534 // from ".". 1535 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1536 if (isOutOfRangeConstant(CE)) { 1537 Error(StartLoc, "offset out of range"); 1538 return MatchOperand_ParseFail; 1539 } 1540 int64_t Value = CE->getValue(); 1541 MCSymbol *Sym = Ctx.createTempSymbol(); 1542 Out.emitLabel(Sym); 1543 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1544 Ctx); 1545 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1546 } 1547 1548 // For consistency with the GNU assembler, conservatively assume that a 1549 // constant offset must by itself be within the given size range. 1550 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1551 if (isOutOfRangeConstant(BE->getLHS()) || 1552 isOutOfRangeConstant(BE->getRHS())) { 1553 Error(StartLoc, "offset out of range"); 1554 return MatchOperand_ParseFail; 1555 } 1556 1557 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1558 const MCExpr *Sym = nullptr; 1559 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1560 Parser.Lex(); 1561 1562 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1563 Error(Parser.getTok().getLoc(), "unexpected token"); 1564 return MatchOperand_ParseFail; 1565 } 1566 1567 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1568 StringRef Name = Parser.getTok().getString(); 1569 if (Name == "tls_gdcall") 1570 Kind = MCSymbolRefExpr::VK_TLSGD; 1571 else if (Name == "tls_ldcall") 1572 Kind = MCSymbolRefExpr::VK_TLSLDM; 1573 else { 1574 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1575 return MatchOperand_ParseFail; 1576 } 1577 Parser.Lex(); 1578 1579 if (Parser.getTok().isNot(AsmToken::Colon)) { 1580 Error(Parser.getTok().getLoc(), "unexpected token"); 1581 return MatchOperand_ParseFail; 1582 } 1583 Parser.Lex(); 1584 1585 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1586 Error(Parser.getTok().getLoc(), "unexpected token"); 1587 return MatchOperand_ParseFail; 1588 } 1589 1590 StringRef Identifier = Parser.getTok().getString(); 1591 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1592 Kind, Ctx); 1593 Parser.Lex(); 1594 } 1595 1596 SMLoc EndLoc = 1597 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1598 1599 if (AllowTLS) 1600 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1601 StartLoc, EndLoc)); 1602 else 1603 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1604 1605 return MatchOperand_Success; 1606 } 1607 1608 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1609 if (getMAIAssemblerDialect() == AD_ATT) 1610 return true; 1611 1612 // HLASM labels are ordinary symbols. 1613 // An HLASM label always starts at column 1. 1614 // An ordinary symbol syntax is laid out as follows: 1615 // Rules: 1616 // 1. Has to start with an "alphabetic character". Can be followed by up to 1617 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1618 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1619 // or '$', '_', '#', or '@' 1620 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1621 // are all treated as the same symbol. However, the processing for the case 1622 // folding will not be done in this function. 1623 StringRef RawLabel = Token.getString(); 1624 SMLoc Loc = Token.getLoc(); 1625 1626 // An HLASM label cannot be empty. 1627 if (!RawLabel.size()) 1628 return !Error(Loc, "HLASM Label cannot be empty"); 1629 1630 // An HLASM label cannot exceed greater than 63 characters. 1631 if (RawLabel.size() > 63) 1632 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1633 1634 // A label must start with an "alphabetic character". 1635 if (!isHLASMAlpha(RawLabel[0])) 1636 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1637 "character or the underscore character"); 1638 1639 // Now, we've established that the length is valid 1640 // and the first character is alphabetic. 1641 // Check whether remaining string is alphanumeric. 1642 for (unsigned I = 1; I < RawLabel.size(); ++I) 1643 if (!isHLASMAlnum(RawLabel[I])) 1644 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1645 1646 return true; 1647 } 1648 1649 // Force static initialization. 1650 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1651 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1652 } 1653