xref: /llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision 6bfde063f0a7c336fb4c82a4b72da9b3812d31d0)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "TargetInfo/SystemZTargetInfo.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstBuilder.h"
19 #include "llvm/MC/MCParser/MCAsmLexer.h"
20 #include "llvm/MC/MCParser/MCAsmParser.h"
21 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
23 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/SMLoc.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <iterator>
35 #include <memory>
36 #include <string>
37 
38 using namespace llvm;
39 
40 // Return true if Expr is in the range [MinValue, MaxValue].
41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
42   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
43     int64_t Value = CE->getValue();
44     return Value >= MinValue && Value <= MaxValue;
45   }
46   return false;
47 }
48 
49 namespace {
50 
51 enum RegisterKind {
52   GR32Reg,
53   GRH32Reg,
54   GR64Reg,
55   GR128Reg,
56   FP32Reg,
57   FP64Reg,
58   FP128Reg,
59   VR32Reg,
60   VR64Reg,
61   VR128Reg,
62   AR32Reg,
63   CR64Reg,
64 };
65 
66 enum MemoryKind {
67   BDMem,
68   BDXMem,
69   BDLMem,
70   BDRMem,
71   BDVMem
72 };
73 
74 class SystemZOperand : public MCParsedAsmOperand {
75 private:
76   enum OperandKind {
77     KindInvalid,
78     KindToken,
79     KindReg,
80     KindImm,
81     KindImmTLS,
82     KindMem
83   };
84 
85   OperandKind Kind;
86   SMLoc StartLoc, EndLoc;
87 
88   // A string of length Length, starting at Data.
89   struct TokenOp {
90     const char *Data;
91     unsigned Length;
92   };
93 
94   // LLVM register Num, which has kind Kind.  In some ways it might be
95   // easier for this class to have a register bank (general, floating-point
96   // or access) and a raw register number (0-15).  This would postpone the
97   // interpretation of the operand to the add*() methods and avoid the need
98   // for context-dependent parsing.  However, we do things the current way
99   // because of the virtual getReg() method, which needs to distinguish
100   // between (say) %r0 used as a single register and %r0 used as a pair.
101   // Context-dependent parsing can also give us slightly better error
102   // messages when invalid pairs like %r1 are used.
103   struct RegOp {
104     RegisterKind Kind;
105     unsigned Num;
106   };
107 
108   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
109   // MemKind says what type of memory this is and RegKind says what type
110   // the base register has (GR32Reg or GR64Reg).  Length is the operand
111   // length for D(L,B)-style operands, otherwise it is null.
112   struct MemOp {
113     unsigned Base : 12;
114     unsigned Index : 12;
115     unsigned MemKind : 4;
116     unsigned RegKind : 4;
117     const MCExpr *Disp;
118     union {
119       const MCExpr *Imm;
120       unsigned Reg;
121     } Length;
122   };
123 
124   // Imm is an immediate operand, and Sym is an optional TLS symbol
125   // for use with a __tls_get_offset marker relocation.
126   struct ImmTLSOp {
127     const MCExpr *Imm;
128     const MCExpr *Sym;
129   };
130 
131   union {
132     TokenOp Token;
133     RegOp Reg;
134     const MCExpr *Imm;
135     ImmTLSOp ImmTLS;
136     MemOp Mem;
137   };
138 
139   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
140     // Add as immediates when possible.  Null MCExpr = 0.
141     if (!Expr)
142       Inst.addOperand(MCOperand::createImm(0));
143     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
144       Inst.addOperand(MCOperand::createImm(CE->getValue()));
145     else
146       Inst.addOperand(MCOperand::createExpr(Expr));
147   }
148 
149 public:
150   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
151       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
152 
153   // Create particular kinds of operand.
154   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
155                                                        SMLoc EndLoc) {
156     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
157   }
158 
159   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
160     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
161     Op->Token.Data = Str.data();
162     Op->Token.Length = Str.size();
163     return Op;
164   }
165 
166   static std::unique_ptr<SystemZOperand>
167   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
168     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
169     Op->Reg.Kind = Kind;
170     Op->Reg.Num = Num;
171     return Op;
172   }
173 
174   static std::unique_ptr<SystemZOperand>
175   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
176     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
177     Op->Imm = Expr;
178     return Op;
179   }
180 
181   static std::unique_ptr<SystemZOperand>
182   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
183             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
184             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
185     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
186     Op->Mem.MemKind = MemKind;
187     Op->Mem.RegKind = RegKind;
188     Op->Mem.Base = Base;
189     Op->Mem.Index = Index;
190     Op->Mem.Disp = Disp;
191     if (MemKind == BDLMem)
192       Op->Mem.Length.Imm = LengthImm;
193     if (MemKind == BDRMem)
194       Op->Mem.Length.Reg = LengthReg;
195     return Op;
196   }
197 
198   static std::unique_ptr<SystemZOperand>
199   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
200                SMLoc StartLoc, SMLoc EndLoc) {
201     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
202     Op->ImmTLS.Imm = Imm;
203     Op->ImmTLS.Sym = Sym;
204     return Op;
205   }
206 
207   // Token operands
208   bool isToken() const override {
209     return Kind == KindToken;
210   }
211   StringRef getToken() const {
212     assert(Kind == KindToken && "Not a token");
213     return StringRef(Token.Data, Token.Length);
214   }
215 
216   // Register operands.
217   bool isReg() const override {
218     return Kind == KindReg;
219   }
220   bool isReg(RegisterKind RegKind) const {
221     return Kind == KindReg && Reg.Kind == RegKind;
222   }
223   unsigned getReg() const override {
224     assert(Kind == KindReg && "Not a register");
225     return Reg.Num;
226   }
227 
228   // Immediate operands.
229   bool isImm() const override {
230     return Kind == KindImm;
231   }
232   bool isImm(int64_t MinValue, int64_t MaxValue) const {
233     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
234   }
235   const MCExpr *getImm() const {
236     assert(Kind == KindImm && "Not an immediate");
237     return Imm;
238   }
239 
240   // Immediate operands with optional TLS symbol.
241   bool isImmTLS() const {
242     return Kind == KindImmTLS;
243   }
244 
245   const ImmTLSOp getImmTLS() const {
246     assert(Kind == KindImmTLS && "Not a TLS immediate");
247     return ImmTLS;
248   }
249 
250   // Memory operands.
251   bool isMem() const override {
252     return Kind == KindMem;
253   }
254   bool isMem(MemoryKind MemKind) const {
255     return (Kind == KindMem &&
256             (Mem.MemKind == MemKind ||
257              // A BDMem can be treated as a BDXMem in which the index
258              // register field is 0.
259              (Mem.MemKind == BDMem && MemKind == BDXMem)));
260   }
261   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
262     return isMem(MemKind) && Mem.RegKind == RegKind;
263   }
264   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
265     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
266   }
267   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
268     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
269   }
270   bool isMemDisp12Len4(RegisterKind RegKind) const {
271     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
272   }
273   bool isMemDisp12Len8(RegisterKind RegKind) const {
274     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
275   }
276 
277   const MemOp& getMem() const {
278     assert(Kind == KindMem && "Not a Mem operand");
279     return Mem;
280   }
281 
282   // Override MCParsedAsmOperand.
283   SMLoc getStartLoc() const override { return StartLoc; }
284   SMLoc getEndLoc() const override { return EndLoc; }
285   void print(raw_ostream &OS) const override;
286 
287   /// getLocRange - Get the range between the first and last token of this
288   /// operand.
289   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
290 
291   // Used by the TableGen code to add particular types of operand
292   // to an instruction.
293   void addRegOperands(MCInst &Inst, unsigned N) const {
294     assert(N == 1 && "Invalid number of operands");
295     Inst.addOperand(MCOperand::createReg(getReg()));
296   }
297   void addImmOperands(MCInst &Inst, unsigned N) const {
298     assert(N == 1 && "Invalid number of operands");
299     addExpr(Inst, getImm());
300   }
301   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
302     assert(N == 2 && "Invalid number of operands");
303     assert(isMem(BDMem) && "Invalid operand type");
304     Inst.addOperand(MCOperand::createReg(Mem.Base));
305     addExpr(Inst, Mem.Disp);
306   }
307   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
308     assert(N == 3 && "Invalid number of operands");
309     assert(isMem(BDXMem) && "Invalid operand type");
310     Inst.addOperand(MCOperand::createReg(Mem.Base));
311     addExpr(Inst, Mem.Disp);
312     Inst.addOperand(MCOperand::createReg(Mem.Index));
313   }
314   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
315     assert(N == 3 && "Invalid number of operands");
316     assert(isMem(BDLMem) && "Invalid operand type");
317     Inst.addOperand(MCOperand::createReg(Mem.Base));
318     addExpr(Inst, Mem.Disp);
319     addExpr(Inst, Mem.Length.Imm);
320   }
321   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
322     assert(N == 3 && "Invalid number of operands");
323     assert(isMem(BDRMem) && "Invalid operand type");
324     Inst.addOperand(MCOperand::createReg(Mem.Base));
325     addExpr(Inst, Mem.Disp);
326     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
327   }
328   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
329     assert(N == 3 && "Invalid number of operands");
330     assert(isMem(BDVMem) && "Invalid operand type");
331     Inst.addOperand(MCOperand::createReg(Mem.Base));
332     addExpr(Inst, Mem.Disp);
333     Inst.addOperand(MCOperand::createReg(Mem.Index));
334   }
335   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
336     assert(N == 2 && "Invalid number of operands");
337     assert(Kind == KindImmTLS && "Invalid operand type");
338     addExpr(Inst, ImmTLS.Imm);
339     if (ImmTLS.Sym)
340       addExpr(Inst, ImmTLS.Sym);
341   }
342 
343   // Used by the TableGen code to check for particular operand types.
344   bool isGR32() const { return isReg(GR32Reg); }
345   bool isGRH32() const { return isReg(GRH32Reg); }
346   bool isGRX32() const { return false; }
347   bool isGR64() const { return isReg(GR64Reg); }
348   bool isGR128() const { return isReg(GR128Reg); }
349   bool isADDR32() const { return isReg(GR32Reg); }
350   bool isADDR64() const { return isReg(GR64Reg); }
351   bool isADDR128() const { return false; }
352   bool isFP32() const { return isReg(FP32Reg); }
353   bool isFP64() const { return isReg(FP64Reg); }
354   bool isFP128() const { return isReg(FP128Reg); }
355   bool isVR32() const { return isReg(VR32Reg); }
356   bool isVR64() const { return isReg(VR64Reg); }
357   bool isVF128() const { return false; }
358   bool isVR128() const { return isReg(VR128Reg); }
359   bool isAR32() const { return isReg(AR32Reg); }
360   bool isCR64() const { return isReg(CR64Reg); }
361   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
362   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
363   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
364   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
365   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
366   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
367   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
368   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
369   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
370   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
371   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
372   bool isU1Imm() const { return isImm(0, 1); }
373   bool isU2Imm() const { return isImm(0, 3); }
374   bool isU3Imm() const { return isImm(0, 7); }
375   bool isU4Imm() const { return isImm(0, 15); }
376   bool isU6Imm() const { return isImm(0, 63); }
377   bool isU8Imm() const { return isImm(0, 255); }
378   bool isS8Imm() const { return isImm(-128, 127); }
379   bool isU12Imm() const { return isImm(0, 4095); }
380   bool isU16Imm() const { return isImm(0, 65535); }
381   bool isS16Imm() const { return isImm(-32768, 32767); }
382   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
383   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
384   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
385 };
386 
387 class SystemZAsmParser : public MCTargetAsmParser {
388 #define GET_ASSEMBLER_HEADER
389 #include "SystemZGenAsmMatcher.inc"
390 
391 private:
392   MCAsmParser &Parser;
393   enum RegisterGroup {
394     RegGR,
395     RegFP,
396     RegV,
397     RegAR,
398     RegCR
399   };
400   struct Register {
401     RegisterGroup Group;
402     unsigned Num;
403     SMLoc StartLoc, EndLoc;
404   };
405 
406   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
407 
408   OperandMatchResultTy parseRegister(OperandVector &Operands,
409                                      RegisterKind Kind);
410 
411   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
412 
413   bool parseAddress(bool &HaveReg1, Register &Reg1,
414                     bool &HaveReg2, Register &Reg2,
415                     const MCExpr *&Disp, const MCExpr *&Length);
416   bool parseAddressRegister(Register &Reg);
417 
418   bool ParseDirectiveInsn(SMLoc L);
419 
420   OperandMatchResultTy parseAddress(OperandVector &Operands,
421                                     MemoryKind MemKind,
422                                     RegisterKind RegKind);
423 
424   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
425                                   int64_t MaxVal, bool AllowTLS);
426 
427   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
428 
429 public:
430   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
431                    const MCInstrInfo &MII,
432                    const MCTargetOptions &Options)
433     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
434     MCAsmParserExtension::Initialize(Parser);
435 
436     // Alias the .word directive to .short.
437     parser.addAliasForDirective(".word", ".short");
438 
439     // Initialize the set of available features.
440     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
441   }
442 
443   // Override MCTargetAsmParser.
444   bool ParseDirective(AsmToken DirectiveID) override;
445   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
446   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
447                      bool RestoreOnFailure);
448   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
449                                         SMLoc &EndLoc) override;
450   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
451                         SMLoc NameLoc, OperandVector &Operands) override;
452   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
453                                OperandVector &Operands, MCStreamer &Out,
454                                uint64_t &ErrorInfo,
455                                bool MatchingInlineAsm) override;
456 
457   // Used by the TableGen code to parse particular operand types.
458   OperandMatchResultTy parseGR32(OperandVector &Operands) {
459     return parseRegister(Operands, GR32Reg);
460   }
461   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
462     return parseRegister(Operands, GRH32Reg);
463   }
464   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
465     llvm_unreachable("GRX32 should only be used for pseudo instructions");
466   }
467   OperandMatchResultTy parseGR64(OperandVector &Operands) {
468     return parseRegister(Operands, GR64Reg);
469   }
470   OperandMatchResultTy parseGR128(OperandVector &Operands) {
471     return parseRegister(Operands, GR128Reg);
472   }
473   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
474     // For the AsmParser, we will accept %r0 for ADDR32 as well.
475     return parseRegister(Operands, GR32Reg);
476   }
477   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
478     // For the AsmParser, we will accept %r0 for ADDR64 as well.
479     return parseRegister(Operands, GR64Reg);
480   }
481   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
482     llvm_unreachable("Shouldn't be used as an operand");
483   }
484   OperandMatchResultTy parseFP32(OperandVector &Operands) {
485     return parseRegister(Operands, FP32Reg);
486   }
487   OperandMatchResultTy parseFP64(OperandVector &Operands) {
488     return parseRegister(Operands, FP64Reg);
489   }
490   OperandMatchResultTy parseFP128(OperandVector &Operands) {
491     return parseRegister(Operands, FP128Reg);
492   }
493   OperandMatchResultTy parseVR32(OperandVector &Operands) {
494     return parseRegister(Operands, VR32Reg);
495   }
496   OperandMatchResultTy parseVR64(OperandVector &Operands) {
497     return parseRegister(Operands, VR64Reg);
498   }
499   OperandMatchResultTy parseVF128(OperandVector &Operands) {
500     llvm_unreachable("Shouldn't be used as an operand");
501   }
502   OperandMatchResultTy parseVR128(OperandVector &Operands) {
503     return parseRegister(Operands, VR128Reg);
504   }
505   OperandMatchResultTy parseAR32(OperandVector &Operands) {
506     return parseRegister(Operands, AR32Reg);
507   }
508   OperandMatchResultTy parseCR64(OperandVector &Operands) {
509     return parseRegister(Operands, CR64Reg);
510   }
511   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
512     return parseAnyRegister(Operands);
513   }
514   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
515     return parseAddress(Operands, BDMem, GR32Reg);
516   }
517   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
518     return parseAddress(Operands, BDMem, GR64Reg);
519   }
520   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
521     return parseAddress(Operands, BDXMem, GR64Reg);
522   }
523   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
524     return parseAddress(Operands, BDLMem, GR64Reg);
525   }
526   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
527     return parseAddress(Operands, BDRMem, GR64Reg);
528   }
529   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
530     return parseAddress(Operands, BDVMem, GR64Reg);
531   }
532   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
533     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
534   }
535   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
536     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
537   }
538   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
539     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
540   }
541   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
542     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
543   }
544   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
545     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
546   }
547   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
548     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
549   }
550 };
551 
552 } // end anonymous namespace
553 
554 #define GET_REGISTER_MATCHER
555 #define GET_SUBTARGET_FEATURE_NAME
556 #define GET_MATCHER_IMPLEMENTATION
557 #define GET_MNEMONIC_SPELL_CHECKER
558 #include "SystemZGenAsmMatcher.inc"
559 
560 // Used for the .insn directives; contains information needed to parse the
561 // operands in the directive.
562 struct InsnMatchEntry {
563   StringRef Format;
564   uint64_t Opcode;
565   int32_t NumOperands;
566   MatchClassKind OperandKinds[5];
567 };
568 
569 // For equal_range comparison.
570 struct CompareInsn {
571   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
572     return LHS.Format < RHS;
573   }
574   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
575     return LHS < RHS.Format;
576   }
577   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
578     return LHS.Format < RHS.Format;
579   }
580 };
581 
582 // Table initializing information for parsing the .insn directive.
583 static struct InsnMatchEntry InsnMatchTable[] = {
584   /* Format, Opcode, NumOperands, OperandKinds */
585   { "e", SystemZ::InsnE, 1,
586     { MCK_U16Imm } },
587   { "ri", SystemZ::InsnRI, 3,
588     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
589   { "rie", SystemZ::InsnRIE, 4,
590     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
591   { "ril", SystemZ::InsnRIL, 3,
592     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
593   { "rilu", SystemZ::InsnRILU, 3,
594     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
595   { "ris", SystemZ::InsnRIS, 5,
596     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
597   { "rr", SystemZ::InsnRR, 3,
598     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
599   { "rre", SystemZ::InsnRRE, 3,
600     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
601   { "rrf", SystemZ::InsnRRF, 5,
602     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
603   { "rrs", SystemZ::InsnRRS, 5,
604     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
605   { "rs", SystemZ::InsnRS, 4,
606     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
607   { "rse", SystemZ::InsnRSE, 4,
608     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
609   { "rsi", SystemZ::InsnRSI, 4,
610     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
611   { "rsy", SystemZ::InsnRSY, 4,
612     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
613   { "rx", SystemZ::InsnRX, 3,
614     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
615   { "rxe", SystemZ::InsnRXE, 3,
616     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
617   { "rxf", SystemZ::InsnRXF, 4,
618     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
619   { "rxy", SystemZ::InsnRXY, 3,
620     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
621   { "s", SystemZ::InsnS, 2,
622     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
623   { "si", SystemZ::InsnSI, 3,
624     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
625   { "sil", SystemZ::InsnSIL, 3,
626     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
627   { "siy", SystemZ::InsnSIY, 3,
628     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
629   { "ss", SystemZ::InsnSS, 4,
630     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
631   { "sse", SystemZ::InsnSSE, 3,
632     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
633   { "ssf", SystemZ::InsnSSF, 4,
634     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
635 };
636 
637 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
638   if (!E)
639     return;
640   if (auto *CE = dyn_cast<MCConstantExpr>(E))
641     OS << *CE;
642   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
643     OS << *UE;
644   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
645     OS << *BE;
646   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
647     OS << *SRE;
648   else
649     OS << *E;
650 }
651 
652 void SystemZOperand::print(raw_ostream &OS) const {
653   switch (Kind) {
654   case KindToken:
655     OS << "Token:" << getToken();
656     break;
657   case KindReg:
658     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
659     break;
660   case KindImm:
661     OS << "Imm:";
662     printMCExpr(getImm(), OS);
663     break;
664   case KindImmTLS:
665     OS << "ImmTLS:";
666     printMCExpr(getImmTLS().Imm, OS);
667     if (getImmTLS().Sym) {
668       OS << ", ";
669       printMCExpr(getImmTLS().Sym, OS);
670     }
671     break;
672   case KindMem: {
673     const MemOp &Op = getMem();
674     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
675     if (Op.Base) {
676       OS << "(";
677       if (Op.MemKind == BDLMem)
678         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
679       else if (Op.MemKind == BDRMem)
680         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
681       if (Op.Index)
682         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
683       OS << SystemZInstPrinter::getRegisterName(Op.Base);
684       OS << ")";
685     }
686     break;
687   }
688   case KindInvalid:
689     break;
690   }
691 }
692 
693 // Parse one register of the form %<prefix><number>.
694 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
695   Reg.StartLoc = Parser.getTok().getLoc();
696 
697   // Eat the % prefix.
698   if (Parser.getTok().isNot(AsmToken::Percent))
699     return Error(Parser.getTok().getLoc(), "register expected");
700   const AsmToken &PercentTok = Parser.getTok();
701   Parser.Lex();
702 
703   // Expect a register name.
704   if (Parser.getTok().isNot(AsmToken::Identifier)) {
705     if (RestoreOnFailure)
706       getLexer().UnLex(PercentTok);
707     return Error(Reg.StartLoc, "invalid register");
708   }
709 
710   // Check that there's a prefix.
711   StringRef Name = Parser.getTok().getString();
712   if (Name.size() < 2) {
713     if (RestoreOnFailure)
714       getLexer().UnLex(PercentTok);
715     return Error(Reg.StartLoc, "invalid register");
716   }
717   char Prefix = Name[0];
718 
719   // Treat the rest of the register name as a register number.
720   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
721     if (RestoreOnFailure)
722       getLexer().UnLex(PercentTok);
723     return Error(Reg.StartLoc, "invalid register");
724   }
725 
726   // Look for valid combinations of prefix and number.
727   if (Prefix == 'r' && Reg.Num < 16)
728     Reg.Group = RegGR;
729   else if (Prefix == 'f' && Reg.Num < 16)
730     Reg.Group = RegFP;
731   else if (Prefix == 'v' && Reg.Num < 32)
732     Reg.Group = RegV;
733   else if (Prefix == 'a' && Reg.Num < 16)
734     Reg.Group = RegAR;
735   else if (Prefix == 'c' && Reg.Num < 16)
736     Reg.Group = RegCR;
737   else {
738     if (RestoreOnFailure)
739       getLexer().UnLex(PercentTok);
740     return Error(Reg.StartLoc, "invalid register");
741   }
742 
743   Reg.EndLoc = Parser.getTok().getLoc();
744   Parser.Lex();
745   return false;
746 }
747 
748 // Parse a register of kind Kind and add it to Operands.
749 OperandMatchResultTy
750 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
751   if (Parser.getTok().isNot(AsmToken::Percent))
752     return MatchOperand_NoMatch;
753 
754   Register Reg;
755   if (parseRegister(Reg))
756     return MatchOperand_ParseFail;
757 
758   // Verify that a register prefix appropriate for Kind was used.
759   bool PrefixMatch;
760   switch (Kind) {
761   case GR32Reg:
762   case GRH32Reg:
763   case GR64Reg:
764   case GR128Reg:
765     PrefixMatch = Reg.Group == RegGR;
766     break;
767   case FP32Reg:
768   case FP64Reg:
769   case FP128Reg:
770     PrefixMatch = Reg.Group == RegFP;
771     break;
772   case VR32Reg:
773   case VR64Reg:
774   case VR128Reg:
775     // It is OK to use the %f prefix with vector instructions that
776     // expect some VR..Reg kind, so accept the RegFP group as well.
777     PrefixMatch = Reg.Group == RegV || Reg.Group == RegFP;
778     break;
779   case AR32Reg:
780     PrefixMatch = Reg.Group == RegAR;
781     break;
782   case CR64Reg:
783     PrefixMatch = Reg.Group == RegCR;
784     break;
785   }
786   if (!PrefixMatch) {
787     Error(Reg.StartLoc, "invalid operand for instruction");
788     return MatchOperand_ParseFail;
789   }
790 
791   // Determine the LLVM register number according to Kind.
792   const unsigned *Regs;
793   switch (Kind) {
794   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
795   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
796   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
797   case GR128Reg: Regs = SystemZMC::GR128Regs; break;
798   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
799   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
800   case FP128Reg: Regs = SystemZMC::FP128Regs; break;
801   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
802   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
803   case VR128Reg: Regs = SystemZMC::VR128Regs; break;
804   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
805   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
806   }
807   if (Regs[Reg.Num] == 0) {
808     Error(Reg.StartLoc, "invalid register pair");
809     return MatchOperand_ParseFail;
810   }
811 
812   Operands.push_back(SystemZOperand::createReg(Kind, Regs[Reg.Num],
813                                                Reg.StartLoc, Reg.EndLoc));
814   return MatchOperand_Success;
815 }
816 
817 // Parse any type of register (including integers) and add it to Operands.
818 OperandMatchResultTy
819 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
820   // Handle integer values.
821   if (Parser.getTok().is(AsmToken::Integer)) {
822     const MCExpr *Register;
823     SMLoc StartLoc = Parser.getTok().getLoc();
824     if (Parser.parseExpression(Register))
825       return MatchOperand_ParseFail;
826 
827     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
828       int64_t Value = CE->getValue();
829       if (Value < 0 || Value > 15) {
830         Error(StartLoc, "invalid register");
831         return MatchOperand_ParseFail;
832       }
833     }
834 
835     SMLoc EndLoc =
836       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
837 
838     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
839   }
840   else {
841     Register Reg;
842     if (parseRegister(Reg))
843       return MatchOperand_ParseFail;
844 
845     // Map to the correct register kind.
846     RegisterKind Kind;
847     unsigned RegNo;
848     if (Reg.Group == RegGR) {
849       Kind = GR64Reg;
850       RegNo = SystemZMC::GR64Regs[Reg.Num];
851     }
852     else if (Reg.Group == RegFP) {
853       Kind = FP64Reg;
854       RegNo = SystemZMC::FP64Regs[Reg.Num];
855     }
856     else if (Reg.Group == RegV) {
857       Kind = VR128Reg;
858       RegNo = SystemZMC::VR128Regs[Reg.Num];
859     }
860     else if (Reg.Group == RegAR) {
861       Kind = AR32Reg;
862       RegNo = SystemZMC::AR32Regs[Reg.Num];
863     }
864     else if (Reg.Group == RegCR) {
865       Kind = CR64Reg;
866       RegNo = SystemZMC::CR64Regs[Reg.Num];
867     }
868     else {
869       return MatchOperand_ParseFail;
870     }
871 
872     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
873                                                  Reg.StartLoc, Reg.EndLoc));
874   }
875   return MatchOperand_Success;
876 }
877 
878 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
879 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
880                                     bool &HaveReg2, Register &Reg2,
881                                     const MCExpr *&Disp,
882                                     const MCExpr *&Length) {
883   // Parse the displacement, which must always be present.
884   if (getParser().parseExpression(Disp))
885     return true;
886 
887   // Parse the optional base and index.
888   HaveReg1 = false;
889   HaveReg2 = false;
890   Length = nullptr;
891   if (getLexer().is(AsmToken::LParen)) {
892     Parser.Lex();
893 
894     if (getLexer().is(AsmToken::Percent)) {
895       // Parse the first register.
896       HaveReg1 = true;
897       if (parseRegister(Reg1))
898         return true;
899     } else {
900       // Parse the length.
901       if (getParser().parseExpression(Length))
902         return true;
903     }
904 
905     // Check whether there's a second register.
906     if (getLexer().is(AsmToken::Comma)) {
907       Parser.Lex();
908       HaveReg2 = true;
909       if (parseRegister(Reg2))
910         return true;
911     }
912 
913     // Consume the closing bracket.
914     if (getLexer().isNot(AsmToken::RParen))
915       return Error(Parser.getTok().getLoc(), "unexpected token in address");
916     Parser.Lex();
917   }
918   return false;
919 }
920 
921 // Verify that Reg is a valid address register (base or index).
922 bool
923 SystemZAsmParser::parseAddressRegister(Register &Reg) {
924   if (Reg.Group == RegV) {
925     Error(Reg.StartLoc, "invalid use of vector addressing");
926     return true;
927   } else if (Reg.Group != RegGR) {
928     Error(Reg.StartLoc, "invalid address register");
929     return true;
930   }
931   return false;
932 }
933 
934 // Parse a memory operand and add it to Operands.  The other arguments
935 // are as above.
936 OperandMatchResultTy
937 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
938                                RegisterKind RegKind) {
939   SMLoc StartLoc = Parser.getTok().getLoc();
940   unsigned Base = 0, Index = 0, LengthReg = 0;
941   Register Reg1, Reg2;
942   bool HaveReg1, HaveReg2;
943   const MCExpr *Disp;
944   const MCExpr *Length;
945   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
946     return MatchOperand_ParseFail;
947 
948   const unsigned *Regs;
949   switch (RegKind) {
950   case GR32Reg: Regs = SystemZMC::GR32Regs; break;
951   case GR64Reg: Regs = SystemZMC::GR64Regs; break;
952   default: llvm_unreachable("invalid RegKind");
953   }
954 
955   switch (MemKind) {
956   case BDMem:
957     // If we have Reg1, it must be an address register.
958     if (HaveReg1) {
959       if (parseAddressRegister(Reg1))
960         return MatchOperand_ParseFail;
961       Base = Regs[Reg1.Num];
962     }
963     // There must be no Reg2 or length.
964     if (Length) {
965       Error(StartLoc, "invalid use of length addressing");
966       return MatchOperand_ParseFail;
967     }
968     if (HaveReg2) {
969       Error(StartLoc, "invalid use of indexed addressing");
970       return MatchOperand_ParseFail;
971     }
972     break;
973   case BDXMem:
974     // If we have Reg1, it must be an address register.
975     if (HaveReg1) {
976       if (parseAddressRegister(Reg1))
977         return MatchOperand_ParseFail;
978       // If the are two registers, the first one is the index and the
979       // second is the base.
980       if (HaveReg2)
981         Index = Regs[Reg1.Num];
982       else
983         Base = Regs[Reg1.Num];
984     }
985     // If we have Reg2, it must be an address register.
986     if (HaveReg2) {
987       if (parseAddressRegister(Reg2))
988         return MatchOperand_ParseFail;
989       Base = Regs[Reg2.Num];
990     }
991     // There must be no length.
992     if (Length) {
993       Error(StartLoc, "invalid use of length addressing");
994       return MatchOperand_ParseFail;
995     }
996     break;
997   case BDLMem:
998     // If we have Reg2, it must be an address register.
999     if (HaveReg2) {
1000       if (parseAddressRegister(Reg2))
1001         return MatchOperand_ParseFail;
1002       Base = Regs[Reg2.Num];
1003     }
1004     // We cannot support base+index addressing.
1005     if (HaveReg1 && HaveReg2) {
1006       Error(StartLoc, "invalid use of indexed addressing");
1007       return MatchOperand_ParseFail;
1008     }
1009     // We must have a length.
1010     if (!Length) {
1011       Error(StartLoc, "missing length in address");
1012       return MatchOperand_ParseFail;
1013     }
1014     break;
1015   case BDRMem:
1016     // We must have Reg1, and it must be a GPR.
1017     if (!HaveReg1 || Reg1.Group != RegGR) {
1018       Error(StartLoc, "invalid operand for instruction");
1019       return MatchOperand_ParseFail;
1020     }
1021     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1022     // If we have Reg2, it must be an address register.
1023     if (HaveReg2) {
1024       if (parseAddressRegister(Reg2))
1025         return MatchOperand_ParseFail;
1026       Base = Regs[Reg2.Num];
1027     }
1028     // There must be no length.
1029     if (Length) {
1030       Error(StartLoc, "invalid use of length addressing");
1031       return MatchOperand_ParseFail;
1032     }
1033     break;
1034   case BDVMem:
1035     // We must have Reg1, and it must be a vector register.
1036     if (!HaveReg1 || Reg1.Group != RegV) {
1037       Error(StartLoc, "vector index required in address");
1038       return MatchOperand_ParseFail;
1039     }
1040     Index = SystemZMC::VR128Regs[Reg1.Num];
1041     // If we have Reg2, it must be an address register.
1042     if (HaveReg2) {
1043       if (parseAddressRegister(Reg2))
1044         return MatchOperand_ParseFail;
1045       Base = Regs[Reg2.Num];
1046     }
1047     // There must be no length.
1048     if (Length) {
1049       Error(StartLoc, "invalid use of length addressing");
1050       return MatchOperand_ParseFail;
1051     }
1052     break;
1053   }
1054 
1055   SMLoc EndLoc =
1056     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1057   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1058                                                Index, Length, LengthReg,
1059                                                StartLoc, EndLoc));
1060   return MatchOperand_Success;
1061 }
1062 
1063 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1064   StringRef IDVal = DirectiveID.getIdentifier();
1065 
1066   if (IDVal == ".insn")
1067     return ParseDirectiveInsn(DirectiveID.getLoc());
1068 
1069   return true;
1070 }
1071 
1072 /// ParseDirectiveInsn
1073 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1074 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1075   MCAsmParser &Parser = getParser();
1076 
1077   // Expect instruction format as identifier.
1078   StringRef Format;
1079   SMLoc ErrorLoc = Parser.getTok().getLoc();
1080   if (Parser.parseIdentifier(Format))
1081     return Error(ErrorLoc, "expected instruction format");
1082 
1083   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1084 
1085   // Find entry for this format in InsnMatchTable.
1086   auto EntryRange =
1087     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1088                      Format, CompareInsn());
1089 
1090   // If first == second, couldn't find a match in the table.
1091   if (EntryRange.first == EntryRange.second)
1092     return Error(ErrorLoc, "unrecognized format");
1093 
1094   struct InsnMatchEntry *Entry = EntryRange.first;
1095 
1096   // Format should match from equal_range.
1097   assert(Entry->Format == Format);
1098 
1099   // Parse the following operands using the table's information.
1100   for (int i = 0; i < Entry->NumOperands; i++) {
1101     MatchClassKind Kind = Entry->OperandKinds[i];
1102 
1103     SMLoc StartLoc = Parser.getTok().getLoc();
1104 
1105     // Always expect commas as separators for operands.
1106     if (getLexer().isNot(AsmToken::Comma))
1107       return Error(StartLoc, "unexpected token in directive");
1108     Lex();
1109 
1110     // Parse operands.
1111     OperandMatchResultTy ResTy;
1112     if (Kind == MCK_AnyReg)
1113       ResTy = parseAnyReg(Operands);
1114     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1115       ResTy = parseBDXAddr64(Operands);
1116     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1117       ResTy = parseBDAddr64(Operands);
1118     else if (Kind == MCK_PCRel32)
1119       ResTy = parsePCRel32(Operands);
1120     else if (Kind == MCK_PCRel16)
1121       ResTy = parsePCRel16(Operands);
1122     else {
1123       // Only remaining operand kind is an immediate.
1124       const MCExpr *Expr;
1125       SMLoc StartLoc = Parser.getTok().getLoc();
1126 
1127       // Expect immediate expression.
1128       if (Parser.parseExpression(Expr))
1129         return Error(StartLoc, "unexpected token in directive");
1130 
1131       SMLoc EndLoc =
1132         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1133 
1134       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1135       ResTy = MatchOperand_Success;
1136     }
1137 
1138     if (ResTy != MatchOperand_Success)
1139       return true;
1140   }
1141 
1142   // Build the instruction with the parsed operands.
1143   MCInst Inst = MCInstBuilder(Entry->Opcode);
1144 
1145   for (size_t i = 0; i < Operands.size(); i++) {
1146     MCParsedAsmOperand &Operand = *Operands[i];
1147     MatchClassKind Kind = Entry->OperandKinds[i];
1148 
1149     // Verify operand.
1150     unsigned Res = validateOperandClass(Operand, Kind);
1151     if (Res != Match_Success)
1152       return Error(Operand.getStartLoc(), "unexpected operand type");
1153 
1154     // Add operands to instruction.
1155     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1156     if (ZOperand.isReg())
1157       ZOperand.addRegOperands(Inst, 1);
1158     else if (ZOperand.isMem(BDMem))
1159       ZOperand.addBDAddrOperands(Inst, 2);
1160     else if (ZOperand.isMem(BDXMem))
1161       ZOperand.addBDXAddrOperands(Inst, 3);
1162     else if (ZOperand.isImm())
1163       ZOperand.addImmOperands(Inst, 1);
1164     else
1165       llvm_unreachable("unexpected operand type");
1166   }
1167 
1168   // Emit as a regular instruction.
1169   Parser.getStreamer().emitInstruction(Inst, getSTI());
1170 
1171   return false;
1172 }
1173 
1174 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1175                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1176   Register Reg;
1177   if (parseRegister(Reg, RestoreOnFailure))
1178     return true;
1179   if (Reg.Group == RegGR)
1180     RegNo = SystemZMC::GR64Regs[Reg.Num];
1181   else if (Reg.Group == RegFP)
1182     RegNo = SystemZMC::FP64Regs[Reg.Num];
1183   else if (Reg.Group == RegV)
1184     RegNo = SystemZMC::VR128Regs[Reg.Num];
1185   else if (Reg.Group == RegAR)
1186     RegNo = SystemZMC::AR32Regs[Reg.Num];
1187   else if (Reg.Group == RegCR)
1188     RegNo = SystemZMC::CR64Regs[Reg.Num];
1189   StartLoc = Reg.StartLoc;
1190   EndLoc = Reg.EndLoc;
1191   return false;
1192 }
1193 
1194 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1195                                      SMLoc &EndLoc) {
1196   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1197 }
1198 
1199 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
1200                                                         SMLoc &StartLoc,
1201                                                         SMLoc &EndLoc) {
1202   bool Result =
1203       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1204   bool PendingErrors = getParser().hasPendingError();
1205   getParser().clearPendingErrors();
1206   if (PendingErrors)
1207     return MatchOperand_ParseFail;
1208   if (Result)
1209     return MatchOperand_NoMatch;
1210   return MatchOperand_Success;
1211 }
1212 
1213 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1214                                         StringRef Name, SMLoc NameLoc,
1215                                         OperandVector &Operands) {
1216   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1217 
1218   // Read the remaining operands.
1219   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1220     // Read the first operand.
1221     if (parseOperand(Operands, Name)) {
1222       return true;
1223     }
1224 
1225     // Read any subsequent operands.
1226     while (getLexer().is(AsmToken::Comma)) {
1227       Parser.Lex();
1228       if (parseOperand(Operands, Name)) {
1229         return true;
1230       }
1231     }
1232     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1233       SMLoc Loc = getLexer().getLoc();
1234       return Error(Loc, "unexpected token in argument list");
1235     }
1236   }
1237 
1238   // Consume the EndOfStatement.
1239   Parser.Lex();
1240   return false;
1241 }
1242 
1243 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1244                                     StringRef Mnemonic) {
1245   // Check if the current operand has a custom associated parser, if so, try to
1246   // custom parse the operand, or fallback to the general approach.  Force all
1247   // features to be available during the operand check, or else we will fail to
1248   // find the custom parser, and then we will later get an InvalidOperand error
1249   // instead of a MissingFeature errror.
1250   FeatureBitset AvailableFeatures = getAvailableFeatures();
1251   FeatureBitset All;
1252   All.set();
1253   setAvailableFeatures(All);
1254   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1255   setAvailableFeatures(AvailableFeatures);
1256   if (ResTy == MatchOperand_Success)
1257     return false;
1258 
1259   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1260   // there was a match, but an error occurred, in which case, just return that
1261   // the operand parsing failed.
1262   if (ResTy == MatchOperand_ParseFail)
1263     return true;
1264 
1265   // Check for a register.  All real register operands should have used
1266   // a context-dependent parse routine, which gives the required register
1267   // class.  The code is here to mop up other cases, like those where
1268   // the instruction isn't recognized.
1269   if (Parser.getTok().is(AsmToken::Percent)) {
1270     Register Reg;
1271     if (parseRegister(Reg))
1272       return true;
1273     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1274     return false;
1275   }
1276 
1277   // The only other type of operand is an immediate or address.  As above,
1278   // real address operands should have used a context-dependent parse routine,
1279   // so we treat any plain expression as an immediate.
1280   SMLoc StartLoc = Parser.getTok().getLoc();
1281   Register Reg1, Reg2;
1282   bool HaveReg1, HaveReg2;
1283   const MCExpr *Expr;
1284   const MCExpr *Length;
1285   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
1286     return true;
1287   // If the register combination is not valid for any instruction, reject it.
1288   // Otherwise, fall back to reporting an unrecognized instruction.
1289   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1290       && parseAddressRegister(Reg1))
1291     return true;
1292   if (HaveReg2 && parseAddressRegister(Reg2))
1293     return true;
1294 
1295   SMLoc EndLoc =
1296     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1297   if (HaveReg1 || HaveReg2 || Length)
1298     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1299   else
1300     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1301   return false;
1302 }
1303 
1304 static std::string SystemZMnemonicSpellCheck(StringRef S,
1305                                              const FeatureBitset &FBS,
1306                                              unsigned VariantID = 0);
1307 
1308 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1309                                                OperandVector &Operands,
1310                                                MCStreamer &Out,
1311                                                uint64_t &ErrorInfo,
1312                                                bool MatchingInlineAsm) {
1313   MCInst Inst;
1314   unsigned MatchResult;
1315 
1316   FeatureBitset MissingFeatures;
1317   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
1318                                      MissingFeatures, MatchingInlineAsm);
1319   switch (MatchResult) {
1320   case Match_Success:
1321     Inst.setLoc(IDLoc);
1322     Out.emitInstruction(Inst, getSTI());
1323     return false;
1324 
1325   case Match_MissingFeature: {
1326     assert(MissingFeatures.any() && "Unknown missing feature!");
1327     // Special case the error message for the very common case where only
1328     // a single subtarget feature is missing
1329     std::string Msg = "instruction requires:";
1330     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1331       if (MissingFeatures[I]) {
1332         Msg += " ";
1333         Msg += getSubtargetFeatureName(I);
1334       }
1335     }
1336     return Error(IDLoc, Msg);
1337   }
1338 
1339   case Match_InvalidOperand: {
1340     SMLoc ErrorLoc = IDLoc;
1341     if (ErrorInfo != ~0ULL) {
1342       if (ErrorInfo >= Operands.size())
1343         return Error(IDLoc, "too few operands for instruction");
1344 
1345       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1346       if (ErrorLoc == SMLoc())
1347         ErrorLoc = IDLoc;
1348     }
1349     return Error(ErrorLoc, "invalid operand for instruction");
1350   }
1351 
1352   case Match_MnemonicFail: {
1353     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1354     std::string Suggestion = SystemZMnemonicSpellCheck(
1355       ((SystemZOperand &)*Operands[0]).getToken(), FBS);
1356     return Error(IDLoc, "invalid instruction" + Suggestion,
1357                  ((SystemZOperand &)*Operands[0]).getLocRange());
1358   }
1359   }
1360 
1361   llvm_unreachable("Unexpected match type");
1362 }
1363 
1364 OperandMatchResultTy
1365 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1366                              int64_t MaxVal, bool AllowTLS) {
1367   MCContext &Ctx = getContext();
1368   MCStreamer &Out = getStreamer();
1369   const MCExpr *Expr;
1370   SMLoc StartLoc = Parser.getTok().getLoc();
1371   if (getParser().parseExpression(Expr))
1372     return MatchOperand_NoMatch;
1373 
1374   auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
1375     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1376       int64_t Value = CE->getValue();
1377       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1378         return true;
1379     }
1380     return false;
1381   };
1382 
1383   // For consistency with the GNU assembler, treat immediates as offsets
1384   // from ".".
1385   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1386     if (isOutOfRangeConstant(CE)) {
1387       Error(StartLoc, "offset out of range");
1388       return MatchOperand_ParseFail;
1389     }
1390     int64_t Value = CE->getValue();
1391     MCSymbol *Sym = Ctx.createTempSymbol();
1392     Out.emitLabel(Sym);
1393     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1394                                                  Ctx);
1395     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1396   }
1397 
1398   // For consistency with the GNU assembler, conservatively assume that a
1399   // constant offset must by itself be within the given size range.
1400   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1401     if (isOutOfRangeConstant(BE->getLHS()) ||
1402         isOutOfRangeConstant(BE->getRHS())) {
1403       Error(StartLoc, "offset out of range");
1404       return MatchOperand_ParseFail;
1405     }
1406 
1407   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1408   const MCExpr *Sym = nullptr;
1409   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1410     Parser.Lex();
1411 
1412     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1413       Error(Parser.getTok().getLoc(), "unexpected token");
1414       return MatchOperand_ParseFail;
1415     }
1416 
1417     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1418     StringRef Name = Parser.getTok().getString();
1419     if (Name == "tls_gdcall")
1420       Kind = MCSymbolRefExpr::VK_TLSGD;
1421     else if (Name == "tls_ldcall")
1422       Kind = MCSymbolRefExpr::VK_TLSLDM;
1423     else {
1424       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1425       return MatchOperand_ParseFail;
1426     }
1427     Parser.Lex();
1428 
1429     if (Parser.getTok().isNot(AsmToken::Colon)) {
1430       Error(Parser.getTok().getLoc(), "unexpected token");
1431       return MatchOperand_ParseFail;
1432     }
1433     Parser.Lex();
1434 
1435     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1436       Error(Parser.getTok().getLoc(), "unexpected token");
1437       return MatchOperand_ParseFail;
1438     }
1439 
1440     StringRef Identifier = Parser.getTok().getString();
1441     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1442                                   Kind, Ctx);
1443     Parser.Lex();
1444   }
1445 
1446   SMLoc EndLoc =
1447     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1448 
1449   if (AllowTLS)
1450     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1451                                                     StartLoc, EndLoc));
1452   else
1453     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1454 
1455   return MatchOperand_Success;
1456 }
1457 
1458 // Force static initialization.
1459 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1460   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1461 }
1462