1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstBuilder.h" 22 #include "llvm/MC/MCInstrInfo.h" 23 #include "llvm/MC/MCParser/MCAsmLexer.h" 24 #include "llvm/MC/MCParser/MCAsmParser.h" 25 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 26 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 27 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 28 #include "llvm/MC/MCStreamer.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/TargetRegistry.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/SMLoc.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <memory> 40 #include <string> 41 42 using namespace llvm; 43 44 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 45 // is true any MCExpr is accepted (address displacement). 46 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 47 bool AllowSymbol = false) { 48 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 49 int64_t Value = CE->getValue(); 50 return Value >= MinValue && Value <= MaxValue; 51 } 52 return AllowSymbol; 53 } 54 55 namespace { 56 57 enum RegisterKind { 58 GR32Reg, 59 GRH32Reg, 60 GR64Reg, 61 GR128Reg, 62 FP32Reg, 63 FP64Reg, 64 FP128Reg, 65 VR32Reg, 66 VR64Reg, 67 VR128Reg, 68 AR32Reg, 69 CR64Reg, 70 }; 71 72 enum MemoryKind { 73 BDMem, 74 BDXMem, 75 BDLMem, 76 BDRMem, 77 BDVMem 78 }; 79 80 class SystemZOperand : public MCParsedAsmOperand { 81 private: 82 enum OperandKind { 83 KindInvalid, 84 KindToken, 85 KindReg, 86 KindImm, 87 KindImmTLS, 88 KindMem 89 }; 90 91 OperandKind Kind; 92 SMLoc StartLoc, EndLoc; 93 94 // A string of length Length, starting at Data. 95 struct TokenOp { 96 const char *Data; 97 unsigned Length; 98 }; 99 100 // LLVM register Num, which has kind Kind. In some ways it might be 101 // easier for this class to have a register bank (general, floating-point 102 // or access) and a raw register number (0-15). This would postpone the 103 // interpretation of the operand to the add*() methods and avoid the need 104 // for context-dependent parsing. However, we do things the current way 105 // because of the virtual getReg() method, which needs to distinguish 106 // between (say) %r0 used as a single register and %r0 used as a pair. 107 // Context-dependent parsing can also give us slightly better error 108 // messages when invalid pairs like %r1 are used. 109 struct RegOp { 110 RegisterKind Kind; 111 unsigned Num; 112 }; 113 114 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 115 // MemKind says what type of memory this is and RegKind says what type 116 // the base register has (GR32Reg or GR64Reg). Length is the operand 117 // length for D(L,B)-style operands, otherwise it is null. 118 struct MemOp { 119 unsigned Base : 12; 120 unsigned Index : 12; 121 unsigned MemKind : 4; 122 unsigned RegKind : 4; 123 const MCExpr *Disp; 124 union { 125 const MCExpr *Imm; 126 unsigned Reg; 127 } Length; 128 }; 129 130 // Imm is an immediate operand, and Sym is an optional TLS symbol 131 // for use with a __tls_get_offset marker relocation. 132 struct ImmTLSOp { 133 const MCExpr *Imm; 134 const MCExpr *Sym; 135 }; 136 137 union { 138 TokenOp Token; 139 RegOp Reg; 140 const MCExpr *Imm; 141 ImmTLSOp ImmTLS; 142 MemOp Mem; 143 }; 144 145 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 146 // Add as immediates when possible. Null MCExpr = 0. 147 if (!Expr) 148 Inst.addOperand(MCOperand::createImm(0)); 149 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 150 Inst.addOperand(MCOperand::createImm(CE->getValue())); 151 else 152 Inst.addOperand(MCOperand::createExpr(Expr)); 153 } 154 155 public: 156 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 157 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 158 159 // Create particular kinds of operand. 160 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 161 SMLoc EndLoc) { 162 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 163 } 164 165 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 166 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 167 Op->Token.Data = Str.data(); 168 Op->Token.Length = Str.size(); 169 return Op; 170 } 171 172 static std::unique_ptr<SystemZOperand> 173 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 174 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 175 Op->Reg.Kind = Kind; 176 Op->Reg.Num = Num; 177 return Op; 178 } 179 180 static std::unique_ptr<SystemZOperand> 181 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 182 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 183 Op->Imm = Expr; 184 return Op; 185 } 186 187 static std::unique_ptr<SystemZOperand> 188 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 189 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 190 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 191 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 192 Op->Mem.MemKind = MemKind; 193 Op->Mem.RegKind = RegKind; 194 Op->Mem.Base = Base; 195 Op->Mem.Index = Index; 196 Op->Mem.Disp = Disp; 197 if (MemKind == BDLMem) 198 Op->Mem.Length.Imm = LengthImm; 199 if (MemKind == BDRMem) 200 Op->Mem.Length.Reg = LengthReg; 201 return Op; 202 } 203 204 static std::unique_ptr<SystemZOperand> 205 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 206 SMLoc StartLoc, SMLoc EndLoc) { 207 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 208 Op->ImmTLS.Imm = Imm; 209 Op->ImmTLS.Sym = Sym; 210 return Op; 211 } 212 213 // Token operands 214 bool isToken() const override { 215 return Kind == KindToken; 216 } 217 StringRef getToken() const { 218 assert(Kind == KindToken && "Not a token"); 219 return StringRef(Token.Data, Token.Length); 220 } 221 222 // Register operands. 223 bool isReg() const override { 224 return Kind == KindReg; 225 } 226 bool isReg(RegisterKind RegKind) const { 227 return Kind == KindReg && Reg.Kind == RegKind; 228 } 229 unsigned getReg() const override { 230 assert(Kind == KindReg && "Not a register"); 231 return Reg.Num; 232 } 233 234 // Immediate operands. 235 bool isImm() const override { 236 return Kind == KindImm; 237 } 238 bool isImm(int64_t MinValue, int64_t MaxValue) const { 239 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 240 } 241 const MCExpr *getImm() const { 242 assert(Kind == KindImm && "Not an immediate"); 243 return Imm; 244 } 245 246 // Immediate operands with optional TLS symbol. 247 bool isImmTLS() const { 248 return Kind == KindImmTLS; 249 } 250 251 const ImmTLSOp getImmTLS() const { 252 assert(Kind == KindImmTLS && "Not a TLS immediate"); 253 return ImmTLS; 254 } 255 256 // Memory operands. 257 bool isMem() const override { 258 return Kind == KindMem; 259 } 260 bool isMem(MemoryKind MemKind) const { 261 return (Kind == KindMem && 262 (Mem.MemKind == MemKind || 263 // A BDMem can be treated as a BDXMem in which the index 264 // register field is 0. 265 (Mem.MemKind == BDMem && MemKind == BDXMem))); 266 } 267 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind) && Mem.RegKind == RegKind; 269 } 270 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 272 } 273 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 274 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 275 } 276 bool isMemDisp12Len4(RegisterKind RegKind) const { 277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 278 } 279 bool isMemDisp12Len8(RegisterKind RegKind) const { 280 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 281 } 282 283 const MemOp& getMem() const { 284 assert(Kind == KindMem && "Not a Mem operand"); 285 return Mem; 286 } 287 288 // Override MCParsedAsmOperand. 289 SMLoc getStartLoc() const override { return StartLoc; } 290 SMLoc getEndLoc() const override { return EndLoc; } 291 void print(raw_ostream &OS) const override; 292 293 /// getLocRange - Get the range between the first and last token of this 294 /// operand. 295 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 296 297 // Used by the TableGen code to add particular types of operand 298 // to an instruction. 299 void addRegOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 Inst.addOperand(MCOperand::createReg(getReg())); 302 } 303 void addImmOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 1 && "Invalid number of operands"); 305 addExpr(Inst, getImm()); 306 } 307 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 2 && "Invalid number of operands"); 309 assert(isMem(BDMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 } 313 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 314 assert(N == 3 && "Invalid number of operands"); 315 assert(isMem(BDXMem) && "Invalid operand type"); 316 Inst.addOperand(MCOperand::createReg(Mem.Base)); 317 addExpr(Inst, Mem.Disp); 318 Inst.addOperand(MCOperand::createReg(Mem.Index)); 319 } 320 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 321 assert(N == 3 && "Invalid number of operands"); 322 assert(isMem(BDLMem) && "Invalid operand type"); 323 Inst.addOperand(MCOperand::createReg(Mem.Base)); 324 addExpr(Inst, Mem.Disp); 325 addExpr(Inst, Mem.Length.Imm); 326 } 327 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 328 assert(N == 3 && "Invalid number of operands"); 329 assert(isMem(BDRMem) && "Invalid operand type"); 330 Inst.addOperand(MCOperand::createReg(Mem.Base)); 331 addExpr(Inst, Mem.Disp); 332 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 333 } 334 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 335 assert(N == 3 && "Invalid number of operands"); 336 assert(isMem(BDVMem) && "Invalid operand type"); 337 Inst.addOperand(MCOperand::createReg(Mem.Base)); 338 addExpr(Inst, Mem.Disp); 339 Inst.addOperand(MCOperand::createReg(Mem.Index)); 340 } 341 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 342 assert(N == 2 && "Invalid number of operands"); 343 assert(Kind == KindImmTLS && "Invalid operand type"); 344 addExpr(Inst, ImmTLS.Imm); 345 if (ImmTLS.Sym) 346 addExpr(Inst, ImmTLS.Sym); 347 } 348 349 // Used by the TableGen code to check for particular operand types. 350 bool isGR32() const { return isReg(GR32Reg); } 351 bool isGRH32() const { return isReg(GRH32Reg); } 352 bool isGRX32() const { return false; } 353 bool isGR64() const { return isReg(GR64Reg); } 354 bool isGR128() const { return isReg(GR128Reg); } 355 bool isADDR32() const { return isReg(GR32Reg); } 356 bool isADDR64() const { return isReg(GR64Reg); } 357 bool isADDR128() const { return false; } 358 bool isFP32() const { return isReg(FP32Reg); } 359 bool isFP64() const { return isReg(FP64Reg); } 360 bool isFP128() const { return isReg(FP128Reg); } 361 bool isVR32() const { return isReg(VR32Reg); } 362 bool isVR64() const { return isReg(VR64Reg); } 363 bool isVF128() const { return false; } 364 bool isVR128() const { return isReg(VR128Reg); } 365 bool isAR32() const { return isReg(AR32Reg); } 366 bool isCR64() const { return isReg(CR64Reg); } 367 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 368 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 369 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 370 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 371 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 372 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 373 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 374 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 375 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 376 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 377 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 378 bool isU1Imm() const { return isImm(0, 1); } 379 bool isU2Imm() const { return isImm(0, 3); } 380 bool isU3Imm() const { return isImm(0, 7); } 381 bool isU4Imm() const { return isImm(0, 15); } 382 bool isU8Imm() const { return isImm(0, 255); } 383 bool isS8Imm() const { return isImm(-128, 127); } 384 bool isU12Imm() const { return isImm(0, 4095); } 385 bool isU16Imm() const { return isImm(0, 65535); } 386 bool isS16Imm() const { return isImm(-32768, 32767); } 387 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 388 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 389 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 390 }; 391 392 class SystemZAsmParser : public MCTargetAsmParser { 393 #define GET_ASSEMBLER_HEADER 394 #include "SystemZGenAsmMatcher.inc" 395 396 private: 397 MCAsmParser &Parser; 398 enum RegisterGroup { 399 RegGR, 400 RegFP, 401 RegV, 402 RegAR, 403 RegCR 404 }; 405 struct Register { 406 RegisterGroup Group; 407 unsigned Num; 408 SMLoc StartLoc, EndLoc; 409 }; 410 411 SystemZTargetStreamer &getTargetStreamer() { 412 assert(getParser().getStreamer().getTargetStreamer() && 413 "do not have a target streamer"); 414 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 415 return static_cast<SystemZTargetStreamer &>(TS); 416 } 417 418 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 419 420 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 421 422 OperandMatchResultTy parseRegister(OperandVector &Operands, 423 RegisterKind Kind); 424 425 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 426 427 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 428 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 429 bool HasLength = false, bool HasVectorIndex = false); 430 bool parseAddressRegister(Register &Reg); 431 432 bool ParseDirectiveInsn(SMLoc L); 433 bool ParseDirectiveMachine(SMLoc L); 434 bool ParseGNUAttribute(SMLoc L); 435 436 OperandMatchResultTy parseAddress(OperandVector &Operands, 437 MemoryKind MemKind, 438 RegisterKind RegKind); 439 440 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 441 int64_t MaxVal, bool AllowTLS); 442 443 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 444 445 // Both the hlasm and att variants still rely on the basic gnu asm 446 // format with respect to inputs, clobbers, outputs etc. 447 // 448 // However, calling the overriden getAssemblerDialect() method in 449 // AsmParser is problematic. It either returns the AssemblerDialect field 450 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 451 // unset, otherwise it returns the private AssemblerDialect field in 452 // AsmParser. 453 // 454 // The problematic part is because, we forcibly set the inline asm dialect 455 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 456 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 457 // not return the assembler dialect set in the respective MCAsmInfo instance. 458 // 459 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 460 // here, to get the "correct" assembler dialect, and use it in various 461 // functions. 462 unsigned getMAIAssemblerDialect() { 463 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 464 } 465 466 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 467 // or from 'a' through 'z', or '$', '_','#', or '@'. 468 inline bool isHLASMAlpha(char C) { 469 return isAlpha(C) || llvm::is_contained("_@#$", C); 470 } 471 472 // A digit in HLASM is a number from 0 to 9. 473 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 474 475 // Are we parsing using the AD_HLASM dialect? 476 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 477 478 // Are we parsing using the AD_ATT dialect? 479 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 480 481 public: 482 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 483 const MCInstrInfo &MII, 484 const MCTargetOptions &Options) 485 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 486 MCAsmParserExtension::Initialize(Parser); 487 488 // Alias the .word directive to .short. 489 parser.addAliasForDirective(".word", ".short"); 490 491 // Initialize the set of available features. 492 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 493 } 494 495 // Override MCTargetAsmParser. 496 bool ParseDirective(AsmToken DirectiveID) override; 497 bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 498 SMLoc &EndLoc) override; 499 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 500 bool RestoreOnFailure); 501 OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 502 SMLoc &EndLoc) override; 503 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 504 SMLoc NameLoc, OperandVector &Operands) override; 505 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 506 OperandVector &Operands, MCStreamer &Out, 507 uint64_t &ErrorInfo, 508 bool MatchingInlineAsm) override; 509 bool isLabel(AsmToken &Token) override; 510 511 // Used by the TableGen code to parse particular operand types. 512 OperandMatchResultTy parseGR32(OperandVector &Operands) { 513 return parseRegister(Operands, GR32Reg); 514 } 515 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 516 return parseRegister(Operands, GRH32Reg); 517 } 518 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 519 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 520 } 521 OperandMatchResultTy parseGR64(OperandVector &Operands) { 522 return parseRegister(Operands, GR64Reg); 523 } 524 OperandMatchResultTy parseGR128(OperandVector &Operands) { 525 return parseRegister(Operands, GR128Reg); 526 } 527 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 528 // For the AsmParser, we will accept %r0 for ADDR32 as well. 529 return parseRegister(Operands, GR32Reg); 530 } 531 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 532 // For the AsmParser, we will accept %r0 for ADDR64 as well. 533 return parseRegister(Operands, GR64Reg); 534 } 535 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 536 llvm_unreachable("Shouldn't be used as an operand"); 537 } 538 OperandMatchResultTy parseFP32(OperandVector &Operands) { 539 return parseRegister(Operands, FP32Reg); 540 } 541 OperandMatchResultTy parseFP64(OperandVector &Operands) { 542 return parseRegister(Operands, FP64Reg); 543 } 544 OperandMatchResultTy parseFP128(OperandVector &Operands) { 545 return parseRegister(Operands, FP128Reg); 546 } 547 OperandMatchResultTy parseVR32(OperandVector &Operands) { 548 return parseRegister(Operands, VR32Reg); 549 } 550 OperandMatchResultTy parseVR64(OperandVector &Operands) { 551 return parseRegister(Operands, VR64Reg); 552 } 553 OperandMatchResultTy parseVF128(OperandVector &Operands) { 554 llvm_unreachable("Shouldn't be used as an operand"); 555 } 556 OperandMatchResultTy parseVR128(OperandVector &Operands) { 557 return parseRegister(Operands, VR128Reg); 558 } 559 OperandMatchResultTy parseAR32(OperandVector &Operands) { 560 return parseRegister(Operands, AR32Reg); 561 } 562 OperandMatchResultTy parseCR64(OperandVector &Operands) { 563 return parseRegister(Operands, CR64Reg); 564 } 565 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 566 return parseAnyRegister(Operands); 567 } 568 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 569 return parseAddress(Operands, BDMem, GR32Reg); 570 } 571 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 572 return parseAddress(Operands, BDMem, GR64Reg); 573 } 574 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 575 return parseAddress(Operands, BDXMem, GR64Reg); 576 } 577 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 578 return parseAddress(Operands, BDLMem, GR64Reg); 579 } 580 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 581 return parseAddress(Operands, BDRMem, GR64Reg); 582 } 583 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 584 return parseAddress(Operands, BDVMem, GR64Reg); 585 } 586 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 587 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 588 } 589 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 590 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 591 } 592 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 593 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 594 } 595 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 596 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 597 } 598 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 599 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 600 } 601 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 602 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 603 } 604 }; 605 606 } // end anonymous namespace 607 608 #define GET_REGISTER_MATCHER 609 #define GET_SUBTARGET_FEATURE_NAME 610 #define GET_MATCHER_IMPLEMENTATION 611 #define GET_MNEMONIC_SPELL_CHECKER 612 #include "SystemZGenAsmMatcher.inc" 613 614 // Used for the .insn directives; contains information needed to parse the 615 // operands in the directive. 616 struct InsnMatchEntry { 617 StringRef Format; 618 uint64_t Opcode; 619 int32_t NumOperands; 620 MatchClassKind OperandKinds[7]; 621 }; 622 623 // For equal_range comparison. 624 struct CompareInsn { 625 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 626 return LHS.Format < RHS; 627 } 628 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 629 return LHS < RHS.Format; 630 } 631 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 632 return LHS.Format < RHS.Format; 633 } 634 }; 635 636 // Table initializing information for parsing the .insn directive. 637 static struct InsnMatchEntry InsnMatchTable[] = { 638 /* Format, Opcode, NumOperands, OperandKinds */ 639 { "e", SystemZ::InsnE, 1, 640 { MCK_U16Imm } }, 641 { "ri", SystemZ::InsnRI, 3, 642 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 643 { "rie", SystemZ::InsnRIE, 4, 644 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 645 { "ril", SystemZ::InsnRIL, 3, 646 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 647 { "rilu", SystemZ::InsnRILU, 3, 648 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 649 { "ris", SystemZ::InsnRIS, 5, 650 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 651 { "rr", SystemZ::InsnRR, 3, 652 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 653 { "rre", SystemZ::InsnRRE, 3, 654 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 655 { "rrf", SystemZ::InsnRRF, 5, 656 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 657 { "rrs", SystemZ::InsnRRS, 5, 658 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 659 { "rs", SystemZ::InsnRS, 4, 660 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 661 { "rse", SystemZ::InsnRSE, 4, 662 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 663 { "rsi", SystemZ::InsnRSI, 4, 664 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 665 { "rsy", SystemZ::InsnRSY, 4, 666 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 667 { "rx", SystemZ::InsnRX, 3, 668 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 669 { "rxe", SystemZ::InsnRXE, 3, 670 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 671 { "rxf", SystemZ::InsnRXF, 4, 672 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 673 { "rxy", SystemZ::InsnRXY, 3, 674 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 675 { "s", SystemZ::InsnS, 2, 676 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 677 { "si", SystemZ::InsnSI, 3, 678 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 679 { "sil", SystemZ::InsnSIL, 3, 680 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 681 { "siy", SystemZ::InsnSIY, 3, 682 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 683 { "ss", SystemZ::InsnSS, 4, 684 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 685 { "sse", SystemZ::InsnSSE, 3, 686 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 687 { "ssf", SystemZ::InsnSSF, 4, 688 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 689 { "vri", SystemZ::InsnVRI, 6, 690 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 691 { "vrr", SystemZ::InsnVRR, 7, 692 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 693 MCK_U4Imm } }, 694 { "vrs", SystemZ::InsnVRS, 5, 695 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 696 { "vrv", SystemZ::InsnVRV, 4, 697 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 698 { "vrx", SystemZ::InsnVRX, 4, 699 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 700 { "vsi", SystemZ::InsnVSI, 4, 701 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 702 }; 703 704 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 705 if (!E) 706 return; 707 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 708 OS << *CE; 709 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 710 OS << *UE; 711 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 712 OS << *BE; 713 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 714 OS << *SRE; 715 else 716 OS << *E; 717 } 718 719 void SystemZOperand::print(raw_ostream &OS) const { 720 switch (Kind) { 721 case KindToken: 722 OS << "Token:" << getToken(); 723 break; 724 case KindReg: 725 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 726 break; 727 case KindImm: 728 OS << "Imm:"; 729 printMCExpr(getImm(), OS); 730 break; 731 case KindImmTLS: 732 OS << "ImmTLS:"; 733 printMCExpr(getImmTLS().Imm, OS); 734 if (getImmTLS().Sym) { 735 OS << ", "; 736 printMCExpr(getImmTLS().Sym, OS); 737 } 738 break; 739 case KindMem: { 740 const MemOp &Op = getMem(); 741 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 742 if (Op.Base) { 743 OS << "("; 744 if (Op.MemKind == BDLMem) 745 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 746 else if (Op.MemKind == BDRMem) 747 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 748 if (Op.Index) 749 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 750 OS << SystemZInstPrinter::getRegisterName(Op.Base); 751 OS << ")"; 752 } 753 break; 754 } 755 case KindInvalid: 756 break; 757 } 758 } 759 760 // Parse one register of the form %<prefix><number>. 761 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 762 Reg.StartLoc = Parser.getTok().getLoc(); 763 764 // Eat the % prefix. 765 if (Parser.getTok().isNot(AsmToken::Percent)) 766 return Error(Parser.getTok().getLoc(), "register expected"); 767 const AsmToken &PercentTok = Parser.getTok(); 768 Parser.Lex(); 769 770 // Expect a register name. 771 if (Parser.getTok().isNot(AsmToken::Identifier)) { 772 if (RestoreOnFailure) 773 getLexer().UnLex(PercentTok); 774 return Error(Reg.StartLoc, "invalid register"); 775 } 776 777 // Check that there's a prefix. 778 StringRef Name = Parser.getTok().getString(); 779 if (Name.size() < 2) { 780 if (RestoreOnFailure) 781 getLexer().UnLex(PercentTok); 782 return Error(Reg.StartLoc, "invalid register"); 783 } 784 char Prefix = Name[0]; 785 786 // Treat the rest of the register name as a register number. 787 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 788 if (RestoreOnFailure) 789 getLexer().UnLex(PercentTok); 790 return Error(Reg.StartLoc, "invalid register"); 791 } 792 793 // Look for valid combinations of prefix and number. 794 if (Prefix == 'r' && Reg.Num < 16) 795 Reg.Group = RegGR; 796 else if (Prefix == 'f' && Reg.Num < 16) 797 Reg.Group = RegFP; 798 else if (Prefix == 'v' && Reg.Num < 32) 799 Reg.Group = RegV; 800 else if (Prefix == 'a' && Reg.Num < 16) 801 Reg.Group = RegAR; 802 else if (Prefix == 'c' && Reg.Num < 16) 803 Reg.Group = RegCR; 804 else { 805 if (RestoreOnFailure) 806 getLexer().UnLex(PercentTok); 807 return Error(Reg.StartLoc, "invalid register"); 808 } 809 810 Reg.EndLoc = Parser.getTok().getLoc(); 811 Parser.Lex(); 812 return false; 813 } 814 815 // Parse a register of kind Kind and add it to Operands. 816 OperandMatchResultTy 817 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 818 Register Reg; 819 RegisterGroup Group; 820 switch (Kind) { 821 case GR32Reg: 822 case GRH32Reg: 823 case GR64Reg: 824 case GR128Reg: 825 Group = RegGR; 826 break; 827 case FP32Reg: 828 case FP64Reg: 829 case FP128Reg: 830 Group = RegFP; 831 break; 832 case VR32Reg: 833 case VR64Reg: 834 case VR128Reg: 835 Group = RegV; 836 break; 837 case AR32Reg: 838 Group = RegAR; 839 break; 840 case CR64Reg: 841 Group = RegCR; 842 break; 843 } 844 845 // Handle register names of the form %<prefix><number> 846 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 847 if (parseRegister(Reg)) 848 return MatchOperand_ParseFail; 849 850 // Check the parsed register group "Reg.Group" with the expected "Group" 851 // Have to error out if user specified wrong prefix. 852 switch (Group) { 853 case RegGR: 854 case RegFP: 855 case RegAR: 856 case RegCR: 857 if (Group != Reg.Group) { 858 Error(Reg.StartLoc, "invalid operand for instruction"); 859 return MatchOperand_ParseFail; 860 } 861 break; 862 case RegV: 863 if (Reg.Group != RegV && Reg.Group != RegFP) { 864 Error(Reg.StartLoc, "invalid operand for instruction"); 865 return MatchOperand_ParseFail; 866 } 867 break; 868 } 869 } else if (Parser.getTok().is(AsmToken::Integer)) { 870 if (parseIntegerRegister(Reg, Group)) 871 return MatchOperand_ParseFail; 872 } 873 // Otherwise we didn't match a register operand. 874 else 875 return MatchOperand_NoMatch; 876 877 // Determine the LLVM register number according to Kind. 878 const unsigned *Regs; 879 switch (Kind) { 880 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 881 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 882 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 883 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 884 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 885 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 886 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 887 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 888 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 889 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 890 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 891 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 892 } 893 if (Regs[Reg.Num] == 0) { 894 Error(Reg.StartLoc, "invalid register pair"); 895 return MatchOperand_ParseFail; 896 } 897 898 Operands.push_back( 899 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 900 return MatchOperand_Success; 901 } 902 903 // Parse any type of register (including integers) and add it to Operands. 904 OperandMatchResultTy 905 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 906 SMLoc StartLoc = Parser.getTok().getLoc(); 907 908 // Handle integer values. 909 if (Parser.getTok().is(AsmToken::Integer)) { 910 const MCExpr *Register; 911 if (Parser.parseExpression(Register)) 912 return MatchOperand_ParseFail; 913 914 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 915 int64_t Value = CE->getValue(); 916 if (Value < 0 || Value > 15) { 917 Error(StartLoc, "invalid register"); 918 return MatchOperand_ParseFail; 919 } 920 } 921 922 SMLoc EndLoc = 923 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 924 925 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 926 } 927 else { 928 if (isParsingHLASM()) 929 return MatchOperand_NoMatch; 930 931 Register Reg; 932 if (parseRegister(Reg)) 933 return MatchOperand_ParseFail; 934 935 if (Reg.Num > 15) { 936 Error(StartLoc, "invalid register"); 937 return MatchOperand_ParseFail; 938 } 939 940 // Map to the correct register kind. 941 RegisterKind Kind; 942 unsigned RegNo; 943 if (Reg.Group == RegGR) { 944 Kind = GR64Reg; 945 RegNo = SystemZMC::GR64Regs[Reg.Num]; 946 } 947 else if (Reg.Group == RegFP) { 948 Kind = FP64Reg; 949 RegNo = SystemZMC::FP64Regs[Reg.Num]; 950 } 951 else if (Reg.Group == RegV) { 952 Kind = VR128Reg; 953 RegNo = SystemZMC::VR128Regs[Reg.Num]; 954 } 955 else if (Reg.Group == RegAR) { 956 Kind = AR32Reg; 957 RegNo = SystemZMC::AR32Regs[Reg.Num]; 958 } 959 else if (Reg.Group == RegCR) { 960 Kind = CR64Reg; 961 RegNo = SystemZMC::CR64Regs[Reg.Num]; 962 } 963 else { 964 return MatchOperand_ParseFail; 965 } 966 967 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 968 Reg.StartLoc, Reg.EndLoc)); 969 } 970 return MatchOperand_Success; 971 } 972 973 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 974 RegisterGroup Group) { 975 Reg.StartLoc = Parser.getTok().getLoc(); 976 // We have an integer token 977 const MCExpr *Register; 978 if (Parser.parseExpression(Register)) 979 return true; 980 981 const auto *CE = dyn_cast<MCConstantExpr>(Register); 982 if (!CE) 983 return true; 984 985 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 986 int64_t Value = CE->getValue(); 987 if (Value < 0 || Value > MaxRegNum) { 988 Error(Parser.getTok().getLoc(), "invalid register"); 989 return true; 990 } 991 992 // Assign the Register Number 993 Reg.Num = (unsigned)Value; 994 Reg.Group = Group; 995 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 996 997 // At this point, successfully parsed an integer register. 998 return false; 999 } 1000 1001 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 1002 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 1003 bool &HaveReg2, Register &Reg2, 1004 const MCExpr *&Disp, const MCExpr *&Length, 1005 bool HasLength, bool HasVectorIndex) { 1006 // Parse the displacement, which must always be present. 1007 if (getParser().parseExpression(Disp)) 1008 return true; 1009 1010 // Parse the optional base and index. 1011 HaveReg1 = false; 1012 HaveReg2 = false; 1013 Length = nullptr; 1014 1015 // If we have a scenario as below: 1016 // vgef %v0, 0(0), 0 1017 // This is an example of a "BDVMem" instruction type. 1018 // 1019 // So when we parse this as an integer register, the register group 1020 // needs to be tied to "RegV". Usually when the prefix is passed in 1021 // as %<prefix><reg-number> its easy to check which group it should belong to 1022 // However, if we're passing in just the integer there's no real way to 1023 // "check" what register group it should belong to. 1024 // 1025 // When the user passes in the register as an integer, the user assumes that 1026 // the compiler is responsible for substituting it as the right kind of 1027 // register. Whereas, when the user specifies a "prefix", the onus is on 1028 // the user to make sure they pass in the right kind of register. 1029 // 1030 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1031 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1032 // (i.e. insn is of type BDVMem) is true. 1033 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1034 1035 if (getLexer().is(AsmToken::LParen)) { 1036 Parser.Lex(); 1037 1038 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1039 // Parse the first register. 1040 HaveReg1 = true; 1041 if (parseRegister(Reg1)) 1042 return true; 1043 } 1044 // So if we have an integer as the first token in ([tok1], ..), it could: 1045 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1046 // instructions) 1047 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1048 else if (getLexer().is(AsmToken::Integer)) { 1049 if (HasLength) { 1050 // Instruction has a "Length" field, safe to parse the first token as 1051 // the "Length" field 1052 if (getParser().parseExpression(Length)) 1053 return true; 1054 } else { 1055 // Otherwise, if the instruction has no "Length" field, parse the 1056 // token as a "Register". We don't have to worry about whether the 1057 // instruction is invalid here, because the caller will take care of 1058 // error reporting. 1059 HaveReg1 = true; 1060 if (parseIntegerRegister(Reg1, RegGroup)) 1061 return true; 1062 } 1063 } else { 1064 // If its not an integer or a percent token, then if the instruction 1065 // is reported to have a "Length" then, parse it as "Length". 1066 if (HasLength) { 1067 if (getParser().parseExpression(Length)) 1068 return true; 1069 } 1070 } 1071 1072 // Check whether there's a second register. 1073 if (getLexer().is(AsmToken::Comma)) { 1074 Parser.Lex(); 1075 HaveReg2 = true; 1076 1077 if (getLexer().is(AsmToken::Integer)) { 1078 if (parseIntegerRegister(Reg2, RegGR)) 1079 return true; 1080 } else { 1081 if (isParsingATT() && parseRegister(Reg2)) 1082 return true; 1083 } 1084 } 1085 1086 // Consume the closing bracket. 1087 if (getLexer().isNot(AsmToken::RParen)) 1088 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1089 Parser.Lex(); 1090 } 1091 return false; 1092 } 1093 1094 // Verify that Reg is a valid address register (base or index). 1095 bool 1096 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1097 if (Reg.Group == RegV) { 1098 Error(Reg.StartLoc, "invalid use of vector addressing"); 1099 return true; 1100 } else if (Reg.Group != RegGR) { 1101 Error(Reg.StartLoc, "invalid address register"); 1102 return true; 1103 } 1104 return false; 1105 } 1106 1107 // Parse a memory operand and add it to Operands. The other arguments 1108 // are as above. 1109 OperandMatchResultTy 1110 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1111 RegisterKind RegKind) { 1112 SMLoc StartLoc = Parser.getTok().getLoc(); 1113 unsigned Base = 0, Index = 0, LengthReg = 0; 1114 Register Reg1, Reg2; 1115 bool HaveReg1, HaveReg2; 1116 const MCExpr *Disp; 1117 const MCExpr *Length; 1118 1119 bool HasLength = (MemKind == BDLMem) ? true : false; 1120 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1121 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1122 HasVectorIndex)) 1123 return MatchOperand_ParseFail; 1124 1125 const unsigned *Regs; 1126 switch (RegKind) { 1127 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1128 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1129 default: llvm_unreachable("invalid RegKind"); 1130 } 1131 1132 switch (MemKind) { 1133 case BDMem: 1134 // If we have Reg1, it must be an address register. 1135 if (HaveReg1) { 1136 if (parseAddressRegister(Reg1)) 1137 return MatchOperand_ParseFail; 1138 Base = Regs[Reg1.Num]; 1139 } 1140 // There must be no Reg2. 1141 if (HaveReg2) { 1142 Error(StartLoc, "invalid use of indexed addressing"); 1143 return MatchOperand_ParseFail; 1144 } 1145 break; 1146 case BDXMem: 1147 // If we have Reg1, it must be an address register. 1148 if (HaveReg1) { 1149 if (parseAddressRegister(Reg1)) 1150 return MatchOperand_ParseFail; 1151 // If the are two registers, the first one is the index and the 1152 // second is the base. 1153 if (HaveReg2) 1154 Index = Regs[Reg1.Num]; 1155 else 1156 Base = Regs[Reg1.Num]; 1157 } 1158 // If we have Reg2, it must be an address register. 1159 if (HaveReg2) { 1160 if (parseAddressRegister(Reg2)) 1161 return MatchOperand_ParseFail; 1162 Base = Regs[Reg2.Num]; 1163 } 1164 break; 1165 case BDLMem: 1166 // If we have Reg2, it must be an address register. 1167 if (HaveReg2) { 1168 if (parseAddressRegister(Reg2)) 1169 return MatchOperand_ParseFail; 1170 Base = Regs[Reg2.Num]; 1171 } 1172 // We cannot support base+index addressing. 1173 if (HaveReg1 && HaveReg2) { 1174 Error(StartLoc, "invalid use of indexed addressing"); 1175 return MatchOperand_ParseFail; 1176 } 1177 // We must have a length. 1178 if (!Length) { 1179 Error(StartLoc, "missing length in address"); 1180 return MatchOperand_ParseFail; 1181 } 1182 break; 1183 case BDRMem: 1184 // We must have Reg1, and it must be a GPR. 1185 if (!HaveReg1 || Reg1.Group != RegGR) { 1186 Error(StartLoc, "invalid operand for instruction"); 1187 return MatchOperand_ParseFail; 1188 } 1189 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1190 // If we have Reg2, it must be an address register. 1191 if (HaveReg2) { 1192 if (parseAddressRegister(Reg2)) 1193 return MatchOperand_ParseFail; 1194 Base = Regs[Reg2.Num]; 1195 } 1196 break; 1197 case BDVMem: 1198 // We must have Reg1, and it must be a vector register. 1199 if (!HaveReg1 || Reg1.Group != RegV) { 1200 Error(StartLoc, "vector index required in address"); 1201 return MatchOperand_ParseFail; 1202 } 1203 Index = SystemZMC::VR128Regs[Reg1.Num]; 1204 // If we have Reg2, it must be an address register. 1205 if (HaveReg2) { 1206 if (parseAddressRegister(Reg2)) 1207 return MatchOperand_ParseFail; 1208 Base = Regs[Reg2.Num]; 1209 } 1210 break; 1211 } 1212 1213 SMLoc EndLoc = 1214 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1215 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1216 Index, Length, LengthReg, 1217 StartLoc, EndLoc)); 1218 return MatchOperand_Success; 1219 } 1220 1221 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1222 StringRef IDVal = DirectiveID.getIdentifier(); 1223 1224 if (IDVal == ".insn") 1225 return ParseDirectiveInsn(DirectiveID.getLoc()); 1226 if (IDVal == ".machine") 1227 return ParseDirectiveMachine(DirectiveID.getLoc()); 1228 if (IDVal.startswith(".gnu_attribute")) 1229 return ParseGNUAttribute(DirectiveID.getLoc()); 1230 1231 return true; 1232 } 1233 1234 /// ParseDirectiveInsn 1235 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1236 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1237 MCAsmParser &Parser = getParser(); 1238 1239 // Expect instruction format as identifier. 1240 StringRef Format; 1241 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1242 if (Parser.parseIdentifier(Format)) 1243 return Error(ErrorLoc, "expected instruction format"); 1244 1245 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1246 1247 // Find entry for this format in InsnMatchTable. 1248 auto EntryRange = 1249 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1250 Format, CompareInsn()); 1251 1252 // If first == second, couldn't find a match in the table. 1253 if (EntryRange.first == EntryRange.second) 1254 return Error(ErrorLoc, "unrecognized format"); 1255 1256 struct InsnMatchEntry *Entry = EntryRange.first; 1257 1258 // Format should match from equal_range. 1259 assert(Entry->Format == Format); 1260 1261 // Parse the following operands using the table's information. 1262 for (int i = 0; i < Entry->NumOperands; i++) { 1263 MatchClassKind Kind = Entry->OperandKinds[i]; 1264 1265 SMLoc StartLoc = Parser.getTok().getLoc(); 1266 1267 // Always expect commas as separators for operands. 1268 if (getLexer().isNot(AsmToken::Comma)) 1269 return Error(StartLoc, "unexpected token in directive"); 1270 Lex(); 1271 1272 // Parse operands. 1273 OperandMatchResultTy ResTy; 1274 if (Kind == MCK_AnyReg) 1275 ResTy = parseAnyReg(Operands); 1276 else if (Kind == MCK_VR128) 1277 ResTy = parseVR128(Operands); 1278 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1279 ResTy = parseBDXAddr64(Operands); 1280 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1281 ResTy = parseBDAddr64(Operands); 1282 else if (Kind == MCK_BDVAddr64Disp12) 1283 ResTy = parseBDVAddr64(Operands); 1284 else if (Kind == MCK_PCRel32) 1285 ResTy = parsePCRel32(Operands); 1286 else if (Kind == MCK_PCRel16) 1287 ResTy = parsePCRel16(Operands); 1288 else { 1289 // Only remaining operand kind is an immediate. 1290 const MCExpr *Expr; 1291 SMLoc StartLoc = Parser.getTok().getLoc(); 1292 1293 // Expect immediate expression. 1294 if (Parser.parseExpression(Expr)) 1295 return Error(StartLoc, "unexpected token in directive"); 1296 1297 SMLoc EndLoc = 1298 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1299 1300 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1301 ResTy = MatchOperand_Success; 1302 } 1303 1304 if (ResTy != MatchOperand_Success) 1305 return true; 1306 } 1307 1308 // Build the instruction with the parsed operands. 1309 MCInst Inst = MCInstBuilder(Entry->Opcode); 1310 1311 for (size_t i = 0; i < Operands.size(); i++) { 1312 MCParsedAsmOperand &Operand = *Operands[i]; 1313 MatchClassKind Kind = Entry->OperandKinds[i]; 1314 1315 // Verify operand. 1316 unsigned Res = validateOperandClass(Operand, Kind); 1317 if (Res != Match_Success) 1318 return Error(Operand.getStartLoc(), "unexpected operand type"); 1319 1320 // Add operands to instruction. 1321 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1322 if (ZOperand.isReg()) 1323 ZOperand.addRegOperands(Inst, 1); 1324 else if (ZOperand.isMem(BDMem)) 1325 ZOperand.addBDAddrOperands(Inst, 2); 1326 else if (ZOperand.isMem(BDXMem)) 1327 ZOperand.addBDXAddrOperands(Inst, 3); 1328 else if (ZOperand.isMem(BDVMem)) 1329 ZOperand.addBDVAddrOperands(Inst, 3); 1330 else if (ZOperand.isImm()) 1331 ZOperand.addImmOperands(Inst, 1); 1332 else 1333 llvm_unreachable("unexpected operand type"); 1334 } 1335 1336 // Emit as a regular instruction. 1337 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1338 1339 return false; 1340 } 1341 1342 /// ParseDirectiveMachine 1343 /// ::= .machine [ mcpu ] 1344 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1345 MCAsmParser &Parser = getParser(); 1346 if (Parser.getTok().isNot(AsmToken::Identifier) && 1347 Parser.getTok().isNot(AsmToken::String)) 1348 return Error(L, "unexpected token in '.machine' directive"); 1349 1350 StringRef CPU = Parser.getTok().getIdentifier(); 1351 Parser.Lex(); 1352 if (parseToken(AsmToken::EndOfStatement)) 1353 return addErrorSuffix(" in '.machine' directive"); 1354 1355 MCSubtargetInfo &STI = copySTI(); 1356 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1357 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1358 1359 getTargetStreamer().emitMachine(CPU); 1360 1361 return false; 1362 } 1363 1364 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { 1365 int64_t Tag; 1366 int64_t IntegerValue; 1367 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) 1368 return false; 1369 1370 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. 1371 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) { 1372 Error(Parser.getTok().getLoc(), 1373 "Unrecognized .gnu_attribute tag/value pair."); 1374 return false; 1375 } 1376 1377 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); 1378 1379 return true; 1380 } 1381 1382 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1383 SMLoc &EndLoc, bool RestoreOnFailure) { 1384 Register Reg; 1385 if (parseRegister(Reg, RestoreOnFailure)) 1386 return true; 1387 if (Reg.Group == RegGR) 1388 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1389 else if (Reg.Group == RegFP) 1390 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1391 else if (Reg.Group == RegV) 1392 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1393 else if (Reg.Group == RegAR) 1394 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1395 else if (Reg.Group == RegCR) 1396 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1397 StartLoc = Reg.StartLoc; 1398 EndLoc = Reg.EndLoc; 1399 return false; 1400 } 1401 1402 bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1403 SMLoc &EndLoc) { 1404 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1405 } 1406 1407 OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo, 1408 SMLoc &StartLoc, 1409 SMLoc &EndLoc) { 1410 bool Result = 1411 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1412 bool PendingErrors = getParser().hasPendingError(); 1413 getParser().clearPendingErrors(); 1414 if (PendingErrors) 1415 return MatchOperand_ParseFail; 1416 if (Result) 1417 return MatchOperand_NoMatch; 1418 return MatchOperand_Success; 1419 } 1420 1421 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1422 StringRef Name, SMLoc NameLoc, 1423 OperandVector &Operands) { 1424 1425 // Apply mnemonic aliases first, before doing anything else, in 1426 // case the target uses it. 1427 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1428 1429 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1430 1431 // Read the remaining operands. 1432 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1433 // Read the first operand. 1434 if (parseOperand(Operands, Name)) { 1435 return true; 1436 } 1437 1438 // Read any subsequent operands. 1439 while (getLexer().is(AsmToken::Comma)) { 1440 Parser.Lex(); 1441 1442 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1443 return Error( 1444 Parser.getTok().getLoc(), 1445 "No space allowed between comma that separates operand entries"); 1446 1447 if (parseOperand(Operands, Name)) { 1448 return true; 1449 } 1450 } 1451 1452 // Under the HLASM variant, we could have the remark field 1453 // The remark field occurs after the operation entries 1454 // There is a space that separates the operation entries and the 1455 // remark field. 1456 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1457 // We've confirmed that there is a Remark field. 1458 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1459 Parser.Lex(); 1460 1461 // If there is nothing after the space, then there is nothing to emit 1462 // We could have a situation as this: 1463 // " \n" 1464 // After lexing above, we will have 1465 // "\n" 1466 // This isn't an explicit remark field, so we don't have to output 1467 // this as a comment. 1468 if (Remark.size()) 1469 // Output the entire Remarks Field as a comment 1470 getStreamer().AddComment(Remark); 1471 } 1472 1473 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1474 SMLoc Loc = getLexer().getLoc(); 1475 return Error(Loc, "unexpected token in argument list"); 1476 } 1477 } 1478 1479 // Consume the EndOfStatement. 1480 Parser.Lex(); 1481 return false; 1482 } 1483 1484 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1485 StringRef Mnemonic) { 1486 // Check if the current operand has a custom associated parser, if so, try to 1487 // custom parse the operand, or fallback to the general approach. Force all 1488 // features to be available during the operand check, or else we will fail to 1489 // find the custom parser, and then we will later get an InvalidOperand error 1490 // instead of a MissingFeature errror. 1491 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1492 FeatureBitset All; 1493 All.set(); 1494 setAvailableFeatures(All); 1495 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1496 setAvailableFeatures(AvailableFeatures); 1497 if (ResTy == MatchOperand_Success) 1498 return false; 1499 1500 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1501 // there was a match, but an error occurred, in which case, just return that 1502 // the operand parsing failed. 1503 if (ResTy == MatchOperand_ParseFail) 1504 return true; 1505 1506 // Check for a register. All real register operands should have used 1507 // a context-dependent parse routine, which gives the required register 1508 // class. The code is here to mop up other cases, like those where 1509 // the instruction isn't recognized. 1510 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1511 Register Reg; 1512 if (parseRegister(Reg)) 1513 return true; 1514 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1515 return false; 1516 } 1517 1518 // The only other type of operand is an immediate or address. As above, 1519 // real address operands should have used a context-dependent parse routine, 1520 // so we treat any plain expression as an immediate. 1521 SMLoc StartLoc = Parser.getTok().getLoc(); 1522 Register Reg1, Reg2; 1523 bool HaveReg1, HaveReg2; 1524 const MCExpr *Expr; 1525 const MCExpr *Length; 1526 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1527 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1528 return true; 1529 // If the register combination is not valid for any instruction, reject it. 1530 // Otherwise, fall back to reporting an unrecognized instruction. 1531 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1532 && parseAddressRegister(Reg1)) 1533 return true; 1534 if (HaveReg2 && parseAddressRegister(Reg2)) 1535 return true; 1536 1537 SMLoc EndLoc = 1538 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1539 if (HaveReg1 || HaveReg2 || Length) 1540 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1541 else 1542 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1543 return false; 1544 } 1545 1546 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1547 OperandVector &Operands, 1548 MCStreamer &Out, 1549 uint64_t &ErrorInfo, 1550 bool MatchingInlineAsm) { 1551 MCInst Inst; 1552 unsigned MatchResult; 1553 1554 unsigned Dialect = getMAIAssemblerDialect(); 1555 1556 FeatureBitset MissingFeatures; 1557 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1558 MatchingInlineAsm, Dialect); 1559 switch (MatchResult) { 1560 case Match_Success: 1561 Inst.setLoc(IDLoc); 1562 Out.emitInstruction(Inst, getSTI()); 1563 return false; 1564 1565 case Match_MissingFeature: { 1566 assert(MissingFeatures.any() && "Unknown missing feature!"); 1567 // Special case the error message for the very common case where only 1568 // a single subtarget feature is missing 1569 std::string Msg = "instruction requires:"; 1570 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1571 if (MissingFeatures[I]) { 1572 Msg += " "; 1573 Msg += getSubtargetFeatureName(I); 1574 } 1575 } 1576 return Error(IDLoc, Msg); 1577 } 1578 1579 case Match_InvalidOperand: { 1580 SMLoc ErrorLoc = IDLoc; 1581 if (ErrorInfo != ~0ULL) { 1582 if (ErrorInfo >= Operands.size()) 1583 return Error(IDLoc, "too few operands for instruction"); 1584 1585 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1586 if (ErrorLoc == SMLoc()) 1587 ErrorLoc = IDLoc; 1588 } 1589 return Error(ErrorLoc, "invalid operand for instruction"); 1590 } 1591 1592 case Match_MnemonicFail: { 1593 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1594 std::string Suggestion = SystemZMnemonicSpellCheck( 1595 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1596 return Error(IDLoc, "invalid instruction" + Suggestion, 1597 ((SystemZOperand &)*Operands[0]).getLocRange()); 1598 } 1599 } 1600 1601 llvm_unreachable("Unexpected match type"); 1602 } 1603 1604 OperandMatchResultTy 1605 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1606 int64_t MaxVal, bool AllowTLS) { 1607 MCContext &Ctx = getContext(); 1608 MCStreamer &Out = getStreamer(); 1609 const MCExpr *Expr; 1610 SMLoc StartLoc = Parser.getTok().getLoc(); 1611 if (getParser().parseExpression(Expr)) 1612 return MatchOperand_NoMatch; 1613 1614 auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1615 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1616 int64_t Value = CE->getValue(); 1617 if (Negate) 1618 Value = -Value; 1619 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1620 return true; 1621 } 1622 return false; 1623 }; 1624 1625 // For consistency with the GNU assembler, treat immediates as offsets 1626 // from ".". 1627 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1628 if (isParsingHLASM()) { 1629 Error(StartLoc, "Expected PC-relative expression"); 1630 return MatchOperand_ParseFail; 1631 } 1632 if (isOutOfRangeConstant(CE, false)) { 1633 Error(StartLoc, "offset out of range"); 1634 return MatchOperand_ParseFail; 1635 } 1636 int64_t Value = CE->getValue(); 1637 MCSymbol *Sym = Ctx.createTempSymbol(); 1638 Out.emitLabel(Sym); 1639 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1640 Ctx); 1641 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1642 } 1643 1644 // For consistency with the GNU assembler, conservatively assume that a 1645 // constant offset must by itself be within the given size range. 1646 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1647 if (isOutOfRangeConstant(BE->getLHS(), false) || 1648 isOutOfRangeConstant(BE->getRHS(), 1649 BE->getOpcode() == MCBinaryExpr::Sub)) { 1650 Error(StartLoc, "offset out of range"); 1651 return MatchOperand_ParseFail; 1652 } 1653 1654 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1655 const MCExpr *Sym = nullptr; 1656 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1657 Parser.Lex(); 1658 1659 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1660 Error(Parser.getTok().getLoc(), "unexpected token"); 1661 return MatchOperand_ParseFail; 1662 } 1663 1664 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1665 StringRef Name = Parser.getTok().getString(); 1666 if (Name == "tls_gdcall") 1667 Kind = MCSymbolRefExpr::VK_TLSGD; 1668 else if (Name == "tls_ldcall") 1669 Kind = MCSymbolRefExpr::VK_TLSLDM; 1670 else { 1671 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1672 return MatchOperand_ParseFail; 1673 } 1674 Parser.Lex(); 1675 1676 if (Parser.getTok().isNot(AsmToken::Colon)) { 1677 Error(Parser.getTok().getLoc(), "unexpected token"); 1678 return MatchOperand_ParseFail; 1679 } 1680 Parser.Lex(); 1681 1682 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1683 Error(Parser.getTok().getLoc(), "unexpected token"); 1684 return MatchOperand_ParseFail; 1685 } 1686 1687 StringRef Identifier = Parser.getTok().getString(); 1688 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1689 Kind, Ctx); 1690 Parser.Lex(); 1691 } 1692 1693 SMLoc EndLoc = 1694 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1695 1696 if (AllowTLS) 1697 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1698 StartLoc, EndLoc)); 1699 else 1700 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1701 1702 return MatchOperand_Success; 1703 } 1704 1705 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1706 if (isParsingATT()) 1707 return true; 1708 1709 // HLASM labels are ordinary symbols. 1710 // An HLASM label always starts at column 1. 1711 // An ordinary symbol syntax is laid out as follows: 1712 // Rules: 1713 // 1. Has to start with an "alphabetic character". Can be followed by up to 1714 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1715 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1716 // or '$', '_', '#', or '@' 1717 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1718 // are all treated as the same symbol. However, the processing for the case 1719 // folding will not be done in this function. 1720 StringRef RawLabel = Token.getString(); 1721 SMLoc Loc = Token.getLoc(); 1722 1723 // An HLASM label cannot be empty. 1724 if (!RawLabel.size()) 1725 return !Error(Loc, "HLASM Label cannot be empty"); 1726 1727 // An HLASM label cannot exceed greater than 63 characters. 1728 if (RawLabel.size() > 63) 1729 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1730 1731 // A label must start with an "alphabetic character". 1732 if (!isHLASMAlpha(RawLabel[0])) 1733 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1734 "character or the underscore character"); 1735 1736 // Now, we've established that the length is valid 1737 // and the first character is alphabetic. 1738 // Check whether remaining string is alphanumeric. 1739 for (unsigned I = 1; I < RawLabel.size(); ++I) 1740 if (!isHLASMAlnum(RawLabel[I])) 1741 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1742 1743 return true; 1744 } 1745 1746 // Force static initialization. 1747 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1748 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1749 } 1750