1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstBuilder.h" 22 #include "llvm/MC/MCParser/MCAsmLexer.h" 23 #include "llvm/MC/MCParser/MCAsmParser.h" 24 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 25 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 26 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 27 #include "llvm/MC/MCStreamer.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/Support/Casting.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/SMLoc.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstddef> 36 #include <cstdint> 37 #include <iterator> 38 #include <memory> 39 #include <string> 40 41 using namespace llvm; 42 43 // Return true if Expr is in the range [MinValue, MaxValue]. 44 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 45 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 46 int64_t Value = CE->getValue(); 47 return Value >= MinValue && Value <= MaxValue; 48 } 49 return false; 50 } 51 52 namespace { 53 54 enum RegisterKind { 55 GR32Reg, 56 GRH32Reg, 57 GR64Reg, 58 GR128Reg, 59 FP32Reg, 60 FP64Reg, 61 FP128Reg, 62 VR32Reg, 63 VR64Reg, 64 VR128Reg, 65 AR32Reg, 66 CR64Reg, 67 }; 68 69 enum MemoryKind { 70 BDMem, 71 BDXMem, 72 BDLMem, 73 BDRMem, 74 BDVMem 75 }; 76 77 class SystemZOperand : public MCParsedAsmOperand { 78 private: 79 enum OperandKind { 80 KindInvalid, 81 KindToken, 82 KindReg, 83 KindImm, 84 KindImmTLS, 85 KindMem 86 }; 87 88 OperandKind Kind; 89 SMLoc StartLoc, EndLoc; 90 91 // A string of length Length, starting at Data. 92 struct TokenOp { 93 const char *Data; 94 unsigned Length; 95 }; 96 97 // LLVM register Num, which has kind Kind. In some ways it might be 98 // easier for this class to have a register bank (general, floating-point 99 // or access) and a raw register number (0-15). This would postpone the 100 // interpretation of the operand to the add*() methods and avoid the need 101 // for context-dependent parsing. However, we do things the current way 102 // because of the virtual getReg() method, which needs to distinguish 103 // between (say) %r0 used as a single register and %r0 used as a pair. 104 // Context-dependent parsing can also give us slightly better error 105 // messages when invalid pairs like %r1 are used. 106 struct RegOp { 107 RegisterKind Kind; 108 unsigned Num; 109 }; 110 111 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 112 // MemKind says what type of memory this is and RegKind says what type 113 // the base register has (GR32Reg or GR64Reg). Length is the operand 114 // length for D(L,B)-style operands, otherwise it is null. 115 struct MemOp { 116 unsigned Base : 12; 117 unsigned Index : 12; 118 unsigned MemKind : 4; 119 unsigned RegKind : 4; 120 const MCExpr *Disp; 121 union { 122 const MCExpr *Imm; 123 unsigned Reg; 124 } Length; 125 }; 126 127 // Imm is an immediate operand, and Sym is an optional TLS symbol 128 // for use with a __tls_get_offset marker relocation. 129 struct ImmTLSOp { 130 const MCExpr *Imm; 131 const MCExpr *Sym; 132 }; 133 134 union { 135 TokenOp Token; 136 RegOp Reg; 137 const MCExpr *Imm; 138 ImmTLSOp ImmTLS; 139 MemOp Mem; 140 }; 141 142 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 143 // Add as immediates when possible. Null MCExpr = 0. 144 if (!Expr) 145 Inst.addOperand(MCOperand::createImm(0)); 146 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 147 Inst.addOperand(MCOperand::createImm(CE->getValue())); 148 else 149 Inst.addOperand(MCOperand::createExpr(Expr)); 150 } 151 152 public: 153 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 154 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 155 156 // Create particular kinds of operand. 157 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 158 SMLoc EndLoc) { 159 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 160 } 161 162 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 163 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 164 Op->Token.Data = Str.data(); 165 Op->Token.Length = Str.size(); 166 return Op; 167 } 168 169 static std::unique_ptr<SystemZOperand> 170 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 171 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 172 Op->Reg.Kind = Kind; 173 Op->Reg.Num = Num; 174 return Op; 175 } 176 177 static std::unique_ptr<SystemZOperand> 178 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 179 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 180 Op->Imm = Expr; 181 return Op; 182 } 183 184 static std::unique_ptr<SystemZOperand> 185 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 186 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 187 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 188 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 189 Op->Mem.MemKind = MemKind; 190 Op->Mem.RegKind = RegKind; 191 Op->Mem.Base = Base; 192 Op->Mem.Index = Index; 193 Op->Mem.Disp = Disp; 194 if (MemKind == BDLMem) 195 Op->Mem.Length.Imm = LengthImm; 196 if (MemKind == BDRMem) 197 Op->Mem.Length.Reg = LengthReg; 198 return Op; 199 } 200 201 static std::unique_ptr<SystemZOperand> 202 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 203 SMLoc StartLoc, SMLoc EndLoc) { 204 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 205 Op->ImmTLS.Imm = Imm; 206 Op->ImmTLS.Sym = Sym; 207 return Op; 208 } 209 210 // Token operands 211 bool isToken() const override { 212 return Kind == KindToken; 213 } 214 StringRef getToken() const { 215 assert(Kind == KindToken && "Not a token"); 216 return StringRef(Token.Data, Token.Length); 217 } 218 219 // Register operands. 220 bool isReg() const override { 221 return Kind == KindReg; 222 } 223 bool isReg(RegisterKind RegKind) const { 224 return Kind == KindReg && Reg.Kind == RegKind; 225 } 226 unsigned getReg() const override { 227 assert(Kind == KindReg && "Not a register"); 228 return Reg.Num; 229 } 230 231 // Immediate operands. 232 bool isImm() const override { 233 return Kind == KindImm; 234 } 235 bool isImm(int64_t MinValue, int64_t MaxValue) const { 236 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 237 } 238 const MCExpr *getImm() const { 239 assert(Kind == KindImm && "Not an immediate"); 240 return Imm; 241 } 242 243 // Immediate operands with optional TLS symbol. 244 bool isImmTLS() const { 245 return Kind == KindImmTLS; 246 } 247 248 const ImmTLSOp getImmTLS() const { 249 assert(Kind == KindImmTLS && "Not a TLS immediate"); 250 return ImmTLS; 251 } 252 253 // Memory operands. 254 bool isMem() const override { 255 return Kind == KindMem; 256 } 257 bool isMem(MemoryKind MemKind) const { 258 return (Kind == KindMem && 259 (Mem.MemKind == MemKind || 260 // A BDMem can be treated as a BDXMem in which the index 261 // register field is 0. 262 (Mem.MemKind == BDMem && MemKind == BDXMem))); 263 } 264 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 265 return isMem(MemKind) && Mem.RegKind == RegKind; 266 } 267 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 269 } 270 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 272 } 273 bool isMemDisp12Len4(RegisterKind RegKind) const { 274 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 275 } 276 bool isMemDisp12Len8(RegisterKind RegKind) const { 277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 278 } 279 280 const MemOp& getMem() const { 281 assert(Kind == KindMem && "Not a Mem operand"); 282 return Mem; 283 } 284 285 // Override MCParsedAsmOperand. 286 SMLoc getStartLoc() const override { return StartLoc; } 287 SMLoc getEndLoc() const override { return EndLoc; } 288 void print(raw_ostream &OS) const override; 289 290 /// getLocRange - Get the range between the first and last token of this 291 /// operand. 292 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 293 294 // Used by the TableGen code to add particular types of operand 295 // to an instruction. 296 void addRegOperands(MCInst &Inst, unsigned N) const { 297 assert(N == 1 && "Invalid number of operands"); 298 Inst.addOperand(MCOperand::createReg(getReg())); 299 } 300 void addImmOperands(MCInst &Inst, unsigned N) const { 301 assert(N == 1 && "Invalid number of operands"); 302 addExpr(Inst, getImm()); 303 } 304 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 305 assert(N == 2 && "Invalid number of operands"); 306 assert(isMem(BDMem) && "Invalid operand type"); 307 Inst.addOperand(MCOperand::createReg(Mem.Base)); 308 addExpr(Inst, Mem.Disp); 309 } 310 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 311 assert(N == 3 && "Invalid number of operands"); 312 assert(isMem(BDXMem) && "Invalid operand type"); 313 Inst.addOperand(MCOperand::createReg(Mem.Base)); 314 addExpr(Inst, Mem.Disp); 315 Inst.addOperand(MCOperand::createReg(Mem.Index)); 316 } 317 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 318 assert(N == 3 && "Invalid number of operands"); 319 assert(isMem(BDLMem) && "Invalid operand type"); 320 Inst.addOperand(MCOperand::createReg(Mem.Base)); 321 addExpr(Inst, Mem.Disp); 322 addExpr(Inst, Mem.Length.Imm); 323 } 324 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 325 assert(N == 3 && "Invalid number of operands"); 326 assert(isMem(BDRMem) && "Invalid operand type"); 327 Inst.addOperand(MCOperand::createReg(Mem.Base)); 328 addExpr(Inst, Mem.Disp); 329 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 330 } 331 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 332 assert(N == 3 && "Invalid number of operands"); 333 assert(isMem(BDVMem) && "Invalid operand type"); 334 Inst.addOperand(MCOperand::createReg(Mem.Base)); 335 addExpr(Inst, Mem.Disp); 336 Inst.addOperand(MCOperand::createReg(Mem.Index)); 337 } 338 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 339 assert(N == 2 && "Invalid number of operands"); 340 assert(Kind == KindImmTLS && "Invalid operand type"); 341 addExpr(Inst, ImmTLS.Imm); 342 if (ImmTLS.Sym) 343 addExpr(Inst, ImmTLS.Sym); 344 } 345 346 // Used by the TableGen code to check for particular operand types. 347 bool isGR32() const { return isReg(GR32Reg); } 348 bool isGRH32() const { return isReg(GRH32Reg); } 349 bool isGRX32() const { return false; } 350 bool isGR64() const { return isReg(GR64Reg); } 351 bool isGR128() const { return isReg(GR128Reg); } 352 bool isADDR32() const { return isReg(GR32Reg); } 353 bool isADDR64() const { return isReg(GR64Reg); } 354 bool isADDR128() const { return false; } 355 bool isFP32() const { return isReg(FP32Reg); } 356 bool isFP64() const { return isReg(FP64Reg); } 357 bool isFP128() const { return isReg(FP128Reg); } 358 bool isVR32() const { return isReg(VR32Reg); } 359 bool isVR64() const { return isReg(VR64Reg); } 360 bool isVF128() const { return false; } 361 bool isVR128() const { return isReg(VR128Reg); } 362 bool isAR32() const { return isReg(AR32Reg); } 363 bool isCR64() const { return isReg(CR64Reg); } 364 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 365 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 366 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 367 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 368 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 369 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 370 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 371 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 372 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 373 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 374 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 375 bool isU1Imm() const { return isImm(0, 1); } 376 bool isU2Imm() const { return isImm(0, 3); } 377 bool isU3Imm() const { return isImm(0, 7); } 378 bool isU4Imm() const { return isImm(0, 15); } 379 bool isU6Imm() const { return isImm(0, 63); } 380 bool isU8Imm() const { return isImm(0, 255); } 381 bool isS8Imm() const { return isImm(-128, 127); } 382 bool isU12Imm() const { return isImm(0, 4095); } 383 bool isU16Imm() const { return isImm(0, 65535); } 384 bool isS16Imm() const { return isImm(-32768, 32767); } 385 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 386 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 387 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 388 }; 389 390 class SystemZAsmParser : public MCTargetAsmParser { 391 #define GET_ASSEMBLER_HEADER 392 #include "SystemZGenAsmMatcher.inc" 393 394 private: 395 MCAsmParser &Parser; 396 enum RegisterGroup { 397 RegGR, 398 RegFP, 399 RegV, 400 RegAR, 401 RegCR 402 }; 403 struct Register { 404 RegisterGroup Group; 405 unsigned Num; 406 SMLoc StartLoc, EndLoc; 407 }; 408 409 SystemZTargetStreamer &getTargetStreamer() { 410 assert(getParser().getStreamer().getTargetStreamer() && 411 "do not have a target streamer"); 412 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 413 return static_cast<SystemZTargetStreamer &>(TS); 414 } 415 416 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 417 418 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 419 420 OperandMatchResultTy parseRegister(OperandVector &Operands, 421 RegisterKind Kind); 422 423 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 424 425 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 426 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 427 bool HasLength = false, bool HasVectorIndex = false); 428 bool parseAddressRegister(Register &Reg); 429 430 bool ParseDirectiveInsn(SMLoc L); 431 bool ParseDirectiveMachine(SMLoc L); 432 433 OperandMatchResultTy parseAddress(OperandVector &Operands, 434 MemoryKind MemKind, 435 RegisterKind RegKind); 436 437 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 438 int64_t MaxVal, bool AllowTLS); 439 440 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 441 442 // Both the hlasm and att variants still rely on the basic gnu asm 443 // format with respect to inputs, clobbers, outputs etc. 444 // 445 // However, calling the overriden getAssemblerDialect() method in 446 // AsmParser is problematic. It either returns the AssemblerDialect field 447 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 448 // unset, otherwise it returns the private AssemblerDialect field in 449 // AsmParser. 450 // 451 // The problematic part is because, we forcibly set the inline asm dialect 452 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 453 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 454 // not return the assembler dialect set in the respective MCAsmInfo instance. 455 // 456 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 457 // here, to get the "correct" assembler dialect, and use it in various 458 // functions. 459 unsigned getMAIAssemblerDialect() { 460 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 461 } 462 463 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 464 // or from 'a' through 'z', or '$', '_','#', or '@'. 465 inline bool isHLASMAlpha(char C) { 466 return isAlpha(C) || llvm::is_contained("_@#$", C); 467 } 468 469 // A digit in HLASM is a number from 0 to 9. 470 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 471 472 // Are we parsing using the AD_HLASM dialect? 473 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 474 475 // Are we parsing using the AD_ATT dialect? 476 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 477 478 public: 479 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 480 const MCInstrInfo &MII, 481 const MCTargetOptions &Options) 482 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 483 MCAsmParserExtension::Initialize(Parser); 484 485 // Alias the .word directive to .short. 486 parser.addAliasForDirective(".word", ".short"); 487 488 // Initialize the set of available features. 489 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 490 } 491 492 // Override MCTargetAsmParser. 493 bool ParseDirective(AsmToken DirectiveID) override; 494 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 495 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 496 bool RestoreOnFailure); 497 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 498 SMLoc &EndLoc) override; 499 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 500 SMLoc NameLoc, OperandVector &Operands) override; 501 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 502 OperandVector &Operands, MCStreamer &Out, 503 uint64_t &ErrorInfo, 504 bool MatchingInlineAsm) override; 505 bool isLabel(AsmToken &Token) override; 506 507 // Used by the TableGen code to parse particular operand types. 508 OperandMatchResultTy parseGR32(OperandVector &Operands) { 509 return parseRegister(Operands, GR32Reg); 510 } 511 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 512 return parseRegister(Operands, GRH32Reg); 513 } 514 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 515 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 516 } 517 OperandMatchResultTy parseGR64(OperandVector &Operands) { 518 return parseRegister(Operands, GR64Reg); 519 } 520 OperandMatchResultTy parseGR128(OperandVector &Operands) { 521 return parseRegister(Operands, GR128Reg); 522 } 523 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 524 // For the AsmParser, we will accept %r0 for ADDR32 as well. 525 return parseRegister(Operands, GR32Reg); 526 } 527 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 528 // For the AsmParser, we will accept %r0 for ADDR64 as well. 529 return parseRegister(Operands, GR64Reg); 530 } 531 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 532 llvm_unreachable("Shouldn't be used as an operand"); 533 } 534 OperandMatchResultTy parseFP32(OperandVector &Operands) { 535 return parseRegister(Operands, FP32Reg); 536 } 537 OperandMatchResultTy parseFP64(OperandVector &Operands) { 538 return parseRegister(Operands, FP64Reg); 539 } 540 OperandMatchResultTy parseFP128(OperandVector &Operands) { 541 return parseRegister(Operands, FP128Reg); 542 } 543 OperandMatchResultTy parseVR32(OperandVector &Operands) { 544 return parseRegister(Operands, VR32Reg); 545 } 546 OperandMatchResultTy parseVR64(OperandVector &Operands) { 547 return parseRegister(Operands, VR64Reg); 548 } 549 OperandMatchResultTy parseVF128(OperandVector &Operands) { 550 llvm_unreachable("Shouldn't be used as an operand"); 551 } 552 OperandMatchResultTy parseVR128(OperandVector &Operands) { 553 return parseRegister(Operands, VR128Reg); 554 } 555 OperandMatchResultTy parseAR32(OperandVector &Operands) { 556 return parseRegister(Operands, AR32Reg); 557 } 558 OperandMatchResultTy parseCR64(OperandVector &Operands) { 559 return parseRegister(Operands, CR64Reg); 560 } 561 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 562 return parseAnyRegister(Operands); 563 } 564 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 565 return parseAddress(Operands, BDMem, GR32Reg); 566 } 567 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 568 return parseAddress(Operands, BDMem, GR64Reg); 569 } 570 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 571 return parseAddress(Operands, BDXMem, GR64Reg); 572 } 573 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 574 return parseAddress(Operands, BDLMem, GR64Reg); 575 } 576 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 577 return parseAddress(Operands, BDRMem, GR64Reg); 578 } 579 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 580 return parseAddress(Operands, BDVMem, GR64Reg); 581 } 582 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 583 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 584 } 585 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 586 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 587 } 588 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 589 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 590 } 591 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 592 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 593 } 594 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 595 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 596 } 597 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 598 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 599 } 600 }; 601 602 } // end anonymous namespace 603 604 #define GET_REGISTER_MATCHER 605 #define GET_SUBTARGET_FEATURE_NAME 606 #define GET_MATCHER_IMPLEMENTATION 607 #define GET_MNEMONIC_SPELL_CHECKER 608 #include "SystemZGenAsmMatcher.inc" 609 610 // Used for the .insn directives; contains information needed to parse the 611 // operands in the directive. 612 struct InsnMatchEntry { 613 StringRef Format; 614 uint64_t Opcode; 615 int32_t NumOperands; 616 MatchClassKind OperandKinds[7]; 617 }; 618 619 // For equal_range comparison. 620 struct CompareInsn { 621 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 622 return LHS.Format < RHS; 623 } 624 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 625 return LHS < RHS.Format; 626 } 627 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 628 return LHS.Format < RHS.Format; 629 } 630 }; 631 632 // Table initializing information for parsing the .insn directive. 633 static struct InsnMatchEntry InsnMatchTable[] = { 634 /* Format, Opcode, NumOperands, OperandKinds */ 635 { "e", SystemZ::InsnE, 1, 636 { MCK_U16Imm } }, 637 { "ri", SystemZ::InsnRI, 3, 638 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 639 { "rie", SystemZ::InsnRIE, 4, 640 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 641 { "ril", SystemZ::InsnRIL, 3, 642 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 643 { "rilu", SystemZ::InsnRILU, 3, 644 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 645 { "ris", SystemZ::InsnRIS, 5, 646 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 647 { "rr", SystemZ::InsnRR, 3, 648 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 649 { "rre", SystemZ::InsnRRE, 3, 650 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 651 { "rrf", SystemZ::InsnRRF, 5, 652 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 653 { "rrs", SystemZ::InsnRRS, 5, 654 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 655 { "rs", SystemZ::InsnRS, 4, 656 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 657 { "rse", SystemZ::InsnRSE, 4, 658 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 659 { "rsi", SystemZ::InsnRSI, 4, 660 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 661 { "rsy", SystemZ::InsnRSY, 4, 662 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 663 { "rx", SystemZ::InsnRX, 3, 664 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 665 { "rxe", SystemZ::InsnRXE, 3, 666 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 667 { "rxf", SystemZ::InsnRXF, 4, 668 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 669 { "rxy", SystemZ::InsnRXY, 3, 670 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 671 { "s", SystemZ::InsnS, 2, 672 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 673 { "si", SystemZ::InsnSI, 3, 674 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 675 { "sil", SystemZ::InsnSIL, 3, 676 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 677 { "siy", SystemZ::InsnSIY, 3, 678 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 679 { "ss", SystemZ::InsnSS, 4, 680 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 681 { "sse", SystemZ::InsnSSE, 3, 682 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 683 { "ssf", SystemZ::InsnSSF, 4, 684 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 685 { "vri", SystemZ::InsnVRI, 6, 686 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 687 { "vrr", SystemZ::InsnVRR, 7, 688 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 689 MCK_U4Imm } }, 690 { "vrs", SystemZ::InsnVRS, 5, 691 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 692 { "vrv", SystemZ::InsnVRV, 4, 693 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 694 { "vrx", SystemZ::InsnVRX, 4, 695 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 696 { "vsi", SystemZ::InsnVSI, 4, 697 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 698 }; 699 700 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 701 if (!E) 702 return; 703 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 704 OS << *CE; 705 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 706 OS << *UE; 707 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 708 OS << *BE; 709 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 710 OS << *SRE; 711 else 712 OS << *E; 713 } 714 715 void SystemZOperand::print(raw_ostream &OS) const { 716 switch (Kind) { 717 case KindToken: 718 OS << "Token:" << getToken(); 719 break; 720 case KindReg: 721 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 722 break; 723 case KindImm: 724 OS << "Imm:"; 725 printMCExpr(getImm(), OS); 726 break; 727 case KindImmTLS: 728 OS << "ImmTLS:"; 729 printMCExpr(getImmTLS().Imm, OS); 730 if (getImmTLS().Sym) { 731 OS << ", "; 732 printMCExpr(getImmTLS().Sym, OS); 733 } 734 break; 735 case KindMem: { 736 const MemOp &Op = getMem(); 737 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 738 if (Op.Base) { 739 OS << "("; 740 if (Op.MemKind == BDLMem) 741 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 742 else if (Op.MemKind == BDRMem) 743 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 744 if (Op.Index) 745 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 746 OS << SystemZInstPrinter::getRegisterName(Op.Base); 747 OS << ")"; 748 } 749 break; 750 } 751 case KindInvalid: 752 break; 753 } 754 } 755 756 // Parse one register of the form %<prefix><number>. 757 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 758 Reg.StartLoc = Parser.getTok().getLoc(); 759 760 // Eat the % prefix. 761 if (Parser.getTok().isNot(AsmToken::Percent)) 762 return Error(Parser.getTok().getLoc(), "register expected"); 763 const AsmToken &PercentTok = Parser.getTok(); 764 Parser.Lex(); 765 766 // Expect a register name. 767 if (Parser.getTok().isNot(AsmToken::Identifier)) { 768 if (RestoreOnFailure) 769 getLexer().UnLex(PercentTok); 770 return Error(Reg.StartLoc, "invalid register"); 771 } 772 773 // Check that there's a prefix. 774 StringRef Name = Parser.getTok().getString(); 775 if (Name.size() < 2) { 776 if (RestoreOnFailure) 777 getLexer().UnLex(PercentTok); 778 return Error(Reg.StartLoc, "invalid register"); 779 } 780 char Prefix = Name[0]; 781 782 // Treat the rest of the register name as a register number. 783 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 784 if (RestoreOnFailure) 785 getLexer().UnLex(PercentTok); 786 return Error(Reg.StartLoc, "invalid register"); 787 } 788 789 // Look for valid combinations of prefix and number. 790 if (Prefix == 'r' && Reg.Num < 16) 791 Reg.Group = RegGR; 792 else if (Prefix == 'f' && Reg.Num < 16) 793 Reg.Group = RegFP; 794 else if (Prefix == 'v' && Reg.Num < 32) 795 Reg.Group = RegV; 796 else if (Prefix == 'a' && Reg.Num < 16) 797 Reg.Group = RegAR; 798 else if (Prefix == 'c' && Reg.Num < 16) 799 Reg.Group = RegCR; 800 else { 801 if (RestoreOnFailure) 802 getLexer().UnLex(PercentTok); 803 return Error(Reg.StartLoc, "invalid register"); 804 } 805 806 Reg.EndLoc = Parser.getTok().getLoc(); 807 Parser.Lex(); 808 return false; 809 } 810 811 // Parse a register of kind Kind and add it to Operands. 812 OperandMatchResultTy 813 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 814 Register Reg; 815 RegisterGroup Group; 816 switch (Kind) { 817 case GR32Reg: 818 case GRH32Reg: 819 case GR64Reg: 820 case GR128Reg: 821 Group = RegGR; 822 break; 823 case FP32Reg: 824 case FP64Reg: 825 case FP128Reg: 826 Group = RegFP; 827 break; 828 case VR32Reg: 829 case VR64Reg: 830 case VR128Reg: 831 Group = RegV; 832 break; 833 case AR32Reg: 834 Group = RegAR; 835 break; 836 case CR64Reg: 837 Group = RegCR; 838 break; 839 } 840 841 // Handle register names of the form %<prefix><number> 842 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 843 if (parseRegister(Reg)) 844 return MatchOperand_ParseFail; 845 846 // Check the parsed register group "Reg.Group" with the expected "Group" 847 // Have to error out if user specified wrong prefix. 848 switch (Group) { 849 case RegGR: 850 case RegFP: 851 case RegAR: 852 case RegCR: 853 if (Group != Reg.Group) { 854 Error(Reg.StartLoc, "invalid operand for instruction"); 855 return MatchOperand_ParseFail; 856 } 857 break; 858 case RegV: 859 if (Reg.Group != RegV && Reg.Group != RegFP) { 860 Error(Reg.StartLoc, "invalid operand for instruction"); 861 return MatchOperand_ParseFail; 862 } 863 break; 864 } 865 } else if (Parser.getTok().is(AsmToken::Integer)) { 866 if (parseIntegerRegister(Reg, Group)) 867 return MatchOperand_ParseFail; 868 } 869 // Otherwise we didn't match a register operand. 870 else 871 return MatchOperand_NoMatch; 872 873 // Determine the LLVM register number according to Kind. 874 const unsigned *Regs; 875 switch (Kind) { 876 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 877 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 878 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 879 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 880 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 881 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 882 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 883 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 884 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 885 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 886 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 887 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 888 } 889 if (Regs[Reg.Num] == 0) { 890 Error(Reg.StartLoc, "invalid register pair"); 891 return MatchOperand_ParseFail; 892 } 893 894 Operands.push_back( 895 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 896 return MatchOperand_Success; 897 } 898 899 // Parse any type of register (including integers) and add it to Operands. 900 OperandMatchResultTy 901 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 902 SMLoc StartLoc = Parser.getTok().getLoc(); 903 904 // Handle integer values. 905 if (Parser.getTok().is(AsmToken::Integer)) { 906 const MCExpr *Register; 907 if (Parser.parseExpression(Register)) 908 return MatchOperand_ParseFail; 909 910 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 911 int64_t Value = CE->getValue(); 912 if (Value < 0 || Value > 15) { 913 Error(StartLoc, "invalid register"); 914 return MatchOperand_ParseFail; 915 } 916 } 917 918 SMLoc EndLoc = 919 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 920 921 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 922 } 923 else { 924 if (isParsingHLASM()) 925 return MatchOperand_NoMatch; 926 927 Register Reg; 928 if (parseRegister(Reg)) 929 return MatchOperand_ParseFail; 930 931 if (Reg.Num > 15) { 932 Error(StartLoc, "invalid register"); 933 return MatchOperand_ParseFail; 934 } 935 936 // Map to the correct register kind. 937 RegisterKind Kind; 938 unsigned RegNo; 939 if (Reg.Group == RegGR) { 940 Kind = GR64Reg; 941 RegNo = SystemZMC::GR64Regs[Reg.Num]; 942 } 943 else if (Reg.Group == RegFP) { 944 Kind = FP64Reg; 945 RegNo = SystemZMC::FP64Regs[Reg.Num]; 946 } 947 else if (Reg.Group == RegV) { 948 Kind = VR128Reg; 949 RegNo = SystemZMC::VR128Regs[Reg.Num]; 950 } 951 else if (Reg.Group == RegAR) { 952 Kind = AR32Reg; 953 RegNo = SystemZMC::AR32Regs[Reg.Num]; 954 } 955 else if (Reg.Group == RegCR) { 956 Kind = CR64Reg; 957 RegNo = SystemZMC::CR64Regs[Reg.Num]; 958 } 959 else { 960 return MatchOperand_ParseFail; 961 } 962 963 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 964 Reg.StartLoc, Reg.EndLoc)); 965 } 966 return MatchOperand_Success; 967 } 968 969 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 970 RegisterGroup Group) { 971 Reg.StartLoc = Parser.getTok().getLoc(); 972 // We have an integer token 973 const MCExpr *Register; 974 if (Parser.parseExpression(Register)) 975 return true; 976 977 const auto *CE = dyn_cast<MCConstantExpr>(Register); 978 if (!CE) 979 return true; 980 981 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 982 int64_t Value = CE->getValue(); 983 if (Value < 0 || Value > MaxRegNum) { 984 Error(Parser.getTok().getLoc(), "invalid register"); 985 return true; 986 } 987 988 // Assign the Register Number 989 Reg.Num = (unsigned)Value; 990 Reg.Group = Group; 991 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 992 993 // At this point, successfully parsed an integer register. 994 return false; 995 } 996 997 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 998 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 999 bool &HaveReg2, Register &Reg2, 1000 const MCExpr *&Disp, const MCExpr *&Length, 1001 bool HasLength, bool HasVectorIndex) { 1002 // Parse the displacement, which must always be present. 1003 if (getParser().parseExpression(Disp)) 1004 return true; 1005 1006 // Parse the optional base and index. 1007 HaveReg1 = false; 1008 HaveReg2 = false; 1009 Length = nullptr; 1010 1011 // If we have a scenario as below: 1012 // vgef %v0, 0(0), 0 1013 // This is an example of a "BDVMem" instruction type. 1014 // 1015 // So when we parse this as an integer register, the register group 1016 // needs to be tied to "RegV". Usually when the prefix is passed in 1017 // as %<prefix><reg-number> its easy to check which group it should belong to 1018 // However, if we're passing in just the integer there's no real way to 1019 // "check" what register group it should belong to. 1020 // 1021 // When the user passes in the register as an integer, the user assumes that 1022 // the compiler is responsible for substituting it as the right kind of 1023 // register. Whereas, when the user specifies a "prefix", the onus is on 1024 // the user to make sure they pass in the right kind of register. 1025 // 1026 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1027 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1028 // (i.e. insn is of type BDVMem) is true. 1029 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1030 1031 if (getLexer().is(AsmToken::LParen)) { 1032 Parser.Lex(); 1033 1034 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1035 // Parse the first register. 1036 HaveReg1 = true; 1037 if (parseRegister(Reg1)) 1038 return true; 1039 } 1040 // So if we have an integer as the first token in ([tok1], ..), it could: 1041 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1042 // instructions) 1043 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1044 else if (getLexer().is(AsmToken::Integer)) { 1045 if (HasLength) { 1046 // Instruction has a "Length" field, safe to parse the first token as 1047 // the "Length" field 1048 if (getParser().parseExpression(Length)) 1049 return true; 1050 } else { 1051 // Otherwise, if the instruction has no "Length" field, parse the 1052 // token as a "Register". We don't have to worry about whether the 1053 // instruction is invalid here, because the caller will take care of 1054 // error reporting. 1055 HaveReg1 = true; 1056 if (parseIntegerRegister(Reg1, RegGroup)) 1057 return true; 1058 } 1059 } else { 1060 // If its not an integer or a percent token, then if the instruction 1061 // is reported to have a "Length" then, parse it as "Length". 1062 if (HasLength) { 1063 if (getParser().parseExpression(Length)) 1064 return true; 1065 } 1066 } 1067 1068 // Check whether there's a second register. 1069 if (getLexer().is(AsmToken::Comma)) { 1070 Parser.Lex(); 1071 HaveReg2 = true; 1072 1073 if (getLexer().is(AsmToken::Integer)) { 1074 if (parseIntegerRegister(Reg2, RegGR)) 1075 return true; 1076 } else { 1077 if (isParsingATT() && parseRegister(Reg2)) 1078 return true; 1079 } 1080 } 1081 1082 // Consume the closing bracket. 1083 if (getLexer().isNot(AsmToken::RParen)) 1084 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1085 Parser.Lex(); 1086 } 1087 return false; 1088 } 1089 1090 // Verify that Reg is a valid address register (base or index). 1091 bool 1092 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1093 if (Reg.Group == RegV) { 1094 Error(Reg.StartLoc, "invalid use of vector addressing"); 1095 return true; 1096 } else if (Reg.Group != RegGR) { 1097 Error(Reg.StartLoc, "invalid address register"); 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 // Parse a memory operand and add it to Operands. The other arguments 1104 // are as above. 1105 OperandMatchResultTy 1106 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1107 RegisterKind RegKind) { 1108 SMLoc StartLoc = Parser.getTok().getLoc(); 1109 unsigned Base = 0, Index = 0, LengthReg = 0; 1110 Register Reg1, Reg2; 1111 bool HaveReg1, HaveReg2; 1112 const MCExpr *Disp; 1113 const MCExpr *Length; 1114 1115 bool HasLength = (MemKind == BDLMem) ? true : false; 1116 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1117 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1118 HasVectorIndex)) 1119 return MatchOperand_ParseFail; 1120 1121 const unsigned *Regs; 1122 switch (RegKind) { 1123 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1124 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1125 default: llvm_unreachable("invalid RegKind"); 1126 } 1127 1128 switch (MemKind) { 1129 case BDMem: 1130 // If we have Reg1, it must be an address register. 1131 if (HaveReg1) { 1132 if (parseAddressRegister(Reg1)) 1133 return MatchOperand_ParseFail; 1134 Base = Regs[Reg1.Num]; 1135 } 1136 // There must be no Reg2. 1137 if (HaveReg2) { 1138 Error(StartLoc, "invalid use of indexed addressing"); 1139 return MatchOperand_ParseFail; 1140 } 1141 break; 1142 case BDXMem: 1143 // If we have Reg1, it must be an address register. 1144 if (HaveReg1) { 1145 if (parseAddressRegister(Reg1)) 1146 return MatchOperand_ParseFail; 1147 // If the are two registers, the first one is the index and the 1148 // second is the base. 1149 if (HaveReg2) 1150 Index = Regs[Reg1.Num]; 1151 else 1152 Base = Regs[Reg1.Num]; 1153 } 1154 // If we have Reg2, it must be an address register. 1155 if (HaveReg2) { 1156 if (parseAddressRegister(Reg2)) 1157 return MatchOperand_ParseFail; 1158 Base = Regs[Reg2.Num]; 1159 } 1160 break; 1161 case BDLMem: 1162 // If we have Reg2, it must be an address register. 1163 if (HaveReg2) { 1164 if (parseAddressRegister(Reg2)) 1165 return MatchOperand_ParseFail; 1166 Base = Regs[Reg2.Num]; 1167 } 1168 // We cannot support base+index addressing. 1169 if (HaveReg1 && HaveReg2) { 1170 Error(StartLoc, "invalid use of indexed addressing"); 1171 return MatchOperand_ParseFail; 1172 } 1173 // We must have a length. 1174 if (!Length) { 1175 Error(StartLoc, "missing length in address"); 1176 return MatchOperand_ParseFail; 1177 } 1178 break; 1179 case BDRMem: 1180 // We must have Reg1, and it must be a GPR. 1181 if (!HaveReg1 || Reg1.Group != RegGR) { 1182 Error(StartLoc, "invalid operand for instruction"); 1183 return MatchOperand_ParseFail; 1184 } 1185 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1186 // If we have Reg2, it must be an address register. 1187 if (HaveReg2) { 1188 if (parseAddressRegister(Reg2)) 1189 return MatchOperand_ParseFail; 1190 Base = Regs[Reg2.Num]; 1191 } 1192 break; 1193 case BDVMem: 1194 // We must have Reg1, and it must be a vector register. 1195 if (!HaveReg1 || Reg1.Group != RegV) { 1196 Error(StartLoc, "vector index required in address"); 1197 return MatchOperand_ParseFail; 1198 } 1199 Index = SystemZMC::VR128Regs[Reg1.Num]; 1200 // If we have Reg2, it must be an address register. 1201 if (HaveReg2) { 1202 if (parseAddressRegister(Reg2)) 1203 return MatchOperand_ParseFail; 1204 Base = Regs[Reg2.Num]; 1205 } 1206 break; 1207 } 1208 1209 SMLoc EndLoc = 1210 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1211 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1212 Index, Length, LengthReg, 1213 StartLoc, EndLoc)); 1214 return MatchOperand_Success; 1215 } 1216 1217 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1218 StringRef IDVal = DirectiveID.getIdentifier(); 1219 1220 if (IDVal == ".insn") 1221 return ParseDirectiveInsn(DirectiveID.getLoc()); 1222 if (IDVal == ".machine") 1223 return ParseDirectiveMachine(DirectiveID.getLoc()); 1224 1225 return true; 1226 } 1227 1228 /// ParseDirectiveInsn 1229 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1230 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1231 MCAsmParser &Parser = getParser(); 1232 1233 // Expect instruction format as identifier. 1234 StringRef Format; 1235 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1236 if (Parser.parseIdentifier(Format)) 1237 return Error(ErrorLoc, "expected instruction format"); 1238 1239 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1240 1241 // Find entry for this format in InsnMatchTable. 1242 auto EntryRange = 1243 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1244 Format, CompareInsn()); 1245 1246 // If first == second, couldn't find a match in the table. 1247 if (EntryRange.first == EntryRange.second) 1248 return Error(ErrorLoc, "unrecognized format"); 1249 1250 struct InsnMatchEntry *Entry = EntryRange.first; 1251 1252 // Format should match from equal_range. 1253 assert(Entry->Format == Format); 1254 1255 // Parse the following operands using the table's information. 1256 for (int i = 0; i < Entry->NumOperands; i++) { 1257 MatchClassKind Kind = Entry->OperandKinds[i]; 1258 1259 SMLoc StartLoc = Parser.getTok().getLoc(); 1260 1261 // Always expect commas as separators for operands. 1262 if (getLexer().isNot(AsmToken::Comma)) 1263 return Error(StartLoc, "unexpected token in directive"); 1264 Lex(); 1265 1266 // Parse operands. 1267 OperandMatchResultTy ResTy; 1268 if (Kind == MCK_AnyReg) 1269 ResTy = parseAnyReg(Operands); 1270 else if (Kind == MCK_VR128) 1271 ResTy = parseVR128(Operands); 1272 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1273 ResTy = parseBDXAddr64(Operands); 1274 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1275 ResTy = parseBDAddr64(Operands); 1276 else if (Kind == MCK_BDVAddr64Disp12) 1277 ResTy = parseBDVAddr64(Operands); 1278 else if (Kind == MCK_PCRel32) 1279 ResTy = parsePCRel32(Operands); 1280 else if (Kind == MCK_PCRel16) 1281 ResTy = parsePCRel16(Operands); 1282 else { 1283 // Only remaining operand kind is an immediate. 1284 const MCExpr *Expr; 1285 SMLoc StartLoc = Parser.getTok().getLoc(); 1286 1287 // Expect immediate expression. 1288 if (Parser.parseExpression(Expr)) 1289 return Error(StartLoc, "unexpected token in directive"); 1290 1291 SMLoc EndLoc = 1292 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1293 1294 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1295 ResTy = MatchOperand_Success; 1296 } 1297 1298 if (ResTy != MatchOperand_Success) 1299 return true; 1300 } 1301 1302 // Build the instruction with the parsed operands. 1303 MCInst Inst = MCInstBuilder(Entry->Opcode); 1304 1305 for (size_t i = 0; i < Operands.size(); i++) { 1306 MCParsedAsmOperand &Operand = *Operands[i]; 1307 MatchClassKind Kind = Entry->OperandKinds[i]; 1308 1309 // Verify operand. 1310 unsigned Res = validateOperandClass(Operand, Kind); 1311 if (Res != Match_Success) 1312 return Error(Operand.getStartLoc(), "unexpected operand type"); 1313 1314 // Add operands to instruction. 1315 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1316 if (ZOperand.isReg()) 1317 ZOperand.addRegOperands(Inst, 1); 1318 else if (ZOperand.isMem(BDMem)) 1319 ZOperand.addBDAddrOperands(Inst, 2); 1320 else if (ZOperand.isMem(BDXMem)) 1321 ZOperand.addBDXAddrOperands(Inst, 3); 1322 else if (ZOperand.isMem(BDVMem)) 1323 ZOperand.addBDVAddrOperands(Inst, 3); 1324 else if (ZOperand.isImm()) 1325 ZOperand.addImmOperands(Inst, 1); 1326 else 1327 llvm_unreachable("unexpected operand type"); 1328 } 1329 1330 // Emit as a regular instruction. 1331 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1332 1333 return false; 1334 } 1335 1336 /// ParseDirectiveMachine 1337 /// ::= .machine [ mcpu ] 1338 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1339 MCAsmParser &Parser = getParser(); 1340 if (Parser.getTok().isNot(AsmToken::Identifier) && 1341 Parser.getTok().isNot(AsmToken::String)) 1342 return Error(L, "unexpected token in '.machine' directive"); 1343 1344 StringRef CPU = Parser.getTok().getIdentifier(); 1345 Parser.Lex(); 1346 if (parseToken(AsmToken::EndOfStatement)) 1347 return addErrorSuffix(" in '.machine' directive"); 1348 1349 MCSubtargetInfo &STI = copySTI(); 1350 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1351 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1352 1353 getTargetStreamer().emitMachine(CPU); 1354 1355 return false; 1356 } 1357 1358 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1359 SMLoc &EndLoc, bool RestoreOnFailure) { 1360 Register Reg; 1361 if (parseRegister(Reg, RestoreOnFailure)) 1362 return true; 1363 if (Reg.Group == RegGR) 1364 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1365 else if (Reg.Group == RegFP) 1366 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1367 else if (Reg.Group == RegV) 1368 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1369 else if (Reg.Group == RegAR) 1370 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1371 else if (Reg.Group == RegCR) 1372 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1373 StartLoc = Reg.StartLoc; 1374 EndLoc = Reg.EndLoc; 1375 return false; 1376 } 1377 1378 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1379 SMLoc &EndLoc) { 1380 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1381 } 1382 1383 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1384 SMLoc &StartLoc, 1385 SMLoc &EndLoc) { 1386 bool Result = 1387 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1388 bool PendingErrors = getParser().hasPendingError(); 1389 getParser().clearPendingErrors(); 1390 if (PendingErrors) 1391 return MatchOperand_ParseFail; 1392 if (Result) 1393 return MatchOperand_NoMatch; 1394 return MatchOperand_Success; 1395 } 1396 1397 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1398 StringRef Name, SMLoc NameLoc, 1399 OperandVector &Operands) { 1400 1401 // Apply mnemonic aliases first, before doing anything else, in 1402 // case the target uses it. 1403 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1404 1405 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1406 1407 // Read the remaining operands. 1408 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1409 // Read the first operand. 1410 if (parseOperand(Operands, Name)) { 1411 return true; 1412 } 1413 1414 // Read any subsequent operands. 1415 while (getLexer().is(AsmToken::Comma)) { 1416 Parser.Lex(); 1417 1418 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1419 return Error( 1420 Parser.getTok().getLoc(), 1421 "No space allowed between comma that separates operand entries"); 1422 1423 if (parseOperand(Operands, Name)) { 1424 return true; 1425 } 1426 } 1427 1428 // Under the HLASM variant, we could have the remark field 1429 // The remark field occurs after the operation entries 1430 // There is a space that separates the operation entries and the 1431 // remark field. 1432 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1433 // We've confirmed that there is a Remark field. 1434 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1435 Parser.Lex(); 1436 1437 // If there is nothing after the space, then there is nothing to emit 1438 // We could have a situation as this: 1439 // " \n" 1440 // After lexing above, we will have 1441 // "\n" 1442 // This isn't an explicit remark field, so we don't have to output 1443 // this as a comment. 1444 if (Remark.size()) 1445 // Output the entire Remarks Field as a comment 1446 getStreamer().AddComment(Remark); 1447 } 1448 1449 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1450 SMLoc Loc = getLexer().getLoc(); 1451 return Error(Loc, "unexpected token in argument list"); 1452 } 1453 } 1454 1455 // Consume the EndOfStatement. 1456 Parser.Lex(); 1457 return false; 1458 } 1459 1460 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1461 StringRef Mnemonic) { 1462 // Check if the current operand has a custom associated parser, if so, try to 1463 // custom parse the operand, or fallback to the general approach. Force all 1464 // features to be available during the operand check, or else we will fail to 1465 // find the custom parser, and then we will later get an InvalidOperand error 1466 // instead of a MissingFeature errror. 1467 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1468 FeatureBitset All; 1469 All.set(); 1470 setAvailableFeatures(All); 1471 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1472 setAvailableFeatures(AvailableFeatures); 1473 if (ResTy == MatchOperand_Success) 1474 return false; 1475 1476 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1477 // there was a match, but an error occurred, in which case, just return that 1478 // the operand parsing failed. 1479 if (ResTy == MatchOperand_ParseFail) 1480 return true; 1481 1482 // Check for a register. All real register operands should have used 1483 // a context-dependent parse routine, which gives the required register 1484 // class. The code is here to mop up other cases, like those where 1485 // the instruction isn't recognized. 1486 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1487 Register Reg; 1488 if (parseRegister(Reg)) 1489 return true; 1490 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1491 return false; 1492 } 1493 1494 // The only other type of operand is an immediate or address. As above, 1495 // real address operands should have used a context-dependent parse routine, 1496 // so we treat any plain expression as an immediate. 1497 SMLoc StartLoc = Parser.getTok().getLoc(); 1498 Register Reg1, Reg2; 1499 bool HaveReg1, HaveReg2; 1500 const MCExpr *Expr; 1501 const MCExpr *Length; 1502 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1503 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1504 return true; 1505 // If the register combination is not valid for any instruction, reject it. 1506 // Otherwise, fall back to reporting an unrecognized instruction. 1507 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1508 && parseAddressRegister(Reg1)) 1509 return true; 1510 if (HaveReg2 && parseAddressRegister(Reg2)) 1511 return true; 1512 1513 SMLoc EndLoc = 1514 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1515 if (HaveReg1 || HaveReg2 || Length) 1516 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1517 else 1518 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1519 return false; 1520 } 1521 1522 static std::string SystemZMnemonicSpellCheck(StringRef S, 1523 const FeatureBitset &FBS, 1524 unsigned VariantID = 0); 1525 1526 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1527 OperandVector &Operands, 1528 MCStreamer &Out, 1529 uint64_t &ErrorInfo, 1530 bool MatchingInlineAsm) { 1531 MCInst Inst; 1532 unsigned MatchResult; 1533 1534 unsigned Dialect = getMAIAssemblerDialect(); 1535 1536 FeatureBitset MissingFeatures; 1537 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1538 MatchingInlineAsm, Dialect); 1539 switch (MatchResult) { 1540 case Match_Success: 1541 Inst.setLoc(IDLoc); 1542 Out.emitInstruction(Inst, getSTI()); 1543 return false; 1544 1545 case Match_MissingFeature: { 1546 assert(MissingFeatures.any() && "Unknown missing feature!"); 1547 // Special case the error message for the very common case where only 1548 // a single subtarget feature is missing 1549 std::string Msg = "instruction requires:"; 1550 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1551 if (MissingFeatures[I]) { 1552 Msg += " "; 1553 Msg += getSubtargetFeatureName(I); 1554 } 1555 } 1556 return Error(IDLoc, Msg); 1557 } 1558 1559 case Match_InvalidOperand: { 1560 SMLoc ErrorLoc = IDLoc; 1561 if (ErrorInfo != ~0ULL) { 1562 if (ErrorInfo >= Operands.size()) 1563 return Error(IDLoc, "too few operands for instruction"); 1564 1565 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1566 if (ErrorLoc == SMLoc()) 1567 ErrorLoc = IDLoc; 1568 } 1569 return Error(ErrorLoc, "invalid operand for instruction"); 1570 } 1571 1572 case Match_MnemonicFail: { 1573 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1574 std::string Suggestion = SystemZMnemonicSpellCheck( 1575 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1576 return Error(IDLoc, "invalid instruction" + Suggestion, 1577 ((SystemZOperand &)*Operands[0]).getLocRange()); 1578 } 1579 } 1580 1581 llvm_unreachable("Unexpected match type"); 1582 } 1583 1584 OperandMatchResultTy 1585 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1586 int64_t MaxVal, bool AllowTLS) { 1587 MCContext &Ctx = getContext(); 1588 MCStreamer &Out = getStreamer(); 1589 const MCExpr *Expr; 1590 SMLoc StartLoc = Parser.getTok().getLoc(); 1591 if (getParser().parseExpression(Expr)) 1592 return MatchOperand_NoMatch; 1593 1594 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool { 1595 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1596 int64_t Value = CE->getValue(); 1597 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1598 return true; 1599 } 1600 return false; 1601 }; 1602 1603 // For consistency with the GNU assembler, treat immediates as offsets 1604 // from ".". 1605 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1606 if (isParsingHLASM()) { 1607 Error(StartLoc, "Expected PC-relative expression"); 1608 return MatchOperand_ParseFail; 1609 } 1610 if (isOutOfRangeConstant(CE)) { 1611 Error(StartLoc, "offset out of range"); 1612 return MatchOperand_ParseFail; 1613 } 1614 int64_t Value = CE->getValue(); 1615 MCSymbol *Sym = Ctx.createTempSymbol(); 1616 Out.emitLabel(Sym); 1617 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1618 Ctx); 1619 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1620 } 1621 1622 // For consistency with the GNU assembler, conservatively assume that a 1623 // constant offset must by itself be within the given size range. 1624 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1625 if (isOutOfRangeConstant(BE->getLHS()) || 1626 isOutOfRangeConstant(BE->getRHS())) { 1627 Error(StartLoc, "offset out of range"); 1628 return MatchOperand_ParseFail; 1629 } 1630 1631 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1632 const MCExpr *Sym = nullptr; 1633 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1634 Parser.Lex(); 1635 1636 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1637 Error(Parser.getTok().getLoc(), "unexpected token"); 1638 return MatchOperand_ParseFail; 1639 } 1640 1641 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1642 StringRef Name = Parser.getTok().getString(); 1643 if (Name == "tls_gdcall") 1644 Kind = MCSymbolRefExpr::VK_TLSGD; 1645 else if (Name == "tls_ldcall") 1646 Kind = MCSymbolRefExpr::VK_TLSLDM; 1647 else { 1648 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1649 return MatchOperand_ParseFail; 1650 } 1651 Parser.Lex(); 1652 1653 if (Parser.getTok().isNot(AsmToken::Colon)) { 1654 Error(Parser.getTok().getLoc(), "unexpected token"); 1655 return MatchOperand_ParseFail; 1656 } 1657 Parser.Lex(); 1658 1659 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1660 Error(Parser.getTok().getLoc(), "unexpected token"); 1661 return MatchOperand_ParseFail; 1662 } 1663 1664 StringRef Identifier = Parser.getTok().getString(); 1665 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1666 Kind, Ctx); 1667 Parser.Lex(); 1668 } 1669 1670 SMLoc EndLoc = 1671 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1672 1673 if (AllowTLS) 1674 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1675 StartLoc, EndLoc)); 1676 else 1677 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1678 1679 return MatchOperand_Success; 1680 } 1681 1682 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1683 if (isParsingATT()) 1684 return true; 1685 1686 // HLASM labels are ordinary symbols. 1687 // An HLASM label always starts at column 1. 1688 // An ordinary symbol syntax is laid out as follows: 1689 // Rules: 1690 // 1. Has to start with an "alphabetic character". Can be followed by up to 1691 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1692 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1693 // or '$', '_', '#', or '@' 1694 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1695 // are all treated as the same symbol. However, the processing for the case 1696 // folding will not be done in this function. 1697 StringRef RawLabel = Token.getString(); 1698 SMLoc Loc = Token.getLoc(); 1699 1700 // An HLASM label cannot be empty. 1701 if (!RawLabel.size()) 1702 return !Error(Loc, "HLASM Label cannot be empty"); 1703 1704 // An HLASM label cannot exceed greater than 63 characters. 1705 if (RawLabel.size() > 63) 1706 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1707 1708 // A label must start with an "alphabetic character". 1709 if (!isHLASMAlpha(RawLabel[0])) 1710 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1711 "character or the underscore character"); 1712 1713 // Now, we've established that the length is valid 1714 // and the first character is alphabetic. 1715 // Check whether remaining string is alphanumeric. 1716 for (unsigned I = 1; I < RawLabel.size(); ++I) 1717 if (!isHLASMAlnum(RawLabel[I])) 1718 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1719 1720 return true; 1721 } 1722 1723 // Force static initialization. 1724 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1725 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1726 } 1727