1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Sparc instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Instruction format superclass 15//===----------------------------------------------------------------------===// 16 17include "SparcInstrFormats.td" 18 19//===----------------------------------------------------------------------===// 20// Feature predicates. 21//===----------------------------------------------------------------------===// 22 23// True when generating 32-bit code. 24def Is32Bit : Predicate<"!Subtarget->is64Bit()">; 25 26// True when generating 64-bit code. This also implies HasV9. 27def Is64Bit : Predicate<"Subtarget->is64Bit()">; 28 29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">, 30 AssemblerPredicate<(all_of FeatureSoftMulDiv)>; 31 32// HasV9 - This predicate is true when the target processor supports V9 33// instructions. Note that the machine may be running in 32-bit mode. 34def HasV9 : Predicate<"Subtarget->isV9()">, 35 AssemblerPredicate<(all_of FeatureV9)>; 36 37// HasNoV9 - This predicate is true when the target doesn't have V9 38// instructions. Use of this is just a hack for the isel not having proper 39// costs for V8 instructions that are more expensive than their V9 ones. 40def HasNoV9 : Predicate<"!Subtarget->isV9()">; 41 42// HasVIS - This is true when the target processor has VIS extensions. 43def HasVIS : Predicate<"Subtarget->isVIS()">, 44 AssemblerPredicate<(all_of FeatureVIS)>; 45def HasVIS2 : Predicate<"Subtarget->isVIS2()">, 46 AssemblerPredicate<(all_of FeatureVIS2)>; 47def HasVIS3 : Predicate<"Subtarget->isVIS3()">, 48 AssemblerPredicate<(all_of FeatureVIS3)>; 49 50// HasHardQuad - This is true when the target processor supports quad floating 51// point instructions. 52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; 53 54// HasLeonCASA - This is true when the target processor supports the Leon CASA 55// instruction. 56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; 57 58// HasCASA - This is true when the target processor supports CASA instruction. 59def HasCASA : Predicate<"Subtarget->hasLeonCasa() || Subtarget->isV9()">, 60 AssemblerPredicate<(any_of LeonCASA, FeatureV9)>; 61 62// HasPWRPSR - This is true when the target processor supports partial 63// writes to the PSR register that only affects the ET field. 64def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">, 65 AssemblerPredicate<(all_of FeaturePWRPSR)>; 66 67// HasUMAC_SMAC - This is true when the target processor supports the 68// UMAC and SMAC instructions 69def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; 70 71def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; 72def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">; 73def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">; 74 75// UseDeprecatedInsts - This predicate is true when the target processor is a 76// V8, or when it is V9 but the V8 deprecated instructions are efficient enough 77// to use when appropriate. In either of these cases, the instruction selector 78// will pick deprecated instructions. 79def UseDeprecatedInsts : Predicate<"Subtarget->useV8DeprecatedInsts()">; 80 81//===----------------------------------------------------------------------===// 82// Instruction Pattern Stuff 83//===----------------------------------------------------------------------===// 84 85def simm10 : PatLeaf<(imm), [{ return isInt<10>(N->getSExtValue()); }]>; 86 87def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; 88 89def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; 90 91def LO10 : SDNodeXForm<imm, [{ 92 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), 93 MVT::i32); 94}]>; 95 96def HI22 : SDNodeXForm<imm, [{ 97 // Transformation function: shift the immediate value down into the low bits. 98 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), 99 MVT::i32); 100}]>; 101 102// Return the complement of a HI22 immediate value. 103def HI22_not : SDNodeXForm<imm, [{ 104 return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N), 105 MVT::i32); 106}]>; 107 108def SETHIimm : PatLeaf<(imm), [{ 109 return isShiftedUInt<22, 10>(N->getZExtValue()); 110}], HI22>; 111 112// The N->hasOneUse() prevents the immediate from being instantiated in both 113// normal and complement form. 114def SETHIimm_not : PatLeaf<(i32 imm), [{ 115 return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue()); 116}], HI22_not>; 117 118// Addressing modes. 119def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; 120def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [], []>; 121 122// Constrained operands for the shift operations. 123class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass { 124 let Name = "ShiftAmtImm" # Bits; 125 let ParserMethod = "parseShiftAmtImm<" # Bits # ">"; 126} 127def shift_imm5 : Operand<i32> { 128 let ParserMatchClass = ShiftAmtImmAsmOperand<5>; 129} 130def shift_imm6 : Operand<i32> { 131 let ParserMatchClass = ShiftAmtImmAsmOperand<6>; 132} 133 134// Address operands 135def SparcMEMrrAsmOperand : AsmOperandClass { 136 let Name = "MEMrr"; 137 let ParserMethod = "parseMEMOperand"; 138} 139 140def SparcMEMriAsmOperand : AsmOperandClass { 141 let Name = "MEMri"; 142 let ParserMethod = "parseMEMOperand"; 143} 144 145def MEMrr : Operand<iPTR> { 146 let PrintMethod = "printMemOperand"; 147 let MIOperandInfo = (ops ptr_rc, ptr_rc); 148 let ParserMatchClass = SparcMEMrrAsmOperand; 149} 150def MEMri : Operand<iPTR> { 151 let PrintMethod = "printMemOperand"; 152 let MIOperandInfo = (ops ptr_rc, i32imm); 153 let ParserMatchClass = SparcMEMriAsmOperand; 154} 155 156// Represents a tail relocation operand for instructions such as add, ld, call. 157class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass { 158 let Name = "TailRelocSym" # Kind; 159 let RenderMethod = "addTailRelocSymOperands"; 160 let PredicateMethod = "isTailRelocSym"; 161 let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">"; 162} 163 164def TailRelocSymGOTLoad : Operand<iPTR> { 165 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">; 166} 167 168def TailRelocSymTLSAdd : Operand<iPTR> { 169 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">; 170} 171 172def TailRelocSymTLSLoad : Operand<iPTR> { 173 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">; 174} 175 176def TailRelocSymTLSCall : Operand<iPTR> { 177 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">; 178} 179 180def SparcMembarTagAsmOperand : AsmOperandClass { 181 let Name = "MembarTag"; 182 let ParserMethod = "parseMembarTag"; 183} 184 185def MembarTag : Operand<i32> { 186 let PrintMethod = "printMembarTag"; 187 let ParserMatchClass = SparcMembarTagAsmOperand; 188} 189 190def SparcASITagAsmOperand : AsmOperandClass { 191 let Name = "ASITag"; 192 let ParserMethod = "parseASITag"; 193} 194 195def ASITag : Operand<i32> { 196 let PrintMethod = "printASITag"; 197 let ParserMatchClass = SparcASITagAsmOperand; 198} 199 200def SparcPrefetchTagAsmOperand : AsmOperandClass { 201 let Name = "PrefetchTag"; 202 let ParserMethod = "parsePrefetchTag"; 203} 204 205def PrefetchTag : Operand<i32> { 206 let PrintMethod = "printPrefetchTag"; 207 let ParserMatchClass = SparcPrefetchTagAsmOperand; 208} 209 210// Branch targets have OtherVT type. 211def brtarget : Operand<OtherVT> { 212 let EncoderMethod = "getBranchTargetOpValue"; 213} 214 215def bprtarget : Operand<OtherVT> { 216 let EncoderMethod = "getBranchPredTargetOpValue"; 217} 218 219def bprtarget16 : Operand<OtherVT> { 220 let EncoderMethod = "getBranchOnRegTargetOpValue"; 221} 222 223def SparcCallTargetAsmOperand : AsmOperandClass { 224 let Name = "CallTarget"; 225 let ParserMethod = "parseCallTarget"; 226} 227 228def calltarget : Operand<i32> { 229 let EncoderMethod = "getCallTargetOpValue"; 230 let DecoderMethod = "DecodeCall"; 231 let ParserMatchClass = SparcCallTargetAsmOperand; 232} 233 234def simm13Op : Operand<iPTR> { 235 let OperandType = "OPERAND_IMMEDIATE"; 236 let DecoderMethod = "DecodeSIMM13"; 237 let EncoderMethod = "getSImm13OpValue"; 238} 239 240// Operand for printing out a condition code. 241let PrintMethod = "printCCOperand" in { 242 def CCOp : Operand<i32>; 243 def RegCCOp : Operand<i32>; 244} 245 246def SDTSPcmpicc : 247SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 248def SDTSPcmpfcc : 249SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; 250def SDTSPbrcc : 251SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 252def SDTSPbrreg : 253SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, SDTCisVT<2, i64>]>; 254def SDTSPselectcc : 255SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; 256def SDTSPselectreg : 257SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i64>]>; 258def SDTSPFTOI : 259SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; 260def SDTSPITOF : 261SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; 262def SDTSPFTOX : 263SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; 264def SDTSPXTOF : 265SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; 266 267def SDTSPtlsadd : 268SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 269def SDTSPtlsld : 270SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 271 272def SDTSPloadgdop : 273SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 274 275def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; 276def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; 277def SPcmpfccv9 : SDNode<"SPISD::CMPFCC_V9", SDTSPcmpfcc, [SDNPOutGlue]>; 278def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 279def SPbpicc : SDNode<"SPISD::BPICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 280def SPbpxcc : SDNode<"SPISD::BPXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 281def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 282def SPbrfccv9 : SDNode<"SPISD::BRFCC_V9", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 283def SPbrreg : SDNode<"SPISD::BR_REG", SDTSPbrreg, [SDNPHasChain]>; 284 285def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; 286def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; 287 288def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; 289def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; 290def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; 291def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; 292 293def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; 294def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; 295def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; 296def SPselectreg : SDNode<"SPISD::SELECT_REG", SDTSPselectreg>; 297 298// These are target-independent nodes, but have target-specific formats. 299def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, 300 SDTCisVT<1, i32> ]>; 301def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, 302 SDTCisVT<1, i32> ]>; 303 304def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, 305 [SDNPHasChain, SDNPOutGlue]>; 306def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, 307 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 308 309def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; 310def call : SDNode<"SPISD::CALL", SDT_SPCall, 311 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 312 SDNPVariadic]>; 313 314def tailcall : SDNode<"SPISD::TAIL_CALL", SDT_SPCall, 315 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 316 317def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 318def retglue : SDNode<"SPISD::RET_GLUE", SDT_SPRet, 319 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 320 321def flushw : SDNode<"SPISD::FLUSHW", SDTNone, 322 [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; 323 324def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; 325def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; 326def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, 327 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 328 SDNPVariadic]>; 329 330def load_gdop : SDNode<"SPISD::LOAD_GDOP", SDTSPloadgdop>; 331 332def getPCX : Operand<iPTR> { 333 let PrintMethod = "printGetPCX"; 334} 335 336//===----------------------------------------------------------------------===// 337// SPARC Flag Conditions 338//===----------------------------------------------------------------------===// 339 340// Note that these values must be kept in sync with the CCOp::CondCode enum 341// values. 342class ICC_VAL<int N> : PatLeaf<(i32 N)>; 343def ICC_NE : ICC_VAL< 9>; // Not Equal 344def ICC_E : ICC_VAL< 1>; // Equal 345def ICC_G : ICC_VAL<10>; // Greater 346def ICC_LE : ICC_VAL< 2>; // Less or Equal 347def ICC_GE : ICC_VAL<11>; // Greater or Equal 348def ICC_L : ICC_VAL< 3>; // Less 349def ICC_GU : ICC_VAL<12>; // Greater Unsigned 350def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned 351def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned 352def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned 353def ICC_POS : ICC_VAL<14>; // Positive 354def ICC_NEG : ICC_VAL< 6>; // Negative 355def ICC_VC : ICC_VAL<15>; // Overflow Clear 356def ICC_VS : ICC_VAL< 7>; // Overflow Set 357 358class FCC_VAL<int N> : PatLeaf<(i32 N)>; 359def FCC_U : FCC_VAL<23>; // Unordered 360def FCC_G : FCC_VAL<22>; // Greater 361def FCC_UG : FCC_VAL<21>; // Unordered or Greater 362def FCC_L : FCC_VAL<20>; // Less 363def FCC_UL : FCC_VAL<19>; // Unordered or Less 364def FCC_LG : FCC_VAL<18>; // Less or Greater 365def FCC_NE : FCC_VAL<17>; // Not Equal 366def FCC_E : FCC_VAL<25>; // Equal 367def FCC_UE : FCC_VAL<26>; // Unordered or Equal 368def FCC_GE : FCC_VAL<27>; // Greater or Equal 369def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal 370def FCC_LE : FCC_VAL<29>; // Less or Equal 371def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal 372def FCC_O : FCC_VAL<31>; // Ordered 373 374class CPCC_VAL<int N> : PatLeaf<(i32 N)>; 375def CPCC_3 : CPCC_VAL<39>; // 3 376def CPCC_2 : CPCC_VAL<38>; // 2 377def CPCC_23 : CPCC_VAL<37>; // 2 or 3 378def CPCC_1 : CPCC_VAL<36>; // 1 379def CPCC_13 : CPCC_VAL<35>; // 1 or 3 380def CPCC_12 : CPCC_VAL<34>; // 1 or 2 381def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 382def CPCC_0 : CPCC_VAL<41>; // 0 383def CPCC_03 : CPCC_VAL<42>; // 0 or 3 384def CPCC_02 : CPCC_VAL<43>; // 0 or 2 385def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 386def CPCC_01 : CPCC_VAL<45>; // 0 or 1 387def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 388def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 389 390class RegCC_VAL<int N> : PatLeaf<(i32 N)>; 391def RegCC_Z : RegCC_VAL<49>; // Zero 392def RegCC_LEZ : RegCC_VAL<50>; // Lees or equal than zero 393def RegCC_LZ : RegCC_VAL<51>; // Less than zero 394def RegCC_NZ : RegCC_VAL<53>; // Not zero 395def RegCC_GZ : RegCC_VAL<54>; // Greater than zero 396def RegCC_GEZ : RegCC_VAL<55>; // Greater or equal to zero 397 398//===----------------------------------------------------------------------===// 399// Instruction Class Templates 400//===----------------------------------------------------------------------===// 401 402/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. 403multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, 404 RegisterClass RC, ValueType Ty, Operand immOp, 405 InstrItinClass itin = IIC_iu_instr> { 406 def rr : F3_1<2, Op3Val, 407 (outs RC:$rd), (ins RC:$rs1, RC:$rs2), 408 !strconcat(OpcStr, " $rs1, $rs2, $rd"), 409 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], 410 itin>; 411 def ri : F3_2<2, Op3Val, 412 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), 413 !strconcat(OpcStr, " $rs1, $simm13, $rd"), 414 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], 415 itin>; 416} 417 418/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no 419/// pattern. 420multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { 421 def rr : F3_1<2, Op3Val, 422 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 423 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], 424 itin>; 425 def ri : F3_2<2, Op3Val, 426 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 427 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], 428 itin>; 429} 430 431// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 432multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 433 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { 434 def rr : F3_1<3, Op3Val, 435 (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr), 436 !strconcat(OpcStr, " [$addr], $rd"), 437 [(set Ty:$rd, (OpNode ADDRrr:$addr))], 438 itin>; 439 def ri : F3_2<3, Op3Val, 440 (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 441 !strconcat(OpcStr, " [$addr], $rd"), 442 [(set Ty:$rd, (OpNode ADDRri:$addr))], 443 itin>; 444} 445 446// TODO: Instructions of the LoadASI class are currently asm only; hooking up 447// CodeGen's address spaces to use these is a future task. 448multiclass LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> { 449 def rr : F3_1_asi<3, Op3Val, (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 450 !strconcat(OpcStr, "a [$addr] $asi, $rd"), 451 []>; 452 453 let Predicates = [HasV9], Uses = [ASR3] in 454 def ri : F3_2<3, Op3Val, (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 455 !strconcat(OpcStr, "a [$addr] %asi, $rd"), 456 []>; 457} 458 459// LoadA multiclass - As above, but also define alternate address space variant 460multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, 461 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, 462 InstrItinClass itin = NoItinerary> : 463 Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { 464 defm A : LoadASI<OpcStr, LoadAOp3Val, RC>; 465} 466 467 468// The LDSTUB instruction is supported for asm only. 469// It is unlikely that general-purpose code could make use of it. 470// CAS is preferred for sparc v9. 471def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 472 "ldstub [$addr], $rd", []>; 473def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 474 "ldstub [$addr], $rd", []>; 475def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$rd), 476 (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 477 "ldstuba [$addr] $asi, $rd", []>; 478let Predicates = [HasV9], Uses = [ASR3] in 479def LDSTUBAri : F3_2<3, 0b011101, (outs IntRegs:$rd), 480 (ins (MEMri $rs1, $simm13):$addr), 481 "ldstuba [$addr] %asi, $rd", []>; 482 483// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 484multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 485 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { 486 def rr : F3_1<3, Op3Val, 487 (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd), 488 !strconcat(OpcStr, " $rd, [$addr]"), 489 [(OpNode Ty:$rd, ADDRrr:$addr)], 490 itin>; 491 def ri : F3_2<3, Op3Val, 492 (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 493 !strconcat(OpcStr, " $rd, [$addr]"), 494 [(OpNode Ty:$rd, ADDRri:$addr)], 495 itin>; 496} 497 498// TODO: Instructions of the StoreASI class are currently asm only; hooking up 499// CodeGen's address spaces to use these is a future task. 500multiclass StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC, 501 InstrItinClass itin = IIC_st> { 502 def rr : F3_1_asi<3, Op3Val, (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd, ASITag:$asi), 503 !strconcat(OpcStr, "a $rd, [$addr] $asi"), 504 [], 505 itin>; 506 507 let Predicates = [HasV9], Uses = [ASR3] in 508 def ri : F3_2<3, Op3Val, (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 509 !strconcat(OpcStr, "a $rd, [$addr] %asi"), 510 [], 511 itin>; 512} 513 514multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, 515 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> : 516 Store<OpcStr, Op3Val, OpNode, RC, Ty> { 517 defm A : StoreASI<OpcStr, StoreAOp3Val, RC>; 518} 519 520//===----------------------------------------------------------------------===// 521// Instructions 522//===----------------------------------------------------------------------===// 523 524// Pseudo instructions. 525class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 526 : InstSP<outs, ins, asmstr, pattern> { 527 let isCodeGenOnly = 1; 528 let isPseudo = 1; 529} 530 531// GETPCX for PIC 532let Defs = [O7] in { 533 def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; 534} 535 536let Defs = [O6], Uses = [O6] in { 537def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 538 "!ADJCALLSTACKDOWN $amt1, $amt2", 539 [(callseq_start timm:$amt1, timm:$amt2)]>; 540def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 541 "!ADJCALLSTACKUP $amt1", 542 [(callseq_end timm:$amt1, timm:$amt2)]>; 543} 544 545let hasSideEffects = 1, mayStore = 1 in { 546 let rd = 0, rs1 = 0, rs2 = 0 in 547 def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), 548 "flushw", 549 [(flushw)]>, Requires<[HasV9]>; 550 let rd = 8, rs1 = 0, simm13 = 3 in 551 def TA3 : F3_2<0b10, 0b111010, (outs), (ins), 552 "ta 3", 553 [(flushw)]>; 554} 555 556// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after 557// instruction selection into a branch sequence. This has to handle all 558// permutations of selection between i32/f32/f64 on ICC and FCC. 559// Expanded after instruction selection. 560let Uses = [ICC], usesCustomInserter = 1 in { 561 def SELECT_CC_Int_ICC 562 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 563 "; SELECT_CC_Int_ICC PSEUDO!", 564 [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; 565 def SELECT_CC_FP_ICC 566 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 567 "; SELECT_CC_FP_ICC PSEUDO!", 568 [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; 569 570 def SELECT_CC_DFP_ICC 571 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 572 "; SELECT_CC_DFP_ICC PSEUDO!", 573 [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; 574 575 def SELECT_CC_QFP_ICC 576 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 577 "; SELECT_CC_QFP_ICC PSEUDO!", 578 [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; 579} 580 581let Uses = [ICC], usesCustomInserter = 1 in { 582 def SELECT_CC_Int_XCC 583 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 584 "; SELECT_CC_Int_XCC PSEUDO!", 585 [(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>; 586 def SELECT_CC_FP_XCC 587 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 588 "; SELECT_CC_FP_XCC PSEUDO!", 589 [(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>; 590 591 def SELECT_CC_DFP_XCC 592 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 593 "; SELECT_CC_DFP_XCC PSEUDO!", 594 [(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>; 595 596 def SELECT_CC_QFP_XCC 597 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 598 "; SELECT_CC_QFP_XCC PSEUDO!", 599 [(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>; 600} 601 602let usesCustomInserter = 1, Uses = [FCC0] in { 603 604 def SELECT_CC_Int_FCC 605 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 606 "; SELECT_CC_Int_FCC PSEUDO!", 607 [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; 608 609 def SELECT_CC_FP_FCC 610 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 611 "; SELECT_CC_FP_FCC PSEUDO!", 612 [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; 613 def SELECT_CC_DFP_FCC 614 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 615 "; SELECT_CC_DFP_FCC PSEUDO!", 616 [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; 617 def SELECT_CC_QFP_FCC 618 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 619 "; SELECT_CC_QFP_FCC PSEUDO!", 620 [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; 621} 622 623// Section B.1 - Load Integer Instructions, p. 90 624defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; 625defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; 626defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; 627defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; 628defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; 629defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; 630 631// Section B.2 - Load Floating-point Instructions, p. 92 632defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; 633defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; 634 635let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 636 defm LDFA : LoadASI<"ld", 0b110000, FPRegs>; 637 defm LDDFA : LoadASI<"ldd", 0b110011, DFPRegs>; 638 defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, 639 Requires<[HasHardQuad]>; 640} 641 642// Coprocessor instructions were removed in v9. 643let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 644 defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; 645 defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; 646} 647 648let Defs = [CPSR] in { 649 let rd = 0 in { 650 def LDCSRrr : F3_1<3, 0b110001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 651 "ld [$addr], %csr", []>; 652 def LDCSRri : F3_2<3, 0b110001, (outs), (ins (MEMri $rs1, $simm13):$addr), 653 "ld [$addr], %csr", []>; 654 } 655} 656 657let Defs = [FSR] in { 658 let rd = 0 in { 659 def LDFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 660 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 661 def LDFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 662 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 663 } 664 let rd = 1 in { 665 def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 666 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 667 def LDXFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 668 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 669 } 670} 671 672let mayLoad = 1, isAsmParserOnly = 1 in { 673 def GDOP_LDrr : F3_1<3, 0b000000, 674 (outs IntRegs:$rd), 675 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym), 676 "ld [$addr], $rd, $sym", 677 [(set i32:$rd, 678 (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>; 679} 680 681// Section B.4 - Store Integer Instructions, p. 95 682defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; 683defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; 684defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; 685defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>; 686 687// Section B.5 - Store Floating-point Instructions, p. 97 688defm STF : Store<"st", 0b100100, store, FPRegs, f32>; 689defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; 690 691let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 692 defm STFA : StoreASI<"st", 0b110100, FPRegs>; 693 defm STDFA : StoreASI<"std", 0b110111, DFPRegs>; 694 defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, 695 Requires<[HasHardQuad]>; 696} 697 698// Coprocessor instructions were removed in v9. 699let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 700 defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; 701 defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; 702} 703 704let rd = 0 in { 705 let mayStore = 1, Uses = [CPSR] in { 706 def STCSRrr : F3_1<3, 0b110101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 707 "st %csr, [$addr]", [], IIC_st>; 708 def STCSRri : F3_2<3, 0b110101, (outs), (ins (MEMri $rs1, $simm13):$addr), 709 "st %csr, [$addr]", [], IIC_st>; 710 } 711 let mayStore = 1, Uses = [CPQ] in { 712 def STDCQrr : F3_1<3, 0b110110, (outs), (ins (MEMrr $rs1, $rs2):$addr), 713 "std %cq, [$addr]", [], IIC_std>; 714 def STDCQri : F3_2<3, 0b110110, (outs), (ins (MEMri $rs1, $simm13):$addr), 715 "std %cq, [$addr]", [], IIC_std>; 716 } 717} 718 719let rd = 0 in { 720 let mayStore = 1, Uses = [FSR] in { 721 def STFSRrr : F3_1<3, 0b100101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 722 "st %fsr, [$addr]", [], IIC_st>; 723 def STFSRri : F3_2<3, 0b100101, (outs), (ins (MEMri $rs1, $simm13):$addr), 724 "st %fsr, [$addr]", [], IIC_st>; 725 } 726 let mayStore = 1, Defs = [FQ] in { 727 def STDFQrr : F3_1<3, 0b100110, (outs), (ins (MEMrr $rs1, $rs2):$addr), 728 "std %fq, [$addr]", [], IIC_std>; 729 def STDFQri : F3_2<3, 0b100110, (outs), (ins (MEMri $rs1, $simm13):$addr), 730 "std %fq, [$addr]", [], IIC_std>; 731 } 732} 733let rd = 1, mayStore = 1, Uses = [FSR] in { 734 def STXFSRrr : F3_1<3, 0b100101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 735 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 736 def STXFSRri : F3_2<3, 0b100101, (outs), (ins (MEMri $rs1, $simm13):$addr), 737 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 738} 739 740// Section B.8 - SWAP Register with Memory Instruction 741// (Atomic swap) 742let Constraints = "$val = $rd" in { 743 def SWAPrr : F3_1<3, 0b001111, 744 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, IntRegs:$val), 745 "swap [$addr], $rd", 746 [(set i32:$rd, (atomic_swap_i32 ADDRrr:$addr, i32:$val))]>; 747 def SWAPri : F3_2<3, 0b001111, 748 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 749 "swap [$addr], $rd", 750 [(set i32:$rd, (atomic_swap_i32 ADDRri:$addr, i32:$val))]>; 751 def SWAPArr : F3_1_asi<3, 0b011111, 752 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi, IntRegs:$val), 753 "swapa [$addr] $asi, $rd", 754 [/*FIXME: pattern?*/]>; 755let Predicates = [HasV9], Uses = [ASR3] in 756 def SWAPAri : F3_2<3, 0b011111, 757 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 758 "swapa [$addr] %asi, $rd", 759 [/*FIXME: pattern?*/]>; 760} 761 762 763// Section B.9 - SETHI Instruction, p. 104 764def SETHIi: F2_1<0b100, 765 (outs IntRegs:$rd), (ins i32imm:$imm22), 766 "sethi $imm22, $rd", 767 [(set i32:$rd, SETHIimm:$imm22)], 768 IIC_iu_instr>; 769 770// Section B.10 - NOP Instruction, p. 105 771// (It's a special case of SETHI) 772let rd = 0, imm22 = 0 in 773 def NOP : F2_1<0b100, (outs), (ins), "nop", []>; 774 775// Section B.11 - Logical Instructions, p. 106 776defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; 777 778def ANDNrr : F3_1<2, 0b000101, 779 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 780 "andn $rs1, $rs2, $rd", 781 [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; 782def ANDNri : F3_2<2, 0b000101, 783 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 784 "andn $rs1, $simm13, $rd", []>; 785 786defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; 787 788def ORNrr : F3_1<2, 0b000110, 789 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 790 "orn $rs1, $rs2, $rd", 791 [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; 792def ORNri : F3_2<2, 0b000110, 793 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 794 "orn $rs1, $simm13, $rd", []>; 795defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; 796 797def XNORrr : F3_1<2, 0b000111, 798 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 799 "xnor $rs1, $rs2, $rd", 800 [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; 801def XNORri : F3_2<2, 0b000111, 802 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 803 "xnor $rs1, $simm13, $rd", []>; 804 805def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2), 806 (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 807 808def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2), 809 (ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 810 811let Defs = [ICC] in { 812 defm ANDCC : F3_12np<"andcc", 0b010001>; 813 defm ANDNCC : F3_12np<"andncc", 0b010101>; 814 defm ORCC : F3_12np<"orcc", 0b010010>; 815 defm ORNCC : F3_12np<"orncc", 0b010110>; 816 defm XORCC : F3_12np<"xorcc", 0b010011>; 817 defm XNORCC : F3_12np<"xnorcc", 0b010111>; 818} 819 820// Section B.12 - Shift Instructions, p. 107 821defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>; 822defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>; 823defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>; 824 825// Section B.13 - Add Instructions, p. 108 826defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; 827 828let Defs = [ICC] in 829 defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; 830 831let Uses = [ICC] in 832 defm ADDC : F3_12np<"addx", 0b001000>; 833 834let Uses = [ICC], Defs = [ICC] in 835 defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; 836 837// Section B.15 - Subtract Instructions, p. 110 838defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; 839let Uses = [ICC], Defs = [ICC] in 840 defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; 841 842let Defs = [ICC], hasPostISelHook = true in 843 defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; 844 845let Uses = [ICC] in 846 defm SUBC : F3_12np <"subx", 0b001100>; 847 848def : Pat<(SPcmpicc i32:$lhs, i32:$rhs), (SUBCCrr $lhs, $rhs)>; 849def : Pat<(SPcmpicc i32:$lhs, (i32 simm13:$rhs)), (SUBCCri $lhs, imm:$rhs)>; 850 851// Section B.18 - Multiply Instructions, p. 113 852let Defs = [Y] in { 853 defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>; 854 defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>; 855} 856 857let Defs = [Y, ICC] in { 858 defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; 859 defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; 860} 861 862let Defs = [Y, ICC], Uses = [Y, ICC] in { 863 defm MULSCC : F3_12np<"mulscc", 0b100100>; 864} 865 866// Section B.19 - Divide Instructions, p. 115 867let Uses = [Y], Defs = [Y] in { 868 defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; 869 defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; 870} 871 872let Uses = [Y], Defs = [Y, ICC] in { 873 defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; 874 defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; 875} 876 877// Section B.20 - SAVE and RESTORE, p. 117 878defm SAVE : F3_12np<"save" , 0b111100>; 879defm RESTORE : F3_12np<"restore", 0b111101>; 880 881// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 882// Section A.7 - Branch on Integer Condition Codes with Prediction (SPARC v9) 883 884let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 885// unconditional branch class. 886class BranchAlways<dag ins, string asmstr, list<dag> pattern> 887 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; 888 889// Same as BranchAlways but uses the new v9 encoding 890class BranchPredictAlways<dag ins, string asmstr, list<dag> pattern> 891 : F2_3<0b001, 0, 1, (outs), ins, asmstr, pattern>; 892} 893 894let cond = 8 in 895 def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; 896 897let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 898 899// conditional branch class: 900class BranchSP<dag ins, string asmstr, list<dag> pattern> 901 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; 902 903// conditional branch with annul class: 904class BranchSPA<dag ins, string asmstr, list<dag> pattern> 905 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; 906 907// Conditional branch class on %icc|%xcc with predication: 908multiclass IPredBranch<string regstr, list<dag> CCPattern> { 909 def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 910 !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), 911 CCPattern, 912 IIC_iu_instr>; 913 def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 914 !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), 915 [], 916 IIC_iu_instr>; 917 def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 918 !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), 919 [], 920 IIC_iu_instr>; 921 def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 922 !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), 923 [], 924 IIC_iu_instr>; 925} 926 927} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 928 929 930// Indirect branch instructions. 931let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, 932 isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { 933 def BINDrr : F3_1<2, 0b111000, 934 (outs), (ins (MEMrr $rs1, $rs2):$addr), 935 "jmp $addr", 936 [(brind ADDRrr:$addr)]>; 937 def BINDri : F3_2<2, 0b111000, 938 (outs), (ins (MEMri $rs1, $simm13):$addr), 939 "jmp $addr", 940 [(brind ADDRri:$addr)]>; 941} 942 943let Uses = [ICC] in { 944 def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), 945 "b$cond $imm22", 946 [(SPbricc bb:$imm22, imm:$cond)]>; 947 def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), 948 "b$cond,a $imm22", []>; 949 950 let Predicates = [HasV9], cc = 0b00 in 951 defm BPI : IPredBranch<"%icc", [(SPbpicc bb:$imm19, imm:$cond)]>; 952} 953 954// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 955 956let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 957 958// floating-point conditional branch class: 959class FPBranchSP<dag ins, string asmstr, list<dag> pattern> 960 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 961 962// floating-point conditional branch with annul class: 963class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> 964 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 965 966// Conditional branch class on %fcc0-%fcc3 with predication: 967multiclass FPredBranch { 968 def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 969 FCCRegs:$cc), 970 "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; 971 def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 972 FCCRegs:$cc), 973 "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; 974 def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 975 FCCRegs:$cc), 976 "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 977 def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 978 FCCRegs:$cc), 979 "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 980} 981} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 982 983let Uses = [FCC0] in { 984 def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 985 "fb$cond $imm22", 986 [(SPbrfcc bb:$imm22, imm:$cond)]>; 987 def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 988 "fb$cond,a $imm22", []>; 989} 990 991// Variants of FBCOND that uses V9 opcode 992let Predicates = [HasV9], Uses = [FCC0], cc = 0, 993 isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 994 def FBCOND_V9 : F2_3<0b101, 0, 1, (outs), 995 (ins bprtarget:$imm19, CCOp:$cond), 996 "fb$cond %fcc0, $imm19", 997 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 998 def FBCONDA_V9 : F2_3<0b101, 1, 1, (outs), 999 (ins bprtarget:$imm19, CCOp:$cond), 1000 "fb$cond,a %fcc0, $imm19", 1001 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 1002} 1003 1004let Predicates = [HasV9] in 1005 defm BPF : FPredBranch; 1006 1007// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 1008let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 1009 1010// co-processor conditional branch class: 1011class CPBranchSP<dag ins, string asmstr, list<dag> pattern> 1012 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; 1013 1014// co-processor conditional branch with annul class: 1015class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> 1016 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; 1017 1018} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 1019 1020def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 1021 "cb$cond $imm22", 1022 [(SPbrfcc bb:$imm22, imm:$cond)]>; 1023def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 1024 "cb$cond,a $imm22", []>; 1025 1026// Section B.24 - Call and Link Instruction, p. 125 1027// This is the only Format 1 instruction 1028let Uses = [O6], 1029 hasDelaySlot = 1, isCall = 1 in { 1030 def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1031 "call $disp", 1032 [], 1033 IIC_jmp_or_call> { 1034 bits<30> disp; 1035 let op = 1; 1036 let Inst{29-0} = disp; 1037 } 1038 1039 // call with trailing imm argument. 1040 // The imm argument is discarded. 1041 let isAsmParserOnly = 1 in { 1042 def CALLi : InstSP<(outs), (ins calltarget:$disp, i32imm:$imm), 1043 "call $disp, $imm", []> { 1044 bits<30> disp; 1045 let op = 1; 1046 let Inst{29-0} = disp; 1047 } 1048 } 1049 1050 // indirect calls: special cases of JMPL. 1051 let isCodeGenOnly = 1, rd = 15 in { 1052 def CALLrr : F3_1<2, 0b111000, 1053 (outs), (ins (MEMrr $rs1, $rs2):$addr, variable_ops), 1054 "call $addr", 1055 [(call ADDRrr:$addr)], 1056 IIC_jmp_or_call>; 1057 def CALLri : F3_2<2, 0b111000, 1058 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1059 "call $addr", 1060 [(call ADDRri:$addr)], 1061 IIC_jmp_or_call>; 1062 } 1063 1064 let isAsmParserOnly = 1, rd = 15 in { 1065 def CALLrri : F3_1<2, 0b111000, 1066 (outs), (ins (MEMrr $rs1, $rs2):$addr, i32imm:$imm), 1067 "call $addr, $imm", []>; 1068 def CALLrii : F3_2<2, 0b111000, 1069 (outs), (ins (MEMri $rs1, $simm13):$addr, i32imm:$imm), 1070 "call $addr, $imm", []>; 1071 } 1072} 1073 1074// Section B.25 - Jump and Link Instruction 1075 1076// JMPL Instruction. 1077let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 1078 def JMPLrr: F3_1<2, 0b111000, 1079 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 1080 "jmpl $addr, $rd", 1081 [], 1082 IIC_jmp_or_call>; 1083 def JMPLri: F3_2<2, 0b111000, 1084 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 1085 "jmpl $addr, $rd", 1086 [], 1087 IIC_jmp_or_call>; 1088} 1089 1090// Section A.3 - Synthetic Instructions, p. 85 1091// special cases of JMPL: 1092let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, 1093 isCodeGenOnly = 1 in { 1094 let rd = 0, rs1 = 15 in 1095 def RETL: F3_2<2, 0b111000, 1096 (outs), (ins i32imm:$simm13), 1097 "jmp %o7+$simm13", 1098 [(retglue simm13:$simm13)], 1099 IIC_jmp_or_call>; 1100 1101 let rd = 0, rs1 = 31 in 1102 def RET: F3_2<2, 0b111000, 1103 (outs), (ins i32imm:$simm13), 1104 "jmp %i7+$simm13", 1105 [], 1106 IIC_jmp_or_call>; 1107} 1108 1109// Section B.26 - Return from Trap Instruction 1110let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, 1111 isBarrier = 1, rd = 0 in { 1112 def RETTrr : F3_1<2, 0b111001, 1113 (outs), (ins (MEMrr $rs1, $rs2):$addr), 1114 "rett $addr", 1115 [], 1116 IIC_jmp_or_call>; 1117 def RETTri : F3_2<2, 0b111001, 1118 (outs), (ins (MEMri $rs1, $simm13):$addr), 1119 "rett $addr", 1120 [], 1121 IIC_jmp_or_call>; 1122} 1123 1124 1125// Section B.27 - Trap on Integer Condition Codes Instruction 1126// conditional branch class: 1127let DecoderNamespace = "SparcV8", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1128{ 1129 def TRAPrr : TRAPSPrr<0b111010, 1130 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1131 "t$cond $rs1 + $rs2", 1132 []>; 1133 def TRAPri : TRAPSPri<0b111010, 1134 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1135 "t$cond $rs1 + $imm", 1136 []>; 1137} 1138 1139multiclass TRAP<string regStr> { 1140 def rr : TRAPSPrr<0b111010, 1141 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1142 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), 1143 []>; 1144 def ri : TRAPSPri<0b111010, 1145 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1146 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), 1147 []>; 1148} 1149 1150let DecoderNamespace = "SparcV9", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1151 defm TICC : TRAP<"%icc">; 1152 1153 1154let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in 1155 def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; 1156 1157let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in 1158 def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>; 1159 1160// Section B.28 - Read State Register Instructions 1161let rs2 = 0 in 1162 def RDASR : F3_1<2, 0b101000, 1163 (outs IntRegs:$rd), (ins ASRRegs:$rs1), 1164 "rd $rs1, $rd", []>; 1165 1166// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1167let Predicates = [HasNoV9] in { 1168 let rs2 = 0, rs1 = 0, Uses=[PSR] in 1169 def RDPSR : F3_1<2, 0b101001, 1170 (outs IntRegs:$rd), (ins), 1171 "rd %psr, $rd", []>; 1172 1173 let rs2 = 0, rs1 = 0, Uses=[WIM] in 1174 def RDWIM : F3_1<2, 0b101010, 1175 (outs IntRegs:$rd), (ins), 1176 "rd %wim, $rd", []>; 1177 1178 let rs2 = 0, rs1 = 0, Uses=[TBR] in 1179 def RDTBR : F3_1<2, 0b101011, 1180 (outs IntRegs:$rd), (ins), 1181 "rd %tbr, $rd", []>; 1182} 1183 1184// Section B.29 - Write State Register Instructions 1185def WRASRrr : F3_1<2, 0b110000, 1186 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1187 "wr $rs1, $rs2, $rd", []>; 1188def WRASRri : F3_2<2, 0b110000, 1189 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1190 "wr $rs1, $simm13, $rd", []>; 1191 1192// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1193let Predicates = [HasNoV9] in { 1194 let Defs = [PSR], rd=0 in { 1195 def WRPSRrr : F3_1<2, 0b110001, 1196 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1197 "wr $rs1, $rs2, %psr", []>; 1198 def WRPSRri : F3_2<2, 0b110001, 1199 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1200 "wr $rs1, $simm13, %psr", []>; 1201 } 1202 1203 let Defs = [WIM], rd=0 in { 1204 def WRWIMrr : F3_1<2, 0b110010, 1205 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1206 "wr $rs1, $rs2, %wim", []>; 1207 def WRWIMri : F3_2<2, 0b110010, 1208 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1209 "wr $rs1, $simm13, %wim", []>; 1210 } 1211 1212 let Defs = [TBR], rd=0 in { 1213 def WRTBRrr : F3_1<2, 0b110011, 1214 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1215 "wr $rs1, $rs2, %tbr", []>; 1216 def WRTBRri : F3_2<2, 0b110011, 1217 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1218 "wr $rs1, $simm13, %tbr", []>; 1219 } 1220} 1221 1222// Section B.30 - STBAR Instruction 1223let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in 1224 def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; 1225 1226 1227// Section B.31 - Unimplemented Instruction 1228let rd = 0 in 1229 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), 1230 "unimp $imm22", []>; 1231 1232// Section B.32 - Flush Instruction Memory 1233let rd = 0 in { 1234 def FLUSHrr : F3_1<2, 0b111011, (outs), (ins (MEMrr $rs1, $rs2):$addr), 1235 "flush $addr", []>; 1236 def FLUSHri : F3_2<2, 0b111011, (outs), (ins (MEMri $rs1, $simm13):$addr), 1237 "flush $addr", []>; 1238 1239 // The no-arg FLUSH is only here for the benefit of the InstAlias 1240 // "flush", which cannot seem to use FLUSHrr, due to the inability 1241 // to construct a MEMrr with fixed G0 registers. 1242 let rs1 = 0, rs2 = 0 in 1243 def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; 1244} 1245 1246// Section B.33 - Floating-point Operate (FPop) Instructions 1247 1248// Convert Integer to Floating-point Instructions, p. 141 1249def FITOS : F3_3u<2, 0b110100, 0b011000100, 1250 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1251 "fitos $rs2, $rd", 1252 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], 1253 IIC_fpu_fast_instr>; 1254def FITOD : F3_3u<2, 0b110100, 0b011001000, 1255 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1256 "fitod $rs2, $rd", 1257 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], 1258 IIC_fpu_fast_instr>; 1259def FITOQ : F3_3u<2, 0b110100, 0b011001100, 1260 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1261 "fitoq $rs2, $rd", 1262 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, 1263 Requires<[HasHardQuad]>; 1264 1265// Convert Floating-point to Integer Instructions, p. 142 1266def FSTOI : F3_3u<2, 0b110100, 0b011010001, 1267 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1268 "fstoi $rs2, $rd", 1269 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], 1270 IIC_fpu_fast_instr>; 1271def FDTOI : F3_3u<2, 0b110100, 0b011010010, 1272 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1273 "fdtoi $rs2, $rd", 1274 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], 1275 IIC_fpu_fast_instr>; 1276def FQTOI : F3_3u<2, 0b110100, 0b011010011, 1277 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1278 "fqtoi $rs2, $rd", 1279 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, 1280 Requires<[HasHardQuad]>; 1281 1282// Convert between Floating-point Formats Instructions, p. 143 1283def FSTOD : F3_3u<2, 0b110100, 0b011001001, 1284 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1285 "fstod $rs2, $rd", 1286 [(set f64:$rd, (fpextend f32:$rs2))], 1287 IIC_fpu_stod>; 1288def FSTOQ : F3_3u<2, 0b110100, 0b011001101, 1289 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1290 "fstoq $rs2, $rd", 1291 [(set f128:$rd, (fpextend f32:$rs2))]>, 1292 Requires<[HasHardQuad]>; 1293def FDTOS : F3_3u<2, 0b110100, 0b011000110, 1294 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1295 "fdtos $rs2, $rd", 1296 [(set f32:$rd, (fpround f64:$rs2))], 1297 IIC_fpu_fast_instr>; 1298def FDTOQ : F3_3u<2, 0b110100, 0b011001110, 1299 (outs QFPRegs:$rd), (ins DFPRegs:$rs2), 1300 "fdtoq $rs2, $rd", 1301 [(set f128:$rd, (fpextend f64:$rs2))]>, 1302 Requires<[HasHardQuad]>; 1303def FQTOS : F3_3u<2, 0b110100, 0b011000111, 1304 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1305 "fqtos $rs2, $rd", 1306 [(set f32:$rd, (fpround f128:$rs2))]>, 1307 Requires<[HasHardQuad]>; 1308def FQTOD : F3_3u<2, 0b110100, 0b011001011, 1309 (outs DFPRegs:$rd), (ins QFPRegs:$rs2), 1310 "fqtod $rs2, $rd", 1311 [(set f64:$rd, (fpround f128:$rs2))]>, 1312 Requires<[HasHardQuad]>; 1313 1314// Floating-point Move Instructions, p. 144 1315def FMOVS : F3_3u<2, 0b110100, 0b000000001, 1316 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1317 "fmovs $rs2, $rd", []>; 1318def FNEGS : F3_3u<2, 0b110100, 0b000000101, 1319 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1320 "fnegs $rs2, $rd", 1321 [(set f32:$rd, (fneg f32:$rs2))], 1322 IIC_fpu_negs>; 1323def FABSS : F3_3u<2, 0b110100, 0b000001001, 1324 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1325 "fabss $rs2, $rd", 1326 [(set f32:$rd, (fabs f32:$rs2))], 1327 IIC_fpu_abs>; 1328 1329 1330// Floating-point Square Root Instructions, p.145 1331// FSQRTS generates an erratum on LEON processors, so by disabling this instruction 1332// this will be promoted to use FSQRTD with doubles instead. 1333let Predicates = [HasNoFdivSqrtFix] in 1334def FSQRTS : F3_3u<2, 0b110100, 0b000101001, 1335 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1336 "fsqrts $rs2, $rd", 1337 [(set f32:$rd, (fsqrt f32:$rs2))], 1338 IIC_fpu_sqrts>; 1339def FSQRTD : F3_3u<2, 0b110100, 0b000101010, 1340 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1341 "fsqrtd $rs2, $rd", 1342 [(set f64:$rd, (fsqrt f64:$rs2))], 1343 IIC_fpu_sqrtd>; 1344def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, 1345 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1346 "fsqrtq $rs2, $rd", 1347 [(set f128:$rd, (fsqrt f128:$rs2))]>, 1348 Requires<[HasHardQuad]>; 1349 1350 1351 1352// Floating-point Add and Subtract Instructions, p. 146 1353def FADDS : F3_3<2, 0b110100, 0b001000001, 1354 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1355 "fadds $rs1, $rs2, $rd", 1356 [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], 1357 IIC_fpu_fast_instr>; 1358def FADDD : F3_3<2, 0b110100, 0b001000010, 1359 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1360 "faddd $rs1, $rs2, $rd", 1361 [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], 1362 IIC_fpu_fast_instr>; 1363def FADDQ : F3_3<2, 0b110100, 0b001000011, 1364 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1365 "faddq $rs1, $rs2, $rd", 1366 [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, 1367 Requires<[HasHardQuad]>; 1368 1369def FSUBS : F3_3<2, 0b110100, 0b001000101, 1370 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1371 "fsubs $rs1, $rs2, $rd", 1372 [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], 1373 IIC_fpu_fast_instr>; 1374def FSUBD : F3_3<2, 0b110100, 0b001000110, 1375 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1376 "fsubd $rs1, $rs2, $rd", 1377 [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], 1378 IIC_fpu_fast_instr>; 1379def FSUBQ : F3_3<2, 0b110100, 0b001000111, 1380 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1381 "fsubq $rs1, $rs2, $rd", 1382 [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, 1383 Requires<[HasHardQuad]>; 1384 1385 1386// Floating-point Multiply and Divide Instructions, p. 147 1387def FMULS : F3_3<2, 0b110100, 0b001001001, 1388 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1389 "fmuls $rs1, $rs2, $rd", 1390 [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], 1391 IIC_fpu_muls>, 1392 Requires<[HasFMULS]>; 1393def FMULD : F3_3<2, 0b110100, 0b001001010, 1394 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1395 "fmuld $rs1, $rs2, $rd", 1396 [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], 1397 IIC_fpu_muld>; 1398def FMULQ : F3_3<2, 0b110100, 0b001001011, 1399 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1400 "fmulq $rs1, $rs2, $rd", 1401 [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, 1402 Requires<[HasHardQuad]>; 1403 1404def FSMULD : F3_3<2, 0b110100, 0b001101001, 1405 (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1406 "fsmuld $rs1, $rs2, $rd", 1407 [(set f64:$rd, (fmul (fpextend f32:$rs1), 1408 (fpextend f32:$rs2)))], 1409 IIC_fpu_muld>, 1410 Requires<[HasFSMULD]>; 1411def FDMULQ : F3_3<2, 0b110100, 0b001101110, 1412 (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1413 "fdmulq $rs1, $rs2, $rd", 1414 [(set f128:$rd, (fmul (fpextend f64:$rs1), 1415 (fpextend f64:$rs2)))]>, 1416 Requires<[HasHardQuad]>; 1417 1418// FDIVS generates an erratum on LEON processors, so by disabling this instruction 1419// this will be promoted to use FDIVD with doubles instead. 1420def FDIVS : F3_3<2, 0b110100, 0b001001101, 1421 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1422 "fdivs $rs1, $rs2, $rd", 1423 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], 1424 IIC_fpu_divs>; 1425def FDIVD : F3_3<2, 0b110100, 0b001001110, 1426 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1427 "fdivd $rs1, $rs2, $rd", 1428 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], 1429 IIC_fpu_divd>; 1430def FDIVQ : F3_3<2, 0b110100, 0b001001111, 1431 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1432 "fdivq $rs1, $rs2, $rd", 1433 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, 1434 Requires<[HasHardQuad]>; 1435 1436// Floating-point Compare Instructions, p. 148 1437// Note: the 2nd template arg is different for these guys. 1438// Note 2: the result of a FCMP is not available until the 2nd cycle 1439// after the instr is retired, but there is no interlock in Sparc V8. 1440// This behavior is modeled with a forced noop after the instruction in 1441// DelaySlotFiller. 1442 1443let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1444 def FCMPS : F3_3c<2, 0b110101, 0b001010001, 1445 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1446 "fcmps $rs1, $rs2", 1447 [(SPcmpfcc f32:$rs1, f32:$rs2)], 1448 IIC_fpu_fast_instr>; 1449 def FCMPD : F3_3c<2, 0b110101, 0b001010010, 1450 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1451 "fcmpd $rs1, $rs2", 1452 [(SPcmpfcc f64:$rs1, f64:$rs2)], 1453 IIC_fpu_fast_instr>; 1454 def FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1455 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1456 "fcmpq $rs1, $rs2", 1457 [(SPcmpfcc f128:$rs1, f128:$rs2)]>, 1458 Requires<[HasHardQuad]>; 1459} 1460 1461// A.13 Floating-Point Compare (SPARC v9) 1462// Note that these always write to %fcc0 instead of having its destination 1463// allocated automatically. 1464// This avoids complications with the scheduler sometimes wanting to spill 1465// the contents of an FCC, since SPARC v9 doesn't have facilities to spill 1466// an individual FCC. 1467 1468let Predicates = [HasV9], Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1469 def FCMPS_V9 : F3_3c<2, 0b110101, 0b001010001, 1470 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1471 "fcmps %fcc0, $rs1, $rs2", 1472 [(SPcmpfccv9 f32:$rs1, f32:$rs2)], 1473 IIC_fpu_fast_instr>; 1474 def FCMPD_V9 : F3_3c<2, 0b110101, 0b001010010, 1475 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1476 "fcmpd %fcc0, $rs1, $rs2", 1477 [(SPcmpfccv9 f64:$rs1, f64:$rs2)], 1478 IIC_fpu_fast_instr>; 1479 def FCMPQ_V9 : F3_3c<2, 0b110101, 0b001010011, 1480 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1481 "fcmpq %fcc0, $rs1, $rs2", 1482 [(SPcmpfccv9 f128:$rs1, f128:$rs2)]>, 1483 Requires<[HasHardQuad]>; 1484} 1485 1486//===----------------------------------------------------------------------===// 1487// Instructions for Thread Local Storage(TLS). 1488//===----------------------------------------------------------------------===// 1489let isAsmParserOnly = 1 in { 1490def TLS_ADDrr : F3_1<2, 0b000000, 1491 (outs IntRegs:$rd), 1492 (ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym), 1493 "add $rs1, $rs2, $rd, $sym", 1494 [(set i32:$rd, 1495 (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; 1496 1497let mayLoad = 1 in { 1498 def TLS_LDrr : F3_1<3, 0b000000, 1499 (outs IntRegs:$rd), 1500 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym), 1501 "ld [$addr], $rd, $sym", 1502 [(set i32:$rd, 1503 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; 1504} 1505 1506let Uses = [O6], isCall = 1, hasDelaySlot = 1 in 1507 def TLS_CALL : InstSP<(outs), 1508 (ins calltarget:$disp, TailRelocSymTLSCall:$sym, 1509 variable_ops), 1510 "call $disp, $sym", 1511 [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], 1512 IIC_jmp_or_call> { 1513 bits<30> disp; 1514 let op = 1; 1515 let Inst{29-0} = disp; 1516} 1517} 1518 1519//===----------------------------------------------------------------------===// 1520// Instructions for tail calls. 1521//===----------------------------------------------------------------------===// 1522let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, 1523 isTerminator = 1, isBarrier = 1 in { 1524 def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1525 "call $disp", 1526 [(tailcall tglobaladdr:$disp)]> { 1527 bits<30> disp; 1528 let op = 1; 1529 let Inst{29-0} = disp; 1530 } 1531} 1532 1533def : Pat<(tailcall (iPTR texternalsym:$dst)), 1534 (TAIL_CALL texternalsym:$dst)>; 1535 1536let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, isTerminator = 1, 1537 isBarrier = 1, rd = 0 in { 1538 def TAIL_CALLri : F3_2<2, 0b111000, 1539 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1540 "jmp $addr", 1541 [(tailcall ADDRri:$addr)]>; 1542} 1543 1544//===----------------------------------------------------------------------===// 1545// V9 Instructions 1546//===----------------------------------------------------------------------===// 1547 1548// V9 Conditional Moves. 1549let Predicates = [HasV9], Constraints = "$f = $rd" in { 1550 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. 1551 let Uses = [ICC], intcc = 1, cc = 0b00 in { 1552 def MOVICCrr 1553 : F4_1<0b101100, (outs IntRegs:$rd), 1554 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1555 "mov$cond %icc, $rs2, $rd", 1556 [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; 1557 1558 def MOVICCri 1559 : F4_2<0b101100, (outs IntRegs:$rd), 1560 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1561 "mov$cond %icc, $simm11, $rd", 1562 [(set i32:$rd, 1563 (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; 1564 } 1565 1566 let Uses = [FCC0], intcc = 0, cc = 0b00 in { 1567 def MOVFCCrr 1568 : F4_1<0b101100, (outs IntRegs:$rd), 1569 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1570 "mov$cond %fcc0, $rs2, $rd", 1571 [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; 1572 def MOVFCCri 1573 : F4_2<0b101100, (outs IntRegs:$rd), 1574 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1575 "mov$cond %fcc0, $simm11, $rd", 1576 [(set i32:$rd, 1577 (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; 1578 } 1579 1580 let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { 1581 def FMOVS_ICC 1582 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1583 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1584 "fmovs$cond %icc, $rs2, $rd", 1585 [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; 1586 def FMOVD_ICC 1587 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1588 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1589 "fmovd$cond %icc, $rs2, $rd", 1590 [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; 1591 let Predicates = [HasV9, HasHardQuad] in 1592 def FMOVQ_ICC 1593 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1594 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1595 "fmovq$cond %icc, $rs2, $rd", 1596 [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>; 1597 } 1598 1599 let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { 1600 def FMOVS_FCC 1601 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1602 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1603 "fmovs$cond %fcc0, $rs2, $rd", 1604 [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; 1605 def FMOVD_FCC 1606 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1607 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1608 "fmovd$cond %fcc0, $rs2, $rd", 1609 [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; 1610 let Predicates = [HasV9, HasHardQuad] in 1611 def FMOVQ_FCC 1612 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1613 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1614 "fmovq$cond %fcc0, $rs2, $rd", 1615 [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>; 1616 } 1617 1618} 1619 1620// Floating-Point Move Instructions, p. 164 of the V9 manual. 1621let Predicates = [HasV9] in { 1622 def FMOVD : F3_3u<2, 0b110100, 0b000000010, 1623 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1624 "fmovd $rs2, $rd", []>; 1625 let Predicates = [HasV9, HasHardQuad] in 1626 def FMOVQ : F3_3u<2, 0b110100, 0b000000011, 1627 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1628 "fmovq $rs2, $rd", []>; 1629 def FNEGD : F3_3u<2, 0b110100, 0b000000110, 1630 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1631 "fnegd $rs2, $rd", 1632 [(set f64:$rd, (fneg f64:$rs2))]>; 1633 let Predicates = [HasV9, HasHardQuad] in 1634 def FNEGQ : F3_3u<2, 0b110100, 0b000000111, 1635 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1636 "fnegq $rs2, $rd", 1637 [(set f128:$rd, (fneg f128:$rs2))]>; 1638 def FABSD : F3_3u<2, 0b110100, 0b000001010, 1639 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1640 "fabsd $rs2, $rd", 1641 [(set f64:$rd, (fabs f64:$rs2))]>; 1642 let Predicates = [HasV9, HasHardQuad] in 1643 def FABSQ : F3_3u<2, 0b110100, 0b000001011, 1644 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1645 "fabsq $rs2, $rd", 1646 [(set f128:$rd, (fabs f128:$rs2))]>; 1647} 1648 1649// Floating-point compare instruction with %fcc0-%fcc3. 1650def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, 1651 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1652 "fcmps $rd, $rs1, $rs2", []>; 1653def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, 1654 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1655 "fcmpd $rd, $rs1, $rs2", []>; 1656def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1657 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1658 "fcmpq $rd, $rs1, $rs2", []>, 1659 Requires<[HasHardQuad]>; 1660 1661let hasSideEffects = 1 in { 1662 def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, 1663 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1664 "fcmpes $rd, $rs1, $rs2", []>; 1665 def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, 1666 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1667 "fcmped $rd, $rs1, $rs2", []>; 1668 def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, 1669 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1670 "fcmpeq $rd, $rs1, $rs2", []>, 1671 Requires<[HasHardQuad]>; 1672} 1673 1674// Floating point conditional move instrucitons with %fcc0-%fcc3. 1675let Predicates = [HasV9] in { 1676 let Constraints = "$f = $rd", intcc = 0 in { 1677 def V9MOVFCCrr 1678 : F4_1<0b101100, (outs IntRegs:$rd), 1679 (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1680 "mov$cond $cc, $rs2, $rd", []>; 1681 def V9MOVFCCri 1682 : F4_2<0b101100, (outs IntRegs:$rd), 1683 (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1684 "mov$cond $cc, $simm11, $rd", []>; 1685 def V9FMOVS_FCC 1686 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1687 (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1688 "fmovs$cond $opf_cc, $rs2, $rd", []>; 1689 def V9FMOVD_FCC 1690 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1691 (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1692 "fmovd$cond $opf_cc, $rs2, $rd", []>; 1693 let Predicates = [HasV9, HasHardQuad] in 1694 def V9FMOVQ_FCC 1695 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1696 (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1697 "fmovq$cond $opf_cc, $rs2, $rd", []>; 1698 } // Constraints = "$f = $rd", ... 1699} // let Predicates = [hasV9] 1700 1701 1702// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear 1703// the top 32-bits before using it. To do this clearing, we use a SRLri X,0. 1704let rs1 = 0 in 1705 def POPCrr : F3_1<2, 0b101110, 1706 (outs IntRegs:$rd), (ins IntRegs:$rs2), 1707 "popc $rs2, $rd", []>, Requires<[HasV9]>; 1708def : Pat<(i32 (ctpop i32:$src)), 1709 (POPCrr (SRLri $src, 0))>; 1710 1711let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in 1712 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13), 1713 "membar $simm13", []>; 1714 1715let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in 1716 def SIR: F3_2<2, 0b110000, (outs), 1717 (ins simm13Op:$simm13), 1718 "sir $simm13", []>; 1719 1720// CASA supported on all V9, some LEON3 and all LEON4 processors. 1721let Predicates = [HasCASA], Constraints = "$swap = $rd" in 1722 def CASArr: F3_1_asi<3, 0b111100, 1723 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1724 IntRegs:$swap, ASITag:$asi), 1725 "casa [$rs1] $asi, $rs2, $rd", []>; 1726 1727// On the other hand, CASA that takes its ASI from a register 1728// is only supported on V9 processors. 1729let Predicates = [HasV9], Uses = [ASR3], Constraints = "$swap = $rd" in 1730 def CASAri: F3_1_cas_asi<3, 0b111100, 1731 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1732 IntRegs:$swap), 1733 "casa [$rs1] %asi, $rs2, $rd", []>; 1734 1735// TODO: Add DAG sequence to lower these instructions. Currently, only provided 1736// as inline assembler-supported instructions. 1737let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { 1738 def SMACrr : F3_1<2, 0b111111, 1739 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1740 "smac $rs1, $rs2, $rd", 1741 [], IIC_smac_umac>; 1742 1743 def SMACri : F3_2<2, 0b111111, 1744 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1745 "smac $rs1, $simm13, $rd", 1746 [], IIC_smac_umac>; 1747 1748 def UMACrr : F3_1<2, 0b111110, 1749 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1750 "umac $rs1, $rs2, $rd", 1751 [], IIC_smac_umac>; 1752 1753 def UMACri : F3_2<2, 0b111110, 1754 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1755 "umac $rs1, $simm13, $rd", 1756 [], IIC_smac_umac>; 1757} 1758 1759// The partial write WRPSR instruction has a non-zero destination 1760// register value to separate it from the standard instruction. 1761let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in { 1762 def PWRPSRrr : F3_1<2, 0b110001, 1763 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1764 "pwr $rs1, $rs2, %psr", []>; 1765 def PWRPSRri : F3_2<2, 0b110001, 1766 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1767 "pwr $rs1, $simm13, %psr", []>; 1768} 1769 1770let Defs = [ICC] in { 1771defm TADDCC : F3_12np<"taddcc", 0b100000>; 1772defm TSUBCC : F3_12np<"tsubcc", 0b100001>; 1773 1774let hasSideEffects = 1 in { 1775 defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; 1776 defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; 1777} 1778} 1779 1780// Section A.11 - DONE and RETRY 1781// Section A.47 - SAVED and RESTORED 1782let Predicates = [HasV9], rs1 = 0, rs2 = 0 in { 1783 let rd = 0 in 1784 def DONE : F3_1<2, 0b111110, (outs), (ins), "done", []>; 1785 1786 let rd = 1 in 1787 def RETRY : F3_1<2, 0b111110, (outs), (ins), "retry", []>; 1788 1789 let rd = 0 in 1790 def SAVED : F3_1<2, 0b110001, (outs), (ins), "saved", []>; 1791 1792 let rd = 1 in 1793 def RESTORED : F3_1<2, 0b110001, (outs), (ins), "restored", []>; 1794} 1795 1796// Section A.42 - Prefetch Data 1797let Predicates = [HasV9] in { 1798 def PREFETCHr : F3_1<3, 0b101101, 1799 (outs), (ins (MEMrr $rs1, $rs2):$addr, PrefetchTag:$rd), 1800 "prefetch [$addr], $rd", []>; 1801 def PREFETCHi : F3_2<3, 0b101101, 1802 (outs), (ins (MEMri $rs1, $simm13):$addr, PrefetchTag:$rd), 1803 "prefetch [$addr], $rd", []>; 1804 def PREFETCHAr : F3_1_asi<3, 0b111101, (outs), 1805 (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi, PrefetchTag:$rd), 1806 "prefetcha [$addr] $asi, $rd", []>; 1807 let Uses = [ASR3] in 1808 def PREFETCHAi : F3_2<3, 0b111101, (outs), 1809 (ins (MEMri $rs1, $simm13):$addr, PrefetchTag:$rd), 1810 "prefetcha [$addr] %asi, $rd", []>; 1811} 1812 1813 1814 1815// Section A.43 - Read Privileged Register Instructions 1816let Predicates = [HasV9] in { 1817let rs2 = 0 in 1818 def RDPR : F3_1<2, 0b101010, 1819 (outs IntRegs:$rd), (ins PRRegs:$rs1), 1820 "rdpr $rs1, $rd", []>; 1821 1822// Special case %fq as the register is also used in V8 1823// (albeit with different instructions and encoding). 1824// This allows us to reuse the register definition and 1825// the "%fq" designation while giving it a different encoding. 1826let Uses = [FQ], rs1 = 15, rs2 = 0 in 1827 def RDFQ : F3_1<2, 0b101010, 1828 (outs IntRegs:$rd), (ins), 1829 "rdpr %fq, $rd", []>; 1830} 1831 1832// Section A.62 - Write Privileged Register Instructions 1833let Predicates = [HasV9] in { 1834 def WRPRrr : F3_1<2, 0b110010, 1835 (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1836 "wrpr $rs1, $rs2, $rd", []>; 1837 def WRPRri : F3_2<2, 0b110010, 1838 (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1839 "wrpr $rs1, $simm13, $rd", []>; 1840} 1841 1842//===----------------------------------------------------------------------===// 1843// Non-Instruction Patterns 1844//===----------------------------------------------------------------------===// 1845 1846// Zero immediate. 1847def : Pat<(i32 0), (COPY (i32 G0))>; 1848// Small immediates. 1849def : Pat<(i32 simm13:$val), 1850 (ORri (i32 G0), imm:$val)>; 1851// Arbitrary immediates. 1852def : Pat<(i32 imm:$val), 1853 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; 1854 1855// Frame index. 1856def to_tframeindex : SDNodeXForm<frameindex, [{ 1857 return CurDAG->getTargetFrameIndex(N->getIndex(), N->getValueType(0)); 1858}]>; 1859def : Pat<(i32 (frameindex:$ptr)), (ADDri (i32 (to_tframeindex $ptr)), (i32 0))>; 1860def : Pat<(i64 (frameindex:$ptr)), (ADDri (i64 (to_tframeindex $ptr)), (i64 0))>; 1861 1862// Global addresses, constant pool entries 1863let Predicates = [Is32Bit] in { 1864 1865def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; 1866def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; 1867def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; 1868def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; 1869 1870// GlobalTLS addresses 1871def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; 1872def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; 1873def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1874 (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1875def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1876 (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1877 1878// Blockaddress 1879def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; 1880def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; 1881 1882// Add reg, lo. This is used when taking the addr of a global/constpool entry. 1883def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; 1884def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; 1885def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), 1886 (ADDri $r, tblockaddress:$in)>; 1887} 1888 1889// Calls: 1890def : Pat<(call tglobaladdr:$dst), 1891 (CALL tglobaladdr:$dst)>; 1892def : Pat<(call texternalsym:$dst), 1893 (CALL texternalsym:$dst)>; 1894 1895// Map integer extload's to zextloads. 1896def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1897def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1898def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1899def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1900def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1901def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1902 1903// zextload bool -> zextload byte 1904def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1905def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1906 1907// store 0, addr -> store %g0, addr 1908def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; 1909def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; 1910 1911// store bar for all atomic_fence in V8. 1912let Predicates = [HasNoV9] in 1913 def : Pat<(atomic_fence timm, timm), (STBAR)>; 1914 1915let Predicates = [HasV9] in 1916 def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>; 1917 1918// atomic_load addr -> load addr 1919def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1920def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1921def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1922def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1923def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; 1924def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; 1925 1926// atomic_store val, addr -> store val, addr 1927def : Pat<(atomic_store_8 i32:$val, ADDRrr:$dst), (STBrr ADDRrr:$dst, $val)>; 1928def : Pat<(atomic_store_8 i32:$val, ADDRri:$dst), (STBri ADDRri:$dst, $val)>; 1929def : Pat<(atomic_store_16 i32:$val, ADDRrr:$dst), (STHrr ADDRrr:$dst, $val)>; 1930def : Pat<(atomic_store_16 i32:$val, ADDRri:$dst), (STHri ADDRri:$dst, $val)>; 1931def : Pat<(atomic_store_32 i32:$val, ADDRrr:$dst), (STrr ADDRrr:$dst, $val)>; 1932def : Pat<(atomic_store_32 i32:$val, ADDRri:$dst), (STri ADDRri:$dst, $val)>; 1933 1934let Predicates = [HasV9] in 1935def : Pat<(atomic_cmp_swap_i32 iPTR:$rs1, i32:$rs2, i32:$swap), 1936 (CASArr $rs1, $rs2, $swap, 0x80)>; 1937 1938// Same pattern as CASArr above, but with a different ASI. 1939let Predicates = [HasLeonCASA] in 1940def : Pat<(atomic_cmp_swap_i32 iPTR:$rs1, i32:$rs2, i32:$swap), 1941 (CASArr $rs1, $rs2, $swap, 0x0A)>; 1942 1943// A register pair with zero upper half. 1944// The upper part is done with ORrr instead of `COPY G0` 1945// or a normal register copy, since `COPY G0`s in that place 1946// will be converted into `COPY G0_G1` later on, which is not 1947// what we want in this case. 1948def : Pat<(build_vector (i32 0), (i32 IntRegs:$a2)), 1949 (INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 1950 (ORrr (i32 G0), (i32 G0)), sub_even), 1951 (i32 IntRegs:$a2), sub_odd)>; 1952 1953// extract_vector 1954def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), 1955 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; 1956def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), 1957 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; 1958 1959// build_vector 1960def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), 1961 (INSERT_SUBREG 1962 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), 1963 (i32 IntRegs:$a2), sub_odd)>; 1964 1965 1966include "SparcInstr64Bit.td" 1967include "SparcInstrVIS.td" 1968include "SparcInstrAliases.td" 1969