xref: /llvm-project/llvm/lib/Target/RISCV/RISCVSchedSiFiveP600.td (revision 0165f8817cbda4dc6a83db0d2994f7ece12726ff)
1//==- RISCVSchedSiFiveP600.td - SiFiveP600 Scheduling Defs ---*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10
11/// c is true if mx has the worst case behavior compared to LMULs in MxList.
12/// On the SiFiveP600, the worst case LMUL is the Largest LMUL
13/// and the worst case sew is the smallest SEW for that LMUL.
14class SiFiveP600IsWorstCaseMX<string mx, list<string> MxList> {
15  string LLMUL = LargestLMUL<MxList>.r;
16  bit c = !eq(mx, LLMUL);
17}
18
19class SiFiveP600IsWorstCaseMXSEW<string mx, int sew, list<string> MxList, bit isF = 0> {
20  string LLMUL = LargestLMUL<MxList>.r;
21  int SSEW = SmallestSEW<mx, isF>.r;
22  bit c = !and(!eq(mx, LLMUL), !eq(sew, SSEW));
23}
24
25// 1 Micro-Op per cycle.
26class SiFiveP600GetLMulCycles<string mx> {
27  int c = !cond(
28    !eq(mx, "M1") : 1,
29    !eq(mx, "M2") : 2,
30    !eq(mx, "M4") : 4,
31    !eq(mx, "M8") : 8,
32    !eq(mx, "MF2") : 1,
33    !eq(mx, "MF4") : 1,
34    !eq(mx, "MF8") : 1
35  );
36}
37
38// Latency for segmented loads and stores are calculated as vl * nf.
39class SiFiveP600GetCyclesSegmented<string mx, int sew, int nf> {
40  defvar VLEN = 128;
41  defvar VLUpperBound = !cond(
42    !eq(mx, "M1") : !div(VLEN, sew),
43    !eq(mx, "M2") : !div(!mul(VLEN, 2), sew),
44    !eq(mx, "M4") : !div(!mul(VLEN, 4), sew),
45    !eq(mx, "M8") : !div(!mul(VLEN, 8), sew),
46    !eq(mx, "MF2") : !div(!div(VLEN, 2), sew),
47    !eq(mx, "MF4") : !div(!div(VLEN, 4), sew),
48    !eq(mx, "MF8") : !div(!div(VLEN, 8), sew),
49  );
50  int c = !mul(VLUpperBound, nf);
51}
52
53class SiFiveP600VSM3CCycles<string mx> {
54  // c = ceil(LMUL / 2)
55  int c = !cond(!eq(mx, "M2") : 1,
56                !eq(mx, "M4") : 2,
57                !eq(mx, "M8") : 4,
58                true : 1);
59}
60
61class SiFiveP600RVVMultiplier<string mx> {
62  int c = !if(!eq(mx, "M8"), 2, 1);
63}
64
65// ======================================================================
66// The latency and occupancy data in this section are primarily evaluated
67// from llvm-exegesis.
68// ======================================================================
69
70class SiFiveP600VCryptoLatency<string mx> {
71  int c = !cond(
72    !eq(mx, "M4"): 4,
73    !eq(mx, "M8"): 8,
74    true:          2
75  );
76}
77
78class SiFiveP600VFMinMaxReduction<string mx, int sew> {
79  defvar E64Lat = !cond(
80    !eq(mx, "M1") : 4,
81    !eq(mx, "M2") : 6,
82    !eq(mx, "M4") : 8,
83    !eq(mx, "M8") : 10,
84    true:           2
85  );
86
87  defvar E64Cycles = !cond(
88    !eq(mx, "M1") : 3,
89    !eq(mx, "M2") : 4,
90    !eq(mx, "M4") : 5,
91    !eq(mx, "M8") : 6,
92    true:           2
93  );
94
95  int latency = !if(!eq(sew, 64), E64Lat, !add(E64Lat, 2));
96  int cycles = !if(!eq(sew, 64), E64Cycles, !add(E64Cycles, 1));
97}
98
99class SiFiveP600VFUnorderedReduction<string mx, int sew> {
100  defvar E64Lat = !cond(
101    !eq(mx, "M1") : 6,
102    !eq(mx, "M2") : 12,
103    !eq(mx, "M4") : 18,
104    !eq(mx, "M8") : 24,
105    true:           2
106  );
107
108  defvar E32Cycles = !cond(
109    !eq(mx, "M1") : 10,
110    !eq(mx, "M2") : 10,
111    !eq(mx, "M4") : 11,
112    !eq(mx, "M8") : 11,
113    true:           6
114  );
115
116  int latency = !if(!eq(sew, 64), E64Lat, !add(E64Lat, 4));
117  int cycles = !if(!eq(sew, 64), 6, E32Cycles);
118}
119
120class SiFiveP600VFWidenUnorderedReduction<string mx> {
121  int latency = !cond(
122    !eq(mx, "M1") : 10,
123    !eq(mx, "M2") : 18,
124    !eq(mx, "M4") : 24,
125    !eq(mx, "M8") : 30,
126    true:           6
127  );
128}
129
130class SiFiveP600VFOrderedReduction<string mx, int sew> {
131  defvar Base = !if(!eq(sew, 64), 6, 10);
132  int c = !cond(
133    !eq(mx, "M1") : Base,
134    !eq(mx, "M2") : !mul(Base, 2),
135    !eq(mx, "M4") : !mul(Base, 4),
136    !eq(mx, "M8") : !mul(Base, 8),
137    true:           6
138  );
139}
140
141class SiFiveP600VIReductionLatency<string mx> {
142  int c = !cond(
143    !eq(mx, "M2") : 4,
144    !eq(mx, "M4") : 8,
145    !eq(mx, "M8") : 16,
146    // M1 and lower
147    true:           2
148  );
149}
150
151class SiFiveP600VIMinMaxReductionLatency<string mx, int sew> {
152  // +-----+-----+-----+-----+----+
153  // |     | E64 | E32 | E16 | E8 |
154  // +-----+-----+-----+-----+----+
155  // | MF8 |  X  |  X  |  X  |  4 |
156  // +-----+-----+-----+-----+----+
157  // | MF4 |  X  |  X  |  4  |  6 |
158  // +-----+-----+-----+-----+----+
159  // | MF2 |  X  |  4  |  6  |  8 |
160  // +-----+-----+-----+-----+----+
161  // | M1  |  4  |  6  |  8  | 10 |
162  // +-----+-----+-----+-----+----+
163  // | M2  |  6  |  8  |  10 | 12 |
164  // +-----+-----+-----+-----+----+
165  // | M4  |  8  |  10 |  12 | 14 |
166  // +-----+-----+-----+-----+----+
167  // | M8  |  10 |  12 |  14 | 16 |
168  // +-----+-----+-----+-----+----+
169  defvar BaseIndex = !cond(
170    !eq(sew, 64): 0,
171    !eq(sew, 32): 1,
172    !eq(sew, 16): 2,
173    !eq(sew, 8):  3
174  );
175
176  defvar Latencies = [4, 6, 8, 10, 12, 14, 16];
177
178  int c = !cond(
179    !eq(mx, "M1") : Latencies[BaseIndex],
180    !eq(mx, "M2") : Latencies[!add(BaseIndex, 1)],
181    !eq(mx, "M4") : Latencies[!add(BaseIndex, 2)],
182    !eq(mx, "M8") : Latencies[!add(BaseIndex, 3)],
183    // Fractional
184    !eq(mx, "MF2"): Latencies[!sub(BaseIndex, 1)],
185    !eq(mx, "MF4"): Latencies[!sub(BaseIndex, 2)],
186    !eq(mx, "MF8"): Latencies[!sub(BaseIndex, 3)],
187  );
188}
189
190class SiFiveP600VIMinMaxReductionCycles<string mx, int sew> {
191  // +-----+-----+-----+-----+----+
192  // |     | E64 | E32 | E16 | E8 |
193  // +-----+-----+-----+-----+----+
194  // | MF8 |  X  |  X  |  X  |  3 |
195  // +-----+-----+-----+-----+----+
196  // | MF4 |  X  |  X  |  3  |  5 |
197  // +-----+-----+-----+-----+----+
198  // | MF2 |  X  |  3  |  5  |  6 |
199  // +-----+-----+-----+-----+----+
200  // | M1  |  3  |  4  |  6  |  8 |
201  // +-----+-----+-----+-----+----+
202  // | M2  |  4  |  5  |  8  |  9 |
203  // +-----+-----+-----+-----+----+
204  // | M4  |  5  |  6  |  10 | 11 |
205  // +-----+-----+-----+-----+----+
206  // | M8  |  7  |  8  |  9  | 11 |
207  // +-----+-----+-----+-----+----+
208  defvar Index = !cond(
209    !eq(sew, 64): 0,
210    !eq(sew, 32): 1,
211    !eq(sew, 16): 2,
212    !eq(sew, 8):  3
213  );
214
215  defvar Cycles = [
216    [0, 0, 0,  3],
217    [0, 0, 3,  5],
218    [0, 3, 5,  6],
219    [3, 4, 6,  8],
220    [4, 5, 8,  9],
221    [5, 6, 10, 11],
222    [7, 8, 9,  11]
223  ];
224
225  int c = !cond(
226    !eq(mx, "MF8"): Cycles[0][Index],
227    !eq(mx, "MF4"): Cycles[1][Index],
228    !eq(mx, "MF2"): Cycles[2][Index],
229    !eq(mx, "M1"):  Cycles[3][Index],
230    !eq(mx, "M2"):  Cycles[4][Index],
231    !eq(mx, "M4"):  Cycles[5][Index],
232    !eq(mx, "M8"):  Cycles[6][Index],
233  );
234}
235
236class SiFiveP600VSlide1<string mx> {
237  int c = !cond(
238    !eq(mx, "M2") : 3,
239    !eq(mx, "M4") : 4,
240    !eq(mx, "M8") : 8,
241    // M1 and lower
242    true:           2
243  );
244}
245
246class SiFiveP600VSlideI<string mx> {
247  int c = !cond(
248    !eq(mx, "M2") : 4,
249    !eq(mx, "M4") : 6,
250    !eq(mx, "M8") : 8,
251    // M1 and lower
252    true:           2
253  );
254}
255
256class SiFiveP600VSlideXComplex<string mx, bit isUp = false> {
257  int latency = !cond(
258    !eq(mx, "M2") : 11,
259    !eq(mx, "M4") : 14,
260    !eq(mx, "M8") : 20
261  );
262
263  int cycles = !cond(
264    !eq(mx, "M2") : !if(isUp, 10, 11),
265    !eq(mx, "M4") : !if(isUp, 12, 14),
266    !eq(mx, "M8") : !if(isUp, 16, 20)
267  );
268}
269
270class SiFiveP600VPermutationComplex<string mx> {
271  int c = !cond(
272    !eq(mx, "M2") : 12,
273    !eq(mx, "M4") : 16,
274    !eq(mx, "M8") : 24
275  );
276}
277
278class SiFiveP600VSHA2MSCycles<string mx, int sew> {
279  int c = !cond(
280    !eq(mx, "M2") : !if(!eq(sew, 32), 2, 3),
281    !eq(mx, "M4") : !if(!eq(sew, 32), 4, 6),
282    !eq(mx, "M8") : !if(!eq(sew, 32), 8, 12),
283    true: 1
284  );
285}
286
287// SiFiveP600 machine model for scheduling and other instruction cost heuristics.
288def SiFiveP600Model : SchedMachineModel {
289  let IssueWidth = 4;         // 4 micro-ops are dispatched per cycle.
290  let MicroOpBufferSize = 160; // Max micro-ops that can be buffered.
291  let LoadLatency = 4;        // Cycles for loads to access the cache.
292  let MispredictPenalty = 9;  // Extra cycles for a mispredicted branch.
293  let UnsupportedFeatures = [HasStdExtZbkb, HasStdExtZbkc, HasStdExtZbkx,
294                             HasStdExtZknd, HasStdExtZkne, HasStdExtZknh,
295                             HasStdExtZksed, HasStdExtZksh, HasStdExtZkr,
296                             HasVendorXSfvqmaccqoq];
297  let CompleteModel = false;
298}
299
300let SchedModel = SiFiveP600Model in {
301
302def SiFiveP600IEXQ0       : ProcResource<1>;
303def SiFiveP600IEXQ1       : ProcResource<1>;
304def SiFiveP600IEXQ2       : ProcResource<1>;
305def SiFiveP600IEXQ3       : ProcResource<1>;
306def SiFiveP600FEXQ0       : ProcResource<1>;
307def SiFiveP600FEXQ1       : ProcResource<1>;
308
309// Two Load/Store ports that can issue either two loads, two stores, or one load
310// and one store (P550 has one load and one separate store pipe).
311def SiFiveP600LDST       : ProcResource<2>;
312
313// 4-wide pipeline with 4 ALU pipes.
314def SiFiveP600IntArith    : ProcResGroup<[SiFiveP600IEXQ0, SiFiveP600IEXQ1, SiFiveP600IEXQ2, SiFiveP600IEXQ3]>;
315defvar SiFiveP600SYS      = SiFiveP600IEXQ0;
316defvar SiFiveP600CMOV     = SiFiveP600IEXQ0;
317defvar SiFiveP600MulI2F   = SiFiveP600IEXQ1;
318def SiFiveP600Branch      : ProcResGroup<[SiFiveP600IEXQ2, SiFiveP600IEXQ3]>;
319def SiFiveP600Div         : ProcResource<1>;
320
321def SiFiveP600FloatArith  : ProcResGroup<[SiFiveP600FEXQ0, SiFiveP600FEXQ1]>;
322defvar SiFiveP600F2I      = SiFiveP600FEXQ0;
323def SiFiveP600FloatDiv    : ProcResource<1>;
324
325// Vector pipeline
326// VEXQ0 handle Mask, Simple Slide instructions,
327// VEXQ1 handle Complex Slide, Permutation, Reductions, Divide instructions.
328// Other vector instructions can be done in VEXQ0 and VEXQ1.
329def SiFiveP600VEXQ0        : ProcResource<1>;
330def SiFiveP600VEXQ1        : ProcResource<1>;
331def SiFiveP600VectorArith  : ProcResGroup<[SiFiveP600VEXQ0, SiFiveP600VEXQ1]>;
332
333// Only VEXQ0 has mask unit.
334defvar SiFiveP600VectorMask = SiFiveP600VEXQ0;
335// Only VEXQ0 has vector crypto.
336defvar SiFiveP600VectorCrypto = SiFiveP600VEXQ0;
337
338def SiFiveP600VLD          : ProcResource<1>;
339def SiFiveP600VST          : ProcResource<1>;
340def SiFiveP600VDiv         : ProcResource<1>;
341def SiFiveP600VFloatDiv    : ProcResource<1>;
342
343// Integer arithmetic and logic
344def : WriteRes<WriteIALU, [SiFiveP600IntArith]>;
345def : WriteRes<WriteIALU32, [SiFiveP600IntArith]>;
346def : WriteRes<WriteShiftImm, [SiFiveP600IntArith]>;
347def : WriteRes<WriteShiftImm32, [SiFiveP600IntArith]>;
348def : WriteRes<WriteShiftReg, [SiFiveP600IntArith]>;
349def : WriteRes<WriteShiftReg32, [SiFiveP600IntArith]>;
350// Branching
351def : WriteRes<WriteJmp, [SiFiveP600Branch]>;
352def : WriteRes<WriteJal, [SiFiveP600Branch]>;
353def : WriteRes<WriteJalr, [SiFiveP600Branch]>;
354
355// CMOV
356def P600WriteCMOV : SchedWriteRes<[SiFiveP600Branch, SiFiveP600CMOV]> {
357  let Latency = 2;
358  let NumMicroOps = 2;
359}
360def : InstRW<[P600WriteCMOV], (instrs PseudoCCMOVGPRNoX0)>;
361
362let Latency = 2 in {
363// Integer multiplication
364def : WriteRes<WriteIMul, [SiFiveP600MulI2F]>;
365def : WriteRes<WriteIMul32, [SiFiveP600MulI2F]>;
366// cpop[w] look exactly like multiply.
367def : WriteRes<WriteCPOP, [SiFiveP600MulI2F]>;
368def : WriteRes<WriteCPOP32, [SiFiveP600MulI2F]>;
369}
370
371// Integer division
372def : WriteRes<WriteIDiv, [SiFiveP600MulI2F, SiFiveP600Div]> {
373  let Latency = 35;
374  let ReleaseAtCycles = [1, 34];
375}
376def : WriteRes<WriteIDiv32,  [SiFiveP600MulI2F, SiFiveP600Div]> {
377  let Latency = 20;
378  let ReleaseAtCycles = [1, 19];
379}
380
381// Integer remainder
382def : WriteRes<WriteIRem, [SiFiveP600MulI2F, SiFiveP600Div]> {
383  let Latency = 35;
384  let ReleaseAtCycles = [1, 34];
385}
386def : WriteRes<WriteIRem32, [SiFiveP600MulI2F, SiFiveP600Div]> {
387  let Latency = 20;
388  let ReleaseAtCycles = [1, 19];
389}
390
391// Bitmanip
392def : WriteRes<WriteRotateImm, [SiFiveP600IntArith]>;
393def : WriteRes<WriteRotateImm32, [SiFiveP600IntArith]>;
394def : WriteRes<WriteRotateReg, [SiFiveP600IntArith]>;
395def : WriteRes<WriteRotateReg32, [SiFiveP600IntArith]>;
396
397def : WriteRes<WriteCLZ, [SiFiveP600IntArith]>;
398def : WriteRes<WriteCLZ32, [SiFiveP600IntArith]>;
399def : WriteRes<WriteCTZ, [SiFiveP600IntArith]>;
400def : WriteRes<WriteCTZ32, [SiFiveP600IntArith]>;
401
402def : WriteRes<WriteORCB, [SiFiveP600IntArith]>;
403def : WriteRes<WriteIMinMax, [SiFiveP600IntArith]>;
404
405def : WriteRes<WriteREV8, [SiFiveP600IntArith]>;
406
407def : WriteRes<WriteSHXADD, [SiFiveP600IntArith]>;
408def : WriteRes<WriteSHXADD32, [SiFiveP600IntArith]>;
409
410def : WriteRes<WriteSingleBit, [SiFiveP600IntArith]>;
411def : WriteRes<WriteSingleBitImm, [SiFiveP600IntArith]>;
412def : WriteRes<WriteBEXT, [SiFiveP600IntArith]>;
413def : WriteRes<WriteBEXTI, [SiFiveP600IntArith]>;
414
415// Memory
416def : WriteRes<WriteSTB, [SiFiveP600LDST]>;
417def : WriteRes<WriteSTH, [SiFiveP600LDST]>;
418def : WriteRes<WriteSTW, [SiFiveP600LDST]>;
419def : WriteRes<WriteSTD, [SiFiveP600LDST]>;
420def : WriteRes<WriteFST16, [SiFiveP600LDST]>;
421def : WriteRes<WriteFST32, [SiFiveP600LDST]>;
422def : WriteRes<WriteFST64, [SiFiveP600LDST]>;
423
424let Latency = 4 in {
425def : WriteRes<WriteLDB, [SiFiveP600LDST]>;
426def : WriteRes<WriteLDH, [SiFiveP600LDST]>;
427}
428let Latency = 4 in {
429def : WriteRes<WriteLDW, [SiFiveP600LDST]>;
430def : WriteRes<WriteLDD, [SiFiveP600LDST]>;
431}
432
433let Latency = 5 in {
434def : WriteRes<WriteFLD16, [SiFiveP600LDST]>;
435def : WriteRes<WriteFLD32, [SiFiveP600LDST]>;
436def : WriteRes<WriteFLD64, [SiFiveP600LDST]>;
437}
438
439// Atomic memory
440let Latency = 3 in {
441def : WriteRes<WriteAtomicSTW, [SiFiveP600LDST]>;
442def : WriteRes<WriteAtomicSTD, [SiFiveP600LDST]>;
443def : WriteRes<WriteAtomicW, [SiFiveP600LDST]>;
444def : WriteRes<WriteAtomicD, [SiFiveP600LDST]>;
445def : WriteRes<WriteAtomicLDW, [SiFiveP600LDST]>;
446def : WriteRes<WriteAtomicLDD, [SiFiveP600LDST]>;
447}
448
449// Floating point
450let Latency = 2 in {
451def : WriteRes<WriteFAdd16, [SiFiveP600FloatArith]>;
452def : WriteRes<WriteFAdd32, [SiFiveP600FloatArith]>;
453def : WriteRes<WriteFAdd64, [SiFiveP600FloatArith]>;
454}
455let Latency = 3 in {
456def : WriteRes<WriteFMul16, [SiFiveP600FloatArith]>;
457def : WriteRes<WriteFMul32, [SiFiveP600FloatArith]>;
458def : WriteRes<WriteFMul64, [SiFiveP600FloatArith]>;
459}
460let Latency = 4 in {
461def : WriteRes<WriteFMA16, [SiFiveP600FloatArith]>;
462def : WriteRes<WriteFMA32, [SiFiveP600FloatArith]>;
463def : WriteRes<WriteFMA64, [SiFiveP600FloatArith]>;
464}
465
466let Latency = 2 in {
467def : WriteRes<WriteFSGNJ16, [SiFiveP600FloatArith]>;
468def : WriteRes<WriteFSGNJ32, [SiFiveP600FloatArith]>;
469def : WriteRes<WriteFSGNJ64, [SiFiveP600FloatArith]>;
470
471def : WriteRes<WriteFMinMax16, [SiFiveP600FloatArith]>;
472def : WriteRes<WriteFMinMax32, [SiFiveP600FloatArith]>;
473def : WriteRes<WriteFMinMax64, [SiFiveP600FloatArith]>;
474}
475
476// Half precision.
477def : WriteRes<WriteFDiv16, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
478  let Latency = 4;
479  let ReleaseAtCycles = [1, 4];
480}
481def : WriteRes<WriteFSqrt16, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
482  let Latency = 18;
483  let ReleaseAtCycles = [1, 17];
484}
485
486// Single precision.
487def : WriteRes<WriteFDiv32, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
488  let Latency = 6;
489  let ReleaseAtCycles = [1, 6];
490}
491def : WriteRes<WriteFSqrt32, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
492  let Latency = 18;
493  let ReleaseAtCycles = [1, 17];
494}
495
496// Double precision
497def : WriteRes<WriteFDiv64, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
498  let Latency = 11;
499  let ReleaseAtCycles = [1, 11];
500}
501def : WriteRes<WriteFSqrt64, [SiFiveP600FEXQ1, SiFiveP600FloatDiv]> {
502  let Latency = 33;
503  let ReleaseAtCycles = [1, 32];
504}
505
506// Conversions
507let Latency = 2 in {
508def : WriteRes<WriteFCvtI32ToF16, [SiFiveP600MulI2F]>;
509def : WriteRes<WriteFCvtI32ToF32, [SiFiveP600MulI2F]>;
510def : WriteRes<WriteFCvtI32ToF64, [SiFiveP600MulI2F]>;
511def : WriteRes<WriteFCvtI64ToF16, [SiFiveP600MulI2F]>;
512def : WriteRes<WriteFCvtI64ToF32, [SiFiveP600MulI2F]>;
513def : WriteRes<WriteFCvtI64ToF64, [SiFiveP600MulI2F]>;
514def : WriteRes<WriteFCvtF16ToI32, [SiFiveP600F2I]>;
515def : WriteRes<WriteFCvtF16ToI64, [SiFiveP600F2I]>;
516def : WriteRes<WriteFCvtF16ToF32, [SiFiveP600FloatArith]>;
517def : WriteRes<WriteFCvtF16ToF64, [SiFiveP600FloatArith]>;
518def : WriteRes<WriteFCvtF32ToI32, [SiFiveP600F2I]>;
519def : WriteRes<WriteFCvtF32ToI64, [SiFiveP600F2I]>;
520def : WriteRes<WriteFCvtF32ToF16, [SiFiveP600FloatArith]>;
521def : WriteRes<WriteFCvtF32ToF64, [SiFiveP600FloatArith]>;
522def : WriteRes<WriteFCvtF64ToI32, [SiFiveP600F2I]>;
523def : WriteRes<WriteFCvtF64ToI64, [SiFiveP600F2I]>;
524def : WriteRes<WriteFCvtF64ToF16, [SiFiveP600FloatArith]>;
525def : WriteRes<WriteFCvtF64ToF32, [SiFiveP600FloatArith]>;
526
527def : WriteRes<WriteFClass16, [SiFiveP600F2I]>;
528def : WriteRes<WriteFClass32, [SiFiveP600F2I]>;
529def : WriteRes<WriteFClass64, [SiFiveP600F2I]>;
530def : WriteRes<WriteFCmp16, [SiFiveP600F2I]>;
531def : WriteRes<WriteFCmp32, [SiFiveP600F2I]>;
532def : WriteRes<WriteFCmp64, [SiFiveP600F2I]>;
533def : WriteRes<WriteFMovI16ToF16, [SiFiveP600MulI2F]>;
534def : WriteRes<WriteFMovF16ToI16, [SiFiveP600F2I]>;
535def : WriteRes<WriteFMovI32ToF32, [SiFiveP600MulI2F]>;
536def : WriteRes<WriteFMovF32ToI32, [SiFiveP600F2I]>;
537def : WriteRes<WriteFMovI64ToF64, [SiFiveP600MulI2F]>;
538def : WriteRes<WriteFMovF64ToI64, [SiFiveP600F2I]>;
539}
540
541// 6. Configuration-Setting Instructions
542def : WriteRes<WriteVSETVLI, [SiFiveP600SYS]>;
543def : WriteRes<WriteVSETIVLI, [SiFiveP600SYS]>;
544def : WriteRes<WriteVSETVL, [SiFiveP600SYS]>;
545
546// 7. Vector Loads and Stores
547// FIXME: This unit is still being improved, currently
548// it is based on stage numbers. Estimates are optimistic,
549// latency may be longer.
550foreach mx = SchedMxList in {
551  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
552  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
553  let Latency = 8, ReleaseAtCycles = [LMulLat] in {
554    defm "" : LMULWriteResMX<"WriteVLDE",    [SiFiveP600VLD], mx, IsWorstCase>;
555    defm "" : LMULWriteResMX<"WriteVLDM",    [SiFiveP600VLD], mx, IsWorstCase>;
556    defm "" : LMULWriteResMX<"WriteVLDFF",   [SiFiveP600VLD], mx, IsWorstCase>;
557  }
558  let Latency = 12, ReleaseAtCycles = [LMulLat] in {
559    defm "" : LMULWriteResMX<"WriteVLDS8",   [SiFiveP600VLD], mx, IsWorstCase>;
560    defm "" : LMULWriteResMX<"WriteVLDS16",  [SiFiveP600VLD], mx, IsWorstCase>;
561    defm "" : LMULWriteResMX<"WriteVLDS32",  [SiFiveP600VLD], mx, IsWorstCase>;
562    defm "" : LMULWriteResMX<"WriteVLDS64",  [SiFiveP600VLD], mx, IsWorstCase>;
563  }
564  let Latency = 12, ReleaseAtCycles = [LMulLat] in {
565    defm "" : LMULWriteResMX<"WriteVLDUX8",  [SiFiveP600VLD], mx, IsWorstCase>;
566    defm "" : LMULWriteResMX<"WriteVLDUX16", [SiFiveP600VLD], mx, IsWorstCase>;
567    defm "" : LMULWriteResMX<"WriteVLDUX32", [SiFiveP600VLD], mx, IsWorstCase>;
568    defm "" : LMULWriteResMX<"WriteVLDUX64", [SiFiveP600VLD], mx, IsWorstCase>;
569    defm "" : LMULWriteResMX<"WriteVLDOX8",  [SiFiveP600VLD], mx, IsWorstCase>;
570    defm "" : LMULWriteResMX<"WriteVLDOX16", [SiFiveP600VLD], mx, IsWorstCase>;
571    defm "" : LMULWriteResMX<"WriteVLDOX32", [SiFiveP600VLD], mx, IsWorstCase>;
572    defm "" : LMULWriteResMX<"WriteVLDOX64", [SiFiveP600VLD], mx, IsWorstCase>;
573  }
574}
575
576foreach mx = SchedMxList in {
577  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
578  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
579  let Latency = 8, ReleaseAtCycles = [LMulLat] in {
580    defm "" : LMULWriteResMX<"WriteVSTE",    [SiFiveP600VST], mx, IsWorstCase>;
581    defm "" : LMULWriteResMX<"WriteVSTM",    [SiFiveP600VST], mx, IsWorstCase>;
582  }
583  let Latency = 12, ReleaseAtCycles = [LMulLat] in {
584    defm "" : LMULWriteResMX<"WriteVSTS8",   [SiFiveP600VST], mx, IsWorstCase>;
585    defm "" : LMULWriteResMX<"WriteVSTS16",  [SiFiveP600VST], mx, IsWorstCase>;
586    defm "" : LMULWriteResMX<"WriteVSTS32",  [SiFiveP600VST], mx, IsWorstCase>;
587    defm "" : LMULWriteResMX<"WriteVSTS64",  [SiFiveP600VST], mx, IsWorstCase>;
588  }
589  let Latency = 12, ReleaseAtCycles = [LMulLat] in {
590    defm "" : LMULWriteResMX<"WriteVSTUX8",  [SiFiveP600VST], mx, IsWorstCase>;
591    defm "" : LMULWriteResMX<"WriteVSTUX16", [SiFiveP600VST], mx, IsWorstCase>;
592    defm "" : LMULWriteResMX<"WriteVSTUX32", [SiFiveP600VST], mx, IsWorstCase>;
593    defm "" : LMULWriteResMX<"WriteVSTUX64", [SiFiveP600VST], mx, IsWorstCase>;
594    defm "" : LMULWriteResMX<"WriteVSTOX8",  [SiFiveP600VST], mx, IsWorstCase>;
595    defm "" : LMULWriteResMX<"WriteVSTOX16", [SiFiveP600VST], mx, IsWorstCase>;
596    defm "" : LMULWriteResMX<"WriteVSTOX32", [SiFiveP600VST], mx, IsWorstCase>;
597    defm "" : LMULWriteResMX<"WriteVSTOX64", [SiFiveP600VST], mx, IsWorstCase>;
598  }
599}
600
601foreach mx = SchedMxList in {
602  foreach nf=2-8 in {
603    foreach eew = [8, 16, 32, 64] in {
604      defvar LMulLat = SiFiveP600GetCyclesSegmented<mx, eew, nf>.c;
605      defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
606      let Latency = !add(12, LMulLat), ReleaseAtCycles = [!add(12, LMulLat)] in {
607        defm "" : LMULWriteResMX<"WriteVLSEG" # nf # "e" # eew,   [SiFiveP600VLD], mx, IsWorstCase>;
608        defm "" : LMULWriteResMX<"WriteVLSEGFF" # nf # "e" # eew, [SiFiveP600VLD], mx, IsWorstCase>;
609        defm "" : LMULWriteResMX<"WriteVLSSEG" # nf # "e" # eew,  [SiFiveP600VLD], mx, IsWorstCase>;
610        defm "" : LMULWriteResMX<"WriteVLUXSEG" # nf # "e" # eew, [SiFiveP600VLD], mx, IsWorstCase>;
611        defm "" : LMULWriteResMX<"WriteVLOXSEG" # nf # "e" # eew, [SiFiveP600VLD], mx, IsWorstCase>;
612      }
613      let Latency = !add(1, LMulLat), ReleaseAtCycles = [!add(12, LMulLat)] in {
614        defm "" : LMULWriteResMX<"WriteVSSEG" # nf # "e" # eew,   [SiFiveP600VST], mx, IsWorstCase>;
615        defm "" : LMULWriteResMX<"WriteVSSSEG" # nf # "e" # eew,  [SiFiveP600VST], mx, IsWorstCase>;
616        defm "" : LMULWriteResMX<"WriteVSUXSEG" # nf # "e" # eew, [SiFiveP600VST], mx, IsWorstCase>;
617        defm "" : LMULWriteResMX<"WriteVSOXSEG" # nf # "e" # eew, [SiFiveP600VST], mx, IsWorstCase>;
618      }
619    }
620  }
621}
622
623// Whole register move/load/store
624foreach LMul = [1, 2, 4, 8] in {
625  let Latency = 8, ReleaseAtCycles = [LMul] in {
626    def : WriteRes<!cast<SchedWrite>("WriteVLD" # LMul # "R"), [SiFiveP600VLD]>;
627    def : WriteRes<!cast<SchedWrite>("WriteVST" # LMul # "R"), [SiFiveP600VST]>;
628  }
629  let Latency = 2, ReleaseAtCycles = [LMul] in {
630    def : WriteRes<!cast<SchedWrite>("WriteVMov" # LMul # "V"), [SiFiveP600VectorArith]>;
631  }
632}
633
634// 11. Vector Integer Arithmetic Instructions
635foreach mx = SchedMxList in {
636  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
637  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
638  let Latency = 2, ReleaseAtCycles = [LMulLat] in {
639    defm "" : LMULWriteResMX<"WriteVExtV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
640    defm "" : LMULWriteResMX<"WriteVICmpV",   [SiFiveP600VectorMask],  mx, IsWorstCase>;
641    defm "" : LMULWriteResMX<"WriteVICmpX",   [SiFiveP600VectorMask],  mx, IsWorstCase>;
642    defm "" : LMULWriteResMX<"WriteVICmpI",   [SiFiveP600VectorMask],  mx, IsWorstCase>;
643  }
644  let ReleaseAtCycles = [LMulLat] in {
645    let Latency = 6 in {
646      defm "" : LMULWriteResMX<"WriteVIMulV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
647      defm "" : LMULWriteResMX<"WriteVIMulX",    [SiFiveP600VectorArith], mx, IsWorstCase>;
648      defm "" : LMULWriteResMX<"WriteVIMulAddV", [SiFiveP600VectorArith], mx, IsWorstCase>;
649      defm "" : LMULWriteResMX<"WriteVIMulAddX", [SiFiveP600VectorArith], mx, IsWorstCase>;
650    }
651
652    let Latency = !mul(2, SiFiveP600RVVMultiplier<mx>.c) in {
653      defm "" : LMULWriteResMX<"WriteVIALUV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
654      defm "" : LMULWriteResMX<"WriteVIALUX",    [SiFiveP600VectorArith], mx, IsWorstCase>;
655      defm "" : LMULWriteResMX<"WriteVIALUI",    [SiFiveP600VectorArith], mx, IsWorstCase>;
656      defm "" : LMULWriteResMX<"WriteVICALUV",   [SiFiveP600VectorArith], mx, IsWorstCase>;
657      defm "" : LMULWriteResMX<"WriteVICALUX",   [SiFiveP600VectorArith], mx, IsWorstCase>;
658      defm "" : LMULWriteResMX<"WriteVICALUI",   [SiFiveP600VectorArith], mx, IsWorstCase>;
659      defm "" : LMULWriteResMX<"WriteVICALUMV",  [SiFiveP600VectorMask],  mx, IsWorstCase>;
660      defm "" : LMULWriteResMX<"WriteVICALUMX",  [SiFiveP600VectorMask],  mx, IsWorstCase>;
661      defm "" : LMULWriteResMX<"WriteVICALUMI",  [SiFiveP600VectorMask],  mx, IsWorstCase>;
662      defm "" : LMULWriteResMX<"WriteVIMergeV",  [SiFiveP600VectorArith], mx, IsWorstCase>;
663      defm "" : LMULWriteResMX<"WriteVIMergeX",  [SiFiveP600VectorArith], mx, IsWorstCase>;
664      defm "" : LMULWriteResMX<"WriteVIMergeI",  [SiFiveP600VectorArith], mx, IsWorstCase>;
665      defm "" : LMULWriteResMX<"WriteVIMovX",    [SiFiveP600VectorArith], mx, IsWorstCase>;
666      defm "" : LMULWriteResMX<"WriteVIMovI",    [SiFiveP600VectorArith], mx, IsWorstCase>;
667      defm "" : LMULWriteResMX<"WriteVShiftI",   [SiFiveP600VectorArith], mx, IsWorstCase>;
668      defm "" : LMULWriteResMX<"WriteVShiftV",   [SiFiveP600VectorArith], mx, IsWorstCase>;
669      defm "" : LMULWriteResMX<"WriteVShiftX",   [SiFiveP600VectorArith], mx, IsWorstCase>;
670      defm "" : LMULWriteResMX<"WriteVIMinMaxV", [SiFiveP600VectorArith], mx, IsWorstCase>;
671      defm "" : LMULWriteResMX<"WriteVIMinMaxX", [SiFiveP600VectorArith], mx, IsWorstCase>;
672      defm "" : LMULWriteResMX<"WriteVIMovV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
673    }
674  }
675}
676// Widening
677foreach mx = SchedMxListW in {
678  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
679  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxListW>.c;
680  let Latency = 6, ReleaseAtCycles = [LMulLat] in {
681    defm "" : LMULWriteResMX<"WriteVIWALUV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
682    defm "" : LMULWriteResMX<"WriteVIWALUX",    [SiFiveP600VectorArith], mx, IsWorstCase>;
683    defm "" : LMULWriteResMX<"WriteVIWALUI",    [SiFiveP600VectorArith], mx, IsWorstCase>;
684    defm "" : LMULWriteResMX<"WriteVIWMulV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
685    defm "" : LMULWriteResMX<"WriteVIWMulX",    [SiFiveP600VectorArith], mx, IsWorstCase>;
686    defm "" : LMULWriteResMX<"WriteVIWMulAddV", [SiFiveP600VectorArith], mx, IsWorstCase>;
687    defm "" : LMULWriteResMX<"WriteVIWMulAddX", [SiFiveP600VectorArith], mx, IsWorstCase>;
688
689    // Special case for variants with widen operands.
690    let ReleaseAtCycles = [!mul(LMulLat, 2)] in
691    def P600WriteVIWALUWidenOp_ # mx : SchedWriteRes<[SiFiveP600VectorArith]>;
692  }
693
694  defvar P600VIWALUBaseSchedRW = [!cast<SchedWrite>("P600WriteVIWALUWidenOp_" # mx),
695                                  !cast<SchedRead>("ReadVPassthru_" # mx),
696                                  !cast<SchedRead>("ReadVIALUV_" # mx),
697                                  !cast<SchedRead>("ReadVIALUV_" # mx)];
698
699  def : InstRW<P600VIWALUBaseSchedRW,
700               (instregex "^PseudoVW(ADD|SUB)[U]?_W(V|X)_" # mx # "$")>;
701  def : InstRW<P600VIWALUBaseSchedRW[0,2,3],
702               (instregex "^PseudoVW(ADD|SUB)[U]?_WV_" # mx # "_TIED$")>;
703
704  def : InstRW<!listconcat(P600VIWALUBaseSchedRW, [!cast<SchedRead>("ReadVMask")]),
705               (instregex "^PseudoVW(ADD|SUB)[U]?_W(V|X)_" # mx # "_MASK$")>;
706  def : InstRW<!listconcat(P600VIWALUBaseSchedRW[0,1,3], [!cast<SchedRead>("ReadVMask")]),
707               (instregex "^PseudoVW(ADD|SUB)[U]?_WV_" # mx # "_MASK_TIED$")>;
708}
709
710// Worst case needs 51/45/42/72 * lmul cycles for i8/16/32/64.
711foreach mx = SchedMxList in {
712  foreach sew = SchedSEWSet<mx>.val in {
713    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
714    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
715    defvar DivMicroOpLat =
716      !cond(!eq(sew, 8): 51, !eq(sew, 16): 45, !eq(sew, 32): 42,
717      /* SEW=64 */ true: 72);
718    defvar DivLatency = !mul(DivMicroOpLat, LMulLat);
719    let Latency = DivLatency, ReleaseAtCycles = [LMulLat, DivLatency] in {
720      defm "" : LMULSEWWriteResMXSEW<"WriteVIDivV", [SiFiveP600VEXQ1, SiFiveP600VDiv], mx, sew, IsWorstCase>;
721      defm "" : LMULSEWWriteResMXSEW<"WriteVIDivX", [SiFiveP600VEXQ1, SiFiveP600VDiv], mx, sew, IsWorstCase>;
722    }
723  }
724}
725
726// Narrowing Shift and Clips
727foreach mx = SchedMxListW in {
728  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
729  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxListW>.c;
730  let Latency = 2, ReleaseAtCycles = [LMulLat] in {
731    defm "" : LMULWriteResMX<"WriteVNShiftV", [SiFiveP600VectorArith], mx, IsWorstCase>;
732    defm "" : LMULWriteResMX<"WriteVNShiftX", [SiFiveP600VectorArith], mx, IsWorstCase>;
733    defm "" : LMULWriteResMX<"WriteVNShiftI", [SiFiveP600VectorArith], mx, IsWorstCase>;
734    defm "" : LMULWriteResMX<"WriteVNClipV",  [SiFiveP600VectorArith], mx, IsWorstCase>;
735    defm "" : LMULWriteResMX<"WriteVNClipX",  [SiFiveP600VectorArith], mx, IsWorstCase>;
736    defm "" : LMULWriteResMX<"WriteVNClipI",  [SiFiveP600VectorArith], mx, IsWorstCase>;
737  }
738}
739
740// 12. Vector Fixed-Point Arithmetic Instructions
741foreach mx = SchedMxList in {
742  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
743  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
744  let Latency = 6, ReleaseAtCycles = [LMulLat] in {
745    defm "" : LMULWriteResMX<"WriteVSALUV",   [SiFiveP600VectorArith], mx, IsWorstCase>;
746    defm "" : LMULWriteResMX<"WriteVSALUX",   [SiFiveP600VectorArith], mx, IsWorstCase>;
747    defm "" : LMULWriteResMX<"WriteVSALUI",   [SiFiveP600VectorArith], mx, IsWorstCase>;
748    defm "" : LMULWriteResMX<"WriteVAALUV",   [SiFiveP600VectorArith], mx, IsWorstCase>;
749    defm "" : LMULWriteResMX<"WriteVAALUX",   [SiFiveP600VectorArith], mx, IsWorstCase>;
750    defm "" : LMULWriteResMX<"WriteVSMulV",   [SiFiveP600VectorArith], mx, IsWorstCase>;
751    defm "" : LMULWriteResMX<"WriteVSMulX",   [SiFiveP600VectorArith], mx, IsWorstCase>;
752    defm "" : LMULWriteResMX<"WriteVSShiftV", [SiFiveP600VectorArith], mx, IsWorstCase>;
753    defm "" : LMULWriteResMX<"WriteVSShiftX", [SiFiveP600VectorArith], mx, IsWorstCase>;
754    defm "" : LMULWriteResMX<"WriteVSShiftI", [SiFiveP600VectorArith], mx, IsWorstCase>;
755  }
756}
757
758// 13. Vector Floating-Point Instructions
759foreach mx = SchedMxListF in {
760  foreach sew = SchedSEWSet<mx, isF=1>.val in {
761    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
762    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListF, isF=1>.c;
763    let Latency = 6, ReleaseAtCycles = [LMulLat] in {
764      defm "" : LMULSEWWriteResMXSEW<"WriteVFALUV",  [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
765      defm "" : LMULSEWWriteResMXSEW<"WriteVFALUF",  [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
766      defm "" : LMULSEWWriteResMXSEW<"WriteVFMulV",  [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
767      defm "" : LMULSEWWriteResMXSEW<"WriteVFMulF",  [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
768      defm "" : LMULSEWWriteResMXSEW<"WriteVFMulAddV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
769      defm "" : LMULSEWWriteResMXSEW<"WriteVFMulAddF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
770    }
771  }
772}
773foreach mx = SchedMxListF in {
774  foreach sew = SchedSEWSet<mx, isF=1>.val in {
775    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
776    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListF, isF=1>.c;
777    let Latency = !mul(2, SiFiveP600RVVMultiplier<mx>.c), ReleaseAtCycles = [LMulLat] in {
778      defm "" : LMULSEWWriteResMXSEW<"WriteVFRecpV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
779      defm "" : LMULSEWWriteResMXSEW<"WriteVFSgnjV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
780      defm "" : LMULSEWWriteResMXSEW<"WriteVFSgnjF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
781      defm "" : LMULSEWWriteResMXSEW<"WriteVFMinMaxV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
782      defm "" : LMULSEWWriteResMXSEW<"WriteVFMinMaxF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
783    }
784    let Latency = !if(!eq(mx, "M8"), 4, 3), ReleaseAtCycles = [!if(!eq(LMulLat, 1), 2, LMulLat)] in
785    defm "" : LMULSEWWriteResMXSEW<"WriteVFCvtIToFV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
786  }
787}
788foreach mx = SchedMxList in {
789  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
790  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
791  let Latency = !if(!eq(mx, "M8"), 4, 3), ReleaseAtCycles = [!if(!eq(LMulLat, 1), 2, LMulLat)] in
792  defm "" : LMULWriteResMX<"WriteVFCvtFToIV", [SiFiveP600VectorArith], mx, IsWorstCase>;
793  let Latency = 2, ReleaseAtCycles = [LMulLat] in {
794    defm "" : LMULWriteResMX<"WriteVFCmpV",  [SiFiveP600VectorMask], mx, IsWorstCase>;
795    defm "" : LMULWriteResMX<"WriteVFCmpF",  [SiFiveP600VectorMask], mx, IsWorstCase>;
796  }
797  let Latency = !mul(2, SiFiveP600RVVMultiplier<mx>.c),
798      ReleaseAtCycles = [!if(!eq(LMulLat, 1), 2, LMulLat)] in {
799    defm "" : LMULWriteResMX<"WriteVFClassV",  [SiFiveP600VectorArith], mx, IsWorstCase>;
800    defm "" : LMULWriteResMX<"WriteVFMergeV",  [SiFiveP600VectorArith], mx, IsWorstCase>;
801    defm "" : LMULWriteResMX<"WriteVFMovV",    [SiFiveP600VectorArith], mx, IsWorstCase>;
802  }
803}
804
805// Widening
806foreach mx = SchedMxListW in {
807  foreach sew = SchedSEWSet<mx, isF=0, isWidening=1>.val in {
808    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
809    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListW>.c;
810    let Latency = 3, ReleaseAtCycles = [LMulLat] in
811    defm "" : LMULSEWWriteResMXSEW<"WriteVFWCvtIToFV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
812  }
813}
814foreach mx = SchedMxListFW in {
815  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
816  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxListFW>.c;
817  let Latency = 6, ReleaseAtCycles = [LMulLat] in
818  defm "" : LMULWriteResMX<"WriteVFWCvtFToIV", [SiFiveP600VectorArith], mx, IsWorstCase>;
819}
820foreach mx = SchedMxListFW in {
821  foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
822    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
823    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c;
824    let Latency = 6, ReleaseAtCycles = [LMulLat] in {
825      defm "" : LMULSEWWriteResMXSEW<"WriteVFWALUV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
826      defm "" : LMULSEWWriteResMXSEW<"WriteVFWALUF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
827      defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
828      defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
829      defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulAddV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
830      defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulAddF", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
831      defm "" : LMULSEWWriteResMXSEW<"WriteVFWCvtFToFV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
832
833      // Special case for variants with widen operands.
834      let ReleaseAtCycles = [!mul(LMulLat, 2)] in
835      def P600WriteVFWALUWidenOp_ # mx # _E # sew : SchedWriteRes<[SiFiveP600VectorArith]>;
836    }
837
838    defvar P600VFWALUBaseSchedRW = [!cast<SchedWrite>("P600WriteVFWALUWidenOp_" # mx # "_E" # sew),
839                                    !cast<SchedRead>("ReadVPassthru_" # mx # "_E" # sew),
840                                    !cast<SchedRead>("ReadVFWALUV_" # mx # "_E" # sew)];
841
842    def : InstRW<!listconcat(P600VFWALUBaseSchedRW, [!cast<SchedRead>("ReadVFWALUV_" # mx # "_E" # sew)]),
843                 (instregex "^PseudoVFW(ADD|SUB)_WV_" # mx # "_E" # sew # "$")>;
844    def : InstRW<[P600VFWALUBaseSchedRW[0], P600VFWALUBaseSchedRW[2], !cast<SchedRead>("ReadVFWALUV_" # mx # "_E" # sew)],
845                 (instregex "^PseudoVFW(ADD|SUB)_WV_" # mx # "_E" # sew # "_TIED$")>;
846
847    def : InstRW<!listconcat(P600VFWALUBaseSchedRW, [!cast<SchedRead>("ReadVFWALUF_" # mx # "_E" # sew)]),
848                 (instregex "^PseudoVFW(ADD|SUB)_WFPR" # sew # "_" # mx # "_E" # sew # "$")>;
849
850    def : InstRW<!listconcat(P600VFWALUBaseSchedRW, [!cast<SchedRead>("ReadVFWALUV_" # mx # "_E" # sew), !cast<SchedRead>("ReadVMask")]),
851                 (instregex "^PseudoVFW(ADD|SUB)_WV_" # mx # "_E" # sew # "_MASK$")>;
852    def : InstRW<[P600VFWALUBaseSchedRW[0], P600VFWALUBaseSchedRW[1], !cast<SchedRead>("ReadVFWALUV_" # mx # "_E" # sew), !cast<SchedRead>("ReadVMask")],
853                 (instregex "^PseudoVFW(ADD|SUB)_WV_" # mx # "_E" # sew # "_MASK_TIED$")>;
854
855    def : InstRW<!listconcat(P600VFWALUBaseSchedRW, [!cast<SchedRead>("ReadVFWALUF_" # mx # "_E" # sew), !cast<SchedRead>("ReadVMask")]),
856                 (instregex "^PseudoVFW(ADD|SUB)_WFPR" # sew # "_" # mx # "_E" # sew # "_MASK$")>;
857  }
858}
859// Narrowing
860foreach mx = SchedMxListW in {
861  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
862  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxListW>.c;
863  let Latency = 3, ReleaseAtCycles = [LMulLat] in {
864    defm "" : LMULWriteResMX<"WriteVFNCvtFToIV", [SiFiveP600VectorArith], mx, IsWorstCase>;
865  }
866}
867foreach mx = SchedMxListFW in {
868  foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
869    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
870    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c;
871    let Latency = 3, ReleaseAtCycles = [!if(!eq(LMulLat, 1), 2, LMulLat)] in {
872      defm "" : LMULSEWWriteResMXSEW<"WriteVFNCvtIToFV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
873      defm "" : LMULSEWWriteResMXSEW<"WriteVFNCvtFToFV", [SiFiveP600VectorArith], mx, sew, IsWorstCase>;
874    }
875  }
876}
877
878// Worst case needs around 29/25/37 * LMUL cycles for f16/32/64.
879foreach mx = SchedMxListF in {
880  foreach sew = SchedSEWSet<mx, 1>.val in {
881    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
882    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c;
883    defvar DivMicroOpLat =
884      !cond(!eq(sew, 16): 29, !eq(sew, 32): 25, /* SEW=64 */ true: 37);
885    defvar DivLatency = !mul(DivMicroOpLat, LMulLat);
886    let Latency = DivLatency, ReleaseAtCycles = [LMulLat, DivLatency] in {
887      defm "" : LMULSEWWriteResMXSEW<"WriteVFDivV",  [SiFiveP600VEXQ1, SiFiveP600VFloatDiv], mx, sew, IsWorstCase>;
888      defm "" : LMULSEWWriteResMXSEW<"WriteVFDivF",  [SiFiveP600VEXQ1, SiFiveP600VFloatDiv], mx, sew, IsWorstCase>;
889      defm "" : LMULSEWWriteResMXSEW<"WriteVFSqrtV", [SiFiveP600VEXQ1, SiFiveP600VFloatDiv], mx, sew, IsWorstCase>;
890    }
891  }
892}
893
894// 14. Vector Reduction Operations
895foreach mx = SchedMxList in {
896  foreach sew = SchedSEWSet<mx>.val in {
897    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
898    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
899
900    let ReleaseAtCycles = [LMulLat] in {
901      let Latency = SiFiveP600VIReductionLatency<mx>.c in
902      defm "" : LMULSEWWriteResMXSEW<"WriteVIRedV_From", [SiFiveP600VEXQ1],
903                                     mx, sew, IsWorstCase>;
904
905      let Latency = SiFiveP600VIMinMaxReductionLatency<mx, sew>.c,
906          ReleaseAtCycles = [SiFiveP600VIMinMaxReductionCycles<mx, sew>.c] in
907      defm "" : LMULSEWWriteResMXSEW<"WriteVIRedMinMaxV_From", [SiFiveP600VEXQ1],
908                                     mx, sew, IsWorstCase>;
909    }
910  }
911}
912
913foreach mx = SchedMxListWRed in {
914  foreach sew = SchedSEWSet<mx, 0, 1>.val in {
915    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
916    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListWRed>.c;
917    let Latency = SiFiveP600VIReductionLatency<mx>.c, ReleaseAtCycles = [LMulLat] in {
918      defm "" : LMULSEWWriteResMXSEW<"WriteVIWRedV_From", [SiFiveP600VEXQ1],
919                                     mx, sew, IsWorstCase>;
920    }
921  }
922}
923
924foreach mx = SchedMxListF in {
925  foreach sew = SchedSEWSet<mx, 1>.val in {
926    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
927    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c;
928    let Latency = SiFiveP600VFMinMaxReduction<mx, sew>.latency,
929        ReleaseAtCycles = [SiFiveP600VFMinMaxReduction<mx, sew>.cycles] in
930    defm "" : LMULSEWWriteResMXSEW<"WriteVFRedMinMaxV_From",
931                                   [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
932
933    let Latency = SiFiveP600VFUnorderedReduction<mx, sew>.latency,
934        ReleaseAtCycles = [SiFiveP600VFUnorderedReduction<mx, sew>.cycles] in
935    defm "" : LMULSEWWriteResMXSEW<"WriteVFRedV_From", [SiFiveP600VEXQ1],
936                                   mx, sew, IsWorstCase>;
937
938    let Latency = SiFiveP600VFOrderedReduction<mx, sew>.c,
939        ReleaseAtCycles = [SiFiveP600VFOrderedReduction<mx, sew>.c] in
940    defm "" : LMULSEWWriteResMXSEW<"WriteVFRedOV_From", [SiFiveP600VEXQ1],
941                                   mx, sew, IsWorstCase>;
942  }
943}
944
945foreach mx = SchedMxListFWRed in {
946  foreach sew = SchedSEWSet<mx, 1, 1>.val in {
947    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
948    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxListFWRed, 1>.c;
949    let Latency = SiFiveP600VFWidenUnorderedReduction<mx>.latency,
950        ReleaseAtCycles = [6] in
951    defm "" : LMULSEWWriteResMXSEW<"WriteVFWRedV_From",  [SiFiveP600VEXQ1],
952                                   mx, sew, IsWorstCase>;
953
954    let Latency = SiFiveP600VFOrderedReduction<mx, sew>.c,
955        ReleaseAtCycles = [SiFiveP600VFOrderedReduction<mx, sew>.c] in
956    defm "" : LMULSEWWriteResMXSEW<"WriteVFWRedOV_From", [SiFiveP600VEXQ1],
957                                   mx, sew, IsWorstCase>;
958  }
959}
960
961// 15. Vector Mask Instructions
962foreach mx = SchedMxList in {
963  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
964  let Latency = 2 in {
965    defm "" : LMULWriteResMX<"WriteVMALUV", [SiFiveP600VectorMask], mx, IsWorstCase>;
966    defm "" : LMULWriteResMX<"WriteVMSFSV", [SiFiveP600VectorMask], mx, IsWorstCase>;
967
968    let ReleaseAtCycles = [2] in {
969      defm "" : LMULWriteResMX<"WriteVMPopV", [SiFiveP600VectorMask], mx, IsWorstCase>;
970      defm "" : LMULWriteResMX<"WriteVMFFSV", [SiFiveP600VectorMask], mx, IsWorstCase>;
971    }
972  }
973  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
974  let ReleaseAtCycles = [LMulLat] in {
975    let Latency = 2 in
976    defm "" : LMULWriteResMX<"WriteVIotaV", [SiFiveP600VectorMask], mx, IsWorstCase>;
977
978    // vid.v isn't executed by the mask unit.
979    let Latency = !if(!eq(mx, "M8"), 4, !if(!eq(mx, "M4"), 2, 1)) in
980    defm "" : LMULWriteResMX<"WriteVIdxV", [SiFiveP600VectorArith], mx, IsWorstCase>;
981  }
982}
983
984// 16. Vector Permutation Instructions
985// Simple Slide
986foreach mx = SchedMxList in {
987  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
988  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
989  let ReleaseAtCycles = [LMulLat] in {
990    let Latency = SiFiveP600VSlideI<mx>.c in
991    defm "" : LMULWriteResMX<"WriteVSlideI",  [SiFiveP600VEXQ0], mx, IsWorstCase>;
992
993    let Latency = SiFiveP600VSlide1<mx>.c in {
994      defm "" : LMULWriteResMX<"WriteVISlide1X", [SiFiveP600VEXQ0], mx, IsWorstCase>;
995      defm "" : LMULWriteResMX<"WriteVFSlide1F", [SiFiveP600VEXQ0], mx, IsWorstCase>;
996    }
997  }
998}
999foreach mx = ["MF8", "MF4", "MF2", "M1"] in {
1000  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1001  let Latency = 2, ReleaseAtCycles = [1] in {
1002    defm "" : LMULWriteResMX<"WriteVSlideUpX",   [SiFiveP600VEXQ0], mx, IsWorstCase>;
1003    defm "" : LMULWriteResMX<"WriteVSlideDownX", [SiFiveP600VEXQ0], mx, IsWorstCase>;
1004  }
1005}
1006
1007// Complex Slide
1008foreach mx = ["M8", "M4", "M2"] in {
1009  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
1010  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1011  let Latency = SiFiveP600VSlideXComplex<mx>.latency in {
1012    let ReleaseAtCycles = [SiFiveP600VSlideXComplex<mx, /*isUp=*/true>.cycles] in
1013    defm "" : LMULWriteResMX<"WriteVSlideUpX",   [SiFiveP600VEXQ1], mx, IsWorstCase>;
1014    let ReleaseAtCycles = [SiFiveP600VSlideXComplex<mx, /*isUp=*/false>.cycles] in
1015    defm "" : LMULWriteResMX<"WriteVSlideDownX", [SiFiveP600VEXQ1], mx, IsWorstCase>;
1016  }
1017}
1018
1019let Latency = 2, ReleaseAtCycles = [2] in {
1020  def : WriteRes<WriteVMovXS, [SiFiveP600VectorArith]>;
1021  def : WriteRes<WriteVMovSX, [SiFiveP600VectorArith]>;
1022  def : WriteRes<WriteVMovFS, [SiFiveP600VectorArith]>;
1023  def : WriteRes<WriteVMovSF, [SiFiveP600VectorArith]>;
1024}
1025
1026// Simple Gather and Compress
1027foreach mx = ["MF8", "MF4", "MF2", "M1"] in {
1028  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1029  let Latency = 3, ReleaseAtCycles = [1] in {
1030    defm "" : LMULWriteResMX<"WriteVRGatherVX", [SiFiveP600VEXQ1], mx, IsWorstCase>;
1031  }
1032}
1033
1034foreach mx = ["MF8", "MF4", "MF2", "M1"] in {
1035  foreach sew = SchedSEWSet<mx>.val in {
1036    defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1037    let Latency = 3, ReleaseAtCycles = [1] in {
1038      defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherVV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1039      defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherEI16VV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1040      defm "" : LMULSEWWriteResMXSEW<"WriteVCompressV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1041    }
1042  }
1043}
1044
1045// Complex Gather and Compress
1046foreach mx = ["M2", "M4", "M8"] in {
1047  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
1048  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1049  let Latency = 6, ReleaseAtCycles = [SiFiveP600VPermutationComplex<mx>.c] in {
1050    defm "" : LMULWriteResMX<"WriteVRGatherVX", [SiFiveP600VEXQ1], mx, IsWorstCase>;
1051  }
1052}
1053
1054foreach mx = ["M2", "M4", "M8"] in {
1055  foreach sew = SchedSEWSet<mx>.val in {
1056    defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
1057    defvar IsWorstCase = SiFiveP600IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
1058    let Latency = 6 in {
1059      let ReleaseAtCycles = [SiFiveP600VPermutationComplex<mx>.c] in {
1060        defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherVV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1061        defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherEI16VV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1062      }
1063
1064      let ReleaseAtCycles = [!add(SiFiveP600VPermutationComplex<mx>.c, 1)] in
1065      defm "" : LMULSEWWriteResMXSEW<"WriteVCompressV", [SiFiveP600VEXQ1], mx, sew, IsWorstCase>;
1066    }
1067  }
1068}
1069
1070// Simple Vrgather.vi
1071foreach mx = SchedMxList in {
1072  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
1073  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1074  let Latency = 3, ReleaseAtCycles = [LMulLat] in {
1075    defm "" : LMULWriteResMX<"WriteVRGatherVI", [SiFiveP600VEXQ1], mx, IsWorstCase>;
1076  }
1077}
1078
1079// Vector Crypto
1080foreach mx = SchedMxList in {
1081  defvar LMulLat = SiFiveP600GetLMulCycles<mx>.c;
1082  defvar IsWorstCase = SiFiveP600IsWorstCaseMX<mx, SchedMxList>.c;
1083  // Zvbb
1084  let ReleaseAtCycles = [LMulLat] in {
1085    let Latency = 2 in {
1086      // FIXME: Exegesis was not able to measure the latency of these instructions.
1087      // We probably should update them at some point.
1088      defm "" : LMULWriteResMX<"WriteVCPOPV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1089      defm "" : LMULWriteResMX<"WriteVWSLLV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1090      defm "" : LMULWriteResMX<"WriteVWSLLX",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1091      defm "" : LMULWriteResMX<"WriteVWSLLI",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1092    }
1093
1094    let Latency = SiFiveP600VCryptoLatency<mx>.c in {
1095      defm "" : LMULWriteResMX<"WriteVBREVV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1096      defm "" : LMULWriteResMX<"WriteVCLZV",    [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1097      defm "" : LMULWriteResMX<"WriteVCTZV",    [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1098
1099      def P600WriteVANDN_ # mx : SchedWriteRes<[SiFiveP600VectorCrypto]>;
1100    }
1101  }
1102
1103  // Special case for VANDN -- we execute it on vector crypto unit.
1104  defvar P600VANDNBaseSchedRW = [!cast<SchedWrite>("P600WriteVANDN_" # mx),
1105                                 // VANDN always merge read operand.
1106                                 !cast<SchedRead>("ReadVPassthru_" # mx),
1107                                 !cast<SchedRead>("ReadVIALUV_" # mx),
1108                                 !cast<SchedRead>("ReadVIALUV_" # mx)];
1109  def : InstRW<P600VANDNBaseSchedRW,
1110               (instregex "^PseudoVANDN_V(V|X)_" # mx # "$")>;
1111  def : InstRW<!listconcat(P600VANDNBaseSchedRW, [!cast<SchedRead>("ReadVMask")]),
1112               (instregex "^PseudoVANDN_V(V|X)_" # mx # "_MASK$")>;
1113
1114  // Zvbc
1115  let Latency = SiFiveP600VCryptoLatency<mx>.c, ReleaseAtCycles = [LMulLat] in {
1116    defm "" : LMULWriteResMX<"WriteVCLMULV", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1117    defm "" : LMULWriteResMX<"WriteVCLMULX", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1118  }
1119  // Zvkb
1120  // VANDN uses WriteVIALU[V|X|I]
1121  let Latency = SiFiveP600VCryptoLatency<mx>.c, ReleaseAtCycles = [LMulLat] in {
1122    defm "" : LMULWriteResMX<"WriteVBREV8V",  [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1123    defm "" : LMULWriteResMX<"WriteVREV8V",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1124    defm "" : LMULWriteResMX<"WriteVRotV",    [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1125    defm "" : LMULWriteResMX<"WriteVRotX",    [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1126    defm "" : LMULWriteResMX<"WriteVRotI",    [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1127  }
1128  // Zvkg
1129  let Latency = SiFiveP600VCryptoLatency<mx>.c, ReleaseAtCycles = [LMulLat] in {
1130    defm "" : LMULWriteResMX<"WriteVGHSHV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1131    defm "" : LMULWriteResMX<"WriteVGMULV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1132  }
1133  // ZvknhaOrZvknhb
1134  // FIXME: The latency is probably wrong.
1135  let Latency = 3, ReleaseAtCycles = [LMulLat] in {
1136    defm "" : LMULWriteResMX<"WriteVSHA2CHV", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1137    defm "" : LMULWriteResMX<"WriteVSHA2CLV", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1138    defvar ZvknhSEWs = !listremove(SchedSEWSet<mx>.val, [8, 16]);
1139    // Largest SEW is the last element, assuming SchedSEWSet is sorted in ascending
1140    // order.
1141    defvar LargestZvknhSEW = !foldl(!head(ZvknhSEWs), ZvknhSEWs, last, curr, curr);
1142    foreach sew = ZvknhSEWs in {
1143      // The worst case for Zvknh[ab] is designated to the largest SEW and LMUL.
1144      defvar IsWorstCaseVSHA2MSV = !and(IsWorstCase, !eq(sew, LargestZvknhSEW));
1145      let ReleaseAtCycles = [SiFiveP600VSHA2MSCycles<mx, sew>.c] in
1146      defm "" : LMULSEWWriteResMXSEW<"WriteVSHA2MSV", [SiFiveP600VectorCrypto], mx, sew,
1147                                     IsWorstCaseVSHA2MSV>;
1148    }
1149  }
1150  // Zvkned
1151  let Latency = 2 in {
1152    let ReleaseAtCycles = [LMulLat] in {
1153      defm "" : LMULWriteResMX<"WriteVAESMVV",  [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1154      defm "" : LMULWriteResMX<"WriteVAESKF1V", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1155      defm "" : LMULWriteResMX<"WriteVAESKF2V", [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1156    }
1157
1158    let ReleaseAtCycles = [!if(!lt(LMulLat, 2), LMulLat, !div(LMulLat, 2))] in
1159    defm "" : LMULWriteResMX<"WriteVAESZV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1160  }
1161  // Zvksed
1162  let Latency = 3, ReleaseAtCycles = [SiFiveP600VSM3CCycles<mx>.c] in
1163  defm "" : LMULWriteResMX<"WriteVSM3CV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1164  let Latency = 6, ReleaseAtCycles = [LMulLat] in
1165  defm "" : LMULWriteResMX<"WriteVSM3MEV",  [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1166  let Latency = 3, ReleaseAtCycles = [LMulLat] in {
1167    defm "" : LMULWriteResMX<"WriteVSM4KV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1168    defm "" : LMULWriteResMX<"WriteVSM4RV",   [SiFiveP600VectorCrypto], mx, IsWorstCase>;
1169  }
1170}
1171
1172// Others
1173def : WriteRes<WriteCSR, [SiFiveP600SYS]>;
1174def : WriteRes<WriteNop, []>;
1175def : WriteRes<WriteRdVLENB, [SiFiveP600SYS]>;
1176
1177// FIXME: This could be better modeled by looking at the regclasses of the operands.
1178def : InstRW<[WriteIALU, ReadIALU], (instrs COPY)>;
1179
1180//===----------------------------------------------------------------------===//
1181// Bypass and advance
1182def : ReadAdvance<ReadJmp, 0>;
1183def : ReadAdvance<ReadJalr, 0>;
1184def : ReadAdvance<ReadCSR, 0>;
1185def : ReadAdvance<ReadStoreData, 0>;
1186def : ReadAdvance<ReadMemBase, 0>;
1187def : ReadAdvance<ReadIALU, 0>;
1188def : ReadAdvance<ReadIALU32, 0>;
1189def : ReadAdvance<ReadShiftImm, 0>;
1190def : ReadAdvance<ReadShiftImm32, 0>;
1191def : ReadAdvance<ReadShiftReg, 0>;
1192def : ReadAdvance<ReadShiftReg32, 0>;
1193def : ReadAdvance<ReadIDiv, 0>;
1194def : ReadAdvance<ReadIDiv32, 0>;
1195def : ReadAdvance<ReadIRem, 0>;
1196def : ReadAdvance<ReadIRem32, 0>;
1197def : ReadAdvance<ReadIMul, 0>;
1198def : ReadAdvance<ReadIMul32, 0>;
1199def : ReadAdvance<ReadAtomicWA, 0>;
1200def : ReadAdvance<ReadAtomicWD, 0>;
1201def : ReadAdvance<ReadAtomicDA, 0>;
1202def : ReadAdvance<ReadAtomicDD, 0>;
1203def : ReadAdvance<ReadAtomicLDW, 0>;
1204def : ReadAdvance<ReadAtomicLDD, 0>;
1205def : ReadAdvance<ReadAtomicSTW, 0>;
1206def : ReadAdvance<ReadAtomicSTD, 0>;
1207def : ReadAdvance<ReadFStoreData, 0>;
1208def : ReadAdvance<ReadFMemBase, 0>;
1209def : ReadAdvance<ReadFAdd16, 0>;
1210def : ReadAdvance<ReadFAdd32, 0>;
1211def : ReadAdvance<ReadFAdd64, 0>;
1212def : ReadAdvance<ReadFMul16, 0>;
1213def : ReadAdvance<ReadFMA16, 0>;
1214def : ReadAdvance<ReadFMA16Addend, 0>;
1215def : ReadAdvance<ReadFMul32, 0>;
1216def : ReadAdvance<ReadFMA32, 0>;
1217def : ReadAdvance<ReadFMA32Addend, 0>;
1218def : ReadAdvance<ReadFMul64, 0>;
1219def : ReadAdvance<ReadFMA64, 0>;
1220def : ReadAdvance<ReadFMA64Addend, 0>;
1221def : ReadAdvance<ReadFDiv16, 0>;
1222def : ReadAdvance<ReadFDiv32, 0>;
1223def : ReadAdvance<ReadFDiv64, 0>;
1224def : ReadAdvance<ReadFSqrt16, 0>;
1225def : ReadAdvance<ReadFSqrt32, 0>;
1226def : ReadAdvance<ReadFSqrt64, 0>;
1227def : ReadAdvance<ReadFCmp16, 0>;
1228def : ReadAdvance<ReadFCmp32, 0>;
1229def : ReadAdvance<ReadFCmp64, 0>;
1230def : ReadAdvance<ReadFSGNJ16, 0>;
1231def : ReadAdvance<ReadFSGNJ32, 0>;
1232def : ReadAdvance<ReadFSGNJ64, 0>;
1233def : ReadAdvance<ReadFMinMax16, 0>;
1234def : ReadAdvance<ReadFMinMax32, 0>;
1235def : ReadAdvance<ReadFMinMax64, 0>;
1236def : ReadAdvance<ReadFCvtF16ToI32, 0>;
1237def : ReadAdvance<ReadFCvtF16ToI64, 0>;
1238def : ReadAdvance<ReadFCvtF32ToI32, 0>;
1239def : ReadAdvance<ReadFCvtF32ToI64, 0>;
1240def : ReadAdvance<ReadFCvtF64ToI32, 0>;
1241def : ReadAdvance<ReadFCvtF64ToI64, 0>;
1242def : ReadAdvance<ReadFCvtI32ToF16, 0>;
1243def : ReadAdvance<ReadFCvtI32ToF32, 0>;
1244def : ReadAdvance<ReadFCvtI32ToF64, 0>;
1245def : ReadAdvance<ReadFCvtI64ToF16, 0>;
1246def : ReadAdvance<ReadFCvtI64ToF32, 0>;
1247def : ReadAdvance<ReadFCvtI64ToF64, 0>;
1248def : ReadAdvance<ReadFCvtF32ToF64, 0>;
1249def : ReadAdvance<ReadFCvtF64ToF32, 0>;
1250def : ReadAdvance<ReadFCvtF16ToF32, 0>;
1251def : ReadAdvance<ReadFCvtF32ToF16, 0>;
1252def : ReadAdvance<ReadFCvtF16ToF64, 0>;
1253def : ReadAdvance<ReadFCvtF64ToF16, 0>;
1254def : ReadAdvance<ReadFMovF16ToI16, 0>;
1255def : ReadAdvance<ReadFMovI16ToF16, 0>;
1256def : ReadAdvance<ReadFMovF32ToI32, 0>;
1257def : ReadAdvance<ReadFMovI32ToF32, 0>;
1258def : ReadAdvance<ReadFMovF64ToI64, 0>;
1259def : ReadAdvance<ReadFMovI64ToF64, 0>;
1260def : ReadAdvance<ReadFClass16, 0>;
1261def : ReadAdvance<ReadFClass32, 0>;
1262def : ReadAdvance<ReadFClass64, 0>;
1263
1264// Bitmanip
1265def : ReadAdvance<ReadRotateImm, 0>;
1266def : ReadAdvance<ReadRotateImm32, 0>;
1267def : ReadAdvance<ReadRotateReg, 0>;
1268def : ReadAdvance<ReadRotateReg32, 0>;
1269def : ReadAdvance<ReadCLZ, 0>;
1270def : ReadAdvance<ReadCLZ32, 0>;
1271def : ReadAdvance<ReadCTZ, 0>;
1272def : ReadAdvance<ReadCTZ32, 0>;
1273def : ReadAdvance<ReadCPOP, 0>;
1274def : ReadAdvance<ReadCPOP32, 0>;
1275def : ReadAdvance<ReadORCB, 0>;
1276def : ReadAdvance<ReadIMinMax, 0>;
1277def : ReadAdvance<ReadREV8, 0>;
1278def : ReadAdvance<ReadSHXADD, 0>;
1279def : ReadAdvance<ReadSHXADD32, 0>;
1280def : ReadAdvance<ReadSingleBit, 0>;
1281def : ReadAdvance<ReadSingleBitImm, 0>;
1282
1283// 6. Configuration-Setting Instructions
1284def : ReadAdvance<ReadVSETVLI, 0>;
1285def : ReadAdvance<ReadVSETVL, 0>;
1286
1287// 7. Vector Loads and Stores
1288def : ReadAdvance<ReadVLDX, 0>;
1289def : ReadAdvance<ReadVSTX, 0>;
1290defm "" : LMULReadAdvance<"ReadVSTEV", 0>;
1291defm "" : LMULReadAdvance<"ReadVSTM", 0>;
1292def : ReadAdvance<ReadVLDSX, 0>;
1293def : ReadAdvance<ReadVSTSX, 0>;
1294defm "" : LMULReadAdvance<"ReadVSTS8V", 0>;
1295defm "" : LMULReadAdvance<"ReadVSTS16V", 0>;
1296defm "" : LMULReadAdvance<"ReadVSTS32V", 0>;
1297defm "" : LMULReadAdvance<"ReadVSTS64V", 0>;
1298defm "" : LMULReadAdvance<"ReadVLDUXV", 0>;
1299defm "" : LMULReadAdvance<"ReadVLDOXV", 0>;
1300defm "" : LMULReadAdvance<"ReadVSTUX8", 0>;
1301defm "" : LMULReadAdvance<"ReadVSTUX16", 0>;
1302defm "" : LMULReadAdvance<"ReadVSTUX32", 0>;
1303defm "" : LMULReadAdvance<"ReadVSTUX64", 0>;
1304defm "" : LMULReadAdvance<"ReadVSTUXV", 0>;
1305defm "" : LMULReadAdvance<"ReadVSTUX8V", 0>;
1306defm "" : LMULReadAdvance<"ReadVSTUX16V", 0>;
1307defm "" : LMULReadAdvance<"ReadVSTUX32V", 0>;
1308defm "" : LMULReadAdvance<"ReadVSTUX64V", 0>;
1309defm "" : LMULReadAdvance<"ReadVSTOX8", 0>;
1310defm "" : LMULReadAdvance<"ReadVSTOX16", 0>;
1311defm "" : LMULReadAdvance<"ReadVSTOX32", 0>;
1312defm "" : LMULReadAdvance<"ReadVSTOX64", 0>;
1313defm "" : LMULReadAdvance<"ReadVSTOXV", 0>;
1314defm "" : LMULReadAdvance<"ReadVSTOX8V", 0>;
1315defm "" : LMULReadAdvance<"ReadVSTOX16V", 0>;
1316defm "" : LMULReadAdvance<"ReadVSTOX32V", 0>;
1317defm "" : LMULReadAdvance<"ReadVSTOX64V", 0>;
1318// LMUL Aware
1319def : ReadAdvance<ReadVST1R, 0>;
1320def : ReadAdvance<ReadVST2R, 0>;
1321def : ReadAdvance<ReadVST4R, 0>;
1322def : ReadAdvance<ReadVST8R, 0>;
1323
1324// 12. Vector Integer Arithmetic Instructions
1325defm : LMULReadAdvance<"ReadVIALUV", 0>;
1326defm : LMULReadAdvance<"ReadVIALUX", 0>;
1327defm : LMULReadAdvanceW<"ReadVIWALUV", 0>;
1328defm : LMULReadAdvanceW<"ReadVIWALUX", 0>;
1329defm : LMULReadAdvance<"ReadVExtV", 0>;
1330defm : LMULReadAdvance<"ReadVICALUV", 0>;
1331defm : LMULReadAdvance<"ReadVICALUX", 0>;
1332defm : LMULReadAdvance<"ReadVShiftV", 0>;
1333defm : LMULReadAdvance<"ReadVShiftX", 0>;
1334defm : LMULReadAdvanceW<"ReadVNShiftV", 0>;
1335defm : LMULReadAdvanceW<"ReadVNShiftX", 0>;
1336defm : LMULReadAdvance<"ReadVICmpV", 0>;
1337defm : LMULReadAdvance<"ReadVICmpX", 0>;
1338defm : LMULReadAdvance<"ReadVIMinMaxV", 0>;
1339defm : LMULReadAdvance<"ReadVIMinMaxX", 0>;
1340defm : LMULReadAdvance<"ReadVIMulV", 0>;
1341defm : LMULReadAdvance<"ReadVIMulX", 0>;
1342defm : LMULSEWReadAdvance<"ReadVIDivV", 0>;
1343defm : LMULSEWReadAdvance<"ReadVIDivX", 0>;
1344defm : LMULReadAdvanceW<"ReadVIWMulV", 0>;
1345defm : LMULReadAdvanceW<"ReadVIWMulX", 0>;
1346defm : LMULReadAdvance<"ReadVIMulAddV", 0>;
1347defm : LMULReadAdvance<"ReadVIMulAddX", 0>;
1348defm : LMULReadAdvanceW<"ReadVIWMulAddV", 0>;
1349defm : LMULReadAdvanceW<"ReadVIWMulAddX", 0>;
1350defm : LMULReadAdvance<"ReadVIMergeV", 0>;
1351defm : LMULReadAdvance<"ReadVIMergeX", 0>;
1352defm : LMULReadAdvance<"ReadVIMovV", 0>;
1353defm : LMULReadAdvance<"ReadVIMovX", 0>;
1354
1355// 13. Vector Fixed-Point Arithmetic Instructions
1356defm "" : LMULReadAdvance<"ReadVSALUV", 0>;
1357defm "" : LMULReadAdvance<"ReadVSALUX", 0>;
1358defm "" : LMULReadAdvance<"ReadVAALUV", 0>;
1359defm "" : LMULReadAdvance<"ReadVAALUX", 0>;
1360defm "" : LMULReadAdvance<"ReadVSMulV", 0>;
1361defm "" : LMULReadAdvance<"ReadVSMulX", 0>;
1362defm "" : LMULReadAdvance<"ReadVSShiftV", 0>;
1363defm "" : LMULReadAdvance<"ReadVSShiftX", 0>;
1364defm "" : LMULReadAdvanceW<"ReadVNClipV", 0>;
1365defm "" : LMULReadAdvanceW<"ReadVNClipX", 0>;
1366
1367// 14. Vector Floating-Point Instructions
1368defm "" : LMULSEWReadAdvanceF<"ReadVFALUV", 0>;
1369defm "" : LMULSEWReadAdvanceF<"ReadVFALUF", 0>;
1370defm "" : LMULSEWReadAdvanceFW<"ReadVFWALUV", 0>;
1371defm "" : LMULSEWReadAdvanceFW<"ReadVFWALUF", 0>;
1372defm "" : LMULSEWReadAdvanceF<"ReadVFMulV", 0>;
1373defm "" : LMULSEWReadAdvanceF<"ReadVFMulF", 0>;
1374defm "" : LMULSEWReadAdvanceF<"ReadVFDivV", 0>;
1375defm "" : LMULSEWReadAdvanceF<"ReadVFDivF", 0>;
1376defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulV", 0>;
1377defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulF", 0>;
1378defm "" : LMULSEWReadAdvanceF<"ReadVFMulAddV", 0>;
1379defm "" : LMULSEWReadAdvanceF<"ReadVFMulAddF", 0>;
1380defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulAddV", 0>;
1381defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulAddF", 0>;
1382defm "" : LMULSEWReadAdvanceF<"ReadVFSqrtV", 0>;
1383defm "" : LMULSEWReadAdvanceF<"ReadVFRecpV", 0>;
1384defm "" : LMULReadAdvance<"ReadVFCmpV", 0>;
1385defm "" : LMULReadAdvance<"ReadVFCmpF", 0>;
1386defm "" : LMULSEWReadAdvanceF<"ReadVFMinMaxV", 0>;
1387defm "" : LMULSEWReadAdvanceF<"ReadVFMinMaxF", 0>;
1388defm "" : LMULSEWReadAdvanceF<"ReadVFSgnjV", 0>;
1389defm "" : LMULSEWReadAdvanceF<"ReadVFSgnjF", 0>;
1390defm "" : LMULReadAdvance<"ReadVFClassV", 0>;
1391defm "" : LMULReadAdvance<"ReadVFMergeV", 0>;
1392defm "" : LMULReadAdvance<"ReadVFMergeF", 0>;
1393defm "" : LMULReadAdvance<"ReadVFMovF", 0>;
1394defm "" : LMULSEWReadAdvanceF<"ReadVFCvtIToFV", 0>;
1395defm "" : LMULReadAdvance<"ReadVFCvtFToIV", 0>;
1396defm "" : LMULSEWReadAdvanceW<"ReadVFWCvtIToFV", 0>;
1397defm "" : LMULReadAdvanceFW<"ReadVFWCvtFToIV", 0>;
1398defm "" : LMULSEWReadAdvanceFW<"ReadVFWCvtFToFV", 0>;
1399defm "" : LMULSEWReadAdvanceFW<"ReadVFNCvtIToFV", 0>;
1400defm "" : LMULReadAdvanceW<"ReadVFNCvtFToIV", 0>;
1401defm "" : LMULSEWReadAdvanceFW<"ReadVFNCvtFToFV", 0>;
1402
1403// 15. Vector Reduction Operations
1404def : ReadAdvance<ReadVIRedV, 0>;
1405def : ReadAdvance<ReadVIRedV0, 0>;
1406def : ReadAdvance<ReadVIWRedV, 0>;
1407def : ReadAdvance<ReadVIWRedV0, 0>;
1408def : ReadAdvance<ReadVFRedV, 0>;
1409def : ReadAdvance<ReadVFRedV0, 0>;
1410def : ReadAdvance<ReadVFRedOV, 0>;
1411def : ReadAdvance<ReadVFRedOV0, 0>;
1412def : ReadAdvance<ReadVFWRedV, 0>;
1413def : ReadAdvance<ReadVFWRedV0, 0>;
1414def : ReadAdvance<ReadVFWRedOV, 0>;
1415def : ReadAdvance<ReadVFWRedOV0, 0>;
1416
1417// 16. Vector Mask Instructions
1418defm "" : LMULReadAdvance<"ReadVMALUV", 0>;
1419defm "" : LMULReadAdvance<"ReadVMPopV", 0>;
1420defm "" : LMULReadAdvance<"ReadVMFFSV", 0>;
1421defm "" : LMULReadAdvance<"ReadVMSFSV", 0>;
1422defm "" : LMULReadAdvance<"ReadVIotaV", 0>;
1423
1424// 17. Vector Permutation Instructions
1425def : ReadAdvance<ReadVMovXS, 0>;
1426def : ReadAdvance<ReadVMovSX_V, 0>;
1427def : ReadAdvance<ReadVMovSX_X, 0>;
1428def : ReadAdvance<ReadVMovFS, 0>;
1429def : ReadAdvance<ReadVMovSF_V, 0>;
1430def : ReadAdvance<ReadVMovSF_F, 0>;
1431defm "" : LMULReadAdvance<"ReadVISlideV", 0>;
1432defm "" : LMULReadAdvance<"ReadVISlideX", 0>;
1433defm "" : LMULReadAdvance<"ReadVFSlideV", 0>;
1434defm "" : LMULReadAdvance<"ReadVFSlideF", 0>;
1435defm "" : LMULSEWReadAdvance<"ReadVRGatherVV_data", 0>;
1436defm "" : LMULSEWReadAdvance<"ReadVRGatherVV_index", 0>;
1437defm "" : LMULSEWReadAdvance<"ReadVRGatherEI16VV_data", 0>;
1438defm "" : LMULSEWReadAdvance<"ReadVRGatherEI16VV_index", 0>;
1439defm "" : LMULReadAdvance<"ReadVRGatherVX_data", 0>;
1440defm "" : LMULReadAdvance<"ReadVRGatherVX_index", 0>;
1441defm "" : LMULReadAdvance<"ReadVRGatherVI_data", 0>;
1442defm "" : LMULSEWReadAdvance<"ReadVCompressV", 0>;
1443// LMUL Aware
1444def : ReadAdvance<ReadVMov1V, 0>;
1445def : ReadAdvance<ReadVMov2V, 0>;
1446def : ReadAdvance<ReadVMov4V, 0>;
1447def : ReadAdvance<ReadVMov8V, 0>;
1448
1449// Others
1450def : ReadAdvance<ReadVMask, 0>;
1451def : ReadAdvance<ReadVPassthru_WorstCase, 0>;
1452foreach mx = SchedMxList in {
1453  def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx), 0>;
1454  foreach sew = SchedSEWSet<mx>.val in
1455    def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx  # "_E" # sew), 0>;
1456}
1457
1458// Vector Crypto Extensions
1459// Zvbb
1460defm "" : LMULReadAdvance<"ReadVBREVV", 0>;
1461defm "" : LMULReadAdvance<"ReadVCLZV", 0>;
1462defm "" : LMULReadAdvance<"ReadVCPOPV", 0>;
1463defm "" : LMULReadAdvance<"ReadVCTZV", 0>;
1464defm "" : LMULReadAdvance<"ReadVWSLLV", 0>;
1465defm "" : LMULReadAdvance<"ReadVWSLLX", 0>;
1466// Zvbc
1467defm "" : LMULReadAdvance<"ReadVCLMULV", 0>;
1468defm "" : LMULReadAdvance<"ReadVCLMULX", 0>;
1469// Zvkb
1470// VANDN uses ReadVIALU[V|X|I]
1471defm "" : LMULReadAdvance<"ReadVBREV8V", 0>;
1472defm "" : LMULReadAdvance<"ReadVREV8V", 0>;
1473defm "" : LMULReadAdvance<"ReadVRotV", 0>;
1474defm "" : LMULReadAdvance<"ReadVRotX", 0>;
1475// Zvkg
1476defm "" : LMULReadAdvance<"ReadVGHSHV", 0>;
1477defm "" : LMULReadAdvance<"ReadVGMULV", 0>;
1478// Zvknha or Zvknhb
1479defm "" : LMULReadAdvance<"ReadVSHA2CHV", 0>;
1480defm "" : LMULReadAdvance<"ReadVSHA2CLV", 0>;
1481defm "" : LMULSEWReadAdvance<"ReadVSHA2MSV", 0>;
1482// Zvkned
1483defm "" : LMULReadAdvance<"ReadVAESMVV", 0>;
1484defm "" : LMULReadAdvance<"ReadVAESKF1V", 0>;
1485defm "" : LMULReadAdvance<"ReadVAESKF2V", 0>;
1486defm "" : LMULReadAdvance<"ReadVAESZV", 0>;
1487// Zvksed
1488defm "" : LMULReadAdvance<"ReadVSM4KV", 0>;
1489defm "" : LMULReadAdvance<"ReadVSM4RV", 0>;
1490// Zbksh
1491defm "" : LMULReadAdvance<"ReadVSM3CV", 0>;
1492defm "" : LMULReadAdvance<"ReadVSM3MEV", 0>;
1493
1494//===----------------------------------------------------------------------===//
1495// Unsupported extensions
1496defm : UnsupportedSchedZabha;
1497defm : UnsupportedSchedZbc;
1498defm : UnsupportedSchedZbkb;
1499defm : UnsupportedSchedZbkx;
1500defm : UnsupportedSchedSFB;
1501defm : UnsupportedSchedZfa;
1502defm : UnsupportedSchedXsfvcp;
1503}
1504