1//==- RISCVSchedSiFiveP400.td - SiFiveP400 Scheduling Defs ---*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9//===----------------------------------------------------------------------===// 10 11/// c is true if mx has the worst case behavior compared to LMULs in MxList. 12/// On the SiFiveP400, the worst case LMUL is the Largest LMUL 13/// and the worst case sew is the smallest SEW for that LMUL. 14class SiFiveP400IsWorstCaseMX<string mx, list<string> MxList> { 15 string LLMUL = LargestLMUL<MxList>.r; 16 bit c = !eq(mx, LLMUL); 17} 18 19class SiFiveP400IsWorstCaseMXSEW<string mx, int sew, list<string> MxList, bit isF = 0> { 20 string LLMUL = LargestLMUL<MxList>.r; 21 int SSEW = SmallestSEW<mx, isF>.r; 22 bit c = !and(!eq(mx, LLMUL), !eq(sew, SSEW)); 23} 24 25// 1 Micro-Op per cycle. 26class SiFiveP400GetLMulCycles<string mx> { 27 int c = !cond( 28 !eq(mx, "M1") : 1, 29 !eq(mx, "M2") : 2, 30 !eq(mx, "M4") : 4, 31 !eq(mx, "M8") : 8, 32 !eq(mx, "MF2") : 1, 33 !eq(mx, "MF4") : 1, 34 !eq(mx, "MF8") : 1 35 ); 36} 37 38// Latency for segmented loads and stores are calculated as vl * nf. 39class SiFiveP400GetCyclesSegmented<string mx, int sew, int nf> { 40 defvar VLEN = 128; 41 defvar VLUpperBound = !cond( 42 !eq(mx, "M1") : !div(VLEN, sew), 43 !eq(mx, "M2") : !div(!mul(VLEN, 2), sew), 44 !eq(mx, "M4") : !div(!mul(VLEN, 4), sew), 45 !eq(mx, "M8") : !div(!mul(VLEN, 8), sew), 46 !eq(mx, "MF2") : !div(!div(VLEN, 2), sew), 47 !eq(mx, "MF4") : !div(!div(VLEN, 4), sew), 48 !eq(mx, "MF8") : !div(!div(VLEN, 8), sew), 49 ); 50 int c = !mul(VLUpperBound, nf); 51} 52 53// Both variants of floating point vector reductions are based on numbers collected 54// from llvm-exegesis. 55class VFReduceBaseCycles<int sew> { 56 // The latency for simple unordered VFReduce is `C + 6 * log2(LMUL)`, 57 // and `C * LMUL` for ordered VFReduce. This helper class provides the `C`. 58 int val = !cond(!eq(sew, 16): 16, 59 !eq(sew, 32): 10, 60 !eq(sew, 64): 6); 61} 62 63class AdvancedVFReduceCycles<int sew, string mx> { 64 // SEW = 64 has lower latencies and RThroughputs than other SEWs. 65 int latency = !cond(!eq(mx, "M1"): !if(!eq(sew, 64), 4, 6), 66 !eq(mx, "M2"): !if(!eq(sew, 64), 6, 8), 67 !eq(mx, "M4"): !if(!eq(sew, 64), 8, 10), 68 !eq(mx, "M8"): !if(!eq(sew, 64), 11, 13), 69 true: !if(!eq(sew, 64), 4, 6)); 70 int rthroughput = !cond(!eq(mx, "M1"): !if(!eq(sew, 64), 2, 3), 71 !eq(mx, "M2"): !if(!eq(sew, 64), 3, 4), 72 !eq(mx, "M4"): !if(!eq(sew, 64), 5, 6), 73 !eq(mx, "M8"): !if(!eq(sew, 64), 10, 12), 74 true: !if(!eq(sew, 64), 2, 3)); 75} 76 77// Both variants of integer vector reductions are based on numbers collected 78// from llvm-exegesis. 79// TODO: Fractional LMUL's latency and rthroughput. 80class SimpleVIReduceCycles<string mx> { 81 defvar LMul = SiFiveP400GetLMulCycles<mx>.c; 82 int latency = !mul(LMul, 2); 83 int rthroughput = !cond( 84 !eq(mx, "M1"): 1, 85 !eq(mx, "M2"): 2, 86 !eq(mx, "M4"): 4, 87 !eq(mx, "M8"): 9, 88 true: 1); 89} 90 91class AdvancedVIReduceCycles<int sew, string mx> { 92 // `C - 2 * log2(SEW)`, where `C` = 16.1, 18.1, 20.1, and 23.8 for 93 // M1/2/4/8, respectively. 94 int latency = !cond(!eq(mx, "M1"): !sub(16, !mul(2, !logtwo(sew))), 95 !eq(mx, "M2"): !sub(18, !mul(2, !logtwo(sew))), 96 !eq(mx, "M4"): !sub(20, !mul(2, !logtwo(sew))), 97 !eq(mx, "M8"): !sub(23, !mul(2, !logtwo(sew))), 98 true: 4); 99 int rthroughput = !cond( 100 // `8.3 - 1.02 * log2(SEW)` 101 !eq(mx, "M1"): !sub(8, !logtwo(sew)), 102 // `10.0 - 1.16 * log2(SEW)`. Note that `9 - log2(SEW)` 103 // is closer to the floor value of the original formula. 104 !eq(mx, "M2"): !sub(9, !logtwo(sew)), 105 // `14.2 - 1.53 * log2(SEW)` 106 !eq(mx, "M4"): !div(!sub(1420, !mul(153, !logtwo(sew))), 100), 107 // `24.1 - 2.3 * log2(SEW)` 108 !eq(mx, "M8"): !div(!sub(241, !mul(23, !logtwo(sew))), 10), 109 true: 1); 110} 111 112class SiFiveP400VSM3CCycles<string mx> { 113 // c = ceil(LMUL / 2) 114 int c = !cond(!eq(mx, "M2") : 1, 115 !eq(mx, "M4") : 2, 116 !eq(mx, "M8") : 4, 117 true : 1); 118} 119 120def SiFiveP400Model : SchedMachineModel { 121 let IssueWidth = 3; // 3 micro-ops are dispatched per cycle. 122 let MicroOpBufferSize = 56; // Max micro-ops that can be buffered. 123 let LoadLatency = 4; // Cycles for loads to access the cache. 124 let MispredictPenalty = 9; // Extra cycles for a mispredicted branch. 125 let UnsupportedFeatures = [HasStdExtZbkb, HasStdExtZbkc, HasStdExtZbkx, 126 HasStdExtZcmt, HasStdExtZknd, HasStdExtZkne, 127 HasStdExtZknh, HasStdExtZksed, HasStdExtZksh, 128 HasStdExtZkr]; 129 let CompleteModel = false; 130} 131 132// The SiFiveP400 microarchitecure has 6 pipelines: 133// Three pipelines for integer operations. 134// One pipeline for FPU operations. 135// One pipeline for Load operations. 136// One pipeline for Store operations. 137let SchedModel = SiFiveP400Model in { 138 139def SiFiveP400IEXQ0 : ProcResource<1>; 140def SiFiveP400IEXQ1 : ProcResource<1>; 141def SiFiveP400IEXQ2 : ProcResource<1>; 142def SiFiveP400FEXQ0 : ProcResource<1>; 143def SiFiveP400Load : ProcResource<1>; 144def SiFiveP400Store : ProcResource<1>; 145 146def SiFiveP400IntArith : ProcResGroup<[SiFiveP400IEXQ0, SiFiveP400IEXQ1, SiFiveP400IEXQ2]>; 147defvar SiFiveP400Branch = SiFiveP400IEXQ0; 148defvar SiFiveP400SYS = SiFiveP400IEXQ1; 149defvar SiFiveP400MulDiv = SiFiveP400IEXQ2; 150defvar SiFiveP400I2F = SiFiveP400IEXQ2; 151def SiFiveP400Div : ProcResource<1>; 152 153defvar SiFiveP400FloatArith = SiFiveP400FEXQ0; 154defvar SiFiveP400F2I = SiFiveP400FEXQ0; 155def SiFiveP400FloatDiv : ProcResource<1>; 156 157// Vector pipeline 158def SiFiveP400VEXQ0 : ProcResource<1>; 159def SiFiveP400VLD : ProcResource<1>; 160def SiFiveP400VST : ProcResource<1>; 161def SiFiveP400VDiv : ProcResource<1>; 162def SiFiveP400VFloatDiv : ProcResource<1>; 163 164let Latency = 1 in { 165// Integer arithmetic and logic 166def : WriteRes<WriteIALU, [SiFiveP400IntArith]>; 167def : WriteRes<WriteIALU32, [SiFiveP400IntArith]>; 168def : WriteRes<WriteShiftImm, [SiFiveP400IntArith]>; 169def : WriteRes<WriteShiftImm32, [SiFiveP400IntArith]>; 170def : WriteRes<WriteShiftReg, [SiFiveP400IntArith]>; 171def : WriteRes<WriteShiftReg32, [SiFiveP400IntArith]>; 172// Branching 173def : WriteRes<WriteJmp, [SiFiveP400Branch]>; 174def : WriteRes<WriteJal, [SiFiveP400Branch]>; 175def : WriteRes<WriteJalr, [SiFiveP400Branch]>; 176} 177 178// CMOV 179def P400WriteCMOV : SchedWriteRes<[SiFiveP400Branch, SiFiveP400IEXQ1]> { 180 let Latency = 2; 181 let NumMicroOps = 2; 182} 183def : InstRW<[P400WriteCMOV], (instrs PseudoCCMOVGPRNoX0)>; 184 185let Latency = 2 in { 186// Integer multiplication 187def : WriteRes<WriteIMul, [SiFiveP400MulDiv]>; 188def : WriteRes<WriteIMul32, [SiFiveP400MulDiv]>; 189// cpop[w] look exactly like multiply. 190def : WriteRes<WriteCPOP, [SiFiveP400MulDiv]>; 191def : WriteRes<WriteCPOP32, [SiFiveP400MulDiv]>; 192} 193 194// Integer division 195def : WriteRes<WriteIDiv, [SiFiveP400MulDiv, SiFiveP400Div]> { 196 let Latency = 35; 197 let ReleaseAtCycles = [1, 34]; 198} 199def : WriteRes<WriteIDiv32, [SiFiveP400MulDiv, SiFiveP400Div]> { 200 let Latency = 20; 201 let ReleaseAtCycles = [1, 19]; 202} 203 204// Integer remainder 205def : WriteRes<WriteIRem, [SiFiveP400MulDiv, SiFiveP400Div]> { 206 let Latency = 35; 207 let ReleaseAtCycles = [1, 34]; 208} 209def : WriteRes<WriteIRem32, [SiFiveP400MulDiv, SiFiveP400Div]> { 210 let Latency = 20; 211 let ReleaseAtCycles = [1, 19]; 212} 213 214let Latency = 1 in { 215// Bitmanip 216def : WriteRes<WriteRotateImm, [SiFiveP400IntArith]>; 217def : WriteRes<WriteRotateImm32, [SiFiveP400IntArith]>; 218def : WriteRes<WriteRotateReg, [SiFiveP400IntArith]>; 219def : WriteRes<WriteRotateReg32, [SiFiveP400IntArith]>; 220 221def : WriteRes<WriteCLZ, [SiFiveP400IntArith]>; 222def : WriteRes<WriteCLZ32, [SiFiveP400IntArith]>; 223def : WriteRes<WriteCTZ, [SiFiveP400IntArith]>; 224def : WriteRes<WriteCTZ32, [SiFiveP400IntArith]>; 225 226def : WriteRes<WriteORCB, [SiFiveP400IntArith]>; 227def : WriteRes<WriteIMinMax, [SiFiveP400IntArith]>; 228 229def : WriteRes<WriteREV8, [SiFiveP400IntArith]>; 230 231def : WriteRes<WriteSHXADD, [SiFiveP400IntArith]>; 232def : WriteRes<WriteSHXADD32, [SiFiveP400IntArith]>; 233 234def : WriteRes<WriteSingleBit, [SiFiveP400IntArith]>; 235def : WriteRes<WriteSingleBitImm, [SiFiveP400IntArith]>; 236def : WriteRes<WriteBEXT, [SiFiveP400IntArith]>; 237def : WriteRes<WriteBEXTI, [SiFiveP400IntArith]>; 238} 239 240// Memory 241let Latency = 1 in { 242def : WriteRes<WriteSTB, [SiFiveP400Store]>; 243def : WriteRes<WriteSTH, [SiFiveP400Store]>; 244def : WriteRes<WriteSTW, [SiFiveP400Store]>; 245def : WriteRes<WriteSTD, [SiFiveP400Store]>; 246def : WriteRes<WriteFST16, [SiFiveP400Store]>; 247def : WriteRes<WriteFST32, [SiFiveP400Store]>; 248def : WriteRes<WriteFST64, [SiFiveP400Store]>; 249} 250let Latency = 4 in { 251def : WriteRes<WriteLDB, [SiFiveP400Load]>; 252def : WriteRes<WriteLDH, [SiFiveP400Load]>; 253} 254let Latency = 4 in { 255def : WriteRes<WriteLDW, [SiFiveP400Load]>; 256def : WriteRes<WriteLDD, [SiFiveP400Load]>; 257} 258 259let Latency = 5 in { 260def : WriteRes<WriteFLD16, [SiFiveP400Load]>; 261def : WriteRes<WriteFLD32, [SiFiveP400Load]>; 262def : WriteRes<WriteFLD64, [SiFiveP400Load]>; 263} 264 265// Atomic memory 266let Latency = 3 in { 267def : WriteRes<WriteAtomicSTW, [SiFiveP400Store]>; 268def : WriteRes<WriteAtomicSTD, [SiFiveP400Store]>; 269def : WriteRes<WriteAtomicW, [SiFiveP400Load]>; 270def : WriteRes<WriteAtomicD, [SiFiveP400Load]>; 271def : WriteRes<WriteAtomicLDW, [SiFiveP400Load]>; 272def : WriteRes<WriteAtomicLDD, [SiFiveP400Load]>; 273} 274 275// Floating point 276let Latency = 4 in { 277def : WriteRes<WriteFAdd16, [SiFiveP400FloatArith]>; 278def : WriteRes<WriteFAdd32, [SiFiveP400FloatArith]>; 279def : WriteRes<WriteFAdd64, [SiFiveP400FloatArith]>; 280 281def : WriteRes<WriteFMul16, [SiFiveP400FloatArith]>; 282def : WriteRes<WriteFMul32, [SiFiveP400FloatArith]>; 283def : WriteRes<WriteFMul64, [SiFiveP400FloatArith]>; 284 285def : WriteRes<WriteFMA16, [SiFiveP400FloatArith]>; 286def : WriteRes<WriteFMA32, [SiFiveP400FloatArith]>; 287def : WriteRes<WriteFMA64, [SiFiveP400FloatArith]>; 288} 289 290let Latency = 2 in { 291def : WriteRes<WriteFSGNJ16, [SiFiveP400FloatArith]>; 292def : WriteRes<WriteFSGNJ32, [SiFiveP400FloatArith]>; 293def : WriteRes<WriteFSGNJ64, [SiFiveP400FloatArith]>; 294 295def : WriteRes<WriteFMinMax16, [SiFiveP400FloatArith]>; 296def : WriteRes<WriteFMinMax32, [SiFiveP400FloatArith]>; 297def : WriteRes<WriteFMinMax64, [SiFiveP400FloatArith]>; 298} 299 300// Half precision. 301def : WriteRes<WriteFDiv16, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 302 let Latency = 19; 303 let ReleaseAtCycles = [1, 18]; 304} 305def : WriteRes<WriteFSqrt16, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 306 let Latency = 18; 307 let ReleaseAtCycles = [1, 17]; 308} 309 310// Single precision. 311def : WriteRes<WriteFDiv32, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 312 let Latency = 19; 313 let ReleaseAtCycles = [1, 18]; 314} 315def : WriteRes<WriteFSqrt32, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 316 let Latency = 18; 317 let ReleaseAtCycles = [1, 17]; 318} 319 320// Double precision 321def : WriteRes<WriteFDiv64, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 322 let Latency = 33; 323 let ReleaseAtCycles = [1, 32]; 324} 325def : WriteRes<WriteFSqrt64, [SiFiveP400FEXQ0, SiFiveP400FloatDiv]> { 326 let Latency = 33; 327 let ReleaseAtCycles = [1, 32]; 328} 329 330// Conversions 331let Latency = 2 in { 332def : WriteRes<WriteFCvtI32ToF16, [SiFiveP400I2F]>; 333def : WriteRes<WriteFCvtI32ToF32, [SiFiveP400I2F]>; 334def : WriteRes<WriteFCvtI32ToF64, [SiFiveP400I2F]>; 335def : WriteRes<WriteFCvtI64ToF16, [SiFiveP400I2F]>; 336def : WriteRes<WriteFCvtI64ToF32, [SiFiveP400I2F]>; 337def : WriteRes<WriteFCvtI64ToF64, [SiFiveP400I2F]>; 338def : WriteRes<WriteFCvtF16ToI32, [SiFiveP400F2I]>; 339def : WriteRes<WriteFCvtF16ToI64, [SiFiveP400F2I]>; 340def : WriteRes<WriteFCvtF16ToF32, [SiFiveP400FloatArith]>; 341def : WriteRes<WriteFCvtF16ToF64, [SiFiveP400FloatArith]>; 342def : WriteRes<WriteFCvtF32ToI32, [SiFiveP400F2I]>; 343def : WriteRes<WriteFCvtF32ToI64, [SiFiveP400F2I]>; 344def : WriteRes<WriteFCvtF32ToF16, [SiFiveP400FloatArith]>; 345def : WriteRes<WriteFCvtF32ToF64, [SiFiveP400FloatArith]>; 346def : WriteRes<WriteFCvtF64ToI32, [SiFiveP400F2I]>; 347def : WriteRes<WriteFCvtF64ToI64, [SiFiveP400F2I]>; 348def : WriteRes<WriteFCvtF64ToF16, [SiFiveP400FloatArith]>; 349def : WriteRes<WriteFCvtF64ToF32, [SiFiveP400FloatArith]>; 350 351def : WriteRes<WriteFClass16, [SiFiveP400F2I]>; 352def : WriteRes<WriteFClass32, [SiFiveP400F2I]>; 353def : WriteRes<WriteFClass64, [SiFiveP400F2I]>; 354def : WriteRes<WriteFCmp16, [SiFiveP400F2I]>; 355def : WriteRes<WriteFCmp32, [SiFiveP400F2I]>; 356def : WriteRes<WriteFCmp64, [SiFiveP400F2I]>; 357def : WriteRes<WriteFMovI16ToF16, [SiFiveP400I2F]>; 358def : WriteRes<WriteFMovF16ToI16, [SiFiveP400F2I]>; 359def : WriteRes<WriteFMovI32ToF32, [SiFiveP400I2F]>; 360def : WriteRes<WriteFMovF32ToI32, [SiFiveP400F2I]>; 361def : WriteRes<WriteFMovI64ToF64, [SiFiveP400I2F]>; 362def : WriteRes<WriteFMovF64ToI64, [SiFiveP400F2I]>; 363} 364 365// 6. Configuration-Setting Instructions 366def : WriteRes<WriteVSETVLI, [SiFiveP400SYS]>; 367def : WriteRes<WriteVSETIVLI, [SiFiveP400SYS]>; 368def : WriteRes<WriteVSETVL, [SiFiveP400SYS]>; 369 370// 7. Vector Loads and Stores 371// FIXME: This unit is still being improved, currently 372// it is based on stage numbers. Estimates are optimistic, 373// latency may be longer. 374foreach mx = SchedMxList in { 375 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 376 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 377 let Latency = 8, ReleaseAtCycles = [LMulLat] in { 378 defm "" : LMULWriteResMX<"WriteVLDE", [SiFiveP400VLD], mx, IsWorstCase>; 379 defm "" : LMULWriteResMX<"WriteVLDM", [SiFiveP400VLD], mx, IsWorstCase>; 380 defm "" : LMULWriteResMX<"WriteVLDFF", [SiFiveP400VLD], mx, IsWorstCase>; 381 } 382 let Latency = 12, ReleaseAtCycles = [LMulLat] in { 383 defm "" : LMULWriteResMX<"WriteVLDS8", [SiFiveP400VLD], mx, IsWorstCase>; 384 defm "" : LMULWriteResMX<"WriteVLDS16", [SiFiveP400VLD], mx, IsWorstCase>; 385 defm "" : LMULWriteResMX<"WriteVLDS32", [SiFiveP400VLD], mx, IsWorstCase>; 386 defm "" : LMULWriteResMX<"WriteVLDS64", [SiFiveP400VLD], mx, IsWorstCase>; 387 } 388 let Latency = 12, ReleaseAtCycles = [LMulLat] in { 389 defm "" : LMULWriteResMX<"WriteVLDUX8", [SiFiveP400VLD], mx, IsWorstCase>; 390 defm "" : LMULWriteResMX<"WriteVLDUX16", [SiFiveP400VLD], mx, IsWorstCase>; 391 defm "" : LMULWriteResMX<"WriteVLDUX32", [SiFiveP400VLD], mx, IsWorstCase>; 392 defm "" : LMULWriteResMX<"WriteVLDUX64", [SiFiveP400VLD], mx, IsWorstCase>; 393 defm "" : LMULWriteResMX<"WriteVLDOX8", [SiFiveP400VLD], mx, IsWorstCase>; 394 defm "" : LMULWriteResMX<"WriteVLDOX16", [SiFiveP400VLD], mx, IsWorstCase>; 395 defm "" : LMULWriteResMX<"WriteVLDOX32", [SiFiveP400VLD], mx, IsWorstCase>; 396 defm "" : LMULWriteResMX<"WriteVLDOX64", [SiFiveP400VLD], mx, IsWorstCase>; 397 } 398} 399 400foreach mx = SchedMxList in { 401 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 402 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 403 let Latency = 8, ReleaseAtCycles = [LMulLat] in { 404 defm "" : LMULWriteResMX<"WriteVSTE", [SiFiveP400VST], mx, IsWorstCase>; 405 defm "" : LMULWriteResMX<"WriteVSTM", [SiFiveP400VST], mx, IsWorstCase>; 406 } 407 let Latency = 12, ReleaseAtCycles = [LMulLat] in { 408 defm "" : LMULWriteResMX<"WriteVSTS8", [SiFiveP400VST], mx, IsWorstCase>; 409 defm "" : LMULWriteResMX<"WriteVSTS16", [SiFiveP400VST], mx, IsWorstCase>; 410 defm "" : LMULWriteResMX<"WriteVSTS32", [SiFiveP400VST], mx, IsWorstCase>; 411 defm "" : LMULWriteResMX<"WriteVSTS64", [SiFiveP400VST], mx, IsWorstCase>; 412 } 413 let Latency = 12, ReleaseAtCycles = [LMulLat] in { 414 defm "" : LMULWriteResMX<"WriteVSTUX8", [SiFiveP400VST], mx, IsWorstCase>; 415 defm "" : LMULWriteResMX<"WriteVSTUX16", [SiFiveP400VST], mx, IsWorstCase>; 416 defm "" : LMULWriteResMX<"WriteVSTUX32", [SiFiveP400VST], mx, IsWorstCase>; 417 defm "" : LMULWriteResMX<"WriteVSTUX64", [SiFiveP400VST], mx, IsWorstCase>; 418 defm "" : LMULWriteResMX<"WriteVSTOX8", [SiFiveP400VST], mx, IsWorstCase>; 419 defm "" : LMULWriteResMX<"WriteVSTOX16", [SiFiveP400VST], mx, IsWorstCase>; 420 defm "" : LMULWriteResMX<"WriteVSTOX32", [SiFiveP400VST], mx, IsWorstCase>; 421 defm "" : LMULWriteResMX<"WriteVSTOX64", [SiFiveP400VST], mx, IsWorstCase>; 422 } 423} 424 425foreach mx = SchedMxList in { 426 foreach nf=2-8 in { 427 foreach eew = [8, 16, 32, 64] in { 428 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 429 defvar LMulLat = SiFiveP400GetCyclesSegmented<mx, eew, nf>.c; 430 let Latency = !add(12, LMulLat), ReleaseAtCycles = [!add(12, LMulLat)] in { 431 defm "" : LMULWriteResMX<"WriteVLSEG" # nf # "e" #eew, [SiFiveP400VLD], mx, IsWorstCase>; 432 defm "" : LMULWriteResMX<"WriteVLSEGFF" # nf # "e" #eew, [SiFiveP400VLD], mx, IsWorstCase>; 433 defm "" : LMULWriteResMX<"WriteVLSSEG" # nf # "e" #eew, [SiFiveP400VLD], mx, IsWorstCase>; 434 defm "" : LMULWriteResMX<"WriteVLUXSEG" # nf # "e" #eew, [SiFiveP400VLD], mx, IsWorstCase>; 435 defm "" : LMULWriteResMX<"WriteVLOXSEG" # nf # "e" #eew, [SiFiveP400VLD], mx, IsWorstCase>; 436 } 437 let Latency = !add(1, LMulLat), ReleaseAtCycles = [!add(12, LMulLat)] in { 438 defm "" : LMULWriteResMX<"WriteVSSEG" # nf # "e" #eew, [SiFiveP400VST], mx, IsWorstCase>; 439 defm "" : LMULWriteResMX<"WriteVSSSEG" # nf # "e" #eew, [SiFiveP400VST], mx, IsWorstCase>; 440 defm "" : LMULWriteResMX<"WriteVSUXSEG" # nf # "e" #eew, [SiFiveP400VST], mx, IsWorstCase>; 441 defm "" : LMULWriteResMX<"WriteVSOXSEG" # nf # "e" #eew, [SiFiveP400VST], mx, IsWorstCase>; 442 } 443 } 444 } 445} 446 447// Whole register move/load/store 448foreach LMul = [1, 2, 4, 8] in { 449 let Latency = 8, ReleaseAtCycles = [LMul] in { 450 def : WriteRes<!cast<SchedWrite>("WriteVLD" # LMul # "R"), [SiFiveP400VLD]>; 451 def : WriteRes<!cast<SchedWrite>("WriteVST" # LMul # "R"), [SiFiveP400VST]>; 452 } 453 let Latency = 2, ReleaseAtCycles = [LMul] in { 454 def : WriteRes<!cast<SchedWrite>("WriteVMov" # LMul # "V"), [SiFiveP400VEXQ0]>; 455 } 456} 457 458// 11. Vector Integer Arithmetic Instructions 459foreach mx = SchedMxList in { 460 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 461 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 462 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 463 defm "" : LMULWriteResMX<"WriteVIALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 464 defm "" : LMULWriteResMX<"WriteVIALUX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 465 defm "" : LMULWriteResMX<"WriteVIALUI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 466 defm "" : LMULWriteResMX<"WriteVExtV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 467 defm "" : LMULWriteResMX<"WriteVICALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 468 defm "" : LMULWriteResMX<"WriteVICALUX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 469 defm "" : LMULWriteResMX<"WriteVICALUI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 470 defm "" : LMULWriteResMX<"WriteVICALUMV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 471 defm "" : LMULWriteResMX<"WriteVICALUMX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 472 defm "" : LMULWriteResMX<"WriteVICALUMI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 473 defm "" : LMULWriteResMX<"WriteVICmpV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 474 defm "" : LMULWriteResMX<"WriteVICmpX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 475 defm "" : LMULWriteResMX<"WriteVICmpI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 476 defm "" : LMULWriteResMX<"WriteVIMinMaxV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 477 defm "" : LMULWriteResMX<"WriteVIMinMaxX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 478 defm "" : LMULWriteResMX<"WriteVIMergeV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 479 defm "" : LMULWriteResMX<"WriteVIMergeX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 480 defm "" : LMULWriteResMX<"WriteVIMergeI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 481 defm "" : LMULWriteResMX<"WriteVIMovV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 482 defm "" : LMULWriteResMX<"WriteVIMovX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 483 defm "" : LMULWriteResMX<"WriteVIMovI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 484 } 485 486 let Latency = !if(!lt(LMulLat, 2), 2, LMulLat), ReleaseAtCycles = [LMulLat] in { 487 defm "" : LMULWriteResMX<"WriteVShiftV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 488 defm "" : LMULWriteResMX<"WriteVShiftX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 489 defm "" : LMULWriteResMX<"WriteVShiftI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 490 } 491 492 let Latency = !if(!eq(mx, "M8"), 9, 6), ReleaseAtCycles = [LMulLat] in { 493 defm "" : LMULWriteResMX<"WriteVIMulV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 494 defm "" : LMULWriteResMX<"WriteVIMulX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 495 defm "" : LMULWriteResMX<"WriteVIMulAddV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 496 defm "" : LMULWriteResMX<"WriteVIMulAddX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 497 } 498} 499// Widening 500foreach mx = SchedMxListW in { 501 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 502 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxListW>.c; 503 let Latency = 6, ReleaseAtCycles = [LMulLat] in { 504 defm "" : LMULWriteResMX<"WriteVIWALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 505 defm "" : LMULWriteResMX<"WriteVIWALUX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 506 defm "" : LMULWriteResMX<"WriteVIWALUI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 507 defm "" : LMULWriteResMX<"WriteVIWMulV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 508 defm "" : LMULWriteResMX<"WriteVIWMulX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 509 defm "" : LMULWriteResMX<"WriteVIWMulAddV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 510 defm "" : LMULWriteResMX<"WriteVIWMulAddX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 511 } 512} 513 514// Worst case needs 51/45/42/72 * lmul cycles for i8/16/32/64. 515foreach mx = SchedMxList in { 516 foreach sew = SchedSEWSet<mx>.val in { 517 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 518 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxList>.c; 519 defvar DivMicroOpLat = 520 !cond(!eq(sew, 8): 51, !eq(sew, 16): 45, !eq(sew, 32): 42, 521 /* SEW=64 */ true: 72); 522 defvar DivLatency = !mul(DivMicroOpLat, LMulLat); 523 let Latency = DivLatency, ReleaseAtCycles = [LMulLat, DivLatency] in { 524 defm "" : LMULSEWWriteResMXSEW<"WriteVIDivV", [SiFiveP400VEXQ0, SiFiveP400VDiv], mx, sew, IsWorstCase>; 525 defm "" : LMULSEWWriteResMXSEW<"WriteVIDivX", [SiFiveP400VEXQ0, SiFiveP400VDiv], mx, sew, IsWorstCase>; 526 } 527 } 528} 529 530// Narrowing Shift and Clips 531foreach mx = SchedMxListW in { 532 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 533 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxListW>.c; 534 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 535 defm "" : LMULWriteResMX<"WriteVNShiftV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 536 defm "" : LMULWriteResMX<"WriteVNShiftX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 537 defm "" : LMULWriteResMX<"WriteVNShiftI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 538 defm "" : LMULWriteResMX<"WriteVNClipV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 539 defm "" : LMULWriteResMX<"WriteVNClipX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 540 defm "" : LMULWriteResMX<"WriteVNClipI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 541 } 542} 543 544// 12. Vector Fixed-Point Arithmetic Instructions 545foreach mx = SchedMxList in { 546 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 547 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 548 let Latency = 6, ReleaseAtCycles = [LMulLat] in { 549 defm "" : LMULWriteResMX<"WriteVSALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 550 defm "" : LMULWriteResMX<"WriteVSALUX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 551 defm "" : LMULWriteResMX<"WriteVSALUI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 552 defm "" : LMULWriteResMX<"WriteVAALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 553 defm "" : LMULWriteResMX<"WriteVAALUX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 554 defm "" : LMULWriteResMX<"WriteVSMulV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 555 defm "" : LMULWriteResMX<"WriteVSMulX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 556 defm "" : LMULWriteResMX<"WriteVSShiftV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 557 defm "" : LMULWriteResMX<"WriteVSShiftX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 558 defm "" : LMULWriteResMX<"WriteVSShiftI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 559 } 560} 561 562// 13. Vector Floating-Point Instructions 563foreach mx = SchedMxListF in { 564 foreach sew = SchedSEWSet<mx, isF=1>.val in { 565 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 566 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListF, isF=1>.c; 567 let Latency = 6, ReleaseAtCycles = [LMulLat] in { 568 defm "" : LMULSEWWriteResMXSEW<"WriteVFALUV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 569 defm "" : LMULSEWWriteResMXSEW<"WriteVFALUF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 570 defm "" : LMULSEWWriteResMXSEW<"WriteVFMulV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 571 defm "" : LMULSEWWriteResMXSEW<"WriteVFMulF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 572 defm "" : LMULSEWWriteResMXSEW<"WriteVFMulAddV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 573 defm "" : LMULSEWWriteResMXSEW<"WriteVFMulAddF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 574 } 575 } 576} 577foreach mx = SchedMxListF in { 578 foreach sew = SchedSEWSet<mx, isF=1>.val in { 579 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 580 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListF, isF=1>.c; 581 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 582 defm "" : LMULSEWWriteResMXSEW<"WriteVFRecpV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 583 defm "" : LMULSEWWriteResMXSEW<"WriteVFSgnjV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 584 defm "" : LMULSEWWriteResMXSEW<"WriteVFSgnjF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 585 defm "" : LMULSEWWriteResMXSEW<"WriteVFMinMaxV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 586 defm "" : LMULSEWWriteResMXSEW<"WriteVFMinMaxF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 587 } 588 let Latency = 3, ReleaseAtCycles = [LMulLat] in 589 defm "" : LMULSEWWriteResMXSEW<"WriteVFCvtIToFV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 590 } 591} 592foreach mx = SchedMxList in { 593 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 594 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 595 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 596 defm "" : LMULWriteResMX<"WriteVFCmpV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 597 defm "" : LMULWriteResMX<"WriteVFCmpF", [SiFiveP400VEXQ0], mx, IsWorstCase>; 598 defm "" : LMULWriteResMX<"WriteVFClassV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 599 defm "" : LMULWriteResMX<"WriteVFMergeV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 600 defm "" : LMULWriteResMX<"WriteVFMovV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 601 } 602 let Latency = 3, ReleaseAtCycles = [LMulLat] in 603 defm "" : LMULWriteResMX<"WriteVFCvtFToIV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 604} 605 606// Widening 607foreach mx = SchedMxListW in { 608 foreach sew = SchedSEWSet<mx, isF=0, isWidening=1>.val in { 609 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 610 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListW>.c; 611 let Latency = 3, ReleaseAtCycles = [LMulLat] in 612 defm "" : LMULSEWWriteResMXSEW<"WriteVFWCvtIToFV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 613 } 614} 615foreach mx = SchedMxListFW in { 616 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 617 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxListFW>.c; 618 let Latency = 6, ReleaseAtCycles = [LMulLat] in 619 defm "" : LMULWriteResMX<"WriteVFWCvtFToIV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 620} 621foreach mx = SchedMxListFW in { 622 foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in { 623 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 624 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c; 625 let Latency = 6, ReleaseAtCycles = [LMulLat] in { 626 defm "" : LMULSEWWriteResMXSEW<"WriteVFWALUV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 627 defm "" : LMULSEWWriteResMXSEW<"WriteVFWALUF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 628 defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 629 defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 630 defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulAddV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 631 defm "" : LMULSEWWriteResMXSEW<"WriteVFWMulAddF", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 632 defm "" : LMULSEWWriteResMXSEW<"WriteVFWCvtFToFV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 633 } 634 } 635} 636// Narrowing 637foreach mx = SchedMxListW in { 638 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 639 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxListW>.c; 640 let Latency = 3, ReleaseAtCycles = [LMulLat] in 641 defm "" : LMULWriteResMX<"WriteVFNCvtFToIV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 642} 643foreach mx = SchedMxListFW in { 644 foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in { 645 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 646 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c; 647 let Latency = 3, ReleaseAtCycles = [LMulLat] in { 648 defm "" : LMULSEWWriteResMXSEW<"WriteVFNCvtIToFV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 649 defm "" : LMULSEWWriteResMXSEW<"WriteVFNCvtFToFV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 650 } 651 } 652} 653 654// Worst case needs around 29/25/37 * LMUL cycles for f16/32/64. 655foreach mx = SchedMxListF in { 656 foreach sew = SchedSEWSet<mx, 1>.val in { 657 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 658 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c; 659 defvar DivMicroOpLat = 660 !cond(!eq(sew, 16): 29, !eq(sew, 32): 25, /* SEW=64 */ true: 37); 661 defvar DivLatency = !mul(DivMicroOpLat, LMulLat); 662 let Latency = DivLatency, ReleaseAtCycles = [LMulLat, DivLatency] in { 663 defm "" : LMULSEWWriteResMXSEW<"WriteVFDivV", [SiFiveP400VEXQ0, SiFiveP400VFloatDiv], mx, sew, IsWorstCase>; 664 defm "" : LMULSEWWriteResMXSEW<"WriteVFDivF", [SiFiveP400VEXQ0, SiFiveP400VFloatDiv], mx, sew, IsWorstCase>; 665 defm "" : LMULSEWWriteResMXSEW<"WriteVFSqrtV", [SiFiveP400VEXQ0, SiFiveP400VFloatDiv], mx, sew, IsWorstCase>; 666 } 667 } 668} 669 670// 14. Vector Reduction Operations 671foreach mx = SchedMxList in { 672 foreach sew = SchedSEWSet<mx>.val in { 673 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxList>.c; 674 675 // Simple reduction 676 defvar SimpleC = SimpleVIReduceCycles<mx>; 677 let Latency = SimpleC.latency, ReleaseAtCycles = [SimpleC.rthroughput] in 678 defm "" : LMULSEWWriteResMXSEW<"WriteVIRedV_From", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 679 680 // Advanced reduction 681 defvar AdvancedC = AdvancedVIReduceCycles<sew, mx>; 682 let Latency = AdvancedC.latency, ReleaseAtCycles = [AdvancedC.rthroughput] in 683 defm "" : LMULSEWWriteResMXSEW<"WriteVIRedMinMaxV_From", [SiFiveP400VEXQ0], 684 mx, sew, IsWorstCase>; 685 } 686} 687 688foreach mx = SchedMxListWRed in { 689 foreach sew = SchedSEWSet<mx, 0, 1>.val in { 690 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListWRed>.c; 691 defvar SimpleC = SimpleVIReduceCycles<mx>; 692 let Latency = SimpleC.latency, ReleaseAtCycles = [SimpleC.rthroughput] in { 693 defm "" : LMULSEWWriteResMXSEW<"WriteVIWRedV_From", [SiFiveP400VEXQ0], 694 mx, sew, IsWorstCase>; 695 } 696 } 697} 698 699foreach mx = SchedMxListF in { 700 foreach sew = SchedSEWSet<mx, 1>.val in { 701 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 702 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c; 703 704 // Simple reduction. 705 defvar BaseC = VFReduceBaseCycles<sew>.val; 706 let Latency = !add(BaseC, !mul(6, !logtwo(LMulLat))), ReleaseAtCycles = [BaseC] in 707 defm "" : LMULSEWWriteResMXSEW<"WriteVFRedV_From", [SiFiveP400VEXQ0], 708 mx, sew, IsWorstCase>; 709 710 // Advanced reduction. 711 defvar AdvancedC = AdvancedVFReduceCycles<sew, mx>; 712 let Latency = AdvancedC.latency, ReleaseAtCycles = [AdvancedC.rthroughput] in 713 defm "" : LMULSEWWriteResMXSEW<"WriteVFRedMinMaxV_From", 714 [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 715 716 defvar OrderedRedCycles = !mul(BaseC, LMulLat); 717 let Latency = OrderedRedCycles, ReleaseAtCycles = [OrderedRedCycles] in 718 defm "" : LMULSEWWriteResMXSEW<"WriteVFRedOV_From", [SiFiveP400VEXQ0], 719 mx, sew, IsWorstCase>; 720 } 721} 722 723foreach mx = SchedMxListFWRed in { 724 foreach sew = SchedSEWSet<mx, 1, 1>.val in { 725 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 726 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxListFWRed, 1>.c; 727 let Latency = !add(6, !mul(6, LMulLat)), ReleaseAtCycles = [LMulLat] in { 728 defm "" : LMULSEWWriteResMXSEW<"WriteVFWRedV_From", [SiFiveP400VEXQ0], 729 mx, sew, IsWorstCase>; 730 } 731 732 defvar OrderedRedCycles = !mul(VFReduceBaseCycles<sew>.val, LMulLat); 733 let Latency = OrderedRedCycles, ReleaseAtCycles = [OrderedRedCycles] in 734 defm "" : LMULSEWWriteResMXSEW<"WriteVFWRedOV_From", [SiFiveP400VEXQ0], 735 mx, sew, IsWorstCase>; 736 } 737} 738 739// 15. Vector Mask Instructions 740foreach mx = SchedMxList in { 741 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 742 let Latency = 2, ReleaseAtCycles = [1] in { 743 defm "" : LMULWriteResMX<"WriteVMALUV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 744 defm "" : LMULWriteResMX<"WriteVMPopV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 745 defm "" : LMULWriteResMX<"WriteVMFFSV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 746 defm "" : LMULWriteResMX<"WriteVMSFSV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 747 } 748 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 749 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 750 defm "" : LMULWriteResMX<"WriteVIotaV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 751 defm "" : LMULWriteResMX<"WriteVIdxV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 752 } 753} 754 755// 16. Vector Permutation Instructions 756// Simple Slide 757foreach mx = SchedMxList in { 758 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 759 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 760 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 761 defm "" : LMULWriteResMX<"WriteVSlideI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 762 } 763 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 764 defm "" : LMULWriteResMX<"WriteVISlide1X", [SiFiveP400VEXQ0], mx, IsWorstCase>; 765 defm "" : LMULWriteResMX<"WriteVFSlide1F", [SiFiveP400VEXQ0], mx, IsWorstCase>; 766 } 767} 768foreach mx = ["MF8", "MF4", "MF2", "M1"] in { 769 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 770 let Latency = 2, ReleaseAtCycles = [1] in { 771 defm "" : LMULWriteResMX<"WriteVSlideUpX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 772 defm "" : LMULWriteResMX<"WriteVSlideDownX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 773 } 774} 775 776// Complex Slide 777foreach mx = ["M2", "M4", "M8"] in { 778 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 779 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 780 781 defvar UpLatAndCycles = !add(8, LMulLat); 782 let Latency = UpLatAndCycles, ReleaseAtCycles = [UpLatAndCycles] in { 783 defm "" : LMULWriteResMX<"WriteVSlideUpX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 784 } 785 defvar DownLatAndCycles = !add(8, !div(!mul(LMulLat, 3), 2)); 786 let Latency = DownLatAndCycles, ReleaseAtCycles = [DownLatAndCycles] in { 787 defm "" : LMULWriteResMX<"WriteVSlideDownX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 788 } 789} 790 791let Latency = 2, ReleaseAtCycles = [2] in { 792 def : WriteRes<WriteVMovXS, [SiFiveP400VEXQ0]>; 793 def : WriteRes<WriteVMovSX, [SiFiveP400VEXQ0]>; 794} 795let Latency = 6, ReleaseAtCycles = [2] in { 796 def : WriteRes<WriteVMovFS, [SiFiveP400VEXQ0]>; 797 def : WriteRes<WriteVMovSF, [SiFiveP400VEXQ0]>; 798} 799 800// Simple Gather and Compress 801foreach mx = ["MF8", "MF4", "MF2", "M1"] in { 802 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 803 let Latency = 3, ReleaseAtCycles = [1] in { 804 defm "" : LMULWriteResMX<"WriteVRGatherVX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 805 } 806} 807 808foreach mx = ["MF8", "MF4", "MF2", "M1"] in { 809 foreach sew = SchedSEWSet<mx>.val in { 810 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 811 let Latency = 3, ReleaseAtCycles = [1] in { 812 defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherVV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 813 defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherEI16VV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 814 defm "" : LMULSEWWriteResMXSEW<"WriteVCompressV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 815 } 816 } 817} 818 819// Complex Gather and Compress 820foreach mx = ["M2", "M4", "M8"] in { 821 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 822 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 823 let Latency = 6, ReleaseAtCycles = [LMulLat] in { 824 defm "" : LMULWriteResMX<"WriteVRGatherVX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 825 } 826} 827 828foreach mx = ["M2", "M4", "M8"] in { 829 foreach sew = SchedSEWSet<mx>.val in { 830 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 831 defvar IsWorstCase = SiFiveP400IsWorstCaseMXSEW<mx, sew, SchedMxList>.c; 832 let Latency = 6, ReleaseAtCycles = [!add(!mul(LMulLat, 2), 8)] in { 833 defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherVV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 834 defm "" : LMULSEWWriteResMXSEW<"WriteVRGatherEI16VV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 835 defm "" : LMULSEWWriteResMXSEW<"WriteVCompressV", [SiFiveP400VEXQ0], mx, sew, IsWorstCase>; 836 } 837 } 838} 839 840// Simple Vrgather.vi 841foreach mx = SchedMxList in { 842 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 843 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 844 let Latency = 3, ReleaseAtCycles = [LMulLat] in { 845 defm "" : LMULWriteResMX<"WriteVRGatherVI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 846 } 847} 848 849// Vector Crypto 850foreach mx = SchedMxList in { 851 defvar LMulLat = SiFiveP400GetLMulCycles<mx>.c; 852 defvar IsWorstCase = SiFiveP400IsWorstCaseMX<mx, SchedMxList>.c; 853 // Zvbb 854 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 855 defm "" : LMULWriteResMX<"WriteVBREVV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 856 defm "" : LMULWriteResMX<"WriteVCLZV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 857 defm "" : LMULWriteResMX<"WriteVCPOPV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 858 defm "" : LMULWriteResMX<"WriteVCTZV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 859 defm "" : LMULWriteResMX<"WriteVWSLLV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 860 defm "" : LMULWriteResMX<"WriteVWSLLX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 861 defm "" : LMULWriteResMX<"WriteVWSLLI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 862 } 863 // Zvbc 864 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 865 defm "" : LMULWriteResMX<"WriteVCLMULV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 866 defm "" : LMULWriteResMX<"WriteVCLMULX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 867 } 868 // Zvkb 869 // VANDN uses WriteVIALU[V|X|I] 870 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 871 defm "" : LMULWriteResMX<"WriteVBREV8V", [SiFiveP400VEXQ0], mx, IsWorstCase>; 872 defm "" : LMULWriteResMX<"WriteVREV8V", [SiFiveP400VEXQ0], mx, IsWorstCase>; 873 defm "" : LMULWriteResMX<"WriteVRotV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 874 defm "" : LMULWriteResMX<"WriteVRotX", [SiFiveP400VEXQ0], mx, IsWorstCase>; 875 defm "" : LMULWriteResMX<"WriteVRotI", [SiFiveP400VEXQ0], mx, IsWorstCase>; 876 } 877 // Zvkg 878 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 879 defm "" : LMULWriteResMX<"WriteVGHSHV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 880 defm "" : LMULWriteResMX<"WriteVGMULV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 881 } 882 // ZvknhaOrZvknhb 883 let Latency = 3, ReleaseAtCycles = [LMulLat] in { 884 defm "" : LMULWriteResMX<"WriteVSHA2CHV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 885 defm "" : LMULWriteResMX<"WriteVSHA2CLV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 886 defvar ZvknhSEWs = !listremove(SchedSEWSet<mx>.val, [8, 16]); 887 // Largest SEW is the last element, assuming SchedSEWSet is sorted in ascending 888 // order. 889 defvar LargestZvknhSEW = !foldl(!head(ZvknhSEWs), ZvknhSEWs, last, curr, curr); 890 foreach sew = ZvknhSEWs in { 891 // The worst case for Zvknh[ab] is designated to the largest SEW and LMUL. 892 defvar IsWorstCaseVSHA2MSV = !and(IsWorstCase, !eq(sew, LargestZvknhSEW)); 893 defm "" : LMULSEWWriteResMXSEW<"WriteVSHA2MSV", [SiFiveP400VEXQ0], mx, sew, 894 IsWorstCaseVSHA2MSV>; 895 } 896 } 897 // Zvkned 898 let Latency = 2, ReleaseAtCycles = [LMulLat] in { 899 defm "" : LMULWriteResMX<"WriteVAESMVV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 900 defm "" : LMULWriteResMX<"WriteVAESKF1V", [SiFiveP400VEXQ0], mx, IsWorstCase>; 901 defm "" : LMULWriteResMX<"WriteVAESKF2V", [SiFiveP400VEXQ0], mx, IsWorstCase>; 902 defm "" : LMULWriteResMX<"WriteVAESZV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 903 } 904 // Zvksed 905 let Latency = 3, ReleaseAtCycles = [SiFiveP400VSM3CCycles<mx>.c] in 906 defm "" : LMULWriteResMX<"WriteVSM3CV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 907 let Latency = 6, ReleaseAtCycles = [LMulLat] in 908 defm "" : LMULWriteResMX<"WriteVSM3MEV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 909 let Latency = 3, ReleaseAtCycles = [LMulLat] in { 910 defm "" : LMULWriteResMX<"WriteVSM4KV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 911 defm "" : LMULWriteResMX<"WriteVSM4RV", [SiFiveP400VEXQ0], mx, IsWorstCase>; 912 } 913} 914 915// Others 916def : WriteRes<WriteCSR, [SiFiveP400SYS]>; 917def : WriteRes<WriteNop, []>; 918def : WriteRes<WriteRdVLENB, [SiFiveP400SYS]>; 919 920 921// FIXME: This could be better modeled by looking at the regclasses of the operands. 922def : InstRW<[WriteIALU, ReadIALU], (instrs COPY)>; 923 924//===----------------------------------------------------------------------===// 925// Bypass and advance 926def : ReadAdvance<ReadJmp, 0>; 927def : ReadAdvance<ReadJalr, 0>; 928def : ReadAdvance<ReadCSR, 0>; 929def : ReadAdvance<ReadStoreData, 0>; 930def : ReadAdvance<ReadMemBase, 0>; 931def : ReadAdvance<ReadIALU, 0>; 932def : ReadAdvance<ReadIALU32, 0>; 933def : ReadAdvance<ReadShiftImm, 0>; 934def : ReadAdvance<ReadShiftImm32, 0>; 935def : ReadAdvance<ReadShiftReg, 0>; 936def : ReadAdvance<ReadShiftReg32, 0>; 937def : ReadAdvance<ReadIDiv, 0>; 938def : ReadAdvance<ReadIDiv32, 0>; 939def : ReadAdvance<ReadIRem, 0>; 940def : ReadAdvance<ReadIRem32, 0>; 941def : ReadAdvance<ReadIMul, 0>; 942def : ReadAdvance<ReadIMul32, 0>; 943def : ReadAdvance<ReadAtomicWA, 0>; 944def : ReadAdvance<ReadAtomicWD, 0>; 945def : ReadAdvance<ReadAtomicDA, 0>; 946def : ReadAdvance<ReadAtomicDD, 0>; 947def : ReadAdvance<ReadAtomicLDW, 0>; 948def : ReadAdvance<ReadAtomicLDD, 0>; 949def : ReadAdvance<ReadAtomicSTW, 0>; 950def : ReadAdvance<ReadAtomicSTD, 0>; 951def : ReadAdvance<ReadFStoreData, 0>; 952def : ReadAdvance<ReadFMemBase, 0>; 953def : ReadAdvance<ReadFAdd16, 0>; 954def : ReadAdvance<ReadFAdd32, 0>; 955def : ReadAdvance<ReadFAdd64, 0>; 956def : ReadAdvance<ReadFMul16, 0>; 957def : ReadAdvance<ReadFMA16, 0>; 958def : ReadAdvance<ReadFMA16Addend, 0>; 959def : ReadAdvance<ReadFMul32, 0>; 960def : ReadAdvance<ReadFMA32, 0>; 961def : ReadAdvance<ReadFMA32Addend, 0>; 962def : ReadAdvance<ReadFMul64, 0>; 963def : ReadAdvance<ReadFMA64, 0>; 964def : ReadAdvance<ReadFMA64Addend, 0>; 965def : ReadAdvance<ReadFDiv16, 0>; 966def : ReadAdvance<ReadFDiv32, 0>; 967def : ReadAdvance<ReadFDiv64, 0>; 968def : ReadAdvance<ReadFSqrt16, 0>; 969def : ReadAdvance<ReadFSqrt32, 0>; 970def : ReadAdvance<ReadFSqrt64, 0>; 971def : ReadAdvance<ReadFCmp16, 0>; 972def : ReadAdvance<ReadFCmp32, 0>; 973def : ReadAdvance<ReadFCmp64, 0>; 974def : ReadAdvance<ReadFSGNJ16, 0>; 975def : ReadAdvance<ReadFSGNJ32, 0>; 976def : ReadAdvance<ReadFSGNJ64, 0>; 977def : ReadAdvance<ReadFMinMax16, 0>; 978def : ReadAdvance<ReadFMinMax32, 0>; 979def : ReadAdvance<ReadFMinMax64, 0>; 980def : ReadAdvance<ReadFCvtF16ToI32, 0>; 981def : ReadAdvance<ReadFCvtF16ToI64, 0>; 982def : ReadAdvance<ReadFCvtF32ToI32, 0>; 983def : ReadAdvance<ReadFCvtF32ToI64, 0>; 984def : ReadAdvance<ReadFCvtF64ToI32, 0>; 985def : ReadAdvance<ReadFCvtF64ToI64, 0>; 986def : ReadAdvance<ReadFCvtI32ToF16, 0>; 987def : ReadAdvance<ReadFCvtI32ToF32, 0>; 988def : ReadAdvance<ReadFCvtI32ToF64, 0>; 989def : ReadAdvance<ReadFCvtI64ToF16, 0>; 990def : ReadAdvance<ReadFCvtI64ToF32, 0>; 991def : ReadAdvance<ReadFCvtI64ToF64, 0>; 992def : ReadAdvance<ReadFCvtF32ToF64, 0>; 993def : ReadAdvance<ReadFCvtF64ToF32, 0>; 994def : ReadAdvance<ReadFCvtF16ToF32, 0>; 995def : ReadAdvance<ReadFCvtF32ToF16, 0>; 996def : ReadAdvance<ReadFCvtF16ToF64, 0>; 997def : ReadAdvance<ReadFCvtF64ToF16, 0>; 998def : ReadAdvance<ReadFMovF16ToI16, 0>; 999def : ReadAdvance<ReadFMovI16ToF16, 0>; 1000def : ReadAdvance<ReadFMovF32ToI32, 0>; 1001def : ReadAdvance<ReadFMovI32ToF32, 0>; 1002def : ReadAdvance<ReadFMovF64ToI64, 0>; 1003def : ReadAdvance<ReadFMovI64ToF64, 0>; 1004def : ReadAdvance<ReadFClass16, 0>; 1005def : ReadAdvance<ReadFClass32, 0>; 1006def : ReadAdvance<ReadFClass64, 0>; 1007 1008// Bitmanip 1009def : ReadAdvance<ReadRotateImm, 0>; 1010def : ReadAdvance<ReadRotateImm32, 0>; 1011def : ReadAdvance<ReadRotateReg, 0>; 1012def : ReadAdvance<ReadRotateReg32, 0>; 1013def : ReadAdvance<ReadCLZ, 0>; 1014def : ReadAdvance<ReadCLZ32, 0>; 1015def : ReadAdvance<ReadCTZ, 0>; 1016def : ReadAdvance<ReadCTZ32, 0>; 1017def : ReadAdvance<ReadCPOP, 0>; 1018def : ReadAdvance<ReadCPOP32, 0>; 1019def : ReadAdvance<ReadORCB, 0>; 1020def : ReadAdvance<ReadIMinMax, 0>; 1021def : ReadAdvance<ReadREV8, 0>; 1022def : ReadAdvance<ReadSHXADD, 0>; 1023def : ReadAdvance<ReadSHXADD32, 0>; 1024def : ReadAdvance<ReadSingleBit, 0>; 1025def : ReadAdvance<ReadSingleBitImm, 0>; 1026 1027// 6. Configuration-Setting Instructions 1028def : ReadAdvance<ReadVSETVLI, 0>; 1029def : ReadAdvance<ReadVSETVL, 0>; 1030 1031// 7. Vector Loads and Stores 1032def : ReadAdvance<ReadVLDX, 0>; 1033def : ReadAdvance<ReadVSTX, 0>; 1034defm "" : LMULReadAdvance<"ReadVSTEV", 0>; 1035defm "" : LMULReadAdvance<"ReadVSTM", 0>; 1036def : ReadAdvance<ReadVLDSX, 0>; 1037def : ReadAdvance<ReadVSTSX, 0>; 1038defm "" : LMULReadAdvance<"ReadVSTS8V", 0>; 1039defm "" : LMULReadAdvance<"ReadVSTS16V", 0>; 1040defm "" : LMULReadAdvance<"ReadVSTS32V", 0>; 1041defm "" : LMULReadAdvance<"ReadVSTS64V", 0>; 1042defm "" : LMULReadAdvance<"ReadVLDUXV", 0>; 1043defm "" : LMULReadAdvance<"ReadVLDOXV", 0>; 1044defm "" : LMULReadAdvance<"ReadVSTUX8", 0>; 1045defm "" : LMULReadAdvance<"ReadVSTUX16", 0>; 1046defm "" : LMULReadAdvance<"ReadVSTUX32", 0>; 1047defm "" : LMULReadAdvance<"ReadVSTUX64", 0>; 1048defm "" : LMULReadAdvance<"ReadVSTUXV", 0>; 1049defm "" : LMULReadAdvance<"ReadVSTUX8V", 0>; 1050defm "" : LMULReadAdvance<"ReadVSTUX16V", 0>; 1051defm "" : LMULReadAdvance<"ReadVSTUX32V", 0>; 1052defm "" : LMULReadAdvance<"ReadVSTUX64V", 0>; 1053defm "" : LMULReadAdvance<"ReadVSTOX8", 0>; 1054defm "" : LMULReadAdvance<"ReadVSTOX16", 0>; 1055defm "" : LMULReadAdvance<"ReadVSTOX32", 0>; 1056defm "" : LMULReadAdvance<"ReadVSTOX64", 0>; 1057defm "" : LMULReadAdvance<"ReadVSTOXV", 0>; 1058defm "" : LMULReadAdvance<"ReadVSTOX8V", 0>; 1059defm "" : LMULReadAdvance<"ReadVSTOX16V", 0>; 1060defm "" : LMULReadAdvance<"ReadVSTOX32V", 0>; 1061defm "" : LMULReadAdvance<"ReadVSTOX64V", 0>; 1062// LMUL Aware 1063def : ReadAdvance<ReadVST1R, 0>; 1064def : ReadAdvance<ReadVST2R, 0>; 1065def : ReadAdvance<ReadVST4R, 0>; 1066def : ReadAdvance<ReadVST8R, 0>; 1067 1068// 12. Vector Integer Arithmetic Instructions 1069defm : LMULReadAdvance<"ReadVIALUV", 0>; 1070defm : LMULReadAdvance<"ReadVIALUX", 0>; 1071defm : LMULReadAdvanceW<"ReadVIWALUV", 0>; 1072defm : LMULReadAdvanceW<"ReadVIWALUX", 0>; 1073defm : LMULReadAdvance<"ReadVExtV", 0>; 1074defm : LMULReadAdvance<"ReadVICALUV", 0>; 1075defm : LMULReadAdvance<"ReadVICALUX", 0>; 1076defm : LMULReadAdvance<"ReadVShiftV", 0>; 1077defm : LMULReadAdvance<"ReadVShiftX", 0>; 1078defm : LMULReadAdvanceW<"ReadVNShiftV", 0>; 1079defm : LMULReadAdvanceW<"ReadVNShiftX", 0>; 1080defm : LMULReadAdvance<"ReadVICmpV", 0>; 1081defm : LMULReadAdvance<"ReadVICmpX", 0>; 1082defm : LMULReadAdvance<"ReadVIMinMaxV", 0>; 1083defm : LMULReadAdvance<"ReadVIMinMaxX", 0>; 1084defm : LMULReadAdvance<"ReadVIMulV", 0>; 1085defm : LMULReadAdvance<"ReadVIMulX", 0>; 1086defm : LMULSEWReadAdvance<"ReadVIDivV", 0>; 1087defm : LMULSEWReadAdvance<"ReadVIDivX", 0>; 1088defm : LMULReadAdvanceW<"ReadVIWMulV", 0>; 1089defm : LMULReadAdvanceW<"ReadVIWMulX", 0>; 1090defm : LMULReadAdvance<"ReadVIMulAddV", 0>; 1091defm : LMULReadAdvance<"ReadVIMulAddX", 0>; 1092defm : LMULReadAdvanceW<"ReadVIWMulAddV", 0>; 1093defm : LMULReadAdvanceW<"ReadVIWMulAddX", 0>; 1094defm : LMULReadAdvance<"ReadVIMergeV", 0>; 1095defm : LMULReadAdvance<"ReadVIMergeX", 0>; 1096defm : LMULReadAdvance<"ReadVIMovV", 0>; 1097defm : LMULReadAdvance<"ReadVIMovX", 0>; 1098 1099// 13. Vector Fixed-Point Arithmetic Instructions 1100defm "" : LMULReadAdvance<"ReadVSALUV", 0>; 1101defm "" : LMULReadAdvance<"ReadVSALUX", 0>; 1102defm "" : LMULReadAdvance<"ReadVAALUV", 0>; 1103defm "" : LMULReadAdvance<"ReadVAALUX", 0>; 1104defm "" : LMULReadAdvance<"ReadVSMulV", 0>; 1105defm "" : LMULReadAdvance<"ReadVSMulX", 0>; 1106defm "" : LMULReadAdvance<"ReadVSShiftV", 0>; 1107defm "" : LMULReadAdvance<"ReadVSShiftX", 0>; 1108defm "" : LMULReadAdvanceW<"ReadVNClipV", 0>; 1109defm "" : LMULReadAdvanceW<"ReadVNClipX", 0>; 1110 1111// 14. Vector Floating-Point Instructions 1112defm "" : LMULSEWReadAdvanceF<"ReadVFALUV", 0>; 1113defm "" : LMULSEWReadAdvanceF<"ReadVFALUF", 0>; 1114defm "" : LMULSEWReadAdvanceFW<"ReadVFWALUV", 0>; 1115defm "" : LMULSEWReadAdvanceFW<"ReadVFWALUF", 0>; 1116defm "" : LMULSEWReadAdvanceF<"ReadVFMulV", 0>; 1117defm "" : LMULSEWReadAdvanceF<"ReadVFMulF", 0>; 1118defm "" : LMULSEWReadAdvanceF<"ReadVFDivV", 0>; 1119defm "" : LMULSEWReadAdvanceF<"ReadVFDivF", 0>; 1120defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulV", 0>; 1121defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulF", 0>; 1122defm "" : LMULSEWReadAdvanceF<"ReadVFMulAddV", 0>; 1123defm "" : LMULSEWReadAdvanceF<"ReadVFMulAddF", 0>; 1124defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulAddV", 0>; 1125defm "" : LMULSEWReadAdvanceFW<"ReadVFWMulAddF", 0>; 1126defm "" : LMULSEWReadAdvanceF<"ReadVFSqrtV", 0>; 1127defm "" : LMULSEWReadAdvanceF<"ReadVFRecpV", 0>; 1128defm "" : LMULReadAdvance<"ReadVFCmpV", 0>; 1129defm "" : LMULReadAdvance<"ReadVFCmpF", 0>; 1130defm "" : LMULSEWReadAdvanceF<"ReadVFMinMaxV", 0>; 1131defm "" : LMULSEWReadAdvanceF<"ReadVFMinMaxF", 0>; 1132defm "" : LMULSEWReadAdvanceF<"ReadVFSgnjV", 0>; 1133defm "" : LMULSEWReadAdvanceF<"ReadVFSgnjF", 0>; 1134defm "" : LMULReadAdvance<"ReadVFClassV", 0>; 1135defm "" : LMULReadAdvance<"ReadVFMergeV", 0>; 1136defm "" : LMULReadAdvance<"ReadVFMergeF", 0>; 1137defm "" : LMULReadAdvance<"ReadVFMovF", 0>; 1138defm "" : LMULSEWReadAdvanceF<"ReadVFCvtIToFV", 0>; 1139defm "" : LMULReadAdvance<"ReadVFCvtFToIV", 0>; 1140defm "" : LMULSEWReadAdvanceW<"ReadVFWCvtIToFV", 0>; 1141defm "" : LMULReadAdvanceFW<"ReadVFWCvtFToIV", 0>; 1142defm "" : LMULSEWReadAdvanceFW<"ReadVFWCvtFToFV", 0>; 1143defm "" : LMULSEWReadAdvanceFW<"ReadVFNCvtIToFV", 0>; 1144defm "" : LMULReadAdvanceW<"ReadVFNCvtFToIV", 0>; 1145defm "" : LMULSEWReadAdvanceFW<"ReadVFNCvtFToFV", 0>; 1146 1147// 15. Vector Reduction Operations 1148def : ReadAdvance<ReadVIRedV, 0>; 1149def : ReadAdvance<ReadVIRedV0, 0>; 1150def : ReadAdvance<ReadVIWRedV, 0>; 1151def : ReadAdvance<ReadVIWRedV0, 0>; 1152def : ReadAdvance<ReadVFRedV, 0>; 1153def : ReadAdvance<ReadVFRedV0, 0>; 1154def : ReadAdvance<ReadVFRedOV, 0>; 1155def : ReadAdvance<ReadVFRedOV0, 0>; 1156def : ReadAdvance<ReadVFWRedV, 0>; 1157def : ReadAdvance<ReadVFWRedV0, 0>; 1158def : ReadAdvance<ReadVFWRedOV, 0>; 1159def : ReadAdvance<ReadVFWRedOV0, 0>; 1160 1161// 16. Vector Mask Instructions 1162defm "" : LMULReadAdvance<"ReadVMALUV", 0>; 1163defm "" : LMULReadAdvance<"ReadVMPopV", 0>; 1164defm "" : LMULReadAdvance<"ReadVMFFSV", 0>; 1165defm "" : LMULReadAdvance<"ReadVMSFSV", 0>; 1166defm "" : LMULReadAdvance<"ReadVIotaV", 0>; 1167 1168// 17. Vector Permutation Instructions 1169def : ReadAdvance<ReadVMovXS, 0>; 1170def : ReadAdvance<ReadVMovSX_V, 0>; 1171def : ReadAdvance<ReadVMovSX_X, 0>; 1172def : ReadAdvance<ReadVMovFS, 0>; 1173def : ReadAdvance<ReadVMovSF_V, 0>; 1174def : ReadAdvance<ReadVMovSF_F, 0>; 1175defm "" : LMULReadAdvance<"ReadVISlideV", 0>; 1176defm "" : LMULReadAdvance<"ReadVISlideX", 0>; 1177defm "" : LMULReadAdvance<"ReadVFSlideV", 0>; 1178defm "" : LMULReadAdvance<"ReadVFSlideF", 0>; 1179defm "" : LMULSEWReadAdvance<"ReadVRGatherVV_data", 0>; 1180defm "" : LMULSEWReadAdvance<"ReadVRGatherVV_index", 0>; 1181defm "" : LMULSEWReadAdvance<"ReadVRGatherEI16VV_data", 0>; 1182defm "" : LMULSEWReadAdvance<"ReadVRGatherEI16VV_index", 0>; 1183defm "" : LMULReadAdvance<"ReadVRGatherVX_data", 0>; 1184defm "" : LMULReadAdvance<"ReadVRGatherVX_index", 0>; 1185defm "" : LMULReadAdvance<"ReadVRGatherVI_data", 0>; 1186defm "" : LMULSEWReadAdvance<"ReadVCompressV", 0>; 1187// LMUL Aware 1188def : ReadAdvance<ReadVMov1V, 0>; 1189def : ReadAdvance<ReadVMov2V, 0>; 1190def : ReadAdvance<ReadVMov4V, 0>; 1191def : ReadAdvance<ReadVMov8V, 0>; 1192 1193// Others 1194def : ReadAdvance<ReadVMask, 0>; 1195def : ReadAdvance<ReadVPassthru_WorstCase, 0>; 1196foreach mx = SchedMxList in { 1197 def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx), 0>; 1198 foreach sew = SchedSEWSet<mx>.val in 1199 def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx # "_E" # sew), 0>; 1200} 1201 1202// Vector Crypto Extensions 1203// Zvbb 1204defm "" : LMULReadAdvance<"ReadVBREVV", 0>; 1205defm "" : LMULReadAdvance<"ReadVCLZV", 0>; 1206defm "" : LMULReadAdvance<"ReadVCPOPV", 0>; 1207defm "" : LMULReadAdvance<"ReadVCTZV", 0>; 1208defm "" : LMULReadAdvance<"ReadVWSLLV", 0>; 1209defm "" : LMULReadAdvance<"ReadVWSLLX", 0>; 1210// Zvbc 1211defm "" : LMULReadAdvance<"ReadVCLMULV", 0>; 1212defm "" : LMULReadAdvance<"ReadVCLMULX", 0>; 1213// Zvkb 1214// VANDN uses ReadVIALU[V|X|I] 1215defm "" : LMULReadAdvance<"ReadVBREV8V", 0>; 1216defm "" : LMULReadAdvance<"ReadVREV8V", 0>; 1217defm "" : LMULReadAdvance<"ReadVRotV", 0>; 1218defm "" : LMULReadAdvance<"ReadVRotX", 0>; 1219// Zvkg 1220defm "" : LMULReadAdvance<"ReadVGHSHV", 0>; 1221defm "" : LMULReadAdvance<"ReadVGMULV", 0>; 1222// Zvknha or Zvknhb 1223defm "" : LMULReadAdvance<"ReadVSHA2CHV", 0>; 1224defm "" : LMULReadAdvance<"ReadVSHA2CLV", 0>; 1225defm "" : LMULSEWReadAdvance<"ReadVSHA2MSV", 0>; 1226// Zvkned 1227defm "" : LMULReadAdvance<"ReadVAESMVV", 0>; 1228defm "" : LMULReadAdvance<"ReadVAESKF1V", 0>; 1229defm "" : LMULReadAdvance<"ReadVAESKF2V", 0>; 1230defm "" : LMULReadAdvance<"ReadVAESZV", 0>; 1231// Zvksed 1232defm "" : LMULReadAdvance<"ReadVSM4KV", 0>; 1233defm "" : LMULReadAdvance<"ReadVSM4RV", 0>; 1234// Zbksh 1235defm "" : LMULReadAdvance<"ReadVSM3CV", 0>; 1236defm "" : LMULReadAdvance<"ReadVSM3MEV", 0>; 1237 1238//===----------------------------------------------------------------------===// 1239// Unsupported extensions 1240defm : UnsupportedSchedZabha; 1241defm : UnsupportedSchedZbc; 1242defm : UnsupportedSchedZbkb; 1243defm : UnsupportedSchedZbkx; 1244defm : UnsupportedSchedSFB; 1245defm : UnsupportedSchedZfa; 1246defm : UnsupportedSchedXsfvcp; 1247} 1248