xref: /llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoZfh.td (revision 3fb0bea859efaf401ad0ce420d7b75e3ff1c4746)
1//===-- RISCVInstrInfoZfh.td - RISC-V 'Zfh' instructions ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'Zfh'
10// half-precision floating-point extension, version 1.0.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_H_X
19    : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, XLenVT>]>;
20def SDT_RISCVFMV_X_EXTH
21    : SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisFP<1>]>;
22
23def riscv_fmv_h_x
24    : SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>;
25def riscv_fmv_x_anyexth
26    : SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_EXTH>;
27def riscv_fmv_x_signexth
28    : SDNode<"RISCVISD::FMV_X_SIGNEXTH", SDT_RISCVFMV_X_EXTH>;
29
30//===----------------------------------------------------------------------===//
31// Operand and SDNode transformation definitions.
32//===----------------------------------------------------------------------===//
33
34// Zhinxmin and Zhinx
35
36def GPRAsFPR16 : AsmOperandClass {
37  let Name = "GPRAsFPR16";
38  let ParserMethod = "parseGPRAsFPR";
39  let RenderMethod = "addRegOperands";
40}
41
42def FPR16INX : RegisterOperand<GPRF16> {
43  let ParserMatchClass = GPRAsFPR16;
44}
45
46def ZfhExt     : ExtInfo<"", "", [HasStdExtZfh],
47                         f16, FPR16, FPR32, ?, FPR16>;
48def ZfhminExt  : ExtInfo<"", "", [HasStdExtZfhmin],
49                         f16, FPR16, FPR32, ?, FPR16>;
50def ZfhDExt    : ExtInfo<"", "", [HasStdExtZfh, HasStdExtD],
51                         ?, ?, FPR32, FPR64, FPR16>;
52def ZfhminDExt : ExtInfo<"", "", [HasStdExtZfhmin, HasStdExtD],
53                         ?, ?, FPR32, FPR64, FPR16>;
54
55def ZhinxExt            : ExtInfo<"_INX", "RVZfinx",
56                                  [HasStdExtZhinx],
57                                  f16, FPR16INX, FPR32INX, ?, FPR16INX>;
58def ZhinxminExt         : ExtInfo<"_INX", "RVZfinx",
59                                  [HasStdExtZhinxmin],
60                                  f16, FPR16INX, FPR32INX, ?, FPR16INX>;
61def ZhinxZdinxExt       : ExtInfo<"_INX", "RVZfinx",
62                                  [HasStdExtZhinx, HasStdExtZdinx, IsRV64],
63                                  ?, ?, FPR32INX, FPR64INX, FPR16INX>;
64def ZhinxminZdinxExt    : ExtInfo<"_INX", "RVZfinx",
65                                  [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64],
66                                  ?, ?, FPR32INX, FPR64INX, FPR16INX>;
67def ZhinxZdinx32Ext     : ExtInfo<"_IN32X", "RV32Zdinx",
68                                  [HasStdExtZhinx, HasStdExtZdinx, IsRV32],
69                                  ?, ?, FPR32INX, FPR64IN32X, FPR16INX >;
70def ZhinxminZdinx32Ext  : ExtInfo<"_IN32X", "RV32Zdinx",
71                                  [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32],
72                                  ?, ?, FPR32INX, FPR64IN32X, FPR16INX>;
73
74defvar ZfhExts = [ZfhExt, ZhinxExt];
75defvar ZfhminExts = [ZfhminExt, ZhinxminExt];
76defvar ZfhDExts = [ZfhDExt, ZhinxZdinxExt, ZhinxZdinx32Ext];
77defvar ZfhminDExts = [ZfhminDExt, ZhinxminZdinxExt, ZhinxminZdinx32Ext];
78
79//===----------------------------------------------------------------------===//
80// Instructions
81//===----------------------------------------------------------------------===//
82
83let Predicates = [HasHalfFPLoadStoreMove] in {
84def FLH : FPLoad_r<0b001, "flh", FPR16, WriteFLD16>;
85
86// Operands for stores are in the order srcreg, base, offset rather than
87// reflecting the order these fields are specified in the instruction
88// encoding.
89def FSH : FPStore_r<0b001, "fsh", FPR16, WriteFST16>;
90} // Predicates = [HasHalfFPLoadStoreMove]
91
92let Predicates = [HasStdExtZhinxmin], isCodeGenOnly = 1 in {
93def LH_INX : Load_ri<0b001, "lh", GPRF16>, Sched<[WriteLDH, ReadMemBase]>;
94def SH_INX : Store_rri<0b001, "sh", GPRF16>,
95             Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
96
97// ADDI with GPRF16 register class to use for copy. This should not be used as
98// general ADDI, so the immediate should always be zero.
99let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveReg = 1,
100    hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
101def PseudoMV_FPR16INX : Pseudo<(outs GPRF16:$rd), (ins GPRF16:$rs), []>,
102                        Sched<[WriteIALU, ReadIALU]>;
103}
104
105foreach Ext = ZfhExts in {
106  let SchedRW = [WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16Addend] in {
107    defm FMADD_H  : FPFMA_rrr_frm_m<OPC_MADD,  0b10, "fmadd.h",  Ext>;
108    defm FMSUB_H  : FPFMA_rrr_frm_m<OPC_MSUB,  0b10, "fmsub.h",  Ext>;
109    defm FNMSUB_H : FPFMA_rrr_frm_m<OPC_NMSUB, 0b10, "fnmsub.h", Ext>;
110    defm FNMADD_H : FPFMA_rrr_frm_m<OPC_NMADD, 0b10, "fnmadd.h", Ext>;
111  }
112
113  let SchedRW = [WriteFAdd16, ReadFAdd16, ReadFAdd16] in {
114    defm FADD_H : FPALU_rr_frm_m<0b0000010, "fadd.h", Ext, Commutable=1>;
115    defm FSUB_H : FPALU_rr_frm_m<0b0000110, "fsub.h", Ext>;
116  }
117  let SchedRW = [WriteFMul16, ReadFMul16, ReadFMul16] in
118  defm FMUL_H : FPALU_rr_frm_m<0b0001010, "fmul.h", Ext, Commutable=1>;
119
120  let SchedRW = [WriteFDiv16, ReadFDiv16, ReadFDiv16] in
121  defm FDIV_H : FPALU_rr_frm_m<0b0001110, "fdiv.h", Ext>;
122
123  defm FSQRT_H : FPUnaryOp_r_frm_m<0b0101110, 0b00000, Ext, Ext.PrimaryTy,
124                                   Ext.PrimaryTy, "fsqrt.h">,
125                 Sched<[WriteFSqrt16, ReadFSqrt16]>;
126
127  let SchedRW = [WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16],
128      mayRaiseFPException = 0 in {
129    defm FSGNJ_H  : FPALU_rr_m<0b0010010, 0b000, "fsgnj.h",  Ext>;
130    defm FSGNJN_H : FPALU_rr_m<0b0010010, 0b001, "fsgnjn.h", Ext>;
131    defm FSGNJX_H : FPALU_rr_m<0b0010010, 0b010, "fsgnjx.h", Ext>;
132  }
133
134  let SchedRW = [WriteFMinMax16, ReadFMinMax16, ReadFMinMax16] in {
135    defm FMIN_H   : FPALU_rr_m<0b0010110, 0b000, "fmin.h", Ext, Commutable=1>;
136    defm FMAX_H   : FPALU_rr_m<0b0010110, 0b001, "fmax.h", Ext, Commutable=1>;
137  }
138
139  let IsSignExtendingOpW = 1 in
140  defm FCVT_W_H : FPUnaryOp_r_frm_m<0b1100010, 0b00000, Ext, GPR, Ext.PrimaryTy,
141                                    "fcvt.w.h">,
142                  Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
143
144  let IsSignExtendingOpW = 1 in
145  defm FCVT_WU_H : FPUnaryOp_r_frm_m<0b1100010, 0b00001, Ext, GPR, Ext.PrimaryTy,
146                                     "fcvt.wu.h">,
147                   Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]>;
148
149  defm FCVT_H_W : FPUnaryOp_r_frm_m<0b1101010, 0b00000, Ext, Ext.PrimaryTy, GPR,
150                                    "fcvt.h.w">,
151                  Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
152
153  defm FCVT_H_WU : FPUnaryOp_r_frm_m<0b1101010, 0b00001, Ext, Ext.PrimaryTy, GPR,
154                                     "fcvt.h.wu">,
155                   Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]>;
156} // foreach Ext = ZfhExts
157
158foreach Ext = ZfhminExts in {
159  defm FCVT_H_S : FPUnaryOp_r_frm_m<0b0100010, 0b00000, Ext, Ext.PrimaryTy,
160                                    Ext.F32Ty, "fcvt.h.s">,
161                  Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]>;
162
163  defm FCVT_S_H : FPUnaryOp_r_frmlegacy_m<0b0100000, 0b00010,Ext, Ext.F32Ty,
164                                          Ext.PrimaryTy, "fcvt.s.h">,
165                 Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]>;
166} // foreach Ext = ZfhminExts
167
168let Predicates = [HasHalfFPLoadStoreMove] in {
169let mayRaiseFPException = 0, IsSignExtendingOpW = 1 in
170def FMV_X_H : FPUnaryOp_r<0b1110010, 0b00000, 0b000, GPR, FPR16, "fmv.x.h">,
171              Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]>;
172
173let mayRaiseFPException = 0 in
174def FMV_H_X : FPUnaryOp_r<0b1111010, 0b00000, 0b000, FPR16, GPR, "fmv.h.x">,
175              Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]>;
176} // Predicates = [HasHalfFPLoadStoreMove]
177
178foreach Ext = ZfhExts in {
179  let SchedRW = [WriteFCmp16, ReadFCmp16, ReadFCmp16] in {
180    defm FEQ_H : FPCmp_rr_m<0b1010010, 0b010, "feq.h", Ext, Commutable=1>;
181    defm FLT_H : FPCmp_rr_m<0b1010010, 0b001, "flt.h", Ext>;
182    defm FLE_H : FPCmp_rr_m<0b1010010, 0b000, "fle.h", Ext>;
183  }
184
185  let mayRaiseFPException = 0 in
186  defm FCLASS_H : FPUnaryOp_r_m<0b1110010, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
187                                "fclass.h">,
188                  Sched<[WriteFClass16, ReadFClass16]>;
189
190  defm FCVT_L_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00010, Ext, GPR, Ext.PrimaryTy,
191                                     "fcvt.l.h", [IsRV64]>,
192                   Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
193
194  defm FCVT_LU_H  : FPUnaryOp_r_frm_m<0b1100010, 0b00011, Ext, GPR, Ext.PrimaryTy,
195                                      "fcvt.lu.h", [IsRV64]>,
196                    Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]>;
197
198  defm FCVT_H_L : FPUnaryOp_r_frm_m<0b1101010, 0b00010, Ext, Ext.PrimaryTy, GPR,
199                                    "fcvt.h.l", [IsRV64]>,
200                  Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
201
202  defm FCVT_H_LU : FPUnaryOp_r_frm_m<0b1101010, 0b00011, Ext, Ext.PrimaryTy, GPR,
203                                     "fcvt.h.lu", [IsRV64]>,
204                   Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]>;
205} // foreach Ext = ZfhExts
206
207foreach Ext = ZfhminDExts in {
208  defm FCVT_H_D : FPUnaryOp_r_frm_m<0b0100010, 0b00001, Ext, Ext.F16Ty,
209                                   Ext.F64Ty, "fcvt.h.d">,
210                  Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]>;
211
212  defm FCVT_D_H : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00010, Ext, Ext.F64Ty,
213                                          Ext.F16Ty, "fcvt.d.h">,
214                  Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]>;
215} // foreach Ext = ZfhminDExts
216
217//===----------------------------------------------------------------------===//
218// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
219//===----------------------------------------------------------------------===//
220
221let Predicates = [HasStdExtZfhmin] in {
222def : InstAlias<"flh $rd, (${rs1})",  (FLH FPR16:$rd,  GPR:$rs1, 0), 0>;
223def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
224} // Predicates = [HasStdExtZfhmin]
225
226let Predicates = [HasStdExtZfh] in {
227def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H  FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
228def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
229def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
230
231// fgt.h/fge.h are recognised by the GNU assembler but the canonical
232// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
233def : InstAlias<"fgt.h $rd, $rs, $rt",
234                (FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
235def : InstAlias<"fge.h $rd, $rs, $rt",
236                (FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
237
238let usesCustomInserter = 1 in {
239def PseudoQuietFLE_H : PseudoQuietFCMP<FPR16>;
240def PseudoQuietFLT_H : PseudoQuietFCMP<FPR16>;
241}
242} // Predicates = [HasStdExtZfh]
243
244let Predicates = [HasStdExtZfhmin] in {
245def PseudoFLH  : PseudoFloatLoad<"flh", FPR16>;
246def PseudoFSH  : PseudoStore<"fsh", FPR16>;
247} // Predicates = [HasStdExtZfhmin]
248
249let Predicates = [HasStdExtZhinx] in {
250def : InstAlias<"fmv.h $rd, $rs",  (FSGNJ_H_INX  FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
251def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
252def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H_INX FPR16INX:$rd, FPR16INX:$rs, FPR16INX:$rs)>;
253
254def : InstAlias<"fgt.h $rd, $rs, $rt",
255                (FLT_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
256def : InstAlias<"fge.h $rd, $rs, $rt",
257                (FLE_H_INX GPR:$rd, FPR16INX:$rt, FPR16INX:$rs), 0>;
258
259let usesCustomInserter = 1 in {
260def PseudoQuietFLE_H_INX : PseudoQuietFCMP<FPR16INX>;
261def PseudoQuietFLT_H_INX : PseudoQuietFCMP<FPR16INX>;
262}
263} // Predicates = [HasStdExtZhinxmin]
264
265//===----------------------------------------------------------------------===//
266// Pseudo-instructions and codegen patterns
267//===----------------------------------------------------------------------===//
268
269
270/// Float conversion operations
271
272// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
273// are defined later.
274
275/// Float arithmetic operations
276
277foreach Ext = ZfhExts in {
278  defm : PatFprFprDynFrm_m<any_fadd, FADD_H, Ext>;
279  defm : PatFprFprDynFrm_m<any_fsub, FSUB_H, Ext>;
280  defm : PatFprFprDynFrm_m<any_fmul, FMUL_H, Ext>;
281  defm : PatFprFprDynFrm_m<any_fdiv, FDIV_H, Ext>;
282}
283
284let Predicates = [HasStdExtZfh] in {
285def : Pat<(f16 (any_fsqrt FPR16:$rs1)), (FSQRT_H FPR16:$rs1, FRM_DYN)>;
286
287def : Pat<(f16 (fneg FPR16:$rs1)), (FSGNJN_H $rs1, $rs1)>;
288def : Pat<(f16 (fabs FPR16:$rs1)), (FSGNJX_H $rs1, $rs1)>;
289
290def : Pat<(riscv_fclass (f16 FPR16:$rs1)), (FCLASS_H $rs1)>;
291
292def : PatFprFpr<fcopysign, FSGNJ_H, FPR16, f16>;
293def : PatFprFpr<riscv_fsgnjx, FSGNJX_H, FPR16, f16>;
294def : Pat<(f16 (fcopysign FPR16:$rs1, (f16 (fneg FPR16:$rs2)))),
295          (FSGNJN_H FPR16:$rs1, FPR16:$rs2)>;
296def : Pat<(f16 (fcopysign FPR16:$rs1, FPR32:$rs2)),
297          (FSGNJ_H $rs1, (f16 (FCVT_H_S $rs2, FRM_DYN)))>;
298
299// fmadd: rs1 * rs2 + rs3
300def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3)),
301          (FMADD_H $rs1, $rs2, $rs3, FRM_DYN)>;
302
303// fmsub: rs1 * rs2 - rs3
304def : Pat<(f16 (any_fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3))),
305          (FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
306
307// fnmsub: -rs1 * rs2 + rs3
308def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3)),
309          (FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
310
311// fnmadd: -rs1 * rs2 - rs3
312def : Pat<(f16 (any_fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3))),
313          (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
314
315// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
316def : Pat<(f16 (fneg (any_fma_nsz FPR16:$rs1, FPR16:$rs2, FPR16:$rs3))),
317          (FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, FRM_DYN)>;
318} // Predicates = [HasStdExtZfh]
319
320let Predicates = [HasStdExtZhinx] in {
321
322/// Float conversion operations
323
324// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
325// are defined later.
326
327/// Float arithmetic operations
328
329def : Pat<(any_fsqrt FPR16INX:$rs1), (FSQRT_H_INX FPR16INX:$rs1, FRM_DYN)>;
330
331def : Pat<(fneg FPR16INX:$rs1), (FSGNJN_H_INX $rs1, $rs1)>;
332def : Pat<(fabs FPR16INX:$rs1), (FSGNJX_H_INX $rs1, $rs1)>;
333
334def : Pat<(riscv_fclass FPR16INX:$rs1), (FCLASS_H_INX $rs1)>;
335
336def : PatFprFpr<fcopysign, FSGNJ_H_INX, FPR16INX, f16>;
337def : PatFprFpr<riscv_fsgnjx, FSGNJX_H_INX, FPR16INX, f16>;
338def : Pat<(fcopysign FPR16INX:$rs1, (fneg FPR16INX:$rs2)),
339          (FSGNJN_H_INX FPR16INX:$rs1, FPR16INX:$rs2)>;
340def : Pat<(fcopysign FPR16INX:$rs1, FPR32INX:$rs2),
341          (FSGNJ_H_INX $rs1, (FCVT_H_S_INX $rs2, FRM_DYN))>;
342
343// fmadd: rs1 * rs2 + rs3
344def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3),
345          (FMADD_H_INX $rs1, $rs2, $rs3, FRM_DYN)>;
346
347// fmsub: rs1 * rs2 - rs3
348def : Pat<(any_fma FPR16INX:$rs1, FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
349          (FMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
350
351// fnmsub: -rs1 * rs2 + rs3
352def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, FPR16INX:$rs3),
353          (FNMSUB_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
354
355// fnmadd: -rs1 * rs2 - rs3
356def : Pat<(any_fma (fneg FPR16INX:$rs1), FPR16INX:$rs2, (fneg FPR16INX:$rs3)),
357          (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
358
359// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
360def : Pat<(fneg (any_fma_nsz FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3)),
361          (FNMADD_H_INX FPR16INX:$rs1, FPR16INX:$rs2, FPR16INX:$rs3, FRM_DYN)>;
362} // Predicates = [HasStdExtZhinx]
363
364// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
365// LLVM's fminnum and fmaxnum
366// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
367foreach Ext = ZfhExts in {
368  defm : PatFprFpr_m<fminnum, FMIN_H, Ext>;
369  defm : PatFprFpr_m<fmaxnum, FMAX_H, Ext>;
370  defm : PatFprFpr_m<fminimumnum, FMIN_H, Ext>;
371  defm : PatFprFpr_m<fmaximumnum, FMAX_H, Ext>;
372  defm : PatFprFpr_m<riscv_fmin, FMIN_H, Ext>;
373  defm : PatFprFpr_m<riscv_fmax, FMAX_H, Ext>;
374  def : Pat<(f16 (fcanonicalize FPR16:$rs1)), (FMIN_H $rs1, $rs1)>;
375}
376
377/// Setcc
378// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
379// strict versions of those.
380
381// Match non-signaling FEQ_D
382foreach Ext = ZfhExts in {
383  defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_H,            Ext>;
384  defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_H,            Ext>;
385  defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_H, Ext>;
386  defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_H, Ext>;
387  defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_H, Ext>;
388  defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_H, Ext>;
389}
390
391let Predicates = [HasStdExtZfh] in {
392// Match signaling FEQ_H
393def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETEQ)),
394          (AND (XLenVT (FLE_H $rs1, $rs2)),
395               (XLenVT (FLE_H $rs2, $rs1)))>;
396def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), FPR16:$rs2, SETOEQ)),
397          (AND (XLenVT (FLE_H $rs1, $rs2)),
398               (XLenVT (FLE_H $rs2, $rs1)))>;
399// If both operands are the same, use a single FLE.
400def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETEQ)),
401          (FLE_H $rs1, $rs1)>;
402def : Pat<(XLenVT (strict_fsetccs (f16 FPR16:$rs1), (f16 FPR16:$rs1), SETOEQ)),
403          (FLE_H $rs1, $rs1)>;
404} // Predicates = [HasStdExtZfh]
405
406let Predicates = [HasStdExtZhinx] in {
407// Match signaling FEQ_H
408def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETEQ)),
409          (AND (XLenVT (FLE_H_INX $rs1, $rs2)),
410               (XLenVT (FLE_H_INX $rs2, $rs1)))>;
411def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs2, SETOEQ)),
412          (AND (XLenVT (FLE_H_INX $rs1, $rs2)),
413               (XLenVT (FLE_H_INX $rs2, $rs1)))>;
414// If both operands are the same, use a single FLE.
415def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETEQ)),
416          (FLE_H_INX $rs1, $rs1)>;
417def : Pat<(XLenVT (strict_fsetccs FPR16INX:$rs1, FPR16INX:$rs1, SETOEQ)),
418          (FLE_H_INX $rs1, $rs1)>;
419} // Predicates = [HasStdExtZhinx]
420
421foreach Ext = ZfhExts in {
422  defm : PatSetCC_m<any_fsetccs, SETLT,  FLT_H, Ext>;
423  defm : PatSetCC_m<any_fsetccs, SETOLT, FLT_H, Ext>;
424  defm : PatSetCC_m<any_fsetccs, SETLE,  FLE_H, Ext>;
425  defm : PatSetCC_m<any_fsetccs, SETOLE, FLE_H, Ext>;
426}
427
428let Predicates = [HasStdExtZfh] in {
429def PseudoFROUND_H : PseudoFROUND<FPR16, f16>;
430} // Predicates = [HasStdExtZfh]
431
432let Predicates = [HasStdExtZhinx] in {
433def PseudoFROUND_H_INX : PseudoFROUND<FPR16INX, f16>;
434} // Predicates = [HasStdExtZhinx]
435
436let Predicates = [HasStdExtZfhmin] in {
437defm Select_FPR16 : SelectCC_GPR_rrirr<FPR16, f16>;
438
439/// Loads
440def : LdPat<load, FLH, f16>;
441
442/// Stores
443def : StPat<store, FSH, FPR16, f16>;
444} // Predicates = [HasStdExtZfhmin]
445
446let Predicates = [HasStdExtZhinxmin] in {
447defm Select_FPR16INX : SelectCC_GPR_rrirr<FPR16INX, f16>;
448
449/// Loads
450def : LdPat<load, LH_INX, f16>;
451
452/// Stores
453def : StPat<store, SH_INX, GPRF16, f16>;
454} // Predicates = [HasStdExtZhinxmin]
455
456let Predicates = [HasStdExtZfhmin] in {
457/// Float conversion operations
458
459// f32 -> f16, f16 -> f32
460def : Pat<(f16 (any_fpround FPR32:$rs1)), (FCVT_H_S FPR32:$rs1, FRM_DYN)>;
461def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_S_H FPR16:$rs1, FRM_RNE)>;
462
463// Moves (no conversion)
464def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (FMV_H_X GPR:$src)>;
465def : Pat<(riscv_fmv_x_anyexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
466def : Pat<(riscv_fmv_x_signexth (f16 FPR16:$src)), (FMV_X_H FPR16:$src)>;
467
468def : Pat<(fcopysign FPR32:$rs1, (f16 FPR16:$rs2)), (FSGNJ_S $rs1, (FCVT_S_H $rs2, FRM_RNE))>;
469} // Predicates = [HasStdExtZfhmin]
470
471let Predicates = [HasStdExtZhinxmin] in {
472/// Float conversion operations
473
474// f32 -> f16, f16 -> f32
475def : Pat<(any_fpround FPR32INX:$rs1), (FCVT_H_S_INX FPR32INX:$rs1, FRM_DYN)>;
476def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_S_H_INX FPR16INX:$rs1, FRM_RNE)>;
477
478// Moves (no conversion)
479def : Pat<(f16 (riscv_fmv_h_x GPR:$src)), (EXTRACT_SUBREG GPR:$src, sub_16)>;
480def : Pat<(riscv_fmv_x_anyexth FPR16INX:$src), (INSERT_SUBREG (XLenVT (IMPLICIT_DEF)), FPR16INX:$src, sub_16)>;
481
482def : Pat<(fcopysign FPR32INX:$rs1, FPR16INX:$rs2), (FSGNJ_S_INX $rs1, (FCVT_S_H_INX $rs2, FRM_RNE))>;
483} // Predicates = [HasStdExtZhinxmin]
484
485let Predicates = [HasStdExtZfh, IsRV32] in {
486// half->[u]int. Round-to-zero must be used.
487def : Pat<(i32 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, 0b001)>;
488def : Pat<(i32 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_WU_H $rs1, 0b001)>;
489
490// Saturating half->[u]int32.
491def : Pat<(i32 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_W_H $rs1, timm:$frm)>;
492def : Pat<(i32 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_WU_H $rs1, timm:$frm)>;
493
494// half->int32 with current rounding mode.
495def : Pat<(i32 (any_lrint (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_DYN)>;
496
497// half->int32 rounded to nearest with ties rounded away from zero.
498def : Pat<(i32 (any_lround (f16 FPR16:$rs1))), (FCVT_W_H $rs1, FRM_RMM)>;
499
500// [u]int->half. Match GCC and default to using dynamic rounding mode.
501def : Pat<(f16 (any_sint_to_fp (i32 GPR:$rs1))), (FCVT_H_W $rs1, FRM_DYN)>;
502def : Pat<(f16 (any_uint_to_fp (i32 GPR:$rs1))), (FCVT_H_WU $rs1, FRM_DYN)>;
503} // Predicates = [HasStdExtZfh]
504
505let Predicates = [HasStdExtZhinx, IsRV32] in {
506// half->[u]int. Round-to-zero must be used.
507def : Pat<(i32 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, 0b001)>;
508def : Pat<(i32 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_WU_H_INX $rs1, 0b001)>;
509
510// Saturating float->[u]int32.
511def : Pat<(i32 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_W_H_INX $rs1, timm:$frm)>;
512def : Pat<(i32 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_WU_H_INX $rs1, timm:$frm)>;
513
514// half->int32 with current rounding mode.
515def : Pat<(i32 (any_lrint FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_DYN)>;
516
517// half->int32 rounded to nearest with ties rounded away from zero.
518def : Pat<(i32 (any_lround FPR16INX:$rs1)), (FCVT_W_H_INX $rs1, FRM_RMM)>;
519
520// [u]int->half. Match GCC and default to using dynamic rounding mode.
521def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W_INX $rs1, FRM_DYN)>;
522def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
523} // Predicates = [HasStdExtZhinx, IsRV32]
524
525let Predicates = [HasStdExtZfh, IsRV64] in {
526// Use target specific isd nodes to help us remember the result is sign
527// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
528// duplicated if it has another user that didn't need the sign_extend.
529def : Pat<(riscv_any_fcvt_w_rv64 (f16 FPR16:$rs1), timm:$frm),  (FCVT_W_H $rs1, timm:$frm)>;
530def : Pat<(riscv_any_fcvt_wu_rv64 (f16 FPR16:$rs1), timm:$frm), (FCVT_WU_H $rs1, timm:$frm)>;
531
532// half->[u]int64. Round-to-zero must be used.
533def : Pat<(i64 (any_fp_to_sint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, 0b001)>;
534def : Pat<(i64 (any_fp_to_uint (f16 FPR16:$rs1))), (FCVT_LU_H $rs1, 0b001)>;
535
536// Saturating half->[u]int64.
537def : Pat<(i64 (riscv_fcvt_x (f16 FPR16:$rs1), timm:$frm)), (FCVT_L_H $rs1, timm:$frm)>;
538def : Pat<(i64 (riscv_fcvt_xu (f16 FPR16:$rs1), timm:$frm)), (FCVT_LU_H $rs1, timm:$frm)>;
539
540// half->int64 with current rounding mode.
541def : Pat<(i64 (any_lrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
542def : Pat<(i64 (any_llrint (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_DYN)>;
543
544// half->int64 rounded to nearest with ties rounded away from zero.
545def : Pat<(i64 (any_lround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
546def : Pat<(i64 (any_llround (f16 FPR16:$rs1))), (FCVT_L_H $rs1, FRM_RMM)>;
547
548// [u]int->fp. Match GCC and default to using dynamic rounding mode.
549def : Pat<(f16 (any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1))))), (FCVT_H_W $rs1, FRM_DYN)>;
550def : Pat<(f16 (any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1))))), (FCVT_H_WU $rs1, FRM_DYN)>;
551def : Pat<(f16 (any_sint_to_fp (i64 GPR:$rs1))), (FCVT_H_L $rs1, FRM_DYN)>;
552def : Pat<(f16 (any_uint_to_fp (i64 GPR:$rs1))), (FCVT_H_LU $rs1, FRM_DYN)>;
553} // Predicates = [HasStdExtZfh, IsRV64]
554
555let Predicates = [HasStdExtZhinx, IsRV64] in {
556// Use target specific isd nodes to help us remember the result is sign
557// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
558// duplicated if it has another user that didn't need the sign_extend.
559def : Pat<(riscv_any_fcvt_w_rv64 FPR16INX:$rs1, timm:$frm),  (FCVT_W_H_INX $rs1, timm:$frm)>;
560def : Pat<(riscv_any_fcvt_wu_rv64 FPR16INX:$rs1, timm:$frm), (FCVT_WU_H_INX $rs1, timm:$frm)>;
561
562// half->[u]int64. Round-to-zero must be used.
563def : Pat<(i64 (any_fp_to_sint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, 0b001)>;
564def : Pat<(i64 (any_fp_to_uint FPR16INX:$rs1)), (FCVT_LU_H_INX $rs1, 0b001)>;
565
566// Saturating float->[u]int64.
567def : Pat<(i64 (riscv_fcvt_x FPR16INX:$rs1, timm:$frm)), (FCVT_L_H_INX $rs1, timm:$frm)>;
568def : Pat<(i64 (riscv_fcvt_xu FPR16INX:$rs1, timm:$frm)), (FCVT_LU_H_INX $rs1, timm:$frm)>;
569
570// half->int64 with current rounding mode.
571def : Pat<(i64 (any_lrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
572def : Pat<(i64 (any_llrint FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_DYN)>;
573
574// half->int64 rounded to nearest with ties rounded away from zero.
575def : Pat<(i64 (any_lround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
576def : Pat<(i64 (any_llround FPR16INX:$rs1)), (FCVT_L_H_INX $rs1, FRM_RMM)>;
577
578// [u]int->fp. Match GCC and default to using dynamic rounding mode.
579def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W_INX $rs1, FRM_DYN)>;
580def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU_INX $rs1, FRM_DYN)>;
581def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L_INX $rs1, FRM_DYN)>;
582def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU_INX $rs1, FRM_DYN)>;
583} // Predicates = [HasStdExtZhinx, IsRV64]
584
585let Predicates = [HasStdExtZfhmin, HasStdExtD] in {
586/// Float conversion operations
587// f64 -> f16, f16 -> f64
588def : Pat<(f16 (any_fpround FPR64:$rs1)), (FCVT_H_D FPR64:$rs1, FRM_DYN)>;
589def : Pat<(any_fpextend (f16 FPR16:$rs1)), (FCVT_D_H FPR16:$rs1, FRM_RNE)>;
590
591/// Float arithmetic operations
592def : Pat<(f16 (fcopysign FPR16:$rs1, FPR64:$rs2)),
593          (FSGNJ_H $rs1, (f16 (FCVT_H_D $rs2, FRM_DYN)))>;
594def : Pat<(fcopysign FPR64:$rs1, (f16 FPR16:$rs2)), (FSGNJ_D $rs1, (FCVT_D_H $rs2, FRM_RNE))>;
595} // Predicates = [HasStdExtZfhmin, HasStdExtD]
596
597let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32] in {
598/// Float conversion operations
599// f64 -> f16, f16 -> f64
600def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_H_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
601def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_IN32X FPR16INX:$rs1, FRM_RNE)>;
602
603/// Float arithmetic operations
604def : Pat<(fcopysign FPR16INX:$rs1, FPR64IN32X:$rs2),
605          (FSGNJ_H_INX $rs1, (FCVT_H_D_IN32X $rs2, 0b111))>;
606def : Pat<(fcopysign FPR64IN32X:$rs1, FPR16INX:$rs2), (FSGNJ_D_IN32X $rs1, (FCVT_D_H_IN32X $rs2, FRM_RNE))>;
607} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV32]
608
609let Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64] in {
610/// Float conversion operations
611// f64 -> f16, f16 -> f64
612def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_H_D_INX FPR64INX:$rs1, FRM_DYN)>;
613def : Pat<(any_fpextend FPR16INX:$rs1), (FCVT_D_H_INX FPR16INX:$rs1, FRM_RNE)>;
614
615/// Float arithmetic operations
616def : Pat<(fcopysign FPR16INX:$rs1, FPR64INX:$rs2),
617          (FSGNJ_H_INX $rs1, (FCVT_H_D_INX $rs2, 0b111))>;
618def : Pat<(fcopysign FPR64INX:$rs1, FPR16INX:$rs2), (FSGNJ_D_INX $rs1, (f64 (FCVT_D_H_INX $rs2, FRM_RNE)))>;
619} // Predicates = [HasStdExtZhinxmin, HasStdExtZdinx, IsRV64]
620