xref: /llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoV.td (revision 074a25fb2678dacb4f3c6a24d5f907788c858e7a)
1//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// This file describes the RISC-V instructions from the standard 'V' Vector
10/// extension, version 1.0.
11///
12//===----------------------------------------------------------------------===//
13
14include "RISCVInstrFormatsV.td"
15
16//===----------------------------------------------------------------------===//
17// Operand and SDNode transformation definitions.
18//===----------------------------------------------------------------------===//
19
20class VTypeIAsmOperand<int VTypeINum> : AsmOperandClass {
21  let Name = "VTypeI" # VTypeINum;
22  let ParserMethod = "parseVTypeI";
23  let DiagnosticType = "InvalidVTypeI";
24  let RenderMethod = "addVTypeIOperands";
25}
26
27class VTypeIOp<int VTypeINum> : RISCVOp {
28  let ParserMatchClass = VTypeIAsmOperand<VTypeINum>;
29  let PrintMethod = "printVTypeI";
30  let DecoderMethod = "decodeUImmOperand<"#VTypeINum#">";
31  let OperandType = "OPERAND_VTYPEI" # VTypeINum;
32  let MCOperandPredicate = [{
33    int64_t Imm;
34    if (MCOp.evaluateAsConstantImm(Imm))
35      return isUInt<VTypeINum>(Imm);
36    return MCOp.isBareSymbolRef();
37  }];
38}
39
40def VTypeIOp10 : VTypeIOp<10>;
41def VTypeIOp11 : VTypeIOp<11>;
42
43def VMaskAsmOperand : AsmOperandClass {
44  let Name = "RVVMaskRegOpOperand";
45  let RenderMethod = "addRegOperands";
46  let PredicateMethod = "isV0Reg";
47  let ParserMethod = "parseMaskReg";
48  let IsOptional = 1;
49  let DefaultMethod = "defaultMaskRegOp";
50  let DiagnosticType = "InvalidVMaskRegister";
51}
52
53def VMaskCarryInAsmOperand : AsmOperandClass {
54  let Name = "RVVMaskCarryInRegOpOperand";
55  let RenderMethod = "addRegOperands";
56  let PredicateMethod = "isV0Reg";
57  let DiagnosticType = "InvalidVMaskCarryInRegister";
58}
59
60def VMaskOp : RegisterOperand<VMV0> {
61  let ParserMatchClass = VMaskAsmOperand;
62  let PrintMethod = "printVMaskReg";
63  let EncoderMethod = "getVMaskReg";
64  let DecoderMethod = "decodeVMaskReg";
65}
66
67def VMaskCarryInOp : RegisterOperand<VMV0> {
68  let ParserMatchClass = VMaskCarryInAsmOperand;
69  let EncoderMethod = "getVMaskReg";
70}
71
72def simm5 : RISCVSImmLeafOp<5> {
73  let MCOperandPredicate = [{
74    int64_t Imm;
75    if (MCOp.evaluateAsConstantImm(Imm))
76      return isInt<5>(Imm);
77    return MCOp.isBareSymbolRef();
78  }];
79}
80
81def simm5_plus1 : RISCVOp, ImmLeaf<XLenVT,
82  [{return (isInt<5>(Imm) && Imm != -16) || Imm == 16;}]> {
83  let ParserMatchClass = SImmAsmOperand<5, "Plus1">;
84  let OperandType = "OPERAND_SIMM5_PLUS1";
85  let MCOperandPredicate = [{
86    int64_t Imm;
87    if (MCOp.evaluateAsConstantImm(Imm))
88      return (isInt<5>(Imm) && Imm != -16) || Imm == 16;
89    return MCOp.isBareSymbolRef();
90  }];
91}
92
93def simm5_plus1_nonzero : ImmLeaf<XLenVT,
94  [{return Imm != 0 && ((isInt<5>(Imm) && Imm != -16) || Imm == 16);}]>;
95
96//===----------------------------------------------------------------------===//
97// Scheduling definitions.
98//===----------------------------------------------------------------------===//
99
100// Common class of scheduling definitions.
101// `ReadVPassthru` will be prepended to reads if instruction is masked.
102// `ReadVMask` will be appended to reads if instruction is masked.
103// Operands:
104//   `writes`       SchedWrites that are listed for each explicit def operand
105//                  in order.
106//   `reads`        SchedReads that are listed for each explicit use operand.
107//   `forceMasked`  Forced to be masked (e.g. Add-with-Carry Instructions).
108//   `forcePassthruRead` Force to have read for passthru operand.
109class SchedCommon<list<SchedWrite> writes, list<SchedRead> reads,
110                  string mx = "WorstCase", int sew = 0, bit forceMasked = 0,
111                  bit forcePassthruRead = 0> : Sched<[]> {
112  defvar isMasked = !ne(!find(NAME, "_MASK"), -1);
113  defvar isTied = !ne(!find(NAME, "_TIED"), -1);
114  defvar isMaskedOrForceMasked = !or(forceMasked, isMasked);
115  defvar isTiedMasked = !and(isMaskedOrForceMasked, isTied);
116  defvar passthruRead = !if(!or(!eq(mx, "WorstCase"), !eq(sew, 0)),
117                            !cast<SchedRead>("ReadVPassthru_" # mx),
118                            !cast<SchedRead>("ReadVPassthru_" # mx # "_E" #sew));
119  // We don't need passthru operand if it's already _TIED without mask.
120  defvar needsForcePassthruRead = !and(forcePassthruRead, !not(isTied));
121  defvar needsPassthruRead = !or(isMaskedOrForceMasked, needsForcePassthruRead);
122  // If this is a _TIED + masked operation, $rs2 (i.e. the first operand) is
123  // merged with the mask.
124  // NOTE: the following if statement is written in such a weird way because
125  // should we want to write something like
126  // `!if(!and(!not(!empty(reads), isTiedMasked), !tail(reads), reads)`
127  // since `!if` doesn't have a proper short-circuit behavior, if the
128  // condition of this `!if` cannot be resolved right away, `!tail(reads)` will
129  // be immediately evaluated anyway even when `reads` is empty, which leads to
130  // an assertion failure.
131  defvar readsWithTiedMask =
132      !if(isTiedMasked, !if(!not(!empty(reads)), !tail(reads), reads), reads);
133  defvar readsWithMask =
134      !if(isMaskedOrForceMasked, !listconcat(readsWithTiedMask, [ReadVMask]), reads);
135  defvar allReads =
136      !if(needsPassthruRead, !listconcat([passthruRead], readsWithMask), reads);
137  let SchedRW = !listconcat(writes, allReads);
138}
139
140// Common class of scheduling definitions for n-ary instructions.
141// The scheudling resources are relevant to LMUL and may be relevant to SEW.
142class SchedNary<string write, list<string> reads, string mx, int sew = 0,
143                bit forceMasked = 0, bit forcePassthruRead = 0>
144    : SchedCommon<[!cast<SchedWrite>(
145                      !if(sew,
146                          write # "_" # mx # "_E" # sew,
147                          write # "_" # mx))],
148                  !foreach(read, reads,
149                           !cast<SchedRead>(!if(sew, read #"_" #mx #"_E" #sew,
150                                                 read #"_" #mx))),
151                  mx, sew, forceMasked, forcePassthruRead>;
152
153// Classes with postfix "MC" are only used in MC layer.
154// For these classes, we assume that they are with the worst case costs and
155// `ReadVMask` is always needed (with some exceptions).
156
157// For instructions with no operand.
158class SchedNullary<string write, string mx, int sew = 0, bit forceMasked = 0,
159                   bit forcePassthruRead = 0>:
160  SchedNary<write, [], mx, sew, forceMasked, forcePassthruRead>;
161class SchedNullaryMC<string write, bit forceMasked = 1>:
162  SchedNullary<write, "WorstCase", forceMasked=forceMasked>;
163
164// For instructions with one operand.
165class SchedUnary<string write, string read0, string mx, int sew = 0,
166                 bit forceMasked = 0, bit forcePassthruRead = 0>:
167  SchedNary<write, [read0], mx, sew, forceMasked, forcePassthruRead>;
168class SchedUnaryMC<string write, string read0, bit forceMasked = 1>:
169  SchedUnary<write, read0, "WorstCase", forceMasked=forceMasked>;
170
171// For instructions with two operands.
172class SchedBinary<string write, string read0, string read1, string mx,
173                  int sew = 0, bit forceMasked = 0, bit forcePassthruRead = 0>
174    : SchedNary<write, [read0, read1], mx, sew, forceMasked, forcePassthruRead>;
175class SchedBinaryMC<string write, string read0, string read1,
176                    bit forceMasked = 1>:
177  SchedBinary<write, read0, read1, "WorstCase", forceMasked=forceMasked>;
178
179// For instructions with three operands.
180class SchedTernary<string write, string read0, string read1, string read2,
181                   string mx, int sew = 0, bit forceMasked = 0>
182    : SchedNary<write, [read0, read1, read2], mx, sew, forceMasked>;
183class SchedTernaryMC<string write, string read0, string read1, string read2,
184                     int sew = 0, bit forceMasked = 1>:
185  SchedNary<write, [read0, read1, read2], "WorstCase", sew, forceMasked>;
186
187// For reduction instructions.
188class SchedReduction<string write, string read, string mx, int sew,
189                     bit forcePassthruRead = 0>
190    : SchedCommon<[!cast<SchedWrite>(write #"_" #mx #"_E" #sew)],
191                  !listsplat(!cast<SchedRead>(read), 3), mx, sew, forcePassthruRead>;
192class SchedReductionMC<string write, string readV, string readV0>:
193  SchedCommon<[!cast<SchedWrite>(write # "_WorstCase")],
194              [!cast<SchedRead>(readV), !cast<SchedRead>(readV0)],
195              forceMasked=1>;
196
197// Whole Vector Register Move
198class VMVRSched<int n> : SchedCommon<
199  [!cast<SchedWrite>("WriteVMov" # n # "V")],
200  [!cast<SchedRead>("ReadVMov" # n # "V")]
201>;
202
203// Vector Unit-Stride Loads and Stores
204class VLESched<string lmul, bit forceMasked = 0> : SchedCommon<
205  [!cast<SchedWrite>("WriteVLDE_" # lmul)],
206  [ReadVLDX], mx=lmul, forceMasked=forceMasked
207>;
208class VLESchedMC : VLESched<"WorstCase", forceMasked=1>;
209
210class VSESched<string lmul, bit forceMasked = 0> : SchedCommon<
211  [!cast<SchedWrite>("WriteVSTE_" # lmul)],
212  [!cast<SchedRead>("ReadVSTEV_" # lmul), ReadVSTX], mx=lmul,
213  forceMasked=forceMasked
214>;
215class VSESchedMC : VSESched<"WorstCase", forceMasked=1>;
216
217// Vector Strided Loads and Stores
218class VLSSched<int eew, string emul, bit forceMasked = 0> : SchedCommon<
219  [!cast<SchedWrite>("WriteVLDS" # eew # "_" # emul)],
220  [ReadVLDX, ReadVLDSX], emul, eew, forceMasked
221>;
222class VLSSchedMC<int eew> : VLSSched<eew, "WorstCase", forceMasked=1>;
223
224class VSSSched<int eew, string emul, bit forceMasked = 0> : SchedCommon<
225  [!cast<SchedWrite>("WriteVSTS" # eew # "_" # emul)],
226  [!cast<SchedRead>("ReadVSTS" # eew # "V_" # emul), ReadVSTX, ReadVSTSX],
227  emul, eew, forceMasked
228>;
229class VSSSchedMC<int eew> : VSSSched<eew, "WorstCase", forceMasked=1>;
230
231// Vector Indexed Loads and Stores
232class VLXSched<int dataEEW, bit isOrdered, string dataEMUL, string idxEMUL,
233               bit forceMasked = 0> : SchedCommon<
234  [!cast<SchedWrite>("WriteVLD" # !if(isOrdered, "O", "U") # "X" # dataEEW # "_" # dataEMUL)],
235  [ReadVLDX, !cast<SchedRead>("ReadVLD" # !if(isOrdered, "O", "U") # "XV_" # idxEMUL)],
236  dataEMUL, dataEEW, forceMasked
237>;
238class VLXSchedMC<int dataEEW, bit isOrdered>:
239  VLXSched<dataEEW, isOrdered, "WorstCase", "WorstCase", forceMasked=1>;
240
241class VSXSched<int dataEEW, bit isOrdered, string dataEMUL, string idxEMUL,
242               bit forceMasked = 0> : SchedCommon<
243  [!cast<SchedWrite>("WriteVST" # !if(isOrdered, "O", "U") # "X" # dataEEW # "_" # dataEMUL)],
244  [!cast<SchedRead>("ReadVST" # !if(isOrdered, "O", "U") #"X" # dataEEW # "_" # dataEMUL),
245   ReadVSTX, !cast<SchedRead>("ReadVST" # !if(isOrdered, "O", "U") # "XV_" # idxEMUL)],
246  dataEMUL, dataEEW, forceMasked
247>;
248class VSXSchedMC<int dataEEW, bit isOrdered>:
249  VSXSched<dataEEW, isOrdered, "WorstCase", "WorstCase", forceMasked=1>;
250
251// Unit-stride Fault-Only-First Loads
252class VLFSched<string lmul, bit forceMasked = 0> : SchedCommon<
253  [!cast<SchedWrite>("WriteVLDFF_" # lmul)],
254  [ReadVLDX], mx=lmul, forceMasked=forceMasked
255>;
256class VLFSchedMC: VLFSched<"WorstCase", forceMasked=1>;
257
258// Unit-Stride Segment Loads and Stores
259class VLSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
260  [!cast<SchedWrite>("WriteVLSEG" #nf #"e" #eew #"_" #emul)],
261  [ReadVLDX], emul, eew, forceMasked
262>;
263class VLSEGSchedMC<int nf, int eew> : VLSEGSched<nf, eew, "WorstCase",
264                                                 forceMasked=1>;
265
266class VSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
267  [!cast<SchedWrite>("WriteVSSEG" # nf # "e" # eew # "_" # emul)],
268  [!cast<SchedRead>("ReadVSTEV_" #emul), ReadVSTX], emul, eew, forceMasked
269>;
270class VSSEGSchedMC<int nf, int eew> : VSSEGSched<nf, eew, "WorstCase",
271                                                 forceMasked=1>;
272
273class VLSEGFFSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
274  [!cast<SchedWrite>("WriteVLSEGFF" # nf # "e" # eew # "_" # emul)],
275  [ReadVLDX], emul, eew, forceMasked
276>;
277class VLSEGFFSchedMC<int nf, int eew> : VLSEGFFSched<nf, eew, "WorstCase",
278                                                     forceMasked=1>;
279
280// Strided Segment Loads and Stores
281class VLSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
282  [!cast<SchedWrite>("WriteVLSSEG" #nf #"e" #eew #"_" #emul)],
283  [ReadVLDX, ReadVLDSX], emul, eew, forceMasked
284>;
285class VLSSEGSchedMC<int nf, int eew> : VLSSEGSched<nf, eew, "WorstCase",
286                                                   forceMasked=1>;
287
288class VSSSEGSched<int nf, int eew, string emul, bit forceMasked = 0> : SchedCommon<
289  [!cast<SchedWrite>("WriteVSSSEG" #nf #"e" #eew #"_" #emul)],
290  [!cast<SchedRead>("ReadVSTS" #eew #"V_" #emul),
291   ReadVSTX, ReadVSTSX], emul, eew, forceMasked
292>;
293class VSSSEGSchedMC<int nf, int eew> : VSSSEGSched<nf, eew, "WorstCase",
294                                                   forceMasked=1>;
295
296// Indexed Segment Loads and Stores
297class VLXSEGSched<int nf, int eew, bit isOrdered, string emul,
298                  bit forceMasked = 0> : SchedCommon<
299  [!cast<SchedWrite>("WriteVL" #!if(isOrdered, "O", "U") #"XSEG" #nf #"e" #eew #"_" #emul)],
300  [ReadVLDX, !cast<SchedRead>("ReadVLD" #!if(isOrdered, "O", "U") #"XV_" #emul)],
301  emul, eew, forceMasked
302>;
303class VLXSEGSchedMC<int nf, int eew, bit isOrdered>:
304  VLXSEGSched<nf, eew, isOrdered, "WorstCase", forceMasked=1>;
305
306// Passes sew=0 instead of eew=0 since this pseudo does not follow MX_E form.
307class VSXSEGSched<int nf, int eew, bit isOrdered, string emul,
308                  bit forceMasked = 0> : SchedCommon<
309  [!cast<SchedWrite>("WriteVS" #!if(isOrdered, "O", "U") #"XSEG" #nf #"e" #eew #"_" #emul)],
310  [!cast<SchedRead>("ReadVST" #!if(isOrdered, "O", "U") #"X" #eew #"_" #emul),
311   ReadVSTX, !cast<SchedRead>("ReadVST" #!if(isOrdered, "O", "U") #"XV_" #emul)],
312  emul, sew=0, forceMasked=forceMasked
313>;
314class VSXSEGSchedMC<int nf, int eew, bit isOrdered>:
315  VSXSEGSched<nf, eew, isOrdered, "WorstCase", forceMasked=1>;
316
317//===----------------------------------------------------------------------===//
318// Instruction class templates
319//===----------------------------------------------------------------------===//
320
321let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
322// unit-stride load vd, (rs1), vm
323class VUnitStrideLoad<RISCVWidth width, string opcodestr>
324    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
325                (outs VR:$vd),
326                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
327
328let vm = 1, RVVConstraint = NoConstraint in {
329// unit-stride whole register load vl<nf>r.v vd, (rs1)
330class VWholeLoad<bits<3> nf, RISCVWidth width, string opcodestr, RegisterClass VRC>
331    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideWholeReg,
332                width.Value{2-0}, (outs VRC:$vd), (ins GPRMemZeroOffset:$rs1),
333                opcodestr, "$vd, $rs1"> {
334  let Uses = [];
335}
336
337// unit-stride mask load vd, (rs1)
338class VUnitStrideLoadMask<string opcodestr>
339    : RVInstVLU<0b000, LSWidth8.Value{3}, LUMOPUnitStrideMask, LSWidth8.Value{2-0},
340                (outs VR:$vd),
341                (ins GPRMemZeroOffset:$rs1), opcodestr, "$vd, $rs1">;
342} // vm = 1, RVVConstraint = NoConstraint
343
344// unit-stride fault-only-first load vd, (rs1), vm
345class VUnitStrideLoadFF<RISCVWidth width, string opcodestr>
346    : RVInstVLU<0b000, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
347                (outs VR:$vd),
348                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
349
350// strided load vd, (rs1), rs2, vm
351class VStridedLoad<RISCVWidth width, string opcodestr>
352    : RVInstVLS<0b000, width.Value{3}, width.Value{2-0},
353                (outs VR:$vd),
354                (ins GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
355                "$vd, $rs1, $rs2$vm">;
356
357// indexed load vd, (rs1), vs2, vm
358class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
359    : RVInstVLX<0b000, width.Value{3}, mop, width.Value{2-0},
360                (outs VR:$vd),
361                (ins GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
362                "$vd, $rs1, $vs2$vm">;
363
364// unit-stride segment load vd, (rs1), vm
365class VUnitStrideSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
366    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStride, width.Value{2-0},
367                (outs VR:$vd),
368                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
369
370// segment fault-only-first load vd, (rs1), vm
371class VUnitStrideSegmentLoadFF<bits<3> nf, RISCVWidth width, string opcodestr>
372    : RVInstVLU<nf, width.Value{3}, LUMOPUnitStrideFF, width.Value{2-0},
373                (outs VR:$vd),
374                (ins GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr, "$vd, ${rs1}$vm">;
375
376// strided segment load vd, (rs1), rs2, vm
377class VStridedSegmentLoad<bits<3> nf, RISCVWidth width, string opcodestr>
378    : RVInstVLS<nf, width.Value{3}, width.Value{2-0},
379                (outs VR:$vd),
380                (ins GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
381                "$vd, $rs1, $rs2$vm">;
382
383// indexed segment load vd, (rs1), vs2, vm
384class VIndexedSegmentLoad<bits<3> nf, RISCVMOP mop, RISCVWidth width,
385                          string opcodestr>
386    : RVInstVLX<nf, width.Value{3}, mop, width.Value{2-0},
387                (outs VR:$vd),
388                (ins GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm), opcodestr,
389                "$vd, $rs1, $vs2$vm">;
390} // hasSideEffects = 0, mayLoad = 1, mayStore = 0
391
392let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
393// unit-stride store vd, vs3, (rs1), vm
394class VUnitStrideStore<RISCVWidth width, string opcodestr>
395    : RVInstVSU<0b000, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
396                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr,
397                "$vs3, ${rs1}$vm">;
398
399let vm = 1 in {
400// vs<nf>r.v vd, (rs1)
401class VWholeStore<bits<3> nf, string opcodestr, RegisterClass VRC>
402    : RVInstVSU<nf, 0, SUMOPUnitStrideWholeReg,
403                0b000, (outs), (ins VRC:$vs3, GPRMemZeroOffset:$rs1),
404                opcodestr, "$vs3, $rs1"> {
405  let Uses = [];
406}
407
408// unit-stride mask store vd, vs3, (rs1)
409class VUnitStrideStoreMask<string opcodestr>
410    : RVInstVSU<0b000, LSWidth8.Value{3}, SUMOPUnitStrideMask, LSWidth8.Value{2-0},
411                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1), opcodestr,
412                "$vs3, $rs1">;
413} // vm = 1
414
415// strided store vd, vs3, (rs1), rs2, vm
416class VStridedStore<RISCVWidth width, string opcodestr>
417    : RVInstVSS<0b000, width.Value{3}, width.Value{2-0}, (outs),
418                (ins VR:$vs3, GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm),
419                opcodestr, "$vs3, $rs1, $rs2$vm">;
420
421// indexed store vd, vs3, (rs1), vs2, vm
422class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
423    : RVInstVSX<0b000, width.Value{3}, mop, width.Value{2-0}, (outs),
424                (ins VR:$vs3, GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm),
425                opcodestr, "$vs3, $rs1, $vs2$vm">;
426
427// segment store vd, vs3, (rs1), vm
428class VUnitStrideSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
429    : RVInstVSU<nf, width.Value{3}, SUMOPUnitStride, width.Value{2-0},
430                (outs), (ins VR:$vs3, GPRMemZeroOffset:$rs1, VMaskOp:$vm), opcodestr,
431                "$vs3, ${rs1}$vm">;
432
433// segment store vd, vs3, (rs1), rs2, vm
434class VStridedSegmentStore<bits<3> nf, RISCVWidth width, string opcodestr>
435    : RVInstVSS<nf, width.Value{3}, width.Value{2-0}, (outs),
436                (ins VR:$vs3, GPRMemZeroOffset:$rs1, GPR:$rs2, VMaskOp:$vm),
437                opcodestr, "$vs3, $rs1, $rs2$vm">;
438
439// segment store vd, vs3, (rs1), vs2, vm
440class VIndexedSegmentStore<bits<3> nf, RISCVMOP mop, RISCVWidth width,
441                           string opcodestr>
442    : RVInstVSX<nf, width.Value{3}, mop, width.Value{2-0}, (outs),
443                (ins VR:$vs3, GPRMemZeroOffset:$rs1, VR:$vs2, VMaskOp:$vm),
444                opcodestr, "$vs3, $rs1, $vs2$vm">;
445} // hasSideEffects = 0, mayLoad = 0, mayStore = 1
446
447let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
448// op vd, vs2, vs1, vm
449class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
450    : RVInstVV<funct6, opv, (outs VR:$vd),
451                (ins VR:$vs2, VR:$vs1, VMaskOp:$vm),
452                opcodestr, "$vd, $vs2, $vs1$vm">;
453
454// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
455class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
456    : RVInstVV<funct6, opv, (outs VR:$vd),
457                (ins VR:$vs2, VR:$vs1, VMaskCarryInOp:$vm),
458                opcodestr, "$vd, $vs2, $vs1, $vm">;
459
460// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
461class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr,
462              bit EarlyClobber = 0>
463    : RVInstVV<funct6, opv, (outs VR:$vd_wb),
464                (ins VR:$vd, VR:$vs1, VR:$vs2, VMaskOp:$vm),
465                opcodestr, "$vd, $vs1, $vs2$vm"> {
466  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
467                                      "$vd = $vd_wb");
468}
469
470// op vd, vs2, vs1
471class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
472    : RVInstVV<funct6, opv, (outs VR:$vd),
473               (ins VR:$vs2, VR:$vs1),
474               opcodestr, "$vd, $vs2, $vs1"> {
475  let vm = 1;
476}
477
478// op vd, vs2, rs1, vm
479class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
480    : RVInstVX<funct6, opv, (outs VR:$vd),
481                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
482                opcodestr, "$vd, $vs2, $rs1$vm">;
483
484// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
485class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
486    : RVInstVX<funct6, opv, (outs VR:$vd),
487                (ins VR:$vs2, GPR:$rs1, VMaskCarryInOp:$vm),
488                opcodestr, "$vd, $vs2, $rs1, $vm">;
489
490// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
491class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr,
492              bit EarlyClobber = 0>
493    : RVInstVX<funct6, opv, (outs VR:$vd_wb),
494                (ins VR:$vd, GPR:$rs1, VR:$vs2, VMaskOp:$vm),
495                opcodestr, "$vd, $rs1, $vs2$vm"> {
496  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
497                                      "$vd = $vd_wb");
498}
499
500// op vd, vs1, vs2
501class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
502    : RVInstVX<funct6, opv, (outs VR:$vd),
503               (ins VR:$vs2, GPR:$rs1),
504               opcodestr, "$vd, $vs2, $rs1"> {
505  let vm = 1;
506}
507
508// op vd, vs2, imm, vm
509class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
510    : RVInstIVI<funct6, (outs VR:$vd),
511                (ins VR:$vs2, optype:$imm, VMaskOp:$vm),
512                opcodestr, "$vd, $vs2, $imm$vm">;
513
514// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
515class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
516    : RVInstIVI<funct6, (outs VR:$vd),
517                (ins VR:$vs2, optype:$imm, VMaskCarryInOp:$vm),
518                opcodestr, "$vd, $vs2, $imm, $vm">;
519
520// op vd, vs2, imm, vm
521class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
522    : RVInstIVI<funct6, (outs VR:$vd),
523                (ins VR:$vs2, optype:$imm),
524                opcodestr, "$vd, $vs2, $imm"> {
525  let vm = 1;
526}
527
528// op vd, vs2, rs1, vm (Float)
529class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
530    : RVInstVX<funct6, opv, (outs VR:$vd),
531                (ins VR:$vs2, FPR32:$rs1, VMaskOp:$vm),
532                opcodestr, "$vd, $vs2, $rs1$vm">;
533
534// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
535class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr,
536              bit EarlyClobber = 0>
537    : RVInstVX<funct6, opv, (outs VR:$vd_wb),
538                (ins VR:$vd, FPR32:$rs1, VR:$vs2, VMaskOp:$vm),
539                opcodestr, "$vd, $rs1, $vs2$vm"> {
540  let Constraints = !if(EarlyClobber, "@earlyclobber $vd_wb, $vd = $vd_wb",
541                                      "$vd = $vd_wb");
542}
543
544// op vd, vs2, vm (use vs1 as instruction encoding)
545class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
546    : RVInstV<funct6, vs1, opv, (outs VR:$vd),
547               (ins VR:$vs2, VMaskOp:$vm),
548               opcodestr, "$vd, $vs2$vm">;
549} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
550
551//===----------------------------------------------------------------------===//
552// Combination of instruction classes.
553// Use these multiclasses to define instructions more easily.
554//===----------------------------------------------------------------------===//
555
556multiclass VIndexLoadStore<int eew> {
557  defvar w = !cast<RISCVWidth>("LSWidth" # eew);
558
559  def VLUXEI # eew # _V :
560    VIndexedLoad<MOPLDIndexedUnord, w, "vluxei" # eew # ".v">,
561    VLXSchedMC<eew, isOrdered=0>;
562  def VLOXEI # eew # _V :
563    VIndexedLoad<MOPLDIndexedOrder, w, "vloxei" # eew # ".v">,
564    VLXSchedMC<eew, isOrdered=1>;
565
566  def VSUXEI # eew # _V :
567    VIndexedStore<MOPSTIndexedUnord, w, "vsuxei" # eew # ".v">,
568    VSXSchedMC<eew, isOrdered=0>;
569  def VSOXEI # eew # _V :
570    VIndexedStore<MOPSTIndexedOrder, w, "vsoxei" # eew # ".v">,
571    VSXSchedMC<eew, isOrdered=1>;
572}
573
574multiclass VALU_IV_V<string opcodestr, bits<6> funct6> {
575  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
576           SchedBinaryMC<"WriteVIALUV", "ReadVIALUV", "ReadVIALUV">;
577}
578
579multiclass VALU_IV_X<string opcodestr, bits<6> funct6> {
580  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
581           SchedBinaryMC<"WriteVIALUX", "ReadVIALUV", "ReadVIALUX">;
582}
583
584multiclass VALU_IV_I<string opcodestr, bits<6> funct6> {
585  def I  : VALUVI<funct6, opcodestr # ".vi">,
586           SchedUnaryMC<"WriteVIALUI", "ReadVIALUV">;
587}
588
589multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6>
590    : VALU_IV_V<opcodestr, funct6>,
591      VALU_IV_X<opcodestr, funct6>,
592      VALU_IV_I<opcodestr, funct6>;
593
594multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6>
595    : VALU_IV_V<opcodestr, funct6>,
596      VALU_IV_X<opcodestr, funct6>;
597
598multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6>
599    : VALU_IV_X<opcodestr, funct6>,
600      VALU_IV_I<opcodestr, funct6>;
601
602multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw> {
603  def V  : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">,
604           SchedBinaryMC<"WriteVIWALUV", "ReadVIWALUV", "ReadVIWALUV">;
605  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">,
606           SchedBinaryMC<"WriteVIWALUX", "ReadVIWALUV", "ReadVIWALUX">;
607}
608
609multiclass VMAC_MV_V_X<string opcodestr, bits<6> funct6> {
610  def V : VALUrVV<funct6, OPMVV, opcodestr # ".vv">,
611          SchedTernaryMC<"WriteVIMulAddV", "ReadVIMulAddV", "ReadVIMulAddV",
612                         "ReadVIMulAddV">;
613  def X : VALUrVX<funct6, OPMVX, opcodestr # ".vx">,
614          SchedTernaryMC<"WriteVIMulAddX", "ReadVIMulAddV", "ReadVIMulAddX",
615                         "ReadVIMulAddV">;
616}
617
618multiclass VWMAC_MV_X<string opcodestr, bits<6> funct6> {
619  let RVVConstraint = WidenV in
620  def X : VALUrVX<funct6, OPMVX, opcodestr # ".vx">,
621          SchedTernaryMC<"WriteVIWMulAddX", "ReadVIWMulAddV", "ReadVIWMulAddX",
622                         "ReadVIWMulAddV">;
623}
624
625multiclass VWMAC_MV_V_X<string opcodestr, bits<6> funct6>
626   : VWMAC_MV_X<opcodestr, funct6> {
627  let RVVConstraint = WidenV in
628  def V : VALUrVV<funct6, OPMVV, opcodestr # ".vv", EarlyClobber=1>,
629          SchedTernaryMC<"WriteVIWMulAddV", "ReadVIWMulAddV", "ReadVIWMulAddV",
630                         "ReadVIWMulAddV">;
631}
632
633multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
634  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
635           SchedUnaryMC<"WriteVExtV", "ReadVExtV">;
636}
637
638multiclass VMRG_IV_V_X_I<string opcodestr, bits<6> funct6> {
639  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
640           SchedBinaryMC<"WriteVIMergeV", "ReadVIMergeV", "ReadVIMergeV">;
641  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
642           SchedBinaryMC<"WriteVIMergeX", "ReadVIMergeV", "ReadVIMergeX">;
643  def IM : VALUmVI<funct6, opcodestr # ".vim">,
644           SchedUnaryMC<"WriteVIMergeI", "ReadVIMergeV">;
645}
646
647multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
648  // if LSB of funct6 is 1, it's a mask-producing instruction that
649  // uses a different scheduling class.
650  defvar WritePrefix = !if(funct6{0}, "WriteVICALUM", "WriteVICALU");
651  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">,
652           SchedBinaryMC<WritePrefix#"V", "ReadVICALUV", "ReadVICALUV">;
653  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">,
654           SchedBinaryMC<WritePrefix#"X", "ReadVICALUV", "ReadVICALUX">;
655}
656
657multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6>
658    : VALUm_IV_V_X<opcodestr, funct6> {
659  // if LSB of funct6 is 1, it's a mask-producing instruction that
660  // uses a different scheduling class.
661  defvar WriteSched = !if(funct6{0}, "WriteVICALUMI", "WriteVICALUI");
662  def IM : VALUmVI<funct6, opcodestr # ".vim">,
663           SchedUnaryMC<WriteSched, "ReadVICALUV">;
664}
665
666multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
667  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">,
668          SchedBinaryMC<"WriteVICALUMV", "ReadVICALUV", "ReadVICALUV",
669                        forceMasked=0>;
670  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">,
671          SchedBinaryMC<"WriteVICALUMX", "ReadVICALUV", "ReadVICALUX",
672                        forceMasked=0>;
673}
674
675multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6>
676   : VALUNoVm_IV_V_X<opcodestr, funct6> {
677  def I : VALUVINoVm<funct6, opcodestr # ".vi">,
678          SchedUnaryMC<"WriteVICALUMI", "ReadVICALUV", forceMasked=0>;
679}
680
681multiclass VALU_FV_F<string opcodestr, bits<6> funct6> {
682  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
683          SchedBinaryMC<"WriteVFALUF", "ReadVFALUV", "ReadVFALUF">;
684}
685
686multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6>
687    : VALU_FV_F<opcodestr, funct6> {
688  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
689          SchedBinaryMC<"WriteVFALUV", "ReadVFALUV", "ReadVFALUV">;
690}
691
692multiclass VWALU_FV_V_F<string opcodestr, bits<6> funct6, string vw> {
693  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">,
694          SchedBinaryMC<"WriteVFWALUV", "ReadVFWALUV", "ReadVFWALUV">;
695  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">,
696          SchedBinaryMC<"WriteVFWALUF", "ReadVFWALUV", "ReadVFWALUF">;
697}
698
699multiclass VMUL_FV_V_F<string opcodestr, bits<6> funct6> {
700  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
701          SchedBinaryMC<"WriteVFMulV", "ReadVFMulV", "ReadVFMulV">;
702  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
703          SchedBinaryMC<"WriteVFMulF", "ReadVFMulV", "ReadVFMulF">;
704}
705
706multiclass VDIV_FV_F<string opcodestr, bits<6> funct6> {
707  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
708          SchedBinaryMC<"WriteVFDivF", "ReadVFDivV", "ReadVFDivF">;
709}
710
711multiclass VDIV_FV_V_F<string opcodestr, bits<6> funct6>
712    : VDIV_FV_F<opcodestr, funct6> {
713  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
714          SchedBinaryMC<"WriteVFDivV", "ReadVFDivV", "ReadVFDivV">;
715}
716
717multiclass VWMUL_FV_V_F<string opcodestr, bits<6> funct6> {
718  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
719          SchedBinaryMC<"WriteVFWMulV", "ReadVFWMulV", "ReadVFWMulV">;
720  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
721          SchedBinaryMC<"WriteVFWMulF", "ReadVFWMulV", "ReadVFWMulF">;
722}
723
724multiclass VMAC_FV_V_F<string opcodestr, bits<6> funct6> {
725  def V : VALUrVV<funct6, OPFVV, opcodestr # ".vv">,
726          SchedTernaryMC<"WriteVFMulAddV", "ReadVFMulAddV", "ReadVFMulAddV",
727                         "ReadVFMulAddV">;
728  def F : VALUrVF<funct6, OPFVF, opcodestr # ".vf">,
729          SchedTernaryMC<"WriteVFMulAddF", "ReadVFMulAddV", "ReadVFMulAddF",
730                         "ReadVFMulAddV">;
731}
732
733multiclass VWMAC_FV_V_F<string opcodestr, bits<6> funct6> {
734  let RVVConstraint = WidenV in {
735  def V : VALUrVV<funct6, OPFVV, opcodestr # ".vv", EarlyClobber=1>,
736          SchedTernaryMC<"WriteVFWMulAddV", "ReadVFWMulAddV", "ReadVFWMulAddV",
737                         "ReadVFWMulAddV">;
738  def F : VALUrVF<funct6, OPFVF, opcodestr # ".vf", EarlyClobber=1>,
739          SchedTernaryMC<"WriteVFWMulAddF", "ReadVFWMulAddV", "ReadVFWMulAddF",
740                         "ReadVFWMulAddV">;
741  }
742}
743
744multiclass VSQR_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
745  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
746           SchedUnaryMC<"WriteVFSqrtV", "ReadVFSqrtV">;
747}
748
749multiclass VRCP_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
750  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
751           SchedUnaryMC<"WriteVFRecpV", "ReadVFRecpV">;
752}
753
754multiclass VMINMAX_FV_V_F<string opcodestr, bits<6> funct6> {
755  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
756          SchedBinaryMC<"WriteVFMinMaxV", "ReadVFMinMaxV", "ReadVFMinMaxV">;
757  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
758          SchedBinaryMC<"WriteVFMinMaxF", "ReadVFMinMaxV", "ReadVFMinMaxF">;
759}
760
761multiclass VCMP_FV_F<string opcodestr, bits<6> funct6> {
762  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
763          SchedBinaryMC<"WriteVFCmpF", "ReadVFCmpV", "ReadVFCmpF">;
764}
765
766multiclass VCMP_FV_V_F<string opcodestr, bits<6> funct6>
767    : VCMP_FV_F<opcodestr, funct6> {
768  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
769          SchedBinaryMC<"WriteVFCmpV", "ReadVFCmpV", "ReadVFCmpV">;
770}
771
772multiclass VSGNJ_FV_V_F<string opcodestr, bits<6> funct6> {
773  def V : VALUVV<funct6, OPFVV, opcodestr # ".vv">,
774          SchedBinaryMC<"WriteVFSgnjV", "ReadVFSgnjV", "ReadVFSgnjV">;
775  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
776          SchedBinaryMC<"WriteVFSgnjF", "ReadVFSgnjV", "ReadVFSgnjF">;
777}
778
779multiclass VCLS_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
780  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
781           SchedUnaryMC<"WriteVFClassV", "ReadVFClassV">;
782}
783
784multiclass VCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
785  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
786           SchedUnaryMC<"WriteVFCvtIToFV", "ReadVFCvtIToFV">;
787}
788
789multiclass VCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
790  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
791           SchedUnaryMC<"WriteVFCvtFToIV", "ReadVFCvtFToIV">;
792}
793
794multiclass VWCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
795  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
796           SchedUnaryMC<"WriteVFWCvtIToFV", "ReadVFWCvtIToFV">;
797}
798
799multiclass VWCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
800  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
801           SchedUnaryMC<"WriteVFWCvtFToIV", "ReadVFWCvtFToIV">;
802}
803
804multiclass VWCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
805  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
806           SchedUnaryMC<"WriteVFWCvtFToFV", "ReadVFWCvtFToFV">;
807}
808
809multiclass VNCVTF_IV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
810  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
811           SchedUnaryMC<"WriteVFNCvtIToFV", "ReadVFNCvtIToFV">;
812}
813
814multiclass VNCVTI_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
815  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
816           SchedUnaryMC<"WriteVFNCvtFToIV", "ReadVFNCvtFToIV">;
817}
818
819multiclass VNCVTF_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
820  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>,
821           SchedUnaryMC<"WriteVFNCvtFToFV", "ReadVFNCvtFToFV">;
822}
823
824multiclass VRED_MV_V<string opcodestr, bits<6> funct6> {
825  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
826            SchedReductionMC<"WriteVIRedV_From", "ReadVIRedV", "ReadVIRedV0">;
827}
828
829multiclass VREDMINMAX_MV_V<string opcodestr, bits<6> funct6> {
830  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">,
831            SchedReductionMC<"WriteVIRedMinMaxV_From", "ReadVIRedV", "ReadVIRedV0">;
832}
833
834multiclass VWRED_IV_V<string opcodestr, bits<6> funct6> {
835  def _VS : VALUVV<funct6, OPIVV, opcodestr # ".vs">,
836            SchedReductionMC<"WriteVIWRedV_From", "ReadVIWRedV", "ReadVIWRedV0">;
837}
838
839multiclass VRED_FV_V<string opcodestr, bits<6> funct6> {
840  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
841            SchedReductionMC<"WriteVFRedV_From", "ReadVFRedV", "ReadVFRedV0">;
842}
843
844multiclass VREDMINMAX_FV_V<string opcodestr, bits<6> funct6> {
845  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
846            SchedReductionMC<"WriteVFRedMinMaxV_From", "ReadVFRedV", "ReadVFRedV0">;
847}
848
849multiclass VREDO_FV_V<string opcodestr, bits<6> funct6> {
850  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
851            SchedReductionMC<"WriteVFRedOV_From", "ReadVFRedOV", "ReadVFRedOV0">;
852}
853
854multiclass VWRED_FV_V<string opcodestr, bits<6> funct6> {
855  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
856            SchedReductionMC<"WriteVFWRedV_From", "ReadVFWRedV", "ReadVFWRedV0">;
857}
858
859multiclass VWREDO_FV_V<string opcodestr, bits<6> funct6> {
860  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">,
861            SchedReductionMC<"WriteVFWRedOV_From", "ReadVFWRedOV", "ReadVFWRedOV0">;
862}
863
864multiclass VMALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
865  def M : VALUVVNoVm<funct6, OPMVV, opcodestr #"." #vm #"m">,
866          SchedBinaryMC<"WriteVMALUV", "ReadVMALUV", "ReadVMALUV",
867                        forceMasked=0>;
868}
869
870multiclass VMSFS_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
871  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
872           SchedUnaryMC<"WriteVMSFSV", "ReadVMSFSV">;
873}
874
875multiclass VIOTA_MV_V<string opcodestr, bits<6> funct6, bits<5> vs1> {
876  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>,
877           SchedUnaryMC<"WriteVIotaV", "ReadVIotaV">;
878}
879
880multiclass VSHT_IV_V_X_I<string opcodestr, bits<6> funct6> {
881  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
882           SchedBinaryMC<"WriteVShiftV", "ReadVShiftV", "ReadVShiftV">;
883  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
884           SchedBinaryMC<"WriteVShiftX", "ReadVShiftV", "ReadVShiftX">;
885  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
886           SchedUnaryMC<"WriteVShiftI", "ReadVShiftV">;
887}
888
889multiclass VNSHT_IV_V_X_I<string opcodestr, bits<6> funct6> {
890  def V  : VALUVV<funct6, OPIVV, opcodestr # ".wv">,
891           SchedBinaryMC<"WriteVNShiftV", "ReadVNShiftV", "ReadVNShiftV">;
892  def X  : VALUVX<funct6, OPIVX, opcodestr # ".wx">,
893           SchedBinaryMC<"WriteVNShiftX", "ReadVNShiftV", "ReadVNShiftX">;
894  def I  : VALUVI<funct6, opcodestr # ".wi", uimm5>,
895           SchedUnaryMC<"WriteVNShiftI", "ReadVNShiftV">;
896}
897
898multiclass VMINMAX_IV_V_X<string opcodestr, bits<6> funct6> {
899  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
900           SchedBinaryMC<"WriteVIMinMaxV", "ReadVIMinMaxV", "ReadVIMinMaxV">;
901  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
902           SchedBinaryMC<"WriteVIMinMaxX", "ReadVIMinMaxV", "ReadVIMinMaxX">;
903}
904
905multiclass VCMP_IV_V<string opcodestr, bits<6> funct6> {
906  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
907           SchedBinaryMC<"WriteVICmpV", "ReadVICmpV", "ReadVICmpV">;
908}
909
910multiclass VCMP_IV_X<string opcodestr, bits<6> funct6> {
911  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
912           SchedBinaryMC<"WriteVICmpX", "ReadVICmpV", "ReadVICmpX">;
913}
914
915multiclass VCMP_IV_I<string opcodestr, bits<6> funct6> {
916  def I  : VALUVI<funct6, opcodestr # ".vi">,
917           SchedUnaryMC<"WriteVICmpI", "ReadVICmpV">;
918}
919
920multiclass VCMP_IV_V_X_I<string opcodestr, bits<6> funct6>
921    : VCMP_IV_V<opcodestr, funct6>,
922      VCMP_IV_X<opcodestr, funct6>,
923      VCMP_IV_I<opcodestr, funct6>;
924
925multiclass VCMP_IV_X_I<string opcodestr, bits<6> funct6>
926    : VCMP_IV_X<opcodestr, funct6>,
927      VCMP_IV_I<opcodestr, funct6>;
928
929multiclass VCMP_IV_V_X<string opcodestr, bits<6> funct6>
930    : VCMP_IV_V<opcodestr, funct6>,
931      VCMP_IV_X<opcodestr, funct6>;
932
933multiclass VMUL_MV_V_X<string opcodestr, bits<6> funct6> {
934  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
935           SchedBinaryMC<"WriteVIMulV", "ReadVIMulV", "ReadVIMulV">;
936  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
937           SchedBinaryMC<"WriteVIMulX", "ReadVIMulV", "ReadVIMulX">;
938}
939
940multiclass VWMUL_MV_V_X<string opcodestr, bits<6> funct6> {
941  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
942           SchedBinaryMC<"WriteVIWMulV", "ReadVIWMulV", "ReadVIWMulV">;
943  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
944           SchedBinaryMC<"WriteVIWMulX", "ReadVIWMulV", "ReadVIWMulX">;
945}
946
947multiclass VDIV_MV_V_X<string opcodestr, bits<6> funct6> {
948  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
949           SchedBinaryMC<"WriteVIDivV", "ReadVIDivV", "ReadVIDivV">;
950  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
951           SchedBinaryMC<"WriteVIDivX", "ReadVIDivV", "ReadVIDivX">;
952}
953
954multiclass VSALU_IV_V_X<string opcodestr, bits<6> funct6> {
955  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
956           SchedBinaryMC<"WriteVSALUV", "ReadVSALUV", "ReadVSALUV">;
957  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
958           SchedBinaryMC<"WriteVSALUX", "ReadVSALUV", "ReadVSALUX">;
959}
960
961multiclass VSALU_IV_V_X_I<string opcodestr, bits<6> funct6>
962    : VSALU_IV_V_X<opcodestr, funct6> {
963  def I  : VALUVI<funct6, opcodestr # ".vi">,
964           SchedUnaryMC<"WriteVSALUI", "ReadVSALUV">;
965}
966
967multiclass VAALU_MV_V_X<string opcodestr, bits<6> funct6> {
968  def V  : VALUVV<funct6, OPMVV, opcodestr # ".vv">,
969           SchedBinaryMC<"WriteVAALUV", "ReadVAALUV", "ReadVAALUV">;
970  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
971           SchedBinaryMC<"WriteVAALUX", "ReadVAALUV", "ReadVAALUX">;
972}
973
974multiclass VSMUL_IV_V_X<string opcodestr, bits<6> funct6> {
975  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
976           SchedBinaryMC<"WriteVSMulV", "ReadVSMulV", "ReadVSMulV">;
977  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
978           SchedBinaryMC<"WriteVSMulX", "ReadVSMulV", "ReadVSMulX">;
979}
980
981multiclass VSSHF_IV_V_X_I<string opcodestr, bits<6> funct6> {
982  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
983           SchedBinaryMC<"WriteVSShiftV", "ReadVSShiftV", "ReadVSShiftV">;
984  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
985           SchedBinaryMC<"WriteVSShiftX", "ReadVSShiftV", "ReadVSShiftX">;
986  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
987           SchedUnaryMC<"WriteVSShiftI", "ReadVSShiftV">;
988}
989
990multiclass VNCLP_IV_V_X_I<string opcodestr, bits<6> funct6> {
991  def V  : VALUVV<funct6, OPIVV, opcodestr # ".wv">,
992           SchedBinaryMC<"WriteVNClipV", "ReadVNClipV", "ReadVNClipV">;
993  def X  : VALUVX<funct6, OPIVX, opcodestr # ".wx">,
994           SchedBinaryMC<"WriteVNClipX", "ReadVNClipV", "ReadVNClipX">;
995  def I  : VALUVI<funct6, opcodestr # ".wi", uimm5>,
996           SchedUnaryMC<"WriteVNClipI", "ReadVNClipV">;
997}
998
999multiclass VSLD_IV_X_I<string opcodestr, bits<6> funct6, bit slidesUp> {
1000  // Note: In the future, if VISlideI is also split into VSlideUpI and
1001  // VSlideDownI, it'll probably better to use two separate multiclasses.
1002  defvar WriteSlideX = !if(slidesUp, "WriteVSlideUpX", "WriteVSlideDownX");
1003  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
1004           SchedBinaryMC<WriteSlideX, "ReadVISlideV", "ReadVISlideX">;
1005  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
1006           SchedUnaryMC<"WriteVSlideI", "ReadVISlideV">;
1007}
1008
1009multiclass VSLD1_MV_X<string opcodestr, bits<6> funct6> {
1010  def X  : VALUVX<funct6, OPMVX, opcodestr # ".vx">,
1011           SchedBinaryMC<"WriteVISlide1X", "ReadVISlideV", "ReadVISlideX">;
1012}
1013
1014multiclass VSLD1_FV_F<string opcodestr, bits<6> funct6> {
1015  def F : VALUVF<funct6, OPFVF, opcodestr # ".vf">,
1016          SchedBinaryMC<"WriteVFSlide1F", "ReadVFSlideV", "ReadVFSlideF">;
1017}
1018
1019multiclass VGTR_IV_V_X_I<string opcodestr, bits<6> funct6> {
1020  def V  : VALUVV<funct6, OPIVV, opcodestr # ".vv">,
1021           SchedBinaryMC<"WriteVRGatherVV", "ReadVRGatherVV_data",
1022                         "ReadVRGatherVV_index">;
1023  def X  : VALUVX<funct6, OPIVX, opcodestr # ".vx">,
1024           SchedBinaryMC<"WriteVRGatherVX", "ReadVRGatherVX_data",
1025                         "ReadVRGatherVX_index">;
1026  def I  : VALUVI<funct6, opcodestr # ".vi", uimm5>,
1027           SchedUnaryMC<"WriteVRGatherVI", "ReadVRGatherVI_data">;
1028}
1029
1030multiclass VCPR_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
1031  def M  : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">,
1032           SchedBinaryMC<"WriteVCompressV", "ReadVCompressV", "ReadVCompressV">;
1033}
1034
1035multiclass VWholeLoadN<int l, bits<3> nf, string opcodestr, RegisterClass VRC> {
1036  defvar w = !cast<RISCVWidth>("LSWidth" # l);
1037  defvar s = !cast<SchedWrite>("WriteVLD" # !add(nf, 1) # "R");
1038
1039  def E # l # _V : VWholeLoad<nf, w, opcodestr # "e" # l # ".v", VRC>,
1040                   Sched<[s, ReadVLDX]>;
1041}
1042
1043//===----------------------------------------------------------------------===//
1044// Instructions
1045//===----------------------------------------------------------------------===//
1046
1047let Predicates = [HasVInstructions] in {
1048let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
1049def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp11:$vtypei),
1050                           "vsetvli", "$rd, $rs1, $vtypei">,
1051                           Sched<[WriteVSETVLI, ReadVSETVLI]>;
1052def VSETIVLI : RVInstSetiVLi<(outs GPR:$rd), (ins uimm5:$uimm, VTypeIOp10:$vtypei),
1053                             "vsetivli", "$rd, $uimm, $vtypei">,
1054                             Sched<[WriteVSETIVLI]>;
1055
1056def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
1057                         "vsetvl", "$rd, $rs1, $rs2">,
1058                          Sched<[WriteVSETVL, ReadVSETVL, ReadVSETVL]>;
1059} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
1060} // Predicates = [HasVInstructions]
1061
1062foreach eew = [8, 16, 32, 64] in {
1063  defvar w = !cast<RISCVWidth>("LSWidth" # eew);
1064
1065  let Predicates = !if(!eq(eew, 64), [HasVInstructionsI64],
1066                                     [HasVInstructions]) in {
1067    // Vector Unit-Stride Instructions
1068    def VLE#eew#_V : VUnitStrideLoad<w, "vle"#eew#".v">, VLESchedMC;
1069    def VSE#eew#_V  : VUnitStrideStore<w,  "vse"#eew#".v">, VSESchedMC;
1070
1071    // Vector Unit-Stride Fault-only-First Loads
1072    def VLE#eew#FF_V : VUnitStrideLoadFF<w,  "vle"#eew#"ff.v">, VLFSchedMC;
1073
1074    // Vector Strided Instructions
1075    def VLSE#eew#_V  : VStridedLoad<w,  "vlse"#eew#".v">, VLSSchedMC<eew>;
1076    def VSSE#eew#_V  : VStridedStore<w,  "vsse"#eew#".v">, VSSSchedMC<eew>;
1077
1078    defm VL1R : VWholeLoadN<eew, 0, "vl1r", VR>;
1079    defm VL2R : VWholeLoadN<eew, 1, "vl2r", VRM2>;
1080    defm VL4R : VWholeLoadN<eew, 3, "vl4r", VRM4>;
1081    defm VL8R : VWholeLoadN<eew, 7, "vl8r", VRM8>;
1082  }
1083
1084  let Predicates = !if(!eq(eew, 64), [IsRV64, HasVInstructionsI64],
1085                                     [HasVInstructions]) in
1086  defm "" : VIndexLoadStore<eew>;
1087}
1088
1089let Predicates = [HasVInstructions] in {
1090def VLM_V : VUnitStrideLoadMask<"vlm.v">,
1091             Sched<[WriteVLDM_WorstCase, ReadVLDX]>;
1092def VSM_V : VUnitStrideStoreMask<"vsm.v">,
1093             Sched<[WriteVSTM_WorstCase, ReadVSTM_WorstCase, ReadVSTX]>;
1094def : InstAlias<"vle1.v $vd, (${rs1})",
1095                (VLM_V VR:$vd, GPR:$rs1), 0>;
1096def : InstAlias<"vse1.v $vs3, (${rs1})",
1097                (VSM_V VR:$vs3, GPR:$rs1), 0>;
1098
1099def VS1R_V : VWholeStore<0, "vs1r.v", VR>,
1100             Sched<[WriteVST1R, ReadVST1R, ReadVSTX]>;
1101def VS2R_V : VWholeStore<1, "vs2r.v", VRM2>,
1102             Sched<[WriteVST2R, ReadVST2R, ReadVSTX]>;
1103def VS4R_V : VWholeStore<3, "vs4r.v", VRM4>,
1104             Sched<[WriteVST4R, ReadVST4R, ReadVSTX]>;
1105def VS8R_V : VWholeStore<7, "vs8r.v", VRM8>,
1106             Sched<[WriteVST8R, ReadVST8R, ReadVSTX]>;
1107
1108def : InstAlias<"vl1r.v $vd, (${rs1})", (VL1RE8_V VR:$vd, GPR:$rs1)>;
1109def : InstAlias<"vl2r.v $vd, (${rs1})", (VL2RE8_V VRM2:$vd, GPR:$rs1)>;
1110def : InstAlias<"vl4r.v $vd, (${rs1})", (VL4RE8_V VRM4:$vd, GPR:$rs1)>;
1111def : InstAlias<"vl8r.v $vd, (${rs1})", (VL8RE8_V VRM8:$vd, GPR:$rs1)>;
1112} // Predicates = [HasVInstructions]
1113
1114let Predicates = [HasVInstructions] in {
1115// Vector Single-Width Integer Add and Subtract
1116defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
1117defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
1118defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;
1119
1120def : InstAlias<"vneg.v $vd, $vs$vm", (VRSUB_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1121def : InstAlias<"vneg.v $vd, $vs", (VRSUB_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1122
1123// Vector Widening Integer Add/Subtract
1124// Refer to 11.2 Widening Vector Arithmetic Instructions
1125// The destination vector register group cannot overlap a source vector
1126// register group of a different element width (including the mask register
1127// if masked), otherwise an illegal instruction exception is raised.
1128let Constraints = "@earlyclobber $vd", DestEEW = EEWSEWx2 in {
1129let RVVConstraint = WidenV in {
1130defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000, "v">;
1131defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010, "v">;
1132defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001, "v">;
1133defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011, "v">;
1134} // RVVConstraint = WidenV
1135// Set earlyclobber for following instructions for second and mask operands.
1136// This has the downside that the earlyclobber constraint is too coarse and
1137// will impose unnecessary restrictions by not allowing the destination to
1138// overlap with the first (wide) operand.
1139let RVVConstraint = WidenW in {
1140defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
1141defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
1142defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
1143defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
1144} // RVVConstraint = WidenW
1145} // Constraints = "@earlyclobber $vd", DestEEW = EEWSEWx2
1146
1147def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
1148                (VWADD_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1149def : InstAlias<"vwcvt.x.x.v $vd, $vs",
1150                (VWADD_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1151def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
1152                (VWADDU_VX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1153def : InstAlias<"vwcvtu.x.x.v $vd, $vs",
1154                (VWADDU_VX VR:$vd, VR:$vs, X0, zero_reg)>;
1155
1156// Vector Integer Extension
1157defm VZEXT_VF8 : VALU_MV_VS2<"vzext.vf8", 0b010010, 0b00010>;
1158defm VSEXT_VF8 : VALU_MV_VS2<"vsext.vf8", 0b010010, 0b00011>;
1159defm VZEXT_VF4 : VALU_MV_VS2<"vzext.vf4", 0b010010, 0b00100>;
1160defm VSEXT_VF4 : VALU_MV_VS2<"vsext.vf4", 0b010010, 0b00101>;
1161defm VZEXT_VF2 : VALU_MV_VS2<"vzext.vf2", 0b010010, 0b00110>;
1162defm VSEXT_VF2 : VALU_MV_VS2<"vsext.vf2", 0b010010, 0b00111>;
1163
1164// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
1165defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
1166defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
1167let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint,
1168    DestEEW = EEW1 in {
1169defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
1170defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
1171defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
1172defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;
1173} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint, DestEEW = EEW1
1174
1175// Vector Bitwise Logical Instructions
1176defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
1177defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
1178defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;
1179
1180def : InstAlias<"vnot.v $vd, $vs$vm",
1181                (VXOR_VI VR:$vd, VR:$vs, -1, VMaskOp:$vm)>;
1182def : InstAlias<"vnot.v $vd, $vs",
1183                (VXOR_VI VR:$vd, VR:$vs, -1, zero_reg)>;
1184
1185// Vector Single-Width Bit Shift Instructions
1186defm VSLL_V : VSHT_IV_V_X_I<"vsll", 0b100101>;
1187defm VSRL_V : VSHT_IV_V_X_I<"vsrl", 0b101000>;
1188defm VSRA_V : VSHT_IV_V_X_I<"vsra", 0b101001>;
1189
1190// Vector Narrowing Integer Right Shift Instructions
1191// Refer to 11.3. Narrowing Vector Arithmetic Instructions
1192// The destination vector register group cannot overlap the first source
1193// vector register group (specified by vs2). The destination vector register
1194// group cannot overlap the mask register if used, unless LMUL=1.
1195let Constraints = "@earlyclobber $vd" in {
1196defm VNSRL_W : VNSHT_IV_V_X_I<"vnsrl", 0b101100>;
1197defm VNSRA_W : VNSHT_IV_V_X_I<"vnsra", 0b101101>;
1198} // Constraints = "@earlyclobber $vd"
1199
1200def : InstAlias<"vncvt.x.x.w $vd, $vs$vm",
1201                (VNSRL_WX VR:$vd, VR:$vs, X0, VMaskOp:$vm)>;
1202def : InstAlias<"vncvt.x.x.w $vd, $vs",
1203                (VNSRL_WX VR:$vd, VR:$vs, X0, zero_reg)>;
1204
1205// Vector Integer Comparison Instructions
1206let RVVConstraint = NoConstraint, DestEEW = EEW1 in {
1207defm VMSEQ_V : VCMP_IV_V_X_I<"vmseq", 0b011000>;
1208defm VMSNE_V : VCMP_IV_V_X_I<"vmsne", 0b011001>;
1209defm VMSLTU_V : VCMP_IV_V_X<"vmsltu", 0b011010>;
1210defm VMSLT_V : VCMP_IV_V_X<"vmslt", 0b011011>;
1211defm VMSLEU_V : VCMP_IV_V_X_I<"vmsleu", 0b011100>;
1212defm VMSLE_V : VCMP_IV_V_X_I<"vmsle", 0b011101>;
1213defm VMSGTU_V : VCMP_IV_X_I<"vmsgtu", 0b011110>;
1214defm VMSGT_V : VCMP_IV_X_I<"vmsgt", 0b011111>;
1215} // RVVConstraint = NoConstraint, DestEEW = EEW1
1216
1217def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
1218                (VMSLTU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1219def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
1220                (VMSLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1221def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
1222                (VMSLEU_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1223def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
1224                (VMSLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1225
1226let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
1227    mayStore = 0, DestEEW = EEW1 in {
1228// For unsigned comparisons we need to special case 0 immediate to maintain
1229// the always true/false semantics we would invert if we just decremented the
1230// immediate like we do for signed. To match the GNU assembler we will use
1231// vmseq/vmsne.vv with the same register for both operands which we can't do
1232// from an InstAlias.
1233def PseudoVMSGEU_VI : Pseudo<(outs VR:$vd),
1234                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1235                             [], "vmsgeu.vi", "$vd, $vs2, $imm$vm">;
1236def PseudoVMSLTU_VI : Pseudo<(outs VR:$vd),
1237                             (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1238                             [], "vmsltu.vi", "$vd, $vs2, $imm$vm">;
1239// Handle signed with pseudos as well for more consistency in the
1240// implementation.
1241def PseudoVMSGE_VI : Pseudo<(outs VR:$vd),
1242                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1243                            [], "vmsge.vi", "$vd, $vs2, $imm$vm">;
1244def PseudoVMSLT_VI : Pseudo<(outs VR:$vd),
1245                            (ins VR:$vs2, simm5_plus1:$imm, VMaskOp:$vm),
1246                            [], "vmslt.vi", "$vd, $vs2, $imm$vm">;
1247}
1248
1249let isCodeGenOnly = 0, isAsmParserOnly = 1, hasSideEffects = 0, mayLoad = 0,
1250    mayStore = 0, DestEEW = EEW1 in {
1251def PseudoVMSGEU_VX : Pseudo<(outs VR:$vd),
1252                             (ins VR:$vs2, GPR:$rs1),
1253                             [], "vmsgeu.vx", "$vd, $vs2, $rs1">;
1254def PseudoVMSGE_VX : Pseudo<(outs VR:$vd),
1255                            (ins VR:$vs2, GPR:$rs1),
1256                            [], "vmsge.vx", "$vd, $vs2, $rs1">;
1257def PseudoVMSGEU_VX_M : Pseudo<(outs VRNoV0:$vd),
1258                               (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1259                               [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm">;
1260def PseudoVMSGE_VX_M : Pseudo<(outs VRNoV0:$vd),
1261                              (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1262                              [], "vmsge.vx", "$vd, $vs2, $rs1$vm">;
1263def PseudoVMSGEU_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1264                                 (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1265                                 [], "vmsgeu.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1266def PseudoVMSGE_VX_M_T : Pseudo<(outs VR:$vd, VRNoV0:$scratch),
1267                                (ins VR:$vs2, GPR:$rs1, VMaskOp:$vm),
1268                                [], "vmsge.vx", "$vd, $vs2, $rs1$vm, $scratch">;
1269}
1270
1271// Vector Integer Min/Max Instructions
1272defm VMINU_V : VMINMAX_IV_V_X<"vminu", 0b000100>;
1273defm VMIN_V : VMINMAX_IV_V_X<"vmin", 0b000101>;
1274defm VMAXU_V : VMINMAX_IV_V_X<"vmaxu", 0b000110>;
1275defm VMAX_V : VMINMAX_IV_V_X<"vmax", 0b000111>;
1276
1277// Vector Single-Width Integer Multiply Instructions
1278defm VMUL_V : VMUL_MV_V_X<"vmul", 0b100101>;
1279defm VMULH_V : VMUL_MV_V_X<"vmulh", 0b100111>;
1280defm VMULHU_V : VMUL_MV_V_X<"vmulhu", 0b100100>;
1281defm VMULHSU_V : VMUL_MV_V_X<"vmulhsu", 0b100110>;
1282
1283// Vector Integer Divide Instructions
1284defm VDIVU_V : VDIV_MV_V_X<"vdivu", 0b100000>;
1285defm VDIV_V : VDIV_MV_V_X<"vdiv", 0b100001>;
1286defm VREMU_V : VDIV_MV_V_X<"vremu", 0b100010>;
1287defm VREM_V : VDIV_MV_V_X<"vrem", 0b100011>;
1288
1289// Vector Widening Integer Multiply Instructions
1290let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV,
1291    DestEEW = EEWSEWx2 in {
1292defm VWMUL_V : VWMUL_MV_V_X<"vwmul", 0b111011>;
1293defm VWMULU_V : VWMUL_MV_V_X<"vwmulu", 0b111000>;
1294defm VWMULSU_V : VWMUL_MV_V_X<"vwmulsu", 0b111010>;
1295} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV, DestEEW = EEWSEWx2
1296
1297// Vector Single-Width Integer Multiply-Add Instructions
1298defm VMACC_V : VMAC_MV_V_X<"vmacc", 0b101101>;
1299defm VNMSAC_V : VMAC_MV_V_X<"vnmsac", 0b101111>;
1300defm VMADD_V : VMAC_MV_V_X<"vmadd", 0b101001>;
1301defm VNMSUB_V : VMAC_MV_V_X<"vnmsub", 0b101011>;
1302
1303// Vector Widening Integer Multiply-Add Instructions
1304let DestEEW = EEWSEWx2 in {
1305defm VWMACCU_V : VWMAC_MV_V_X<"vwmaccu", 0b111100>;
1306defm VWMACC_V : VWMAC_MV_V_X<"vwmacc", 0b111101>;
1307defm VWMACCSU_V : VWMAC_MV_V_X<"vwmaccsu", 0b111111>;
1308defm VWMACCUS_V : VWMAC_MV_X<"vwmaccus", 0b111110>;
1309} // DestEEW = EEWSEWx2
1310
1311// Vector Integer Merge Instructions
1312defm VMERGE_V : VMRG_IV_V_X_I<"vmerge", 0b010111>;
1313
1314// Vector Integer Move Instructions
1315let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1,
1316    RVVConstraint = NoConstraint  in {
1317// op vd, vs1
1318def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VR:$vd),
1319                       (ins VR:$vs1), "vmv.v.v", "$vd, $vs1">,
1320              SchedUnaryMC<"WriteVIMovV", "ReadVIMovV", forceMasked=0>;
1321// op vd, rs1
1322def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VR:$vd),
1323                       (ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">,
1324              SchedUnaryMC<"WriteVIMovX", "ReadVIMovX", forceMasked=0>;
1325// op vd, imm
1326def VMV_V_I : RVInstIVI<0b010111, (outs VR:$vd),
1327                       (ins simm5:$imm), "vmv.v.i", "$vd, $imm">,
1328              SchedNullaryMC<"WriteVIMovI", forceMasked=0>;
1329} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1330
1331// Vector Fixed-Point Arithmetic Instructions
1332defm VSADDU_V : VSALU_IV_V_X_I<"vsaddu", 0b100000>;
1333defm VSADD_V : VSALU_IV_V_X_I<"vsadd", 0b100001>;
1334defm VSSUBU_V : VSALU_IV_V_X<"vssubu", 0b100010>;
1335defm VSSUB_V : VSALU_IV_V_X<"vssub", 0b100011>;
1336
1337// Vector Single-Width Averaging Add and Subtract
1338defm VAADDU_V : VAALU_MV_V_X<"vaaddu", 0b001000>;
1339defm VAADD_V : VAALU_MV_V_X<"vaadd", 0b001001>;
1340defm VASUBU_V : VAALU_MV_V_X<"vasubu", 0b001010>;
1341defm VASUB_V : VAALU_MV_V_X<"vasub", 0b001011>;
1342
1343// Vector Single-Width Fractional Multiply with Rounding and Saturation
1344defm VSMUL_V : VSMUL_IV_V_X<"vsmul", 0b100111>;
1345
1346// Vector Single-Width Scaling Shift Instructions
1347defm VSSRL_V : VSSHF_IV_V_X_I<"vssrl", 0b101010>;
1348defm VSSRA_V : VSSHF_IV_V_X_I<"vssra", 0b101011>;
1349
1350// Vector Narrowing Fixed-Point Clip Instructions
1351let Constraints = "@earlyclobber $vd" in {
1352defm VNCLIPU_W : VNCLP_IV_V_X_I<"vnclipu", 0b101110>;
1353defm VNCLIP_W : VNCLP_IV_V_X_I<"vnclip", 0b101111>;
1354} // Constraints = "@earlyclobber $vd"
1355} // Predicates = [HasVInstructions]
1356
1357let Predicates = [HasVInstructionsAnyF] in {
1358// Vector Single-Width Floating-Point Add/Subtract Instructions
1359let Uses = [FRM], mayRaiseFPException = true in {
1360defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
1361defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
1362defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;
1363}
1364
1365// Vector Widening Floating-Point Add/Subtract Instructions
1366let Constraints = "@earlyclobber $vd",
1367    Uses = [FRM],
1368    mayRaiseFPException = true,
1369    DestEEW = EEWSEWx2 in {
1370let RVVConstraint = WidenV in {
1371defm VFWADD_V : VWALU_FV_V_F<"vfwadd", 0b110000, "v">;
1372defm VFWSUB_V : VWALU_FV_V_F<"vfwsub", 0b110010, "v">;
1373} // RVVConstraint = WidenV
1374// Set earlyclobber for following instructions for second and mask operands.
1375// This has the downside that the earlyclobber constraint is too coarse and
1376// will impose unnecessary restrictions by not allowing the destination to
1377// overlap with the first (wide) operand.
1378let RVVConstraint = WidenW in {
1379defm VFWADD_W : VWALU_FV_V_F<"vfwadd", 0b110100, "w">;
1380defm VFWSUB_W : VWALU_FV_V_F<"vfwsub", 0b110110, "w">;
1381} // RVVConstraint = WidenW
1382} // Constraints = "@earlyclobber $vd", Uses = [FRM], mayRaiseFPException = true, DestEEW = EEWSEWx2
1383
1384// Vector Single-Width Floating-Point Multiply/Divide Instructions
1385let Uses = [FRM], mayRaiseFPException = true in {
1386defm VFMUL_V : VMUL_FV_V_F<"vfmul", 0b100100>;
1387defm VFDIV_V : VDIV_FV_V_F<"vfdiv", 0b100000>;
1388defm VFRDIV_V : VDIV_FV_F<"vfrdiv", 0b100001>;
1389}
1390
1391// Vector Widening Floating-Point Multiply
1392let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV,
1393    Uses = [FRM], mayRaiseFPException = true, DestEEW = EEWSEWx2 in {
1394defm VFWMUL_V : VWMUL_FV_V_F<"vfwmul", 0b111000>;
1395} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV, Uses = [FRM], mayRaiseFPException = true, DestEEW = EEWSEWx2
1396
1397// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
1398let Uses = [FRM], mayRaiseFPException = true in {
1399defm VFMACC_V : VMAC_FV_V_F<"vfmacc", 0b101100>;
1400defm VFNMACC_V : VMAC_FV_V_F<"vfnmacc", 0b101101>;
1401defm VFMSAC_V : VMAC_FV_V_F<"vfmsac", 0b101110>;
1402defm VFNMSAC_V : VMAC_FV_V_F<"vfnmsac", 0b101111>;
1403defm VFMADD_V : VMAC_FV_V_F<"vfmadd", 0b101000>;
1404defm VFNMADD_V : VMAC_FV_V_F<"vfnmadd", 0b101001>;
1405defm VFMSUB_V : VMAC_FV_V_F<"vfmsub", 0b101010>;
1406defm VFNMSUB_V : VMAC_FV_V_F<"vfnmsub", 0b101011>;
1407}
1408
1409// Vector Widening Floating-Point Fused Multiply-Add Instructions
1410let Uses = [FRM], mayRaiseFPException = true, DestEEW = EEWSEWx2 in {
1411defm VFWMACC_V : VWMAC_FV_V_F<"vfwmacc", 0b111100>;
1412defm VFWNMACC_V : VWMAC_FV_V_F<"vfwnmacc", 0b111101>;
1413defm VFWMSAC_V : VWMAC_FV_V_F<"vfwmsac", 0b111110>;
1414defm VFWNMSAC_V : VWMAC_FV_V_F<"vfwnmsac", 0b111111>;
1415} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV, Uses = [FRM], mayRaiseFPException = true, DestEEW = EEWSEWx2
1416
1417// Vector Floating-Point Square-Root Instruction
1418let Uses = [FRM], mayRaiseFPException = true in {
1419defm VFSQRT_V : VSQR_FV_VS2<"vfsqrt.v", 0b010011, 0b00000>;
1420defm VFREC7_V : VRCP_FV_VS2<"vfrec7.v", 0b010011, 0b00101>;
1421}
1422
1423let mayRaiseFPException = true in
1424defm VFRSQRT7_V : VRCP_FV_VS2<"vfrsqrt7.v", 0b010011, 0b00100>;
1425
1426// Vector Floating-Point MIN/MAX Instructions
1427let mayRaiseFPException = true in {
1428defm VFMIN_V : VMINMAX_FV_V_F<"vfmin", 0b000100>;
1429defm VFMAX_V : VMINMAX_FV_V_F<"vfmax", 0b000110>;
1430}
1431
1432// Vector Floating-Point Sign-Injection Instructions
1433defm VFSGNJ_V : VSGNJ_FV_V_F<"vfsgnj", 0b001000>;
1434defm VFSGNJN_V : VSGNJ_FV_V_F<"vfsgnjn", 0b001001>;
1435defm VFSGNJX_V : VSGNJ_FV_V_F<"vfsgnjx", 0b001010>;
1436
1437def : InstAlias<"vfneg.v $vd, $vs$vm",
1438                (VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1439def : InstAlias<"vfneg.v $vd, $vs",
1440                (VFSGNJN_VV VR:$vd, VR:$vs, VR:$vs, zero_reg)>;
1441def : InstAlias<"vfabs.v $vd, $vs$vm",
1442                (VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, VMaskOp:$vm)>;
1443def : InstAlias<"vfabs.v $vd, $vs",
1444                (VFSGNJX_VV VR:$vd, VR:$vs, VR:$vs, zero_reg)>;
1445
1446// Vector Floating-Point Compare Instructions
1447let RVVConstraint = NoConstraint, mayRaiseFPException = true, DestEEW = EEW1 in {
1448defm VMFEQ_V : VCMP_FV_V_F<"vmfeq", 0b011000>;
1449defm VMFNE_V : VCMP_FV_V_F<"vmfne", 0b011100>;
1450defm VMFLT_V : VCMP_FV_V_F<"vmflt", 0b011011>;
1451defm VMFLE_V : VCMP_FV_V_F<"vmfle", 0b011001>;
1452defm VMFGT_V : VCMP_FV_F<"vmfgt", 0b011101>;
1453defm VMFGE_V : VCMP_FV_F<"vmfge", 0b011111>;
1454} // RVVConstraint = NoConstraint, mayRaiseFPException = true, DestEEW = EEW1
1455
1456def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
1457                (VMFLT_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1458def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
1459                (VMFLE_VV VR:$vd, VR:$vb, VR:$va, VMaskOp:$vm), 0>;
1460
1461// Vector Floating-Point Classify Instruction
1462defm VFCLASS_V : VCLS_FV_VS2<"vfclass.v", 0b010011, 0b10000>;
1463
1464let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1465
1466// Vector Floating-Point Merge Instruction
1467def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1468                           (ins VR:$vs2, FPR32:$rs1, VMaskCarryInOp:$vm),
1469                           "vfmerge.vfm", "$vd, $vs2, $rs1, $vm">,
1470                  SchedBinaryMC<"WriteVFMergeV", "ReadVFMergeV", "ReadVFMergeF">;
1471
1472// Vector Floating-Point Move Instruction
1473let RVVConstraint = NoConstraint in
1474let vm = 1, vs2 = 0 in
1475def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VR:$vd),
1476                       (ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1">,
1477               SchedUnaryMC<"WriteVFMovV", "ReadVFMovF", forceMasked=0>;
1478
1479} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1480
1481// Single-Width Floating-Point/Integer Type-Convert Instructions
1482let mayRaiseFPException = true in {
1483let Uses = [FRM] in {
1484defm VFCVT_XU_F_V : VCVTI_FV_VS2<"vfcvt.xu.f.v", 0b010010, 0b00000>;
1485defm VFCVT_X_F_V : VCVTI_FV_VS2<"vfcvt.x.f.v", 0b010010, 0b00001>;
1486}
1487defm VFCVT_RTZ_XU_F_V : VCVTI_FV_VS2<"vfcvt.rtz.xu.f.v", 0b010010, 0b00110>;
1488defm VFCVT_RTZ_X_F_V : VCVTI_FV_VS2<"vfcvt.rtz.x.f.v", 0b010010, 0b00111>;
1489let Uses = [FRM] in {
1490defm VFCVT_F_XU_V : VCVTF_IV_VS2<"vfcvt.f.xu.v", 0b010010, 0b00010>;
1491defm VFCVT_F_X_V : VCVTF_IV_VS2<"vfcvt.f.x.v", 0b010010, 0b00011>;
1492}
1493} // mayRaiseFPException = true
1494
1495// Widening Floating-Point/Integer Type-Convert Instructions
1496let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt,
1497    mayRaiseFPException = true, DestEEW = EEWSEWx2 in {
1498let Uses = [FRM] in {
1499defm VFWCVT_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.xu.f.v", 0b010010, 0b01000>;
1500defm VFWCVT_X_F_V : VWCVTI_FV_VS2<"vfwcvt.x.f.v", 0b010010, 0b01001>;
1501}
1502defm VFWCVT_RTZ_XU_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.xu.f.v", 0b010010, 0b01110>;
1503defm VFWCVT_RTZ_X_F_V : VWCVTI_FV_VS2<"vfwcvt.rtz.x.f.v", 0b010010, 0b01111>;
1504defm VFWCVT_F_XU_V : VWCVTF_IV_VS2<"vfwcvt.f.xu.v", 0b010010, 0b01010>;
1505defm VFWCVT_F_X_V : VWCVTF_IV_VS2<"vfwcvt.f.x.v", 0b010010, 0b01011>;
1506defm VFWCVT_F_F_V : VWCVTF_FV_VS2<"vfwcvt.f.f.v", 0b010010, 0b01100>;
1507} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt, DestEEW = EEWSEWx2
1508
1509// Narrowing Floating-Point/Integer Type-Convert Instructions
1510let Constraints = "@earlyclobber $vd", mayRaiseFPException = true in {
1511let Uses = [FRM] in {
1512defm VFNCVT_XU_F_W : VNCVTI_FV_VS2<"vfncvt.xu.f.w", 0b010010, 0b10000>;
1513defm VFNCVT_X_F_W : VNCVTI_FV_VS2<"vfncvt.x.f.w", 0b010010, 0b10001>;
1514}
1515defm VFNCVT_RTZ_XU_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.xu.f.w", 0b010010, 0b10110>;
1516defm VFNCVT_RTZ_X_F_W : VNCVTI_FV_VS2<"vfncvt.rtz.x.f.w", 0b010010, 0b10111>;
1517let Uses = [FRM] in {
1518defm VFNCVT_F_XU_W : VNCVTF_IV_VS2<"vfncvt.f.xu.w", 0b010010, 0b10010>;
1519defm VFNCVT_F_X_W : VNCVTF_IV_VS2<"vfncvt.f.x.w", 0b010010, 0b10011>;
1520defm VFNCVT_F_F_W : VNCVTF_FV_VS2<"vfncvt.f.f.w", 0b010010, 0b10100>;
1521}
1522defm VFNCVT_ROD_F_F_W : VNCVTF_FV_VS2<"vfncvt.rod.f.f.w", 0b010010, 0b10101>;
1523} // Constraints = "@earlyclobber $vd", mayRaiseFPException = true
1524} // Predicates = HasVInstructionsAnyF]
1525
1526let Predicates = [HasVInstructions] in {
1527
1528// Vector Single-Width Integer Reduction Instructions
1529let RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask in {
1530defm VREDSUM  : VRED_MV_V<"vredsum", 0b000000>;
1531defm VREDMAXU : VREDMINMAX_MV_V<"vredmaxu", 0b000110>;
1532defm VREDMAX  : VREDMINMAX_MV_V<"vredmax", 0b000111>;
1533defm VREDMINU : VREDMINMAX_MV_V<"vredminu", 0b000100>;
1534defm VREDMIN  : VREDMINMAX_MV_V<"vredmin", 0b000101>;
1535defm VREDAND  : VRED_MV_V<"vredand", 0b000001>;
1536defm VREDOR   : VRED_MV_V<"vredor", 0b000010>;
1537defm VREDXOR  : VRED_MV_V<"vredxor", 0b000011>;
1538} // RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask
1539
1540// Vector Widening Integer Reduction Instructions
1541let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask, DestEEW = EEWSEWx2 in {
1542// Set earlyclobber for following instructions for second and mask operands.
1543// This has the downside that the earlyclobber constraint is too coarse and
1544// will impose unnecessary restrictions by not allowing the destination to
1545// overlap with the first (wide) operand.
1546defm VWREDSUMU : VWRED_IV_V<"vwredsumu", 0b110000>;
1547defm VWREDSUM : VWRED_IV_V<"vwredsum", 0b110001>;
1548} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask, DestEEW = EEWSEWx2
1549
1550} // Predicates = [HasVInstructions]
1551
1552let Predicates = [HasVInstructionsAnyF] in {
1553// Vector Single-Width Floating-Point Reduction Instructions
1554let RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask in {
1555let Uses = [FRM], mayRaiseFPException = true in {
1556defm VFREDOSUM : VREDO_FV_V<"vfredosum", 0b000011>;
1557defm VFREDUSUM : VRED_FV_V<"vfredusum", 0b000001>;
1558}
1559let mayRaiseFPException = true in {
1560defm VFREDMAX : VREDMINMAX_FV_V<"vfredmax", 0b000111>;
1561defm VFREDMIN : VREDMINMAX_FV_V<"vfredmin", 0b000101>;
1562}
1563} // RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask
1564
1565def : InstAlias<"vfredsum.vs $vd, $vs2, $vs1$vm",
1566                (VFREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1567
1568// Vector Widening Floating-Point Reduction Instructions
1569let Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask, DestEEW = EEWSEWx2 in {
1570// Set earlyclobber for following instructions for second and mask operands.
1571// This has the downside that the earlyclobber constraint is too coarse and
1572// will impose unnecessary restrictions by not allowing the destination to
1573// overlap with the first (wide) operand.
1574let Uses = [FRM], mayRaiseFPException = true in {
1575defm VFWREDOSUM : VWREDO_FV_V<"vfwredosum", 0b110011>;
1576defm VFWREDUSUM : VWRED_FV_V<"vfwredusum", 0b110001>;
1577}
1578} // Constraints = "@earlyclobber $vd", RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask, DestEEW = EEWSEWx2
1579
1580def : InstAlias<"vfwredsum.vs $vd, $vs2, $vs1$vm",
1581                (VFWREDUSUM_VS VR:$vd, VR:$vs2, VR:$vs1, VMaskOp:$vm), 0>;
1582} // Predicates = [HasVInstructionsAnyF]
1583
1584let Predicates = [HasVInstructions] in {
1585// Vector Mask-Register Logical Instructions
1586let RVVConstraint = NoConstraint, DestEEW = EEW1 in {
1587defm VMAND_M : VMALU_MV_Mask<"vmand", 0b011001, "m">;
1588defm VMNAND_M : VMALU_MV_Mask<"vmnand", 0b011101, "m">;
1589defm VMANDN_M : VMALU_MV_Mask<"vmandn", 0b011000, "m">;
1590defm VMXOR_M : VMALU_MV_Mask<"vmxor", 0b011011, "m">;
1591defm VMOR_M : VMALU_MV_Mask<"vmor", 0b011010, "m">;
1592defm VMNOR_M : VMALU_MV_Mask<"vmnor", 0b011110, "m">;
1593defm VMORN_M : VMALU_MV_Mask<"vmorn", 0b011100, "m">;
1594defm VMXNOR_M : VMALU_MV_Mask<"vmxnor", 0b011111, "m">;
1595}
1596
1597def : InstAlias<"vmmv.m $vd, $vs",
1598                (VMAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1599def : InstAlias<"vmclr.m $vd",
1600                (VMXOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1601def : InstAlias<"vmset.m $vd",
1602                (VMXNOR_MM VR:$vd, VR:$vd, VR:$vd)>;
1603def : InstAlias<"vmnot.m $vd, $vs",
1604                (VMNAND_MM VR:$vd, VR:$vs, VR:$vs)>;
1605
1606def : InstAlias<"vmandnot.mm $vd, $vs2, $vs1",
1607                (VMANDN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1608def : InstAlias<"vmornot.mm $vd, $vs2, $vs1",
1609                (VMORN_MM VR:$vd, VR:$vs2, VR:$vs1), 0>;
1610
1611let hasSideEffects = 0, mayLoad = 0, mayStore = 0,
1612    RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask in {
1613
1614// Vector mask population count vcpop
1615def VCPOP_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
1616                      (ins VR:$vs2, VMaskOp:$vm),
1617                      "vcpop.m", "$vd, $vs2$vm">,
1618              SchedUnaryMC<"WriteVMPopV", "ReadVMPopV">;
1619
1620// vfirst find-first-set mask bit
1621def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
1622                       (ins VR:$vs2, VMaskOp:$vm),
1623                       "vfirst.m", "$vd, $vs2$vm">,
1624              SchedUnaryMC<"WriteVMFFSV", "ReadVMFFSV">;
1625
1626} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, RVVConstraint = NoConstraint, ElementsDependOn = EltDepsVLMask
1627
1628def : InstAlias<"vpopc.m $vd, $vs2$vm",
1629                (VCPOP_M GPR:$vd, VR:$vs2, VMaskOp:$vm), 0>;
1630
1631let Constraints = "@earlyclobber $vd", RVVConstraint = Iota, ElementsDependOn = EltDepsVLMask in {
1632
1633let DestEEW = EEW1 in {
1634// vmsbf.m set-before-first mask bit
1635defm VMSBF_M : VMSFS_MV_V<"vmsbf.m", 0b010100, 0b00001>;
1636// vmsif.m set-including-first mask bit
1637defm VMSIF_M : VMSFS_MV_V<"vmsif.m", 0b010100, 0b00011>;
1638// vmsof.m set-only-first mask bit
1639defm VMSOF_M : VMSFS_MV_V<"vmsof.m", 0b010100, 0b00010>;
1640} // DestEEW = EEW1
1641// Vector Iota Instruction
1642defm VIOTA_M : VIOTA_MV_V<"viota.m", 0b010100, 0b10000>;
1643
1644} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota, ElementsDependOn = EltDepsVLMask
1645
1646// Vector Element Index Instruction
1647let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
1648
1649let vs2 = 0 in
1650def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VR:$vd),
1651                    (ins VMaskOp:$vm), "vid.v", "$vd$vm">,
1652            SchedNullaryMC<"WriteVIdxV">;
1653
1654// Integer Scalar Move Instructions
1655let vm = 1, RVVConstraint = NoConstraint in {
1656def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
1657                      (ins VR:$vs2), "vmv.x.s", "$vd, $vs2">,
1658              Sched<[WriteVMovXS, ReadVMovXS]>;
1659let Constraints = "$vd = $vd_wb" in
1660def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VR:$vd_wb),
1661                      (ins VR:$vd, GPR:$rs1), "vmv.s.x", "$vd, $rs1">,
1662              Sched<[WriteVMovSX, ReadVMovSX_V, ReadVMovSX_X]>;
1663}
1664
1665} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1666
1667} // Predicates = [HasVInstructions]
1668
1669let Predicates = [HasVInstructionsAnyF] in {
1670
1671let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1,
1672    RVVConstraint = NoConstraint  in {
1673// Floating-Point Scalar Move Instructions
1674def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
1675                      (ins VR:$vs2), "vfmv.f.s", "$vd, $vs2">,
1676               Sched<[WriteVMovFS, ReadVMovFS]>;
1677let Constraints = "$vd = $vd_wb" in
1678def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VR:$vd_wb),
1679                       (ins VR:$vd, FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">,
1680               Sched<[WriteVMovSF, ReadVMovSF_V, ReadVMovSF_F]>;
1681
1682} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1
1683
1684} // Predicates = [HasVInstructionsAnyF]
1685
1686let Predicates = [HasVInstructions] in {
1687// Vector Slide Instructions
1688let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1689defm VSLIDEUP_V : VSLD_IV_X_I<"vslideup", 0b001110, /*slidesUp=*/true>;
1690defm VSLIDE1UP_V : VSLD1_MV_X<"vslide1up", 0b001110>;
1691} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1692defm VSLIDEDOWN_V : VSLD_IV_X_I<"vslidedown", 0b001111, /*slidesUp=*/false>;
1693let ElementsDependOn = EltDepsVL in
1694defm VSLIDE1DOWN_V : VSLD1_MV_X<"vslide1down", 0b001111>;
1695} // Predicates = [HasVInstructions]
1696
1697let Predicates = [HasVInstructionsAnyF] in {
1698let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
1699defm VFSLIDE1UP_V : VSLD1_FV_F<"vfslide1up", 0b001110>;
1700} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
1701let ElementsDependOn = EltDepsVL in
1702defm VFSLIDE1DOWN_V : VSLD1_FV_F<"vfslide1down", 0b001111>;
1703} // Predicates = [HasVInstructionsAnyF]
1704
1705let Predicates = [HasVInstructions] in {
1706// Vector Register Gather Instruction
1707let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
1708defm VRGATHER_V : VGTR_IV_V_X_I<"vrgather", 0b001100>;
1709def VRGATHEREI16_VV : VALUVV<0b001110, OPIVV, "vrgatherei16.vv">,
1710                      SchedBinaryMC<"WriteVRGatherEI16VV",
1711                                    "ReadVRGatherEI16VV_data",
1712                                    "ReadVRGatherEI16VV_index">;
1713} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather
1714
1715// Vector Compress Instruction
1716let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress, ElementsDependOn = EltDepsVLMask in {
1717defm VCOMPRESS_V : VCPR_MV_Mask<"vcompress", 0b010111>;
1718} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress, ElementsDependOn = EltDepsVLMask
1719
1720let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isMoveReg = 1,
1721    RVVConstraint = NoConstraint in {
1722// A future extension may relax the vector register alignment restrictions.
1723foreach n = [1, 2, 4, 8] in {
1724  defvar vrc = !cast<VReg>(!if(!eq(n, 1), "VR", "VRM"#n));
1725  def VMV#n#R_V  : RVInstV<0b100111, !add(n, -1), OPIVI, (outs vrc:$vd),
1726                           (ins vrc:$vs2), "vmv" # n # "r.v", "$vd, $vs2">,
1727                   VMVRSched<n> {
1728    let Uses = [VTYPE];
1729    let vm = 1;
1730  }
1731}
1732} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
1733} // Predicates = [HasVInstructions]
1734
1735let Predicates = [HasVInstructions] in {
1736  foreach nf=2-8 in {
1737    foreach eew = [8, 16, 32] in {
1738      defvar w = !cast<RISCVWidth>("LSWidth"#eew);
1739
1740      def VLSEG#nf#E#eew#_V :
1741        VUnitStrideSegmentLoad<!add(nf, -1), w, "vlseg"#nf#"e"#eew#".v">,
1742        VLSEGSchedMC<nf, eew>;
1743      def VLSEG#nf#E#eew#FF_V :
1744        VUnitStrideSegmentLoadFF<!add(nf, -1), w, "vlseg"#nf#"e"#eew#"ff.v">,
1745        VLSEGFFSchedMC<nf, eew>;
1746      def VSSEG#nf#E#eew#_V :
1747        VUnitStrideSegmentStore<!add(nf, -1), w, "vsseg"#nf#"e"#eew#".v">,
1748        VSSEGSchedMC<nf, eew>;
1749      // Vector Strided Instructions
1750      def VLSSEG#nf#E#eew#_V :
1751        VStridedSegmentLoad<!add(nf, -1), w, "vlsseg"#nf#"e"#eew#".v">,
1752        VLSSEGSchedMC<nf, eew>;
1753      def VSSSEG#nf#E#eew#_V :
1754        VStridedSegmentStore<!add(nf, -1), w, "vssseg"#nf#"e"#eew#".v">,
1755        VSSSEGSchedMC<nf, eew>;
1756
1757      // Vector Indexed Instructions
1758      def VLUXSEG#nf#EI#eew#_V :
1759        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, w,
1760                            "vluxseg"#nf#"ei"#eew#".v">,
1761        VLXSEGSchedMC<nf, eew, isOrdered=0>;
1762      def VLOXSEG#nf#EI#eew#_V :
1763        VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, w,
1764                            "vloxseg"#nf#"ei"#eew#".v">,
1765        VLXSEGSchedMC<nf, eew, isOrdered=1>;
1766      def VSUXSEG#nf#EI#eew#_V :
1767        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, w,
1768                             "vsuxseg"#nf#"ei"#eew#".v">,
1769        VSXSEGSchedMC<nf, eew, isOrdered=0>;
1770      def VSOXSEG#nf#EI#eew#_V :
1771        VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, w,
1772                             "vsoxseg"#nf#"ei"#eew#".v">,
1773        VSXSEGSchedMC<nf, eew, isOrdered=1>;
1774    }
1775  }
1776} // Predicates = [HasVInstructions]
1777
1778let Predicates = [HasVInstructionsI64] in {
1779  foreach nf=2-8 in {
1780    // Vector Unit-strided Segment Instructions
1781    def VLSEG#nf#E64_V :
1782      VUnitStrideSegmentLoad<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64.v">,
1783      VLSEGSchedMC<nf, 64>;
1784    def VLSEG#nf#E64FF_V :
1785      VUnitStrideSegmentLoadFF<!add(nf, -1), LSWidth64, "vlseg"#nf#"e64ff.v">,
1786      VLSEGFFSchedMC<nf, 64>;
1787    def VSSEG#nf#E64_V :
1788      VUnitStrideSegmentStore<!add(nf, -1), LSWidth64, "vsseg"#nf#"e64.v">,
1789      VSSEGSchedMC<nf, 64>;
1790
1791    // Vector Strided Segment Instructions
1792    def VLSSEG#nf#E64_V :
1793      VStridedSegmentLoad<!add(nf, -1), LSWidth64, "vlsseg"#nf#"e64.v">,
1794      VLSSEGSchedMC<nf, 64>;
1795    def VSSSEG#nf#E64_V :
1796      VStridedSegmentStore<!add(nf, -1), LSWidth64, "vssseg"#nf#"e64.v">,
1797      VSSSEGSchedMC<nf, 64>;
1798  }
1799} // Predicates = [HasVInstructionsI64]
1800let Predicates = [HasVInstructionsI64, IsRV64] in {
1801  foreach nf = 2 - 8 in {
1802    // Vector Indexed Segment Instructions
1803    def VLUXSEG #nf #EI64_V
1804        : VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedUnord, LSWidth64,
1805                              "vluxseg" #nf #"ei64.v">,
1806          VLXSEGSchedMC<nf, 64, isOrdered=0>;
1807    def VLOXSEG #nf #EI64_V
1808        : VIndexedSegmentLoad<!add(nf, -1), MOPLDIndexedOrder, LSWidth64,
1809                              "vloxseg" #nf #"ei64.v">,
1810          VLXSEGSchedMC<nf, 64, isOrdered=1>;
1811    def VSUXSEG #nf #EI64_V
1812        : VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedUnord, LSWidth64,
1813                               "vsuxseg" #nf #"ei64.v">,
1814          VSXSEGSchedMC<nf, 64, isOrdered=0>;
1815    def VSOXSEG #nf #EI64_V
1816        : VIndexedSegmentStore<!add(nf, -1), MOPSTIndexedOrder, LSWidth64,
1817                               "vsoxseg" #nf #"ei64.v">,
1818          VSXSEGSchedMC<nf, 64, isOrdered=1>;
1819  }
1820} // Predicates = [HasVInstructionsI64, IsRV64]
1821
1822include "RISCVInstrInfoZvfbf.td"
1823include "RISCVInstrInfoVPseudos.td"
1824