xref: /llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoD.td (revision 785b16ad04a741dce65ebaa11ee86d9dd19dd699)
1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def : GINodeEquiv<G_MERGE_VALUES, RISCVBuildPairF64>;
27def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
28def : GINodeEquiv<G_UNMERGE_VALUES, RISCVSplitF64>;
29
30def AddrRegImmINX : ComplexPattern<iPTR, 2, "SelectAddrRegImmRV32Zdinx">;
31
32//===----------------------------------------------------------------------===//
33// Operand and SDNode transformation definitions.
34//===----------------------------------------------------------------------===//
35
36// Zdinx
37
38def GPRPairAsFPR : AsmOperandClass {
39  let Name = "GPRPairAsFPR";
40  let ParserMethod = "parseGPRPairAsFPR64";
41  let PredicateMethod = "isGPRPairAsFPR64";
42  let RenderMethod = "addRegOperands";
43}
44
45def GPRF64AsFPR : AsmOperandClass {
46  let Name = "GPRF64AsFPR";
47  let PredicateMethod = "isGPRAsFPR";
48  let ParserMethod = "parseGPRAsFPR64";
49  let RenderMethod = "addRegOperands";
50}
51
52def FPR64INX : RegisterOperand<GPR> {
53  let ParserMatchClass = GPRF64AsFPR;
54  let DecoderMethod = "DecodeGPRRegisterClass";
55}
56
57def FPR64IN32X : RegisterOperand<GPRPair> {
58  let ParserMatchClass = GPRPairAsFPR;
59}
60
61def DExt       : ExtInfo<"", "", [HasStdExtD], f64, FPR64, FPR32, FPR64, ?>;
62
63def ZdinxExt   : ExtInfo<"_INX", "RVZfinx", [HasStdExtZdinx, IsRV64],
64                         f64, FPR64INX, FPR32INX, FPR64INX, ?>;
65def Zdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZdinx, IsRV32],
66                         f64, FPR64IN32X, FPR32INX, FPR64IN32X, ?>;
67
68defvar DExts     = [DExt, ZdinxExt, Zdinx32Ext];
69defvar DExtsRV64 = [DExt, ZdinxExt];
70
71//===----------------------------------------------------------------------===//
72// Instructions
73//===----------------------------------------------------------------------===//
74
75let Predicates = [HasStdExtD] in {
76def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;
77
78// Operands for stores are in the order srcreg, base, offset rather than
79// reflecting the order these fields are specified in the instruction
80// encoding.
81def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
82} // Predicates = [HasStdExtD]
83
84foreach Ext = DExts in {
85  let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64Addend] in {
86    defm FMADD_D  : FPFMA_rrr_frm_m<OPC_MADD,  0b01, "fmadd.d",  Ext>;
87    defm FMSUB_D  : FPFMA_rrr_frm_m<OPC_MSUB,  0b01, "fmsub.d",  Ext>;
88    defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", Ext>;
89    defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", Ext>;
90  }
91
92  let SchedRW = [WriteFAdd64, ReadFAdd64, ReadFAdd64] in {
93    defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", Ext, Commutable=1>;
94    defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", Ext>;
95  }
96  let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
97  defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", Ext, Commutable=1>;
98
99  let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
100  defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", Ext>;
101
102  defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, Ext, Ext.PrimaryTy,
103                                   Ext.PrimaryTy, "fsqrt.d">,
104                 Sched<[WriteFSqrt64, ReadFSqrt64]>;
105
106  let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
107      mayRaiseFPException = 0 in {
108    defm FSGNJ_D  : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d",  Ext>;
109    defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", Ext>;
110    defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", Ext>;
111  }
112
113  let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
114    defm FMIN_D   : FPALU_rr_m<0b0010101, 0b000, "fmin.d", Ext, Commutable=1>;
115    defm FMAX_D   : FPALU_rr_m<0b0010101, 0b001, "fmax.d", Ext, Commutable=1>;
116  }
117
118  defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, Ext, Ext.F32Ty,
119                                    Ext.PrimaryTy, "fcvt.s.d">,
120                  Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;
121
122  defm FCVT_D_S : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00000, Ext, Ext.PrimaryTy,
123                                          Ext.F32Ty, "fcvt.d.s">,
124                  Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;
125
126  let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
127    defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", Ext, Commutable=1>;
128    defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", Ext>;
129    defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", Ext>;
130  }
131
132  let mayRaiseFPException = 0 in
133  defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
134                                "fclass.d">,
135                  Sched<[WriteFClass64, ReadFClass64]>;
136
137  let IsSignExtendingOpW = 1 in
138  defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, Ext, GPR, Ext.PrimaryTy,
139                                    "fcvt.w.d">,
140                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
141
142  let IsSignExtendingOpW = 1 in
143  defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, Ext, GPR, Ext.PrimaryTy,
144                                     "fcvt.wu.d">,
145                   Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
146
147  defm FCVT_D_W : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00000, Ext, Ext.PrimaryTy, GPR,
148                                          "fcvt.d.w">,
149                  Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
150
151  defm FCVT_D_WU : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00001, Ext, Ext.PrimaryTy, GPR,
152                                           "fcvt.d.wu">,
153                   Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
154} // foreach Ext = DExts
155
156foreach Ext = DExtsRV64 in {
157  defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, Ext, GPR, Ext.PrimaryTy,
158                                    "fcvt.l.d", [IsRV64]>,
159                  Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
160
161  defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, Ext, GPR, Ext.PrimaryTy,
162                                     "fcvt.lu.d", [IsRV64]>,
163                   Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
164
165  defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, Ext, Ext.PrimaryTy, GPR,
166                                    "fcvt.d.l", [IsRV64]>,
167                  Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
168
169  defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, Ext, Ext.PrimaryTy, GPR,
170                                     "fcvt.d.lu", [IsRV64]>,
171                   Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
172} // foreach Ext = DExts64
173
174let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
175def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
176              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;
177
178let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
179def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
180              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;
181
182//===----------------------------------------------------------------------===//
183// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
184//===----------------------------------------------------------------------===//
185
186let Predicates = [HasStdExtD] in {
187def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
188def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
189
190def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
191def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
192def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
193
194// fgt.d/fge.d are recognised by the GNU assembler but the canonical
195// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
196def : InstAlias<"fgt.d $rd, $rs, $rt",
197                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
198def : InstAlias<"fge.d $rd, $rs, $rt",
199                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
200
201def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
202def PseudoFSD  : PseudoStore<"fsd", FPR64>;
203let usesCustomInserter = 1 in {
204def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
205def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
206}
207} // Predicates = [HasStdExtD]
208
209let Predicates = [HasStdExtZdinx, IsRV64] in {
210def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D_INX  FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
211def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
212def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
213
214def : InstAlias<"fgt.d $rd, $rs, $rt",
215                (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
216def : InstAlias<"fge.d $rd, $rs, $rt",
217                (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
218let usesCustomInserter = 1 in {
219def PseudoQuietFLE_D_INX : PseudoQuietFCMP<FPR64INX>;
220def PseudoQuietFLT_D_INX : PseudoQuietFCMP<FPR64INX>;
221}
222} // Predicates = [HasStdExtZdinx, IsRV64]
223
224let Predicates = [HasStdExtZdinx, IsRV32] in {
225def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D_IN32X  FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
226def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
227def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
228
229def : InstAlias<"fgt.d $rd, $rs, $rt",
230                (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
231def : InstAlias<"fge.d $rd, $rs, $rt",
232                (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
233let usesCustomInserter = 1 in {
234def PseudoQuietFLE_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
235def PseudoQuietFLT_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
236}
237} // Predicates = [HasStdExtZdinx, IsRV32]
238
239//===----------------------------------------------------------------------===//
240// Pseudo-instructions and codegen patterns
241//===----------------------------------------------------------------------===//
242
243let Predicates = [HasStdExtD] in {
244
245/// Float conversion operations
246
247// f64 -> f32, f32 -> f64
248def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, FRM_DYN)>;
249def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1, FRM_RNE)>;
250} // Predicates = [HasStdExtD]
251
252let Predicates = [HasStdExtZdinx, IsRV64] in {
253/// Float conversion operations
254
255// f64 -> f32, f32 -> f64
256def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_S_D_INX FPR64INX:$rs1, FRM_DYN)>;
257def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_INX FPR32INX:$rs1, FRM_RNE)>;
258} // Predicates = [HasStdExtZdinx, IsRV64]
259
260let Predicates = [HasStdExtZdinx, IsRV32] in {
261/// Float conversion operations
262
263// f64 -> f32, f32 -> f64
264def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_S_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
265def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_IN32X FPR32INX:$rs1, FRM_RNE)>;
266} // Predicates = [HasStdExtZdinx, IsRV32]
267
268// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
269// are defined later.
270
271/// Float arithmetic operations
272
273foreach Ext = DExts in {
274  defm : PatFprFprDynFrm_m<any_fadd, FADD_D, Ext>;
275  defm : PatFprFprDynFrm_m<any_fsub, FSUB_D, Ext>;
276  defm : PatFprFprDynFrm_m<any_fmul, FMUL_D, Ext>;
277  defm : PatFprFprDynFrm_m<any_fdiv, FDIV_D, Ext>;
278}
279
280let Predicates = [HasStdExtD] in {
281def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, FRM_DYN)>;
282
283def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
284def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
285
286def : Pat<(riscv_fclass FPR64:$rs1), (FCLASS_D $rs1)>;
287
288def : PatFprFpr<fcopysign, FSGNJ_D, FPR64, f64>;
289def : PatFprFpr<riscv_fsgnjx, FSGNJX_D, FPR64, f64>;
290def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)),
291          (FSGNJN_D FPR64:$rs1, FPR64:$rs2)>;
292def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2,
293                                                              FRM_RNE))>;
294def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
295                                                              FRM_DYN))>;
296
297// fmadd: rs1 * rs2 + rs3
298def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
299          (FMADD_D $rs1, $rs2, $rs3, FRM_DYN)>;
300
301// fmsub: rs1 * rs2 - rs3
302def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
303          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
304
305// fnmsub: -rs1 * rs2 + rs3
306def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
307          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
308
309// fnmadd: -rs1 * rs2 - rs3
310def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
311          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
312
313// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
314def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)),
315          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
316} // Predicates = [HasStdExtD]
317
318let Predicates = [HasStdExtZdinx, IsRV64] in {
319def : Pat<(any_fsqrt FPR64INX:$rs1), (FSQRT_D_INX FPR64INX:$rs1, FRM_DYN)>;
320
321def : Pat<(fneg FPR64INX:$rs1), (FSGNJN_D_INX $rs1, $rs1)>;
322def : Pat<(fabs FPR64INX:$rs1), (FSGNJX_D_INX $rs1, $rs1)>;
323
324def : Pat<(riscv_fclass FPR64INX:$rs1), (FCLASS_D_INX $rs1)>;
325
326def : PatFprFpr<fcopysign, FSGNJ_D_INX, FPR64INX, f64>;
327def : PatFprFpr<riscv_fsgnjx, FSGNJX_D_INX, FPR64INX, f64>;
328def : Pat<(fcopysign FPR64INX:$rs1, (fneg FPR64INX:$rs2)),
329          (FSGNJN_D_INX FPR64INX:$rs1, FPR64INX:$rs2)>;
330def : Pat<(fcopysign FPR64INX:$rs1, FPR32INX:$rs2),
331          (FSGNJ_D_INX $rs1, (f64 (FCVT_D_S_INX $rs2, FRM_RNE)))>;
332def : Pat<(fcopysign FPR32INX:$rs1, FPR64INX:$rs2),
333          (FSGNJ_S_INX $rs1, (FCVT_S_D_INX $rs2, FRM_DYN))>;
334
335// fmadd: rs1 * rs2 + rs3
336def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3),
337          (FMADD_D_INX $rs1, $rs2, $rs3, FRM_DYN)>;
338
339// fmsub: rs1 * rs2 - rs3
340def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
341          (FMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
342
343// fnmsub: -rs1 * rs2 + rs3
344def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, FPR64INX:$rs3),
345          (FNMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
346
347// fnmadd: -rs1 * rs2 - rs3
348def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
349          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
350
351// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
352def : Pat<(fneg (any_fma_nsz FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3)),
353          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
354} // Predicates = [HasStdExtZdinx, IsRV64]
355
356let Predicates = [HasStdExtZdinx, IsRV32] in {
357def : Pat<(any_fsqrt FPR64IN32X:$rs1), (FSQRT_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
358
359def : Pat<(fneg FPR64IN32X:$rs1), (FSGNJN_D_IN32X $rs1, $rs1)>;
360def : Pat<(fabs FPR64IN32X:$rs1), (FSGNJX_D_IN32X $rs1, $rs1)>;
361
362def : Pat<(riscv_fclass FPR64IN32X:$rs1), (FCLASS_D_IN32X $rs1)>;
363
364def : PatFprFpr<fcopysign, FSGNJ_D_IN32X, FPR64IN32X, f64>;
365def : PatFprFpr<riscv_fsgnjx, FSGNJX_D_IN32X, FPR64IN32X, f64>;
366def : Pat<(fcopysign FPR64IN32X:$rs1, (fneg FPR64IN32X:$rs2)),
367          (FSGNJN_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2)>;
368def : Pat<(fcopysign FPR64IN32X:$rs1, FPR32INX:$rs2),
369          (FSGNJ_D_IN32X $rs1, (FCVT_D_S_IN32X $rs2, FRM_RNE))>;
370def : Pat<(fcopysign FPR32INX:$rs1, FPR64IN32X:$rs2),
371          (FSGNJ_S_INX $rs1, (FCVT_S_D_IN32X $rs2, FRM_DYN))>;
372
373// fmadd: rs1 * rs2 + rs3
374def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3),
375          (FMADD_D_IN32X $rs1, $rs2, $rs3, FRM_DYN)>;
376
377// fmsub: rs1 * rs2 - rs3
378def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
379          (FMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
380
381// fnmsub: -rs1 * rs2 + rs3
382def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, FPR64IN32X:$rs3),
383          (FNMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
384
385// fnmadd: -rs1 * rs2 - rs3
386def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
387          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
388
389// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
390def : Pat<(fneg (any_fma_nsz FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3)),
391          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
392} // Predicates = [HasStdExtZdinx, IsRV32]
393
394// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
395// LLVM's fminnum and fmaxnum.
396// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
397foreach Ext = DExts in {
398  defm : PatFprFpr_m<fminnum, FMIN_D, Ext>;
399  defm : PatFprFpr_m<fmaxnum, FMAX_D, Ext>;
400  defm : PatFprFpr_m<fminimumnum, FMIN_D, Ext>;
401  defm : PatFprFpr_m<fmaximumnum, FMAX_D, Ext>;
402  defm : PatFprFpr_m<riscv_fmin, FMIN_D, Ext>;
403  defm : PatFprFpr_m<riscv_fmax, FMAX_D, Ext>;
404  def : Pat<(f64 (fcanonicalize FPR64:$rs1)), (FMIN_D $rs1, $rs1)>;
405}
406
407/// Setcc
408// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
409// strict versions of those.
410
411// Match non-signaling FEQ_D
412foreach Ext = DExts in {
413  defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_D,            Ext>;
414  defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_D,            Ext>;
415  defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_D, Ext>;
416  defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_D, Ext>;
417  defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_D, Ext>;
418  defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_D, Ext>;
419}
420
421let Predicates = [HasStdExtD] in {
422// Match signaling FEQ_D
423def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ)),
424          (AND (XLenVT (FLE_D $rs1, $rs2)),
425               (XLenVT (FLE_D $rs2, $rs1)))>;
426def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ)),
427          (AND (XLenVT (FLE_D $rs1, $rs2)),
428               (XLenVT (FLE_D $rs2, $rs1)))>;
429// If both operands are the same, use a single FLE.
430def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ)),
431          (FLE_D $rs1, $rs1)>;
432def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ)),
433          (FLE_D $rs1, $rs1)>;
434
435def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D, f64>;
436def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D, f64>;
437def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D, f64>;
438def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D, f64>;
439} // Predicates = [HasStdExtD]
440
441let Predicates = [HasStdExtZdinx, IsRV64] in {
442// Match signaling FEQ_D
443def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETEQ)),
444          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
445               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
446def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETOEQ)),
447          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
448               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
449// If both operands are the same, use a single FLE.
450def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETEQ)),
451          (FLE_D_INX $rs1, $rs1)>;
452def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETOEQ)),
453          (FLE_D_INX $rs1, $rs1)>;
454
455def : PatSetCC<FPR64INX, any_fsetccs, SETLT,  FLT_D_INX, f64>;
456def : PatSetCC<FPR64INX, any_fsetccs, SETOLT, FLT_D_INX, f64>;
457def : PatSetCC<FPR64INX, any_fsetccs, SETLE,  FLE_D_INX, f64>;
458def : PatSetCC<FPR64INX, any_fsetccs, SETOLE, FLE_D_INX, f64>;
459} // Predicates = [HasStdExtZdinx, IsRV64]
460
461let Predicates = [HasStdExtZdinx, IsRV32] in {
462// Match signaling FEQ_D
463def : Pat<(XLenVT (strict_fsetccs (f64 FPR64IN32X:$rs1), FPR64IN32X:$rs2, SETEQ)),
464          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
465               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
466def : Pat<(XLenVT (strict_fsetccs (f64 FPR64IN32X:$rs1), FPR64IN32X:$rs2, SETOEQ)),
467          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
468               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
469// If both operands are the same, use a single FLE.
470def : Pat<(XLenVT (strict_fsetccs (f64 FPR64IN32X:$rs1), FPR64IN32X:$rs1, SETEQ)),
471          (FLE_D_IN32X $rs1, $rs1)>;
472def : Pat<(XLenVT (strict_fsetccs (f64 FPR64IN32X:$rs1), FPR64IN32X:$rs1, SETOEQ)),
473          (FLE_D_IN32X $rs1, $rs1)>;
474
475def : PatSetCC<FPR64IN32X, any_fsetccs, SETLT,  FLT_D_IN32X, f64>;
476def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLT, FLT_D_IN32X, f64>;
477def : PatSetCC<FPR64IN32X, any_fsetccs, SETLE,  FLE_D_IN32X, f64>;
478def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLE, FLE_D_IN32X, f64>;
479} // Predicates = [HasStdExtZdinx, IsRV32]
480
481let Predicates = [HasStdExtD] in {
482defm Select_FPR64 : SelectCC_GPR_rrirr<FPR64, f64>;
483
484def PseudoFROUND_D : PseudoFROUND<FPR64, f64>;
485
486/// Loads
487
488def : LdPat<load, FLD, f64>;
489
490/// Stores
491
492def : StPat<store, FSD, FPR64, f64>;
493} // Predicates = [HasStdExtD]
494
495let Predicates = [HasStdExtD, NoStdExtZfa, IsRV32] in {
496/// Pseudo-instructions needed for the soft-float ABI with RV32D
497
498// Moves two GPRs to an FPR.
499let usesCustomInserter = 1 in
500def BuildPairF64Pseudo
501    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
502             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
503
504// Moves an FPR to two GPRs.
505let usesCustomInserter = 1 in
506def SplitF64Pseudo
507    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
508             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
509
510} // Predicates = [HasStdExtD, NoStdExtZfa, IsRV32]
511
512let Predicates = [HasStdExtZdinx, IsRV64] in {
513defm Select_FPR64INX : SelectCC_GPR_rrirr<FPR64INX, f64>;
514
515def PseudoFROUND_D_INX : PseudoFROUND<FPR64INX, f64>;
516
517/// Loads
518def : LdPat<load, LD, f64>;
519
520/// Stores
521def : StPat<store, SD, GPR, f64>;
522} // Predicates = [HasStdExtZdinx, IsRV64]
523
524let Predicates = [HasStdExtZdinx, IsRV32] in {
525defm Select_FPR64IN32X : SelectCC_GPR_rrirr<FPR64IN32X, f64>;
526
527def PseudoFROUND_D_IN32X : PseudoFROUND<FPR64IN32X, f64>;
528
529/// Loads
530let isCall = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 1 in
531def PseudoRV32ZdinxLD : Pseudo<(outs GPRPair:$dst), (ins GPR:$rs1, simm12:$imm12), []>;
532def : Pat<(f64 (load (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12))),
533          (PseudoRV32ZdinxLD GPR:$rs1, simm12:$imm12)>;
534
535/// Stores
536let isCall = 0, mayLoad = 0, mayStore = 1, Size = 8, isCodeGenOnly = 1 in
537def PseudoRV32ZdinxSD : Pseudo<(outs), (ins GPRPair:$rs2, GPRNoX0:$rs1, simm12:$imm12), []>;
538def : Pat<(store (f64 GPRPair:$rs2), (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12)),
539          (PseudoRV32ZdinxSD GPRPair:$rs2, GPR:$rs1, simm12:$imm12)>;
540} // Predicates = [HasStdExtZdinx, IsRV32]
541
542let Predicates = [HasStdExtD, IsRV32] in {
543
544// double->[u]int. Round-to-zero must be used.
545def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, FRM_RTZ)>;
546def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, FRM_RTZ)>;
547
548// Saturating double->[u]int32.
549def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
550def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;
551
552// float->int32 with current rounding mode.
553def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, FRM_DYN)>;
554
555// float->int32 rounded to nearest with ties rounded away from zero.
556def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, FRM_RMM)>;
557
558// [u]int->double.
559def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1, FRM_RNE)>;
560def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1, FRM_RNE)>;
561} // Predicates = [HasStdExtD, IsRV32]
562
563let Predicates = [HasStdExtZdinx, IsRV32] in {
564
565// double->[u]int. Round-to-zero must be used.
566def : Pat<(i32 (any_fp_to_sint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
567def : Pat<(i32 (any_fp_to_uint FPR64IN32X:$rs1)), (FCVT_WU_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
568
569// Saturating double->[u]int32.
570def : Pat<(i32 (riscv_fcvt_x FPR64IN32X:$rs1, timm:$frm)), (FCVT_W_D_IN32X $rs1, timm:$frm)>;
571def : Pat<(i32 (riscv_fcvt_xu FPR64IN32X:$rs1, timm:$frm)), (FCVT_WU_D_IN32X $rs1, timm:$frm)>;
572
573// float->int32 with current rounding mode.
574def : Pat<(i32 (any_lrint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_DYN)>;
575
576// float->int32 rounded to nearest with ties rounded away from zero.
577def : Pat<(i32 (any_lround FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_RMM)>;
578
579// [u]int->double.
580def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W_IN32X GPR:$rs1, FRM_RNE)>;
581def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU_IN32X GPR:$rs1, FRM_RNE)>;
582} // Predicates = [HasStdExtZdinx, IsRV32]
583
584let Predicates = [HasStdExtD, IsRV64] in {
585
586// Moves (no conversion)
587def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
588def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
589
590// Use target specific isd nodes to help us remember the result is sign
591// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
592// duplicated if it has another user that didn't need the sign_extend.
593def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm),  (FCVT_W_D $rs1, timm:$frm)>;
594def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;
595
596// [u]int32->fp
597def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1, FRM_RNE)>;
598def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1, FRM_RNE)>;
599
600// Saturating double->[u]int64.
601def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
602def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;
603
604// double->[u]int64. Round-to-zero must be used.
605def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, FRM_RTZ)>;
606def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, FRM_RTZ)>;
607
608// double->int64 with current rounding mode.
609def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
610def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
611
612// double->int64 rounded to nearest with ties rounded away from zero.
613def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
614def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
615
616// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
617def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, FRM_DYN)>;
618def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, FRM_DYN)>;
619} // Predicates = [HasStdExtD, IsRV64]
620
621let Predicates = [HasStdExtZdinx, IsRV64] in {
622
623// Moves (no conversion)
624def : Pat<(f64 (bitconvert (i64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
625def : Pat<(i64 (bitconvert (f64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
626
627// Use target specific isd nodes to help us remember the result is sign
628// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
629// duplicated if it has another user that didn't need the sign_extend.
630def : Pat<(riscv_any_fcvt_w_rv64 FPR64INX:$rs1, timm:$frm),  (FCVT_W_D_INX $rs1, timm:$frm)>;
631def : Pat<(riscv_any_fcvt_wu_rv64 FPR64INX:$rs1, timm:$frm), (FCVT_WU_D_INX $rs1, timm:$frm)>;
632
633// [u]int32->fp
634def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W_INX $rs1, FRM_RNE)>;
635def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU_INX $rs1, FRM_RNE)>;
636
637// Saturating double->[u]int64.
638def : Pat<(i64 (riscv_fcvt_x FPR64INX:$rs1, timm:$frm)), (FCVT_L_D_INX $rs1, timm:$frm)>;
639def : Pat<(i64 (riscv_fcvt_xu FPR64INX:$rs1, timm:$frm)), (FCVT_LU_D_INX $rs1, timm:$frm)>;
640
641// double->[u]int64. Round-to-zero must be used.
642def : Pat<(i64 (any_fp_to_sint FPR64INX:$rs1)), (FCVT_L_D_INX FPR64INX:$rs1, FRM_RTZ)>;
643def : Pat<(i64 (any_fp_to_uint FPR64INX:$rs1)), (FCVT_LU_D_INX FPR64INX:$rs1, FRM_RTZ)>;
644
645// double->int64 with current rounding mode.
646def : Pat<(i64 (any_lrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
647def : Pat<(i64 (any_llrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
648
649// double->int64 rounded to nearest with ties rounded away from zero.
650def : Pat<(i64 (any_lround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
651def : Pat<(i64 (any_llround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
652
653// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
654def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L_INX GPR:$rs1, FRM_DYN)>;
655def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU_INX GPR:$rs1, FRM_DYN)>;
656} // Predicates = [HasStdExtZdinx, IsRV64]
657