xref: /llvm-project/llvm/lib/Target/PowerPC/README.txt (revision da181d4ba0cdbae487ba1571917adb8677456e55)
1//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
2
3TODO:
4* lmw/stmw pass a la arm load store optimizer for prolog/epilog
5
6===-------------------------------------------------------------------------===
7
8This code:
9
10unsigned add32carry(unsigned sum, unsigned x) {
11 unsigned z = sum + x;
12 if (sum + x < x)
13     z++;
14 return z;
15}
16
17Should compile to something like:
18
19	addc r3,r3,r4
20	addze r3,r3
21
22instead we get:
23
24	add r3, r4, r3
25	cmplw cr7, r3, r4
26	mfcr r4 ; 1
27	rlwinm r4, r4, 29, 31, 31
28	add r3, r3, r4
29
30Ick.
31
32===-------------------------------------------------------------------------===
33
34We compile the hottest inner loop of viterbi to:
35
36        li r6, 0
37        b LBB1_84       ;bb432.i
38LBB1_83:        ;bb420.i
39        lbzx r8, r5, r7
40        addi r6, r7, 1
41        stbx r8, r4, r7
42LBB1_84:        ;bb432.i
43        mr r7, r6
44        cmplwi cr0, r7, 143
45        bne cr0, LBB1_83        ;bb420.i
46
47The CBE manages to produce:
48
49	li r0, 143
50	mtctr r0
51loop:
52	lbzx r2, r2, r11
53	stbx r0, r2, r9
54	addi r2, r2, 1
55	bdz later
56	b loop
57
58This could be much better (bdnz instead of bdz) but it still beats us.  If we
59produced this with bdnz, the loop would be a single dispatch group.
60
61===-------------------------------------------------------------------------===
62
63Lump the constant pool for each function into ONE pic object, and reference
64pieces of it as offsets from the start.  For functions like this (contrived
65to have lots of constants obviously):
66
67double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
68
69We generate:
70
71_X:
72        lis r2, ha16(.CPI_X_0)
73        lfd f0, lo16(.CPI_X_0)(r2)
74        lis r2, ha16(.CPI_X_1)
75        lfd f2, lo16(.CPI_X_1)(r2)
76        fmadd f0, f1, f0, f2
77        lis r2, ha16(.CPI_X_2)
78        lfd f1, lo16(.CPI_X_2)(r2)
79        lis r2, ha16(.CPI_X_3)
80        lfd f2, lo16(.CPI_X_3)(r2)
81        fmadd f1, f0, f1, f2
82        blr
83
84It would be better to materialize .CPI_X into a register, then use immediates
85off of the register to avoid the lis's.  This is even more important in PIC
86mode.
87
88Note that this (and the static variable version) is discussed here for GCC:
89http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
90
91Here's another example (the sgn function):
92double testf(double a) {
93       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
94}
95
96it produces a BB like this:
97LBB1_1: ; cond_true
98        lis r2, ha16(LCPI1_0)
99        lfs f0, lo16(LCPI1_0)(r2)
100        lis r2, ha16(LCPI1_1)
101        lis r3, ha16(LCPI1_2)
102        lfs f2, lo16(LCPI1_2)(r3)
103        lfs f3, lo16(LCPI1_1)(r2)
104        fsub f0, f0, f1
105        fsel f1, f0, f2, f3
106        blr
107
108===-------------------------------------------------------------------------===
109
110PIC Code Gen IPO optimization:
111
112Squish small scalar globals together into a single global struct, allowing the
113address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
114of the GOT on targets with one).
115
116Note that this is discussed here for GCC:
117http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
118
119===-------------------------------------------------------------------------===
120
121Fold add and sub with constant into non-extern, non-weak addresses so this:
122
123static int a;
124void bar(int b) { a = b; }
125void foo(unsigned char *c) {
126  *c = a;
127}
128
129So that
130
131_foo:
132        lis r2, ha16(_a)
133        la r2, lo16(_a)(r2)
134        lbz r2, 3(r2)
135        stb r2, 0(r3)
136        blr
137
138Becomes
139
140_foo:
141        lis r2, ha16(_a+3)
142        lbz r2, lo16(_a+3)(r2)
143        stb r2, 0(r3)
144        blr
145
146===-------------------------------------------------------------------------===
147
148We should compile these two functions to the same thing:
149
150#include <stdlib.h>
151void f(int a, int b, int *P) {
152  *P = (a-b)>=0?(a-b):(b-a);
153}
154void g(int a, int b, int *P) {
155  *P = abs(a-b);
156}
157
158Further, they should compile to something better than:
159
160_g:
161        subf r2, r4, r3
162        subfic r3, r2, 0
163        cmpwi cr0, r2, -1
164        bgt cr0, LBB2_2 ; entry
165LBB2_1: ; entry
166        mr r2, r3
167LBB2_2: ; entry
168        stw r2, 0(r5)
169        blr
170
171GCC produces:
172
173_g:
174        subf r4,r4,r3
175        srawi r2,r4,31
176        xor r0,r2,r4
177        subf r0,r2,r0
178        stw r0,0(r5)
179        blr
180
181... which is much nicer.
182
183This theoretically may help improve twolf slightly (used in dimbox.c:142?).
184
185===-------------------------------------------------------------------------===
186
187PR5945: This:
188define i32 @clamp0g(i32 %a) {
189entry:
190        %cmp = icmp slt i32 %a, 0
191        %sel = select i1 %cmp, i32 0, i32 %a
192        ret i32 %sel
193}
194
195Is compile to this with the PowerPC (32-bit) backend:
196
197_clamp0g:
198        cmpwi cr0, r3, 0
199        li r2, 0
200        blt cr0, LBB1_2
201; %bb.1:                                                    ; %entry
202        mr r2, r3
203LBB1_2:                                                     ; %entry
204        mr r3, r2
205        blr
206
207This could be reduced to the much simpler:
208
209_clamp0g:
210        srawi r2, r3, 31
211        andc r3, r3, r2
212        blr
213
214===-------------------------------------------------------------------------===
215
216int foo(int N, int ***W, int **TK, int X) {
217  int t, i;
218
219  for (t = 0; t < N; ++t)
220    for (i = 0; i < 4; ++i)
221      W[t / X][i][t % X] = TK[i][t];
222
223  return 5;
224}
225
226We generate relatively atrocious code for this loop compared to gcc.
227
228We could also strength reduce the rem and the div:
229http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
230
231===-------------------------------------------------------------------------===
232
233We generate ugly code for this:
234
235void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
236  unsigned code = 0;
237  if(dx < -dw) code |= 1;
238  if(dx > dw)  code |= 2;
239  if(dy < -dw) code |= 4;
240  if(dy > dw)  code |= 8;
241  if(dz < -dw) code |= 16;
242  if(dz > dw)  code |= 32;
243  *ret = code;
244}
245
246===-------------------------------------------------------------------------===
247
248%struct.B = type { i8, [3 x i8] }
249
250define void @bar(%struct.B* %b) {
251entry:
252        %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
253        %tmp = load i32* %tmp          ; <uint> [#uses=1]
254        %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
255        %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
256        %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
257        %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
258        %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
259        %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
260        %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
261        %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
262        %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
263        %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
264        store i32 %tmp13, i32* %tmp8
265        ret void
266}
267
268We emit:
269
270_foo:
271        lwz r2, 0(r3)
272        slwi r4, r2, 1
273        or r4, r4, r2
274        rlwimi r2, r4, 0, 0, 0
275        stw r2, 0(r3)
276        blr
277
278We could collapse a bunch of those ORs and ANDs and generate the following
279equivalent code:
280
281_foo:
282        lwz r2, 0(r3)
283        rlwinm r4, r2, 1, 0, 0
284        or r2, r2, r4
285        stw r2, 0(r3)
286        blr
287
288===-------------------------------------------------------------------------===
289
290Consider a function like this:
291
292float foo(float X) { return X + 1234.4123f; }
293
294The FP constant ends up in the constant pool, so we need to get the LR register.
295 This ends up producing code like this:
296
297_foo:
298.LBB_foo_0:     ; entry
299        mflr r11
300***     stw r11, 8(r1)
301        bl "L00000$pb"
302"L00000$pb":
303        mflr r2
304        addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
305        lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
306        fadds f1, f1, f0
307***     lwz r11, 8(r1)
308        mtlr r11
309        blr
310
311This is functional, but there is no reason to spill the LR register all the way
312to the stack (the two marked instrs): spilling it to a GPR is quite enough.
313
314Implementing this will require some codegen improvements.  Nate writes:
315
316"So basically what we need to support the "no stack frame save and restore" is a
317generalization of the LR optimization to "callee-save regs".
318
319Currently, we have LR marked as a callee-save reg.  The register allocator sees
320that it's callee save, and spills it directly to the stack.
321
322Ideally, something like this would happen:
323
324LR would be in a separate register class from the GPRs. The class of LR would be
325marked "unspillable".  When the register allocator came across an unspillable
326reg, it would ask "what is the best class to copy this into that I *can* spill"
327If it gets a class back, which it will in this case (the gprs), it grabs a free
328register of that class.  If it is then later necessary to spill that reg, so be
329it.
330
331===-------------------------------------------------------------------------===
332
333We compile this:
334int test(_Bool X) {
335  return X ? 524288 : 0;
336}
337
338to:
339_test:
340        cmplwi cr0, r3, 0
341        lis r2, 8
342        li r3, 0
343        beq cr0, LBB1_2 ;entry
344LBB1_1: ;entry
345        mr r3, r2
346LBB1_2: ;entry
347        blr
348
349instead of:
350_test:
351        addic r2,r3,-1
352        subfe r0,r2,r3
353        slwi r3,r0,19
354        blr
355
356This sort of thing occurs a lot due to globalopt.
357
358===-------------------------------------------------------------------------===
359
360We compile:
361
362define i32 @bar(i32 %x) nounwind readnone ssp {
363entry:
364  %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
365  %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
366  ret i32 %neg
367}
368
369to:
370
371_bar:
372	cntlzw r2, r3
373	slwi r2, r2, 26
374	srawi r3, r2, 31
375	blr
376
377it would be better to produce:
378
379_bar:
380        addic r3,r3,-1
381        subfe r3,r3,r3
382        blr
383
384===-------------------------------------------------------------------------===
385
386We generate horrible ppc code for this:
387
388#define N  2000000
389double   a[N],c[N];
390void simpleloop() {
391   int j;
392   for (j=0; j<N; j++)
393     c[j] = a[j];
394}
395
396LBB1_1: ;bb
397        lfdx f0, r3, r4
398        addi r5, r5, 1                 ;; Extra IV for the exit value compare.
399        stfdx f0, r2, r4
400        addi r4, r4, 8
401
402        xoris r6, r5, 30               ;; This is due to a large immediate.
403        cmplwi cr0, r6, 33920
404        bne cr0, LBB1_1
405
406//===---------------------------------------------------------------------===//
407
408This:
409        #include <algorithm>
410        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
411        { return std::make_pair(a + b, a + b < a); }
412        bool no_overflow(unsigned a, unsigned b)
413        { return !full_add(a, b).second; }
414
415Should compile to:
416
417__Z11no_overflowjj:
418        add r4,r3,r4
419        subfc r3,r3,r4
420        li r3,0
421        adde r3,r3,r3
422        blr
423
424(or better) not:
425
426__Z11no_overflowjj:
427        add r2, r4, r3
428        cmplw cr7, r2, r3
429        mfcr r2
430        rlwinm r2, r2, 29, 31, 31
431        xori r3, r2, 1
432        blr
433
434//===---------------------------------------------------------------------===//
435
436We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
437example:
438#include <math.h>
439int test(double x, double y) { return islessequal(x, y);}
440int test2(double x, double y) {  return islessgreater(x, y);}
441int test3(double x, double y) {  return !islessequal(x, y);}
442
443Compiles into (all three are similar, but the bits differ):
444
445_test:
446	fcmpu cr7, f1, f2
447	mfcr r2
448	rlwinm r3, r2, 29, 31, 31
449	rlwinm r2, r2, 31, 31, 31
450	or r3, r2, r3
451	blr
452
453GCC compiles this into:
454
455 _test:
456	fcmpu cr7,f1,f2
457	cror 30,28,30
458	mfcr r3
459	rlwinm r3,r3,31,1
460	blr
461
462which is more efficient and can use mfocr.  See PR642 for some more context.
463
464//===---------------------------------------------------------------------===//
465
466void foo(float *data, float d) {
467   long i;
468   for (i = 0; i < 8000; i++)
469      data[i] = d;
470}
471void foo2(float *data, float d) {
472   long i;
473   data--;
474   for (i = 0; i < 8000; i++) {
475      data[1] = d;
476      data++;
477   }
478}
479
480These compile to:
481
482_foo:
483	li r2, 0
484LBB1_1:	; bb
485	addi r4, r2, 4
486	stfsx f1, r3, r2
487	cmplwi cr0, r4, 32000
488	mr r2, r4
489	bne cr0, LBB1_1	; bb
490	blr
491_foo2:
492	li r2, 0
493LBB2_1:	; bb
494	addi r4, r2, 4
495	stfsx f1, r3, r2
496	cmplwi cr0, r4, 32000
497	mr r2, r4
498	bne cr0, LBB2_1	; bb
499	blr
500
501The 'mr' could be eliminated to folding the add into the cmp better.
502
503//===---------------------------------------------------------------------===//
504Codegen for the following (low-probability) case deteriorated considerably
505when the correctness fixes for unordered comparisons went in (PR 642, 58871).
506It should be possible to recover the code quality described in the comments.
507
508; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
509; This should produce one 'or' or 'cror' instruction per function.
510
511; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
512; PR2964
513
514define i32 @test(double %x, double %y) nounwind  {
515entry:
516	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
517	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
518	ret i32 %tmp345
519}
520
521define i32 @test2(double %x, double %y) nounwind  {
522entry:
523	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
524	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
525	ret i32 %tmp345
526}
527
528define i32 @test3(double %x, double %y) nounwind  {
529entry:
530	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
531	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
532	ret i32 %tmp34
533}
534
535//===---------------------------------------------------------------------===//
536for the following code:
537
538void foo (float *__restrict__ a, int *__restrict__ b, int n) {
539      a[n] = b[n]  * 2.321;
540}
541
542we load b[n] to GPR, then move it VSX register and convert it float. We should
543use vsx scalar integer load instructions to avoid direct moves
544
545//===----------------------------------------------------------------------===//
546; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
547
548; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
549; should not be generated except with -enable-finite-only-fp-math or the like).
550; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
551; recognize a more elaborate tree than a simple SETxx.
552
553define double @test_FNEG_sel(double %A, double %B, double %C) {
554        %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
555        %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
556        %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
557        ret double %E
558}
559
560//===----------------------------------------------------------------------===//
561The save/restore sequence for CR in prolog/epilog is terrible:
562- Each CR subreg is saved individually, rather than doing one save as a unit.
563- On Darwin, the save is done after the decrement of SP, which means the offset
564from SP of the save slot can be too big for a store instruction, which means we
565need an additional register (currently hacked in 96015+96020; the solution there
566is correct, but poor).
567- On SVR4 the same thing can happen, and I don't think saving before the SP
568decrement is safe on that target, as there is no red zone.  This is currently
569broken AFAIK, although it's not a target I can exercise.
570The following demonstrates the problem:
571extern void bar(char *p);
572void foo() {
573  char x[100000];
574  bar(x);
575  __asm__("" ::: "cr2");
576}
577
578//===-------------------------------------------------------------------------===
579Naming convention for instruction formats is very haphazard.
580We have agreed on a naming scheme as follows:
581
582<INST_form>{_<OP_type><OP_len>}+
583
584Where:
585INST_form is the instruction format (X-form, etc.)
586OP_type is the operand type - one of OPC (opcode), RD (register destination),
587                              RS (register source),
588                              RDp (destination register pair),
589                              RSp (source register pair), IM (immediate),
590                              XO (extended opcode)
591OP_len is the length of the operand in bits
592
593VSX register operands would be of length 6 (split across two fields),
594condition register fields of length 3.
595We would not need denote reserved fields in names of instruction formats.
596
597//===----------------------------------------------------------------------===//
598
599Instruction fusion was introduced in ISA 2.06 and more opportunities added in
600ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
601and force instruction pairs to be scheduled together.
602
603-----------------------------------------------------------------------------
604
605More general handling of any_extend and zero_extend:
606
607See https://reviews.llvm.org/D24924#555306
608