1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include <cstdlib> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "reginfo" 48 49 #define GET_REGINFO_TARGET_DESC 50 #include "PPCGenRegisterInfo.inc" 51 52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 54 55 static cl::opt<bool> 56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 57 cl::desc("Enable use of a base pointer for complex stack frames")); 58 59 static cl::opt<bool> 60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 61 cl::desc("Force the use of a base pointer in every function")); 62 63 static cl::opt<bool> 64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 65 cl::desc("Enable spills from gpr to vsr rather than stack")); 66 67 static cl::opt<bool> 68 StackPtrConst("ppc-stack-ptr-caller-preserved", 69 cl::desc("Consider R1 caller preserved so stack saves of " 70 "caller preserved registers can be LICM candidates"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> 74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 75 cl::desc("Maximum search distance for definition of CR bit " 76 "spill on ppc"), 77 cl::Hidden, cl::init(100)); 78 79 // Copies/moves of physical accumulators are expensive operations 80 // that should be avoided whenever possible. MMA instructions are 81 // meant to be used in performance-sensitive computational kernels. 82 // This option is provided, at least for the time being, to give the 83 // user a tool to detect this expensive operation and either rework 84 // their code or report a compiler bug if that turns out to be the 85 // cause. 86 #ifndef NDEBUG 87 static cl::opt<bool> 88 ReportAccMoves("ppc-report-acc-moves", 89 cl::desc("Emit information about accumulator register spills " 90 "and copies"), 91 cl::Hidden, cl::init(false)); 92 #endif 93 94 extern cl::opt<bool> DisableAutoPairedVecSt; 95 96 static unsigned offsetMinAlignForOpcode(unsigned OpC); 97 98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 99 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 100 TM.isPPC64() ? 0 : 1, 101 TM.isPPC64() ? 0 : 1), 102 TM(TM) { 103 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 104 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 105 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 106 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 107 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 108 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 109 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 110 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 111 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 112 113 // 64-bit 114 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 115 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 116 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 117 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 118 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 119 ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO; 120 ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO; 121 122 // VSX 123 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 124 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 125 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 126 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 127 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 128 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 129 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 130 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 131 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 132 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 133 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 134 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 135 136 // SPE 137 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 138 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 139 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 140 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 141 142 // Power10 143 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8; 144 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8; 145 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8; 146 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8; 147 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX; 148 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX; 149 150 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8; 151 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8; 152 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8; 153 154 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX; 155 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX; 156 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX; 157 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX; 158 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX; 159 160 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX; 161 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX; 162 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX; 163 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX; 164 } 165 166 /// getPointerRegClass - Return the register class to use to hold pointers. 167 /// This is used for addressing modes. 168 const TargetRegisterClass * 169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 170 const { 171 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value 172 // when it checks for ZERO folding. 173 if (Kind == 1) { 174 if (TM.isPPC64()) 175 return &PPC::G8RC_NOX0RegClass; 176 return &PPC::GPRC_NOR0RegClass; 177 } 178 179 if (TM.isPPC64()) 180 return &PPC::G8RCRegClass; 181 return &PPC::GPRCRegClass; 182 } 183 184 const MCPhysReg* 185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 186 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 187 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 188 if (!TM.isPPC64() && Subtarget.isAIXABI()) 189 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 190 if (Subtarget.hasVSX()) { 191 if (Subtarget.pairedVectorMemops()) 192 return CSR_64_AllRegs_VSRP_SaveList; 193 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 194 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 195 return CSR_64_AllRegs_VSX_SaveList; 196 } 197 if (Subtarget.hasAltivec()) { 198 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 199 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 200 return CSR_64_AllRegs_Altivec_SaveList; 201 } 202 return CSR_64_AllRegs_SaveList; 203 } 204 205 // On PPC64, we might need to save r2 (but only if it is not reserved). 206 // We do not need to treat R2 as callee-saved when using PC-Relative calls 207 // because any direct uses of R2 will cause it to be reserved. If the function 208 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 209 // will use the @notoc relocation which will cause this function to set the 210 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 211 // clobbers the TOC. 212 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 213 !Subtarget.isUsingPCRelativeCalls(); 214 215 // Cold calling convention CSRs. 216 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 217 if (Subtarget.isAIXABI()) 218 report_fatal_error("Cold calling unimplemented on AIX."); 219 if (TM.isPPC64()) { 220 if (Subtarget.pairedVectorMemops()) 221 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList 222 : CSR_SVR64_ColdCC_VSRP_SaveList; 223 if (Subtarget.hasAltivec()) 224 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 225 : CSR_SVR64_ColdCC_Altivec_SaveList; 226 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 227 : CSR_SVR64_ColdCC_SaveList; 228 } 229 // 32-bit targets. 230 if (Subtarget.pairedVectorMemops()) 231 return CSR_SVR32_ColdCC_VSRP_SaveList; 232 else if (Subtarget.hasAltivec()) 233 return CSR_SVR32_ColdCC_Altivec_SaveList; 234 else if (Subtarget.hasSPE()) 235 return CSR_SVR32_ColdCC_SPE_SaveList; 236 return CSR_SVR32_ColdCC_SaveList; 237 } 238 // Standard calling convention CSRs. 239 if (TM.isPPC64()) { 240 if (Subtarget.pairedVectorMemops()) 241 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList; 242 if (Subtarget.hasAltivec() && 243 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 244 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 245 : CSR_PPC64_Altivec_SaveList; 246 } 247 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 248 } 249 // 32-bit targets. 250 if (Subtarget.isAIXABI()) { 251 if (Subtarget.hasAltivec()) 252 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 253 : CSR_AIX32_SaveList; 254 return CSR_AIX32_SaveList; 255 } 256 if (Subtarget.pairedVectorMemops()) 257 return CSR_SVR432_VSRP_SaveList; 258 if (Subtarget.hasAltivec()) 259 return CSR_SVR432_Altivec_SaveList; 260 else if (Subtarget.hasSPE()) { 261 if (TM.isPositionIndependent() && !TM.isPPC64()) 262 return CSR_SVR432_SPE_NO_S30_31_SaveList; 263 return CSR_SVR432_SPE_SaveList; 264 } 265 return CSR_SVR432_SaveList; 266 } 267 268 const uint32_t * 269 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 270 CallingConv::ID CC) const { 271 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 272 if (CC == CallingConv::AnyReg) { 273 if (Subtarget.hasVSX()) { 274 if (Subtarget.pairedVectorMemops()) 275 return CSR_64_AllRegs_VSRP_RegMask; 276 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 277 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 278 return CSR_64_AllRegs_VSX_RegMask; 279 } 280 if (Subtarget.hasAltivec()) { 281 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 282 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 283 return CSR_64_AllRegs_Altivec_RegMask; 284 } 285 return CSR_64_AllRegs_RegMask; 286 } 287 288 if (Subtarget.isAIXABI()) { 289 return TM.isPPC64() 290 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 291 ? CSR_PPC64_Altivec_RegMask 292 : CSR_PPC64_RegMask) 293 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 294 ? CSR_AIX32_Altivec_RegMask 295 : CSR_AIX32_RegMask); 296 } 297 298 if (CC == CallingConv::Cold) { 299 if (TM.isPPC64()) 300 return Subtarget.pairedVectorMemops() 301 ? CSR_SVR64_ColdCC_VSRP_RegMask 302 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 303 : CSR_SVR64_ColdCC_RegMask); 304 else 305 return Subtarget.pairedVectorMemops() 306 ? CSR_SVR32_ColdCC_VSRP_RegMask 307 : (Subtarget.hasAltivec() 308 ? CSR_SVR32_ColdCC_Altivec_RegMask 309 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask 310 : CSR_SVR32_ColdCC_RegMask)); 311 } 312 313 if (TM.isPPC64()) 314 return Subtarget.pairedVectorMemops() 315 ? CSR_SVR464_VSRP_RegMask 316 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 317 : CSR_PPC64_RegMask); 318 else 319 return Subtarget.pairedVectorMemops() 320 ? CSR_SVR432_VSRP_RegMask 321 : (Subtarget.hasAltivec() 322 ? CSR_SVR432_Altivec_RegMask 323 : (Subtarget.hasSPE() 324 ? (TM.isPositionIndependent() 325 ? CSR_SVR432_SPE_NO_S30_31_RegMask 326 : CSR_SVR432_SPE_RegMask) 327 : CSR_SVR432_RegMask)); 328 } 329 330 const uint32_t* 331 PPCRegisterInfo::getNoPreservedMask() const { 332 return CSR_NoRegs_RegMask; 333 } 334 335 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 336 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 337 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 338 } 339 340 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 341 BitVector Reserved(getNumRegs()); 342 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 343 const PPCFrameLowering *TFI = getFrameLowering(MF); 344 345 // The ZERO register is not really a register, but the representation of r0 346 // when used in instructions that treat r0 as the constant 0. 347 markSuperRegs(Reserved, PPC::ZERO); 348 349 // The FP register is also not really a register, but is the representation 350 // of the frame pointer register used by ISD::FRAMEADDR. 351 markSuperRegs(Reserved, PPC::FP); 352 353 // The BP register is also not really a register, but is the representation 354 // of the base pointer register used by setjmp. 355 markSuperRegs(Reserved, PPC::BP); 356 357 // The counter registers must be reserved so that counter-based loops can 358 // be correctly formed (and the mtctr instructions are not DCE'd). 359 markSuperRegs(Reserved, PPC::CTR); 360 markSuperRegs(Reserved, PPC::CTR8); 361 362 markSuperRegs(Reserved, PPC::R1); 363 markSuperRegs(Reserved, PPC::LR); 364 markSuperRegs(Reserved, PPC::LR8); 365 markSuperRegs(Reserved, PPC::RM); 366 367 markSuperRegs(Reserved, PPC::VRSAVE); 368 369 // The SVR4 ABI reserves r2 and r13 370 if (Subtarget.isSVR4ABI()) { 371 // We only reserve r2 if we need to use the TOC pointer. If we have no 372 // explicit uses of the TOC pointer (meaning we're a leaf function with 373 // no constant-pool loads, etc.) and we have no potential uses inside an 374 // inline asm block, then we can treat r2 has an ordinary callee-saved 375 // register. 376 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 377 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) 378 markSuperRegs(Reserved, PPC::R2); // System-reserved register 379 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register 380 } 381 382 // Always reserve r2 on AIX for now. 383 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. 384 if (Subtarget.isAIXABI()) 385 markSuperRegs(Reserved, PPC::R2); // System-reserved register 386 387 // On PPC64, r13 is the thread pointer. Never allocate this register. 388 if (TM.isPPC64()) 389 markSuperRegs(Reserved, PPC::R13); 390 391 if (TFI->needsFP(MF)) 392 markSuperRegs(Reserved, PPC::R31); 393 394 bool IsPositionIndependent = TM.isPositionIndependent(); 395 if (hasBasePointer(MF)) { 396 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 397 markSuperRegs(Reserved, PPC::R29); 398 else 399 markSuperRegs(Reserved, PPC::R30); 400 } 401 402 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 403 markSuperRegs(Reserved, PPC::R30); 404 405 // Reserve Altivec registers when Altivec is unavailable. 406 if (!Subtarget.hasAltivec()) 407 for (MCRegister Reg : PPC::VRRCRegClass) 408 markSuperRegs(Reserved, Reg); 409 410 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 411 !TM.getAIXExtendedAltivecABI()) { 412 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 413 // and cannot be used. 414 for (auto Reg : CSR_Altivec_SaveList) { 415 if (Reg == 0) 416 break; 417 markSuperRegs(Reserved, Reg); 418 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 419 Reserved.set(*AS); 420 } 421 } 422 } 423 424 assert(checkAllSuperRegsMarked(Reserved)); 425 return Reserved; 426 } 427 428 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF, 429 MCRegister PhysReg) const { 430 // We cannot use getReservedRegs() to find the registers that are not asm 431 // clobberable because there are some reserved registers which can be 432 // clobbered by inline asm. For example, when LR is clobbered, the register is 433 // saved and restored. We will hardcode the registers that are not asm 434 // cloberable in this function. 435 436 // The stack pointer (R1/X1) is not clobberable by inline asm 437 return PhysReg != PPC::R1 && PhysReg != PPC::X1; 438 } 439 440 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 441 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 442 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 443 const MachineFrameInfo &MFI = MF.getFrameInfo(); 444 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 445 446 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 447 << ".\n"); 448 // If the callee saved info is invalid we have to default to true for safety. 449 if (!MFI.isCalleeSavedInfoValid()) { 450 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 451 return true; 452 } 453 454 // We will require the use of X-Forms because the frame is larger than what 455 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 456 // If we need an X-Form then we need a register to store the address offset. 457 unsigned FrameSize = MFI.getStackSize(); 458 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 459 if (FrameSize & ~0x7FFF) { 460 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 461 return true; 462 } 463 464 // The callee saved info is valid so it can be traversed. 465 // Checking for registers that need saving that do not have load or store 466 // forms where the address offset is an immediate. 467 for (const CalleeSavedInfo &CSI : Info) { 468 // If the spill is to a register no scavenging is required. 469 if (CSI.isSpilledToReg()) 470 continue; 471 472 int FrIdx = CSI.getFrameIdx(); 473 Register Reg = CSI.getReg(); 474 475 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 476 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 477 if (!MFI.isFixedObjectIndex(FrIdx)) { 478 // This is not a fixed object. If it requires alignment then we may still 479 // need to use the XForm. 480 if (offsetMinAlignForOpcode(Opcode) > 1) { 481 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 482 << " for register " << printReg(Reg, this) << ".\n"); 483 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 484 << "alignment.\n"); 485 return true; 486 } 487 } 488 489 // This is eiher: 490 // 1) A fixed frame index object which we know are aligned so 491 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 492 // need to consider the alignment here. 493 // 2) A not fixed object but in that case we now know that the min required 494 // alignment is no more than 1 based on the previous check. 495 if (InstrInfo->isXFormMemOp(Opcode)) { 496 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 497 << " for register " << printReg(Reg, this) << ".\n"); 498 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 499 return true; 500 } 501 502 // This is a spill/restore of a quadword. 503 if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) { 504 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 505 << " for register " << printReg(Reg, this) << ".\n"); 506 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n"); 507 return true; 508 } 509 } 510 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 511 return false; 512 } 513 514 bool PPCRegisterInfo::requiresVirtualBaseRegisters( 515 const MachineFunction &MF) const { 516 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 517 // Do not use virtual base registers when ROP protection is turned on. 518 // Virtual base registers break the layout of the local variable space and may 519 // push the ROP Hash location past the 512 byte range of the ROP store 520 // instruction. 521 return !Subtarget.hasROPProtect(); 522 } 523 524 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 525 const MachineFunction &MF) const { 526 assert(Register::isPhysicalRegister(PhysReg)); 527 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 528 const MachineFrameInfo &MFI = MF.getFrameInfo(); 529 530 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 531 return false; 532 if (PhysReg == Subtarget.getTOCPointerRegister()) 533 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 534 // The reason it's reserved is that it's the TOC pointer (and the function 535 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 536 // with no TOC access), we can't claim that it is preserved. 537 return (getReservedRegs(MF).test(PhysReg)); 538 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 539 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 540 // The value of the stack pointer does not change within a function after 541 // the prologue and before the epilogue if there are no dynamic allocations 542 // and no inline asm which clobbers X1/R1. 543 return true; 544 return false; 545 } 546 547 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg, 548 ArrayRef<MCPhysReg> Order, 549 SmallVectorImpl<MCPhysReg> &Hints, 550 const MachineFunction &MF, 551 const VirtRegMap *VRM, 552 const LiveRegMatrix *Matrix) const { 553 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 554 555 // Call the base implementation first to set any hints based on the usual 556 // heuristics and decide what the return value should be. We want to return 557 // the same value returned by the base implementation. If the base 558 // implementation decides to return true and force the allocation then we 559 // will leave it as such. On the other hand if the base implementation 560 // decides to return false the following code will not force the allocation 561 // as we are just looking to provide a hint. 562 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints( 563 VirtReg, Order, Hints, MF, VRM, Matrix); 564 // We are interested in instructions that copy values to ACC/UACC. 565 // The copy into UACC will be simply a COPY to a subreg so we 566 // want to allocate the corresponding physical subreg for the source. 567 // The copy into ACC will be a BUILD_UACC so we want to allocate 568 // the same number UACC for the source. 569 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) { 570 const MachineOperand *ResultOp = nullptr; 571 Register ResultReg; 572 switch (Use.getOpcode()) { 573 case TargetOpcode::COPY: { 574 ResultOp = &Use.getOperand(0); 575 ResultReg = ResultOp->getReg(); 576 if (Register::isVirtualRegister(ResultReg) && 577 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) && 578 VRM->hasPhys(ResultReg)) { 579 Register UACCPhys = VRM->getPhys(ResultReg); 580 Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg()); 581 // Ensure that the hint is a VSRp register. 582 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31) 583 Hints.push_back(HintReg); 584 } 585 break; 586 } 587 case PPC::BUILD_UACC: { 588 ResultOp = &Use.getOperand(0); 589 ResultReg = ResultOp->getReg(); 590 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) && 591 VRM->hasPhys(ResultReg)) { 592 Register ACCPhys = VRM->getPhys(ResultReg); 593 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) && 594 "Expecting an ACC register for BUILD_UACC."); 595 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0); 596 Hints.push_back(HintReg); 597 } 598 break; 599 } 600 } 601 } 602 return BaseImplRetVal; 603 } 604 605 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 606 MachineFunction &MF) const { 607 const PPCFrameLowering *TFI = getFrameLowering(MF); 608 const unsigned DefaultSafety = 1; 609 610 switch (RC->getID()) { 611 default: 612 return 0; 613 case PPC::G8RC_NOX0RegClassID: 614 case PPC::GPRC_NOR0RegClassID: 615 case PPC::SPERCRegClassID: 616 case PPC::G8RCRegClassID: 617 case PPC::GPRCRegClassID: { 618 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 619 return 32 - FP - DefaultSafety; 620 } 621 case PPC::F4RCRegClassID: 622 case PPC::F8RCRegClassID: 623 case PPC::VSLRCRegClassID: 624 return 32 - DefaultSafety; 625 case PPC::VFRCRegClassID: 626 case PPC::VRRCRegClassID: { 627 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 628 // Vector registers VR20-VR31 are reserved and cannot be used in the default 629 // Altivec ABI on AIX. 630 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 631 return 20 - DefaultSafety; 632 } 633 return 32 - DefaultSafety; 634 case PPC::VSFRCRegClassID: 635 case PPC::VSSRCRegClassID: 636 case PPC::VSRCRegClassID: { 637 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 638 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 639 // Vector registers VR20-VR31 are reserved and cannot be used in the 640 // default Altivec ABI on AIX. 641 return 52 - DefaultSafety; 642 } 643 return 64 - DefaultSafety; 644 case PPC::CRRCRegClassID: 645 return 8 - DefaultSafety; 646 } 647 } 648 649 const TargetRegisterClass * 650 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 651 const MachineFunction &MF) const { 652 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 653 const auto *DefaultSuperclass = 654 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 655 if (Subtarget.hasVSX()) { 656 // With VSX, we can inflate various sub-register classes to the full VSX 657 // register set. 658 659 // For Power9 we allow the user to enable GPR to vector spills. 660 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 661 // support to spill GPRC. 662 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 663 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 664 RC == &PPC::G8RCRegClass) { 665 InflateGP8RC++; 666 return &PPC::SPILLTOVSRRCRegClass; 667 } 668 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 669 InflateGPRC++; 670 } 671 672 for (const auto *I = RC->getSuperClasses(); *I; ++I) { 673 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC)) 674 continue; 675 676 switch ((*I)->getID()) { 677 case PPC::VSSRCRegClassID: 678 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass; 679 case PPC::VSFRCRegClassID: 680 case PPC::VSRCRegClassID: 681 return *I; 682 case PPC::VSRpRCRegClassID: 683 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass; 684 case PPC::ACCRCRegClassID: 685 case PPC::UACCRCRegClassID: 686 return Subtarget.hasMMA() ? *I : DefaultSuperclass; 687 } 688 } 689 } 690 691 return DefaultSuperclass; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // Stack Frame Processing methods 696 //===----------------------------------------------------------------------===// 697 698 /// lowerDynamicAlloc - Generate the code for allocating an object in the 699 /// current frame. The sequence of code will be in the general form 700 /// 701 /// addi R0, SP, \#frameSize ; get the address of the previous frame 702 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 703 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 704 /// 705 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 706 // Get the instruction. 707 MachineInstr &MI = *II; 708 // Get the instruction's basic block. 709 MachineBasicBlock &MBB = *MI.getParent(); 710 // Get the basic block's function. 711 MachineFunction &MF = *MBB.getParent(); 712 // Get the frame info. 713 MachineFrameInfo &MFI = MF.getFrameInfo(); 714 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 715 // Get the instruction info. 716 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 717 // Determine whether 64-bit pointers are used. 718 bool LP64 = TM.isPPC64(); 719 DebugLoc dl = MI.getDebugLoc(); 720 721 // Get the maximum call stack size. 722 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 723 Align MaxAlign = MFI.getMaxAlign(); 724 assert(isAligned(MaxAlign, maxCallFrameSize) && 725 "Maximum call-frame size not sufficiently aligned"); 726 (void)MaxAlign; 727 728 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 729 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 730 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 731 bool KillNegSizeReg = MI.getOperand(1).isKill(); 732 Register NegSizeReg = MI.getOperand(1).getReg(); 733 734 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 735 // Grow the stack and update the stack pointer link, then determine the 736 // address of new allocated space. 737 if (LP64) { 738 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 739 .addReg(Reg, RegState::Kill) 740 .addReg(PPC::X1) 741 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 742 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 743 .addReg(PPC::X1) 744 .addImm(maxCallFrameSize); 745 } else { 746 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 747 .addReg(Reg, RegState::Kill) 748 .addReg(PPC::R1) 749 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 750 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 751 .addReg(PPC::R1) 752 .addImm(maxCallFrameSize); 753 } 754 755 // Discard the DYNALLOC instruction. 756 MBB.erase(II); 757 } 758 759 /// To accomplish dynamic stack allocation, we have to calculate exact size 760 /// subtracted from the stack pointer according alignment information and get 761 /// previous frame pointer. 762 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 763 Register &NegSizeReg, 764 bool &KillNegSizeReg, 765 Register &FramePointer) const { 766 // Get the instruction. 767 MachineInstr &MI = *II; 768 // Get the instruction's basic block. 769 MachineBasicBlock &MBB = *MI.getParent(); 770 // Get the basic block's function. 771 MachineFunction &MF = *MBB.getParent(); 772 // Get the frame info. 773 MachineFrameInfo &MFI = MF.getFrameInfo(); 774 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 775 // Get the instruction info. 776 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 777 // Determine whether 64-bit pointers are used. 778 bool LP64 = TM.isPPC64(); 779 DebugLoc dl = MI.getDebugLoc(); 780 // Get the total frame size. 781 unsigned FrameSize = MFI.getStackSize(); 782 783 // Get stack alignments. 784 const PPCFrameLowering *TFI = getFrameLowering(MF); 785 Align TargetAlign = TFI->getStackAlign(); 786 Align MaxAlign = MFI.getMaxAlign(); 787 788 // Determine the previous frame's address. If FrameSize can't be 789 // represented as 16 bits or we need special alignment, then we load the 790 // previous frame's address from 0(SP). Why not do an addis of the hi? 791 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 792 // Constructing the constant and adding would take 3 instructions. 793 // Fortunately, a frame greater than 32K is rare. 794 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 795 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 796 797 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 798 if (LP64) 799 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 800 .addReg(PPC::X31) 801 .addImm(FrameSize); 802 else 803 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 804 .addReg(PPC::R31) 805 .addImm(FrameSize); 806 } else if (LP64) { 807 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 808 .addImm(0) 809 .addReg(PPC::X1); 810 } else { 811 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 812 .addImm(0) 813 .addReg(PPC::R1); 814 } 815 // Determine the actual NegSizeReg according to alignment info. 816 if (LP64) { 817 if (MaxAlign > TargetAlign) { 818 unsigned UnalNegSizeReg = NegSizeReg; 819 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 820 821 // Unfortunately, there is no andi, only andi., and we can't insert that 822 // here because we might clobber cr0 while it is live. 823 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 824 .addImm(~(MaxAlign.value() - 1)); 825 826 unsigned NegSizeReg1 = NegSizeReg; 827 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 828 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 829 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 830 .addReg(NegSizeReg1, RegState::Kill); 831 KillNegSizeReg = true; 832 } 833 } else { 834 if (MaxAlign > TargetAlign) { 835 unsigned UnalNegSizeReg = NegSizeReg; 836 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 837 838 // Unfortunately, there is no andi, only andi., and we can't insert that 839 // here because we might clobber cr0 while it is live. 840 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 841 .addImm(~(MaxAlign.value() - 1)); 842 843 unsigned NegSizeReg1 = NegSizeReg; 844 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 845 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 846 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 847 .addReg(NegSizeReg1, RegState::Kill); 848 KillNegSizeReg = true; 849 } 850 } 851 } 852 853 void PPCRegisterInfo::lowerPrepareProbedAlloca( 854 MachineBasicBlock::iterator II) const { 855 MachineInstr &MI = *II; 856 // Get the instruction's basic block. 857 MachineBasicBlock &MBB = *MI.getParent(); 858 // Get the basic block's function. 859 MachineFunction &MF = *MBB.getParent(); 860 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 861 // Get the instruction info. 862 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 863 // Determine whether 64-bit pointers are used. 864 bool LP64 = TM.isPPC64(); 865 DebugLoc dl = MI.getDebugLoc(); 866 Register FramePointer = MI.getOperand(0).getReg(); 867 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 868 bool KillNegSizeReg = MI.getOperand(2).isKill(); 869 Register NegSizeReg = MI.getOperand(2).getReg(); 870 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 871 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 872 if (FramePointer == NegSizeReg) { 873 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 874 "NegSizeReg should be killed"); 875 // FramePointer is clobbered earlier than the use of NegSizeReg in 876 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 877 // misuse. 878 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 879 .addReg(NegSizeReg) 880 .addReg(NegSizeReg); 881 NegSizeReg = ActualNegSizeReg; 882 KillNegSizeReg = false; 883 } 884 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 885 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 886 // TargetAlign. 887 if (NegSizeReg != ActualNegSizeReg) 888 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 889 .addReg(NegSizeReg) 890 .addReg(NegSizeReg); 891 MBB.erase(II); 892 } 893 894 void PPCRegisterInfo::lowerDynamicAreaOffset( 895 MachineBasicBlock::iterator II) const { 896 // Get the instruction. 897 MachineInstr &MI = *II; 898 // Get the instruction's basic block. 899 MachineBasicBlock &MBB = *MI.getParent(); 900 // Get the basic block's function. 901 MachineFunction &MF = *MBB.getParent(); 902 // Get the frame info. 903 MachineFrameInfo &MFI = MF.getFrameInfo(); 904 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 905 // Get the instruction info. 906 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 907 908 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 909 bool is64Bit = TM.isPPC64(); 910 DebugLoc dl = MI.getDebugLoc(); 911 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 912 MI.getOperand(0).getReg()) 913 .addImm(maxCallFrameSize); 914 MBB.erase(II); 915 } 916 917 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 918 /// reserving a whole register (R0), we scrounge for one here. This generates 919 /// code like this: 920 /// 921 /// mfcr rA ; Move the conditional register into GPR rA. 922 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 923 /// stw rA, FI ; Store rA to the frame. 924 /// 925 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 926 unsigned FrameIndex) const { 927 // Get the instruction. 928 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 929 // Get the instruction's basic block. 930 MachineBasicBlock &MBB = *MI.getParent(); 931 MachineFunction &MF = *MBB.getParent(); 932 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 933 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 934 DebugLoc dl = MI.getDebugLoc(); 935 936 bool LP64 = TM.isPPC64(); 937 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 938 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 939 940 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 941 Register SrcReg = MI.getOperand(0).getReg(); 942 943 // We need to store the CR in the low 4-bits of the saved value. First, issue 944 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 945 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 946 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 947 948 // If the saved register wasn't CR0, shift the bits left so that they are in 949 // CR0's slot. 950 if (SrcReg != PPC::CR0) { 951 Register Reg1 = Reg; 952 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 953 954 // rlwinm rA, rA, ShiftBits, 0, 31. 955 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 956 .addReg(Reg1, RegState::Kill) 957 .addImm(getEncodingValue(SrcReg) * 4) 958 .addImm(0) 959 .addImm(31); 960 } 961 962 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 963 .addReg(Reg, RegState::Kill), 964 FrameIndex); 965 966 // Discard the pseudo instruction. 967 MBB.erase(II); 968 } 969 970 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 971 unsigned FrameIndex) const { 972 // Get the instruction. 973 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 974 // Get the instruction's basic block. 975 MachineBasicBlock &MBB = *MI.getParent(); 976 MachineFunction &MF = *MBB.getParent(); 977 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 978 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 979 DebugLoc dl = MI.getDebugLoc(); 980 981 bool LP64 = TM.isPPC64(); 982 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 983 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 984 985 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 986 Register DestReg = MI.getOperand(0).getReg(); 987 assert(MI.definesRegister(DestReg) && 988 "RESTORE_CR does not define its destination"); 989 990 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 991 Reg), FrameIndex); 992 993 // If the reloaded register isn't CR0, shift the bits right so that they are 994 // in the right CR's slot. 995 if (DestReg != PPC::CR0) { 996 Register Reg1 = Reg; 997 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 998 999 unsigned ShiftBits = getEncodingValue(DestReg)*4; 1000 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 1001 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1002 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 1003 .addImm(31); 1004 } 1005 1006 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 1007 .addReg(Reg, RegState::Kill); 1008 1009 // Discard the pseudo instruction. 1010 MBB.erase(II); 1011 } 1012 1013 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 1014 unsigned FrameIndex) const { 1015 // Get the instruction. 1016 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 1017 // Get the instruction's basic block. 1018 MachineBasicBlock &MBB = *MI.getParent(); 1019 MachineFunction &MF = *MBB.getParent(); 1020 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1021 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1022 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 1023 DebugLoc dl = MI.getDebugLoc(); 1024 1025 bool LP64 = TM.isPPC64(); 1026 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1027 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1028 1029 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1030 Register SrcReg = MI.getOperand(0).getReg(); 1031 1032 // Search up the BB to find the definition of the CR bit. 1033 MachineBasicBlock::reverse_iterator Ins = MI; 1034 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 1035 ++Ins; 1036 unsigned CRBitSpillDistance = 0; 1037 bool SeenUse = false; 1038 for (; Ins != Rend; ++Ins) { 1039 // Definition found. 1040 if (Ins->modifiesRegister(SrcReg, TRI)) 1041 break; 1042 // Use found. 1043 if (Ins->readsRegister(SrcReg, TRI)) 1044 SeenUse = true; 1045 // Unable to find CR bit definition within maximum search distance. 1046 if (CRBitSpillDistance == MaxCRBitSpillDist) { 1047 Ins = MI; 1048 break; 1049 } 1050 // Skip debug instructions when counting CR bit spill distance. 1051 if (!Ins->isDebugInstr()) 1052 CRBitSpillDistance++; 1053 } 1054 1055 // Unable to find the definition of the CR bit in the MBB. 1056 if (Ins == MBB.rend()) 1057 Ins = MI; 1058 1059 bool SpillsKnownBit = false; 1060 // There is no need to extract the CR bit if its value is already known. 1061 switch (Ins->getOpcode()) { 1062 case PPC::CRUNSET: 1063 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 1064 .addImm(0); 1065 SpillsKnownBit = true; 1066 break; 1067 case PPC::CRSET: 1068 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 1069 .addImm(-32768); 1070 SpillsKnownBit = true; 1071 break; 1072 default: 1073 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 1074 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 1075 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 1076 // register), and SETNBC will set this. 1077 if (Subtarget.isISA3_1()) { 1078 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 1079 .addReg(SrcReg, RegState::Undef); 1080 break; 1081 } 1082 1083 // On Power9, we can use SETB to extract the LT bit. This only works for 1084 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 1085 // of the bit we care about (32-bit sign bit) will be set to the value of 1086 // the LT bit (regardless of the other bits in the CR field). 1087 if (Subtarget.isISA3_0()) { 1088 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 1089 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 1090 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 1091 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 1092 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 1093 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 1094 break; 1095 } 1096 } 1097 1098 // We need to move the CR field that contains the CR bit we are spilling. 1099 // The super register may not be explicitly defined (i.e. it can be defined 1100 // by a CR-logical that only defines the subreg) so we state that the CR 1101 // field is undef. Also, in order to preserve the kill flag on the CR bit, 1102 // we add it as an implicit use. 1103 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 1104 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 1105 .addReg(SrcReg, 1106 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 1107 1108 // If the saved register wasn't CR0LT, shift the bits left so that the bit 1109 // to store is the first one. Mask all but that bit. 1110 Register Reg1 = Reg; 1111 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1112 1113 // rlwinm rA, rA, ShiftBits, 0, 0. 1114 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1115 .addReg(Reg1, RegState::Kill) 1116 .addImm(getEncodingValue(SrcReg)) 1117 .addImm(0).addImm(0); 1118 } 1119 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 1120 .addReg(Reg, RegState::Kill), 1121 FrameIndex); 1122 1123 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 1124 // Discard the pseudo instruction. 1125 MBB.erase(II); 1126 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 1127 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 1128 Ins->removeOperand(0); 1129 } 1130 } 1131 1132 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 1133 unsigned FrameIndex) const { 1134 // Get the instruction. 1135 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 1136 // Get the instruction's basic block. 1137 MachineBasicBlock &MBB = *MI.getParent(); 1138 MachineFunction &MF = *MBB.getParent(); 1139 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1140 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1141 DebugLoc dl = MI.getDebugLoc(); 1142 1143 bool LP64 = TM.isPPC64(); 1144 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1145 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1146 1147 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1148 Register DestReg = MI.getOperand(0).getReg(); 1149 assert(MI.definesRegister(DestReg) && 1150 "RESTORE_CRBIT does not define its destination"); 1151 1152 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1153 Reg), FrameIndex); 1154 1155 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 1156 1157 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1158 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 1159 .addReg(getCRFromCRBit(DestReg)); 1160 1161 unsigned ShiftBits = getEncodingValue(DestReg); 1162 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1163 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1164 .addReg(RegO, RegState::Kill) 1165 .addReg(Reg, RegState::Kill) 1166 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1167 .addImm(ShiftBits) 1168 .addImm(ShiftBits); 1169 1170 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1171 getCRFromCRBit(DestReg)) 1172 .addReg(RegO, RegState::Kill) 1173 // Make sure we have a use dependency all the way through this 1174 // sequence of instructions. We can't have the other bits in the CR 1175 // modified in between the mfocrf and the mtocrf. 1176 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1177 1178 // Discard the pseudo instruction. 1179 MBB.erase(II); 1180 } 1181 1182 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1183 MCRegister DestReg, MCRegister SrcReg) { 1184 #ifdef NDEBUG 1185 return; 1186 #else 1187 if (ReportAccMoves) { 1188 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1189 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1190 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1191 MBB.dump(); 1192 } 1193 #endif 1194 } 1195 1196 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1197 bool IsRestore) { 1198 #ifdef NDEBUG 1199 return; 1200 #else 1201 if (ReportAccMoves) { 1202 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1203 << (IsRestore ? "restore" : "spill") << ":\n"; 1204 MBB.dump(); 1205 } 1206 #endif 1207 } 1208 1209 static void spillRegPairs(MachineBasicBlock &MBB, 1210 MachineBasicBlock::iterator II, DebugLoc DL, 1211 const TargetInstrInfo &TII, Register SrcReg, 1212 unsigned FrameIndex, bool IsLittleEndian, 1213 bool IsKilled, bool TwoPairs) { 1214 unsigned Offset = 0; 1215 if (TwoPairs) 1216 Offset = IsLittleEndian ? 48 : 0; 1217 else 1218 Offset = IsLittleEndian ? 16 : 0; 1219 Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2 1220 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1221 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1222 .addReg(Reg, getKillRegState(IsKilled)), 1223 FrameIndex, Offset); 1224 Offset += IsLittleEndian ? -16 : 16; 1225 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1226 .addReg(Reg + 1, getKillRegState(IsKilled)), 1227 FrameIndex, Offset); 1228 if (TwoPairs) { 1229 Offset += IsLittleEndian ? -16 : 16; 1230 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1231 .addReg(Reg + 2, getKillRegState(IsKilled)), 1232 FrameIndex, Offset); 1233 Offset += IsLittleEndian ? -16 : 16; 1234 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1235 .addReg(Reg + 3, getKillRegState(IsKilled)), 1236 FrameIndex, Offset); 1237 } 1238 } 1239 1240 /// Remove any STXVP[X] instructions and split them out into a pair of 1241 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on 1242 /// the command line. 1243 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II, 1244 unsigned FrameIndex) const { 1245 assert(DisableAutoPairedVecSt && 1246 "Expecting to do this only if paired vector stores are disabled."); 1247 MachineInstr &MI = *II; // STXVP <SrcReg>, <offset> 1248 MachineBasicBlock &MBB = *MI.getParent(); 1249 MachineFunction &MF = *MBB.getParent(); 1250 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1251 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1252 DebugLoc DL = MI.getDebugLoc(); 1253 Register SrcReg = MI.getOperand(0).getReg(); 1254 bool IsLittleEndian = Subtarget.isLittleEndian(); 1255 bool IsKilled = MI.getOperand(0).isKill(); 1256 spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled, 1257 /* TwoPairs */ false); 1258 // Discard the original instruction. 1259 MBB.erase(II); 1260 } 1261 1262 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1263 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1264 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1265 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1266 /// handle the FI elimination. 1267 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1268 unsigned FrameIndex) const { 1269 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1270 MachineBasicBlock &MBB = *MI.getParent(); 1271 MachineFunction &MF = *MBB.getParent(); 1272 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1273 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1274 DebugLoc DL = MI.getDebugLoc(); 1275 Register SrcReg = MI.getOperand(0).getReg(); 1276 bool IsKilled = MI.getOperand(0).isKill(); 1277 1278 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1279 Register Reg = 1280 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1281 bool IsLittleEndian = Subtarget.isLittleEndian(); 1282 1283 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1284 1285 // De-prime the register being spilled, create two stores for the pair 1286 // subregisters accounting for endianness and then re-prime the register if 1287 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1288 // adjust the offset of the store that is within the 64-byte stack slot. 1289 if (IsPrimed) 1290 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1291 if (DisableAutoPairedVecSt) 1292 spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled, 1293 /* TwoPairs */ true); 1294 else { 1295 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1296 .addReg(Reg, getKillRegState(IsKilled)), 1297 FrameIndex, IsLittleEndian ? 32 : 0); 1298 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1299 .addReg(Reg + 1, getKillRegState(IsKilled)), 1300 FrameIndex, IsLittleEndian ? 0 : 32); 1301 } 1302 if (IsPrimed && !IsKilled) 1303 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1304 1305 // Discard the pseudo instruction. 1306 MBB.erase(II); 1307 } 1308 1309 /// lowerACCRestore - Generate the code to restore the accumulator register. 1310 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1311 unsigned FrameIndex) const { 1312 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1313 MachineBasicBlock &MBB = *MI.getParent(); 1314 MachineFunction &MF = *MBB.getParent(); 1315 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1316 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1317 DebugLoc DL = MI.getDebugLoc(); 1318 1319 Register DestReg = MI.getOperand(0).getReg(); 1320 assert(MI.definesRegister(DestReg) && 1321 "RESTORE_ACC does not define its destination"); 1322 1323 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1324 Register Reg = 1325 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1326 bool IsLittleEndian = Subtarget.isLittleEndian(); 1327 1328 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1329 1330 // Create two loads for the pair subregisters accounting for endianness and 1331 // then prime the accumulator register being restored. 1332 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1333 FrameIndex, IsLittleEndian ? 32 : 0); 1334 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1335 FrameIndex, IsLittleEndian ? 0 : 32); 1336 if (IsPrimed) 1337 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1338 1339 // Discard the pseudo instruction. 1340 MBB.erase(II); 1341 } 1342 1343 /// lowerQuadwordSpilling - Generate code to spill paired general register. 1344 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II, 1345 unsigned FrameIndex) const { 1346 MachineInstr &MI = *II; 1347 MachineBasicBlock &MBB = *MI.getParent(); 1348 MachineFunction &MF = *MBB.getParent(); 1349 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1350 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1351 DebugLoc DL = MI.getDebugLoc(); 1352 1353 Register SrcReg = MI.getOperand(0).getReg(); 1354 bool IsKilled = MI.getOperand(0).isKill(); 1355 1356 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2; 1357 bool IsLittleEndian = Subtarget.isLittleEndian(); 1358 1359 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1360 .addReg(Reg, getKillRegState(IsKilled)), 1361 FrameIndex, IsLittleEndian ? 8 : 0); 1362 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1363 .addReg(Reg + 1, getKillRegState(IsKilled)), 1364 FrameIndex, IsLittleEndian ? 0 : 8); 1365 1366 // Discard the pseudo instruction. 1367 MBB.erase(II); 1368 } 1369 1370 /// lowerQuadwordRestore - Generate code to restore paired general register. 1371 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II, 1372 unsigned FrameIndex) const { 1373 MachineInstr &MI = *II; 1374 MachineBasicBlock &MBB = *MI.getParent(); 1375 MachineFunction &MF = *MBB.getParent(); 1376 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1377 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1378 DebugLoc DL = MI.getDebugLoc(); 1379 1380 Register DestReg = MI.getOperand(0).getReg(); 1381 assert(MI.definesRegister(DestReg) && 1382 "RESTORE_QUADWORD does not define its destination"); 1383 1384 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2; 1385 bool IsLittleEndian = Subtarget.isLittleEndian(); 1386 1387 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex, 1388 IsLittleEndian ? 8 : 0); 1389 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex, 1390 IsLittleEndian ? 0 : 8); 1391 1392 // Discard the pseudo instruction. 1393 MBB.erase(II); 1394 } 1395 1396 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1397 Register Reg, int &FrameIdx) const { 1398 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1399 // prevent allocating an additional frame slot. 1400 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1401 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1402 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1403 // valid. 1404 // For 32-bit ELF, we have previously created the stack slot if needed, so 1405 // return its FrameIdx. 1406 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1407 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1408 return true; 1409 } 1410 return false; 1411 } 1412 1413 // If the offset must be a multiple of some value, return what that value is. 1414 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1415 switch (OpC) { 1416 default: 1417 return 1; 1418 case PPC::LWA: 1419 case PPC::LWA_32: 1420 case PPC::LD: 1421 case PPC::LDU: 1422 case PPC::STD: 1423 case PPC::STDU: 1424 case PPC::DFLOADf32: 1425 case PPC::DFLOADf64: 1426 case PPC::DFSTOREf32: 1427 case PPC::DFSTOREf64: 1428 case PPC::LXSD: 1429 case PPC::LXSSP: 1430 case PPC::STXSD: 1431 case PPC::STXSSP: 1432 case PPC::STQ: 1433 return 4; 1434 case PPC::EVLDD: 1435 case PPC::EVSTDD: 1436 return 8; 1437 case PPC::LXV: 1438 case PPC::STXV: 1439 case PPC::LQ: 1440 case PPC::LXVP: 1441 case PPC::STXVP: 1442 return 16; 1443 } 1444 } 1445 1446 // If the offset must be a multiple of some value, return what that value is. 1447 static unsigned offsetMinAlign(const MachineInstr &MI) { 1448 unsigned OpC = MI.getOpcode(); 1449 return offsetMinAlignForOpcode(OpC); 1450 } 1451 1452 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1453 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1454 unsigned FIOperandNum) { 1455 // Take into account whether it's an add or mem instruction 1456 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1457 if (MI.isInlineAsm()) 1458 OffsetOperandNo = FIOperandNum - 1; 1459 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1460 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1461 OffsetOperandNo = FIOperandNum + 1; 1462 1463 return OffsetOperandNo; 1464 } 1465 1466 void 1467 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1468 int SPAdj, unsigned FIOperandNum, 1469 RegScavenger *RS) const { 1470 assert(SPAdj == 0 && "Unexpected"); 1471 1472 // Get the instruction. 1473 MachineInstr &MI = *II; 1474 // Get the instruction's basic block. 1475 MachineBasicBlock &MBB = *MI.getParent(); 1476 // Get the basic block's function. 1477 MachineFunction &MF = *MBB.getParent(); 1478 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1479 // Get the instruction info. 1480 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1481 // Get the frame info. 1482 MachineFrameInfo &MFI = MF.getFrameInfo(); 1483 DebugLoc dl = MI.getDebugLoc(); 1484 1485 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1486 1487 // Get the frame index. 1488 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1489 1490 // Get the frame pointer save index. Users of this index are primarily 1491 // DYNALLOC instructions. 1492 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1493 int FPSI = FI->getFramePointerSaveIndex(); 1494 // Get the instruction opcode. 1495 unsigned OpC = MI.getOpcode(); 1496 1497 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1498 lowerDynamicAreaOffset(II); 1499 return; 1500 } 1501 1502 // Special case for dynamic alloca. 1503 if (FPSI && FrameIndex == FPSI && 1504 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1505 lowerDynamicAlloc(II); 1506 return; 1507 } 1508 1509 if (FPSI && FrameIndex == FPSI && 1510 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1511 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1512 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1513 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1514 lowerPrepareProbedAlloca(II); 1515 return; 1516 } 1517 1518 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1519 if (OpC == PPC::SPILL_CR) { 1520 lowerCRSpilling(II, FrameIndex); 1521 return; 1522 } else if (OpC == PPC::RESTORE_CR) { 1523 lowerCRRestore(II, FrameIndex); 1524 return; 1525 } else if (OpC == PPC::SPILL_CRBIT) { 1526 lowerCRBitSpilling(II, FrameIndex); 1527 return; 1528 } else if (OpC == PPC::RESTORE_CRBIT) { 1529 lowerCRBitRestore(II, FrameIndex); 1530 return; 1531 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1532 lowerACCSpilling(II, FrameIndex); 1533 return; 1534 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1535 lowerACCRestore(II, FrameIndex); 1536 return; 1537 } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) { 1538 lowerOctWordSpilling(II, FrameIndex); 1539 return; 1540 } else if (OpC == PPC::SPILL_QUADWORD) { 1541 lowerQuadwordSpilling(II, FrameIndex); 1542 return; 1543 } else if (OpC == PPC::RESTORE_QUADWORD) { 1544 lowerQuadwordRestore(II, FrameIndex); 1545 return; 1546 } 1547 1548 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1549 MI.getOperand(FIOperandNum).ChangeToRegister( 1550 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1551 1552 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1553 // form (and must be r+r). 1554 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1555 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1556 1557 // Now add the frame object offset to the offset from r1. 1558 int64_t Offset = MFI.getObjectOffset(FrameIndex); 1559 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1560 1561 // If we're not using a Frame Pointer that has been set to the value of the 1562 // SP before having the stack size subtracted from it, then add the stack size 1563 // to Offset to get the correct offset. 1564 // Naked functions have stack size 0, although getStackSize may not reflect 1565 // that because we didn't call all the pieces that compute it for naked 1566 // functions. 1567 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1568 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1569 Offset += MFI.getStackSize(); 1570 } 1571 1572 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can 1573 // transform it to the prefixed version so we don't have to use the XForm. 1574 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) && 1575 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) && 1576 Subtarget.hasPrefixInstrs()) { 1577 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP; 1578 MI.setDesc(TII.get(NewOpc)); 1579 OpC = NewOpc; 1580 } 1581 1582 // If we can, encode the offset directly into the instruction. If this is a 1583 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1584 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1585 // clear can be encoded. This is extremely uncommon, because normally you 1586 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1587 // happen in invalid code. 1588 assert(OpC != PPC::DBG_VALUE && 1589 "This should be handled in a target-independent way"); 1590 // FIXME: This should be factored out to a separate function as prefixed 1591 // instructions add a number of opcodes for which we can use 34-bit imm. 1592 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1593 isUInt<8>(Offset) : 1594 isInt<16>(Offset); 1595 if (TII.isPrefixed(MI.getOpcode())) 1596 OffsetFitsMnemonic = isInt<34>(Offset); 1597 if (!noImmForm && ((OffsetFitsMnemonic && 1598 ((Offset % offsetMinAlign(MI)) == 0)) || 1599 OpC == TargetOpcode::STACKMAP || 1600 OpC == TargetOpcode::PATCHPOINT)) { 1601 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1602 return; 1603 } 1604 1605 // The offset doesn't fit into a single register, scavenge one to build the 1606 // offset in. 1607 1608 bool is64Bit = TM.isPPC64(); 1609 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1610 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1611 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1612 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC), 1613 SReg = MF.getRegInfo().createVirtualRegister(RC); 1614 unsigned NewOpcode = 0u; 1615 1616 // Insert a set of rA with the full offset value before the ld, st, or add 1617 if (isInt<16>(Offset)) 1618 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1619 .addImm(Offset); 1620 else if (isInt<32>(Offset)) { 1621 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1622 .addImm(Offset >> 16); 1623 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1624 .addReg(SRegHi, RegState::Kill) 1625 .addImm(Offset); 1626 } else { 1627 assert(is64Bit && "Huge stack is only supported on PPC64"); 1628 TII.materializeImmPostRA(MBB, II, dl, SReg, Offset); 1629 } 1630 1631 // Convert into indexed form of the instruction: 1632 // 1633 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1634 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1635 unsigned OperandBase; 1636 1637 if (noImmForm) 1638 OperandBase = 1; 1639 else if (OpC != TargetOpcode::INLINEASM && 1640 OpC != TargetOpcode::INLINEASM_BR) { 1641 assert(ImmToIdxMap.count(OpC) && 1642 "No indexed form of load or store available!"); 1643 NewOpcode = ImmToIdxMap.find(OpC)->second; 1644 MI.setDesc(TII.get(NewOpcode)); 1645 OperandBase = 1; 1646 } else { 1647 OperandBase = OffsetOperandNo; 1648 } 1649 1650 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1651 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1652 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1653 1654 // Since these are not real X-Form instructions, we must 1655 // add the registers and access 0(NewReg) rather than 1656 // emitting the X-Form pseudo. 1657 if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) { 1658 assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode"); 1659 Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); 1660 BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg) 1661 .addReg(SReg, RegState::Kill) 1662 .addReg(StackReg); 1663 MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ)); 1664 MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false); 1665 MI.getOperand(OperandBase).ChangeToImmediate(0); 1666 } 1667 } 1668 1669 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1670 const PPCFrameLowering *TFI = getFrameLowering(MF); 1671 1672 if (!TM.isPPC64()) 1673 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1674 else 1675 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1676 } 1677 1678 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1679 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1680 if (!hasBasePointer(MF)) 1681 return getFrameRegister(MF); 1682 1683 if (TM.isPPC64()) 1684 return PPC::X30; 1685 1686 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1687 return PPC::R29; 1688 1689 return PPC::R30; 1690 } 1691 1692 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1693 if (!EnableBasePointer) 1694 return false; 1695 if (AlwaysBasePointer) 1696 return true; 1697 1698 // If we need to realign the stack, then the stack pointer can no longer 1699 // serve as an offset into the caller's stack space. As a result, we need a 1700 // base pointer. 1701 return hasStackRealignment(MF); 1702 } 1703 1704 /// Returns true if the instruction's frame index 1705 /// reference would be better served by a base register other than FP 1706 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1707 /// references it should create new base registers for. 1708 bool PPCRegisterInfo:: 1709 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1710 assert(Offset < 0 && "Local offset must be negative"); 1711 1712 // It's the load/store FI references that cause issues, as it can be difficult 1713 // to materialize the offset if it won't fit in the literal field. Estimate 1714 // based on the size of the local frame and some conservative assumptions 1715 // about the rest of the stack frame (note, this is pre-regalloc, so 1716 // we don't know everything for certain yet) whether this offset is likely 1717 // to be out of range of the immediate. Return true if so. 1718 1719 // We only generate virtual base registers for loads and stores that have 1720 // an r+i form. Return false for everything else. 1721 unsigned OpC = MI->getOpcode(); 1722 if (!ImmToIdxMap.count(OpC)) 1723 return false; 1724 1725 // Don't generate a new virtual base register just to add zero to it. 1726 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1727 MI->getOperand(2).getImm() == 0) 1728 return false; 1729 1730 MachineBasicBlock &MBB = *MI->getParent(); 1731 MachineFunction &MF = *MBB.getParent(); 1732 const PPCFrameLowering *TFI = getFrameLowering(MF); 1733 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1734 1735 // If we likely don't need a stack frame, then we probably don't need a 1736 // virtual base register either. 1737 if (!StackEst) 1738 return false; 1739 1740 // Estimate an offset from the stack pointer. 1741 // The incoming offset is relating to the SP at the start of the function, 1742 // but when we access the local it'll be relative to the SP after local 1743 // allocation, so adjust our SP-relative offset by that allocation size. 1744 Offset += StackEst; 1745 1746 // The frame pointer will point to the end of the stack, so estimate the 1747 // offset as the difference between the object offset and the FP location. 1748 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1749 } 1750 1751 /// Insert defining instruction(s) for BaseReg to 1752 /// be a pointer to FrameIdx at the beginning of the basic block. 1753 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1754 int FrameIdx, 1755 int64_t Offset) const { 1756 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1757 1758 MachineBasicBlock::iterator Ins = MBB->begin(); 1759 DebugLoc DL; // Defaults to "unknown" 1760 if (Ins != MBB->end()) 1761 DL = Ins->getDebugLoc(); 1762 1763 const MachineFunction &MF = *MBB->getParent(); 1764 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1765 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1766 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1767 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1768 const TargetRegisterClass *RC = getPointerRegClass(MF); 1769 Register BaseReg = MRI.createVirtualRegister(RC); 1770 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1771 1772 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1773 .addFrameIndex(FrameIdx).addImm(Offset); 1774 1775 return BaseReg; 1776 } 1777 1778 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1779 int64_t Offset) const { 1780 unsigned FIOperandNum = 0; 1781 while (!MI.getOperand(FIOperandNum).isFI()) { 1782 ++FIOperandNum; 1783 assert(FIOperandNum < MI.getNumOperands() && 1784 "Instr doesn't have FrameIndex operand!"); 1785 } 1786 1787 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1788 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1789 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1790 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1791 1792 MachineBasicBlock &MBB = *MI.getParent(); 1793 MachineFunction &MF = *MBB.getParent(); 1794 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1795 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1796 const MCInstrDesc &MCID = MI.getDesc(); 1797 MachineRegisterInfo &MRI = MF.getRegInfo(); 1798 MRI.constrainRegClass(BaseReg, 1799 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1800 } 1801 1802 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1803 Register BaseReg, 1804 int64_t Offset) const { 1805 unsigned FIOperandNum = 0; 1806 while (!MI->getOperand(FIOperandNum).isFI()) { 1807 ++FIOperandNum; 1808 assert(FIOperandNum < MI->getNumOperands() && 1809 "Instr doesn't have FrameIndex operand!"); 1810 } 1811 1812 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1813 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1814 1815 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1816 MI->getOpcode() == TargetOpcode::STACKMAP || 1817 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1818 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1819 } 1820