1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RegisterScavenging.h" 28 #include "llvm/CodeGen/TargetFrameLowering.h" 29 #include "llvm/CodeGen/TargetInstrInfo.h" 30 #include "llvm/CodeGen/VirtRegMap.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetMachine.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include <cstdlib> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "reginfo" 46 47 #define GET_REGINFO_TARGET_DESC 48 #include "PPCGenRegisterInfo.inc" 49 50 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 51 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 52 53 static cl::opt<bool> 54 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 55 cl::desc("Enable use of a base pointer for complex stack frames")); 56 57 static cl::opt<bool> 58 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 59 cl::desc("Force the use of a base pointer in every function")); 60 61 static cl::opt<bool> 62 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 63 cl::desc("Enable spills from gpr to vsr rather than stack")); 64 65 static cl::opt<bool> 66 StackPtrConst("ppc-stack-ptr-caller-preserved", 67 cl::desc("Consider R1 caller preserved so stack saves of " 68 "caller preserved registers can be LICM candidates"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> 72 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 73 cl::desc("Maximum search distance for definition of CR bit " 74 "spill on ppc"), 75 cl::Hidden, cl::init(100)); 76 77 // Copies/moves of physical accumulators are expensive operations 78 // that should be avoided whenever possible. MMA instructions are 79 // meant to be used in performance-sensitive computational kernels. 80 // This option is provided, at least for the time being, to give the 81 // user a tool to detect this expensive operation and either rework 82 // their code or report a compiler bug if that turns out to be the 83 // cause. 84 #ifndef NDEBUG 85 static cl::opt<bool> 86 ReportAccMoves("ppc-report-acc-moves", 87 cl::desc("Emit information about accumulator register spills " 88 "and copies"), 89 cl::Hidden, cl::init(false)); 90 #endif 91 92 extern cl::opt<bool> DisableAutoPairedVecSt; 93 94 static unsigned offsetMinAlignForOpcode(unsigned OpC); 95 96 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 97 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 98 TM.isPPC64() ? 0 : 1, 99 TM.isPPC64() ? 0 : 1), 100 TM(TM) { 101 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 102 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 103 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 104 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 105 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 106 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 107 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 108 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 109 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 110 111 // 64-bit 112 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 113 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 114 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 115 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 116 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 117 ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO; 118 ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO; 119 120 // VSX 121 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 122 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 123 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 124 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 125 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 126 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 127 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 128 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 129 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 130 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 131 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 132 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 133 134 // SPE 135 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 136 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 137 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 138 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 139 140 // Power10 141 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8; 142 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8; 143 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8; 144 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8; 145 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX; 146 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX; 147 148 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8; 149 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8; 150 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8; 151 152 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX; 153 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX; 154 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX; 155 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX; 156 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX; 157 158 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX; 159 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX; 160 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX; 161 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX; 162 } 163 164 /// getPointerRegClass - Return the register class to use to hold pointers. 165 /// This is used for addressing modes. 166 const TargetRegisterClass * 167 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 168 const { 169 // Note that PPCInstrInfo::foldImmediate also directly uses this Kind value 170 // when it checks for ZERO folding. 171 if (Kind == 1) { 172 if (TM.isPPC64()) 173 return &PPC::G8RC_NOX0RegClass; 174 return &PPC::GPRC_NOR0RegClass; 175 } 176 177 if (TM.isPPC64()) 178 return &PPC::G8RCRegClass; 179 return &PPC::GPRCRegClass; 180 } 181 182 const MCPhysReg* 183 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 184 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 185 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 186 if (!TM.isPPC64() && Subtarget.isAIXABI()) 187 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 188 if (Subtarget.hasVSX()) { 189 if (Subtarget.pairedVectorMemops()) 190 return CSR_64_AllRegs_VSRP_SaveList; 191 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 192 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 193 return CSR_64_AllRegs_VSX_SaveList; 194 } 195 if (Subtarget.hasAltivec()) { 196 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 197 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 198 return CSR_64_AllRegs_Altivec_SaveList; 199 } 200 return CSR_64_AllRegs_SaveList; 201 } 202 203 // On PPC64, we might need to save r2 (but only if it is not reserved). 204 // We do not need to treat R2 as callee-saved when using PC-Relative calls 205 // because any direct uses of R2 will cause it to be reserved. If the function 206 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 207 // will use the @notoc relocation which will cause this function to set the 208 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 209 // clobbers the TOC. 210 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 211 !Subtarget.isUsingPCRelativeCalls(); 212 213 // Cold calling convention CSRs. 214 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 215 if (Subtarget.isAIXABI()) 216 report_fatal_error("Cold calling unimplemented on AIX."); 217 if (TM.isPPC64()) { 218 if (Subtarget.pairedVectorMemops()) 219 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList 220 : CSR_SVR64_ColdCC_VSRP_SaveList; 221 if (Subtarget.hasAltivec()) 222 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 223 : CSR_SVR64_ColdCC_Altivec_SaveList; 224 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 225 : CSR_SVR64_ColdCC_SaveList; 226 } 227 // 32-bit targets. 228 if (Subtarget.pairedVectorMemops()) 229 return CSR_SVR32_ColdCC_VSRP_SaveList; 230 else if (Subtarget.hasAltivec()) 231 return CSR_SVR32_ColdCC_Altivec_SaveList; 232 else if (Subtarget.hasSPE()) 233 return CSR_SVR32_ColdCC_SPE_SaveList; 234 return CSR_SVR32_ColdCC_SaveList; 235 } 236 // Standard calling convention CSRs. 237 if (TM.isPPC64()) { 238 if (Subtarget.pairedVectorMemops()) { 239 if (Subtarget.isAIXABI()) { 240 if (!TM.getAIXExtendedAltivecABI()) 241 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 242 return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList; 243 } 244 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList; 245 } 246 if (Subtarget.hasAltivec() && 247 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 248 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 249 : CSR_PPC64_Altivec_SaveList; 250 } 251 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 252 } 253 // 32-bit targets. 254 if (Subtarget.isAIXABI()) { 255 if (Subtarget.pairedVectorMemops()) 256 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList 257 : CSR_AIX32_SaveList; 258 if (Subtarget.hasAltivec()) 259 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 260 : CSR_AIX32_SaveList; 261 return CSR_AIX32_SaveList; 262 } 263 if (Subtarget.pairedVectorMemops()) 264 return CSR_SVR432_VSRP_SaveList; 265 if (Subtarget.hasAltivec()) 266 return CSR_SVR432_Altivec_SaveList; 267 else if (Subtarget.hasSPE()) { 268 if (TM.isPositionIndependent() && !TM.isPPC64()) 269 return CSR_SVR432_SPE_NO_S30_31_SaveList; 270 return CSR_SVR432_SPE_SaveList; 271 } 272 return CSR_SVR432_SaveList; 273 } 274 275 const uint32_t * 276 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 277 CallingConv::ID CC) const { 278 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 279 if (CC == CallingConv::AnyReg) { 280 if (Subtarget.hasVSX()) { 281 if (Subtarget.pairedVectorMemops()) 282 return CSR_64_AllRegs_VSRP_RegMask; 283 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 284 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 285 return CSR_64_AllRegs_VSX_RegMask; 286 } 287 if (Subtarget.hasAltivec()) { 288 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 289 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 290 return CSR_64_AllRegs_Altivec_RegMask; 291 } 292 return CSR_64_AllRegs_RegMask; 293 } 294 295 if (Subtarget.isAIXABI()) { 296 if (Subtarget.pairedVectorMemops()) { 297 if (!TM.getAIXExtendedAltivecABI()) 298 return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask; 299 return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask; 300 } 301 return TM.isPPC64() 302 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 303 ? CSR_PPC64_Altivec_RegMask 304 : CSR_PPC64_RegMask) 305 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 306 ? CSR_AIX32_Altivec_RegMask 307 : CSR_AIX32_RegMask); 308 } 309 310 if (CC == CallingConv::Cold) { 311 if (TM.isPPC64()) 312 return Subtarget.pairedVectorMemops() 313 ? CSR_SVR64_ColdCC_VSRP_RegMask 314 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 315 : CSR_SVR64_ColdCC_RegMask); 316 else 317 return Subtarget.pairedVectorMemops() 318 ? CSR_SVR32_ColdCC_VSRP_RegMask 319 : (Subtarget.hasAltivec() 320 ? CSR_SVR32_ColdCC_Altivec_RegMask 321 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask 322 : CSR_SVR32_ColdCC_RegMask)); 323 } 324 325 if (TM.isPPC64()) 326 return Subtarget.pairedVectorMemops() 327 ? CSR_SVR464_VSRP_RegMask 328 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 329 : CSR_PPC64_RegMask); 330 else 331 return Subtarget.pairedVectorMemops() 332 ? CSR_SVR432_VSRP_RegMask 333 : (Subtarget.hasAltivec() 334 ? CSR_SVR432_Altivec_RegMask 335 : (Subtarget.hasSPE() 336 ? (TM.isPositionIndependent() 337 ? CSR_SVR432_SPE_NO_S30_31_RegMask 338 : CSR_SVR432_SPE_RegMask) 339 : CSR_SVR432_RegMask)); 340 } 341 342 const uint32_t* 343 PPCRegisterInfo::getNoPreservedMask() const { 344 return CSR_NoRegs_RegMask; 345 } 346 347 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 348 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 349 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 350 } 351 352 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 353 BitVector Reserved(getNumRegs()); 354 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 355 const PPCFrameLowering *TFI = getFrameLowering(MF); 356 357 // The ZERO register is not really a register, but the representation of r0 358 // when used in instructions that treat r0 as the constant 0. 359 markSuperRegs(Reserved, PPC::ZERO); 360 361 // The FP register is also not really a register, but is the representation 362 // of the frame pointer register used by ISD::FRAMEADDR. 363 markSuperRegs(Reserved, PPC::FP); 364 365 // The BP register is also not really a register, but is the representation 366 // of the base pointer register used by setjmp. 367 markSuperRegs(Reserved, PPC::BP); 368 369 // The counter registers must be reserved so that counter-based loops can 370 // be correctly formed (and the mtctr instructions are not DCE'd). 371 markSuperRegs(Reserved, PPC::CTR); 372 markSuperRegs(Reserved, PPC::CTR8); 373 374 markSuperRegs(Reserved, PPC::R1); 375 markSuperRegs(Reserved, PPC::LR); 376 markSuperRegs(Reserved, PPC::LR8); 377 markSuperRegs(Reserved, PPC::RM); 378 379 markSuperRegs(Reserved, PPC::VRSAVE); 380 381 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 382 bool UsesTOCBasePtr = FuncInfo->usesTOCBasePtr(); 383 // The SVR4 ABI reserves r2 and r13 384 if (Subtarget.isSVR4ABI() || Subtarget.isAIXABI()) { 385 // We only reserve r2 if we need to use the TOC pointer. If we have no 386 // explicit uses of the TOC pointer (meaning we're a leaf function with 387 // no constant-pool loads, etc.) and we have no potential uses inside an 388 // inline asm block, then we can treat r2 has an ordinary callee-saved 389 // register. 390 if (!TM.isPPC64() || UsesTOCBasePtr || MF.hasInlineAsm()) 391 markSuperRegs(Reserved, PPC::R2); // System-reserved register. 392 393 if (Subtarget.isSVR4ABI()) 394 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register. 395 } 396 397 // On PPC64, r13 is the thread pointer. Never allocate this register. 398 if (TM.isPPC64()) 399 markSuperRegs(Reserved, PPC::R13); 400 401 if (TFI->needsFP(MF)) 402 markSuperRegs(Reserved, PPC::R31); 403 404 bool IsPositionIndependent = TM.isPositionIndependent(); 405 if (hasBasePointer(MF)) { 406 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 407 markSuperRegs(Reserved, PPC::R29); 408 else 409 markSuperRegs(Reserved, PPC::R30); 410 } 411 412 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 413 markSuperRegs(Reserved, PPC::R30); 414 415 // Reserve Altivec registers when Altivec is unavailable. 416 if (!Subtarget.hasAltivec()) 417 for (MCRegister Reg : PPC::VRRCRegClass) 418 markSuperRegs(Reserved, Reg); 419 420 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 421 !TM.getAIXExtendedAltivecABI()) { 422 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 423 // and cannot be used. 424 for (auto Reg : CSR_Altivec_SaveList) { 425 if (Reg == 0) 426 break; 427 markSuperRegs(Reserved, Reg); 428 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 429 Reserved.set(*AS); 430 } 431 } 432 } 433 434 assert(checkAllSuperRegsMarked(Reserved)); 435 return Reserved; 436 } 437 438 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF, 439 MCRegister PhysReg) const { 440 // CTR and LR registers are always reserved, but they are asm clobberable. 441 if (PhysReg == PPC::CTR || PhysReg == PPC::CTR8 || PhysReg == PPC::LR || 442 PhysReg == PPC::LR8) 443 return true; 444 445 return !getReservedRegs(MF).test(PhysReg); 446 } 447 448 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 449 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 450 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 451 const MachineFrameInfo &MFI = MF.getFrameInfo(); 452 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 453 454 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 455 << ".\n"); 456 // If the callee saved info is invalid we have to default to true for safety. 457 if (!MFI.isCalleeSavedInfoValid()) { 458 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 459 return true; 460 } 461 462 // We will require the use of X-Forms because the frame is larger than what 463 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 464 // If we need an X-Form then we need a register to store the address offset. 465 unsigned FrameSize = MFI.getStackSize(); 466 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 467 if (FrameSize & ~0x7FFF) { 468 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 469 return true; 470 } 471 472 // The callee saved info is valid so it can be traversed. 473 // Checking for registers that need saving that do not have load or store 474 // forms where the address offset is an immediate. 475 for (const CalleeSavedInfo &CSI : Info) { 476 // If the spill is to a register no scavenging is required. 477 if (CSI.isSpilledToReg()) 478 continue; 479 480 int FrIdx = CSI.getFrameIdx(); 481 Register Reg = CSI.getReg(); 482 483 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 484 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 485 if (!MFI.isFixedObjectIndex(FrIdx)) { 486 // This is not a fixed object. If it requires alignment then we may still 487 // need to use the XForm. 488 if (offsetMinAlignForOpcode(Opcode) > 1) { 489 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 490 << " for register " << printReg(Reg, this) << ".\n"); 491 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 492 << "alignment.\n"); 493 return true; 494 } 495 } 496 497 // This is eiher: 498 // 1) A fixed frame index object which we know are aligned so 499 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 500 // need to consider the alignment here. 501 // 2) A not fixed object but in that case we now know that the min required 502 // alignment is no more than 1 based on the previous check. 503 if (InstrInfo->isXFormMemOp(Opcode)) { 504 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 505 << " for register " << printReg(Reg, this) << ".\n"); 506 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 507 return true; 508 } 509 510 // This is a spill/restore of a quadword. 511 if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) { 512 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 513 << " for register " << printReg(Reg, this) << ".\n"); 514 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n"); 515 return true; 516 } 517 } 518 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 519 return false; 520 } 521 522 bool PPCRegisterInfo::requiresVirtualBaseRegisters( 523 const MachineFunction &MF) const { 524 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 525 // Do not use virtual base registers when ROP protection is turned on. 526 // Virtual base registers break the layout of the local variable space and may 527 // push the ROP Hash location past the 512 byte range of the ROP store 528 // instruction. 529 return !Subtarget.hasROPProtect(); 530 } 531 532 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 533 const MachineFunction &MF) const { 534 assert(Register::isPhysicalRegister(PhysReg)); 535 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 536 const MachineFrameInfo &MFI = MF.getFrameInfo(); 537 538 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 539 return false; 540 if (PhysReg == Subtarget.getTOCPointerRegister()) 541 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 542 // The reason it's reserved is that it's the TOC pointer (and the function 543 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 544 // with no TOC access), we can't claim that it is preserved. 545 return (getReservedRegs(MF).test(PhysReg)); 546 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 547 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 548 // The value of the stack pointer does not change within a function after 549 // the prologue and before the epilogue if there are no dynamic allocations 550 // and no inline asm which clobbers X1/R1. 551 return true; 552 return false; 553 } 554 555 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg, 556 ArrayRef<MCPhysReg> Order, 557 SmallVectorImpl<MCPhysReg> &Hints, 558 const MachineFunction &MF, 559 const VirtRegMap *VRM, 560 const LiveRegMatrix *Matrix) const { 561 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 562 563 // Call the base implementation first to set any hints based on the usual 564 // heuristics and decide what the return value should be. We want to return 565 // the same value returned by the base implementation. If the base 566 // implementation decides to return true and force the allocation then we 567 // will leave it as such. On the other hand if the base implementation 568 // decides to return false the following code will not force the allocation 569 // as we are just looking to provide a hint. 570 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints( 571 VirtReg, Order, Hints, MF, VRM, Matrix); 572 573 // Don't use the allocation hints for ISAFuture. 574 // The WACC registers used in ISAFuture are unlike the ACC registers on 575 // Power 10 and so this logic to register allocation hints does not apply. 576 if (MF.getSubtarget<PPCSubtarget>().isISAFuture()) 577 return BaseImplRetVal; 578 579 // We are interested in instructions that copy values to ACC/UACC. 580 // The copy into UACC will be simply a COPY to a subreg so we 581 // want to allocate the corresponding physical subreg for the source. 582 // The copy into ACC will be a BUILD_UACC so we want to allocate 583 // the same number UACC for the source. 584 const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg); 585 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) { 586 const MachineOperand *ResultOp = nullptr; 587 Register ResultReg; 588 switch (Use.getOpcode()) { 589 case TargetOpcode::COPY: { 590 ResultOp = &Use.getOperand(0); 591 ResultReg = ResultOp->getReg(); 592 if (ResultReg.isVirtual() && 593 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) && 594 VRM->hasPhys(ResultReg)) { 595 Register UACCPhys = VRM->getPhys(ResultReg); 596 Register HintReg; 597 if (RegClass->contains(PPC::VSRp0)) { 598 HintReg = getSubReg(UACCPhys, ResultOp->getSubReg()); 599 // Ensure that the hint is a VSRp register. 600 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31) 601 Hints.push_back(HintReg); 602 } else if (RegClass->contains(PPC::ACC0)) { 603 HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0); 604 if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7) 605 Hints.push_back(HintReg); 606 } 607 } 608 break; 609 } 610 case PPC::BUILD_UACC: { 611 ResultOp = &Use.getOperand(0); 612 ResultReg = ResultOp->getReg(); 613 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) && 614 VRM->hasPhys(ResultReg)) { 615 Register ACCPhys = VRM->getPhys(ResultReg); 616 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) && 617 "Expecting an ACC register for BUILD_UACC."); 618 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0); 619 Hints.push_back(HintReg); 620 } 621 break; 622 } 623 } 624 } 625 return BaseImplRetVal; 626 } 627 628 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 629 MachineFunction &MF) const { 630 const PPCFrameLowering *TFI = getFrameLowering(MF); 631 const unsigned DefaultSafety = 1; 632 633 switch (RC->getID()) { 634 default: 635 return 0; 636 case PPC::G8RC_NOX0RegClassID: 637 case PPC::GPRC_NOR0RegClassID: 638 case PPC::SPERCRegClassID: 639 case PPC::G8RCRegClassID: 640 case PPC::GPRCRegClassID: { 641 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 642 return 32 - FP - DefaultSafety; 643 } 644 case PPC::F4RCRegClassID: 645 case PPC::F8RCRegClassID: 646 case PPC::VSLRCRegClassID: 647 return 32 - DefaultSafety; 648 case PPC::VFRCRegClassID: 649 case PPC::VRRCRegClassID: { 650 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 651 // Vector registers VR20-VR31 are reserved and cannot be used in the default 652 // Altivec ABI on AIX. 653 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 654 return 20 - DefaultSafety; 655 } 656 return 32 - DefaultSafety; 657 case PPC::VSFRCRegClassID: 658 case PPC::VSSRCRegClassID: 659 case PPC::VSRCRegClassID: { 660 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 661 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 662 // Vector registers VR20-VR31 are reserved and cannot be used in the 663 // default Altivec ABI on AIX. 664 return 52 - DefaultSafety; 665 } 666 return 64 - DefaultSafety; 667 case PPC::CRRCRegClassID: 668 return 8 - DefaultSafety; 669 } 670 } 671 672 const TargetRegisterClass * 673 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 674 const MachineFunction &MF) const { 675 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 676 const auto *DefaultSuperclass = 677 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 678 if (Subtarget.hasVSX()) { 679 // With VSX, we can inflate various sub-register classes to the full VSX 680 // register set. 681 682 // For Power9 we allow the user to enable GPR to vector spills. 683 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 684 // support to spill GPRC. 685 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 686 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 687 RC == &PPC::G8RCRegClass) { 688 InflateGP8RC++; 689 return &PPC::SPILLTOVSRRCRegClass; 690 } 691 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 692 InflateGPRC++; 693 } 694 695 for (const auto *I = RC->getSuperClasses(); *I; ++I) { 696 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC)) 697 continue; 698 699 switch ((*I)->getID()) { 700 case PPC::VSSRCRegClassID: 701 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass; 702 case PPC::VSFRCRegClassID: 703 case PPC::VSRCRegClassID: 704 return *I; 705 case PPC::VSRpRCRegClassID: 706 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass; 707 case PPC::ACCRCRegClassID: 708 case PPC::UACCRCRegClassID: 709 return Subtarget.hasMMA() ? *I : DefaultSuperclass; 710 } 711 } 712 } 713 714 return DefaultSuperclass; 715 } 716 717 //===----------------------------------------------------------------------===// 718 // Stack Frame Processing methods 719 //===----------------------------------------------------------------------===// 720 721 /// lowerDynamicAlloc - Generate the code for allocating an object in the 722 /// current frame. The sequence of code will be in the general form 723 /// 724 /// addi R0, SP, \#frameSize ; get the address of the previous frame 725 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 726 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 727 /// 728 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 729 // Get the instruction. 730 MachineInstr &MI = *II; 731 // Get the instruction's basic block. 732 MachineBasicBlock &MBB = *MI.getParent(); 733 // Get the basic block's function. 734 MachineFunction &MF = *MBB.getParent(); 735 // Get the frame info. 736 MachineFrameInfo &MFI = MF.getFrameInfo(); 737 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 738 // Get the instruction info. 739 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 740 // Determine whether 64-bit pointers are used. 741 bool LP64 = TM.isPPC64(); 742 DebugLoc dl = MI.getDebugLoc(); 743 744 // Get the maximum call stack size. 745 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 746 Align MaxAlign = MFI.getMaxAlign(); 747 assert(isAligned(MaxAlign, maxCallFrameSize) && 748 "Maximum call-frame size not sufficiently aligned"); 749 (void)MaxAlign; 750 751 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 752 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 753 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 754 bool KillNegSizeReg = MI.getOperand(1).isKill(); 755 Register NegSizeReg = MI.getOperand(1).getReg(); 756 757 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 758 // Grow the stack and update the stack pointer link, then determine the 759 // address of new allocated space. 760 if (LP64) { 761 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 762 .addReg(Reg, RegState::Kill) 763 .addReg(PPC::X1) 764 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 765 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 766 .addReg(PPC::X1) 767 .addImm(maxCallFrameSize); 768 } else { 769 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 770 .addReg(Reg, RegState::Kill) 771 .addReg(PPC::R1) 772 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 773 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 774 .addReg(PPC::R1) 775 .addImm(maxCallFrameSize); 776 } 777 778 // Discard the DYNALLOC instruction. 779 MBB.erase(II); 780 } 781 782 /// To accomplish dynamic stack allocation, we have to calculate exact size 783 /// subtracted from the stack pointer according alignment information and get 784 /// previous frame pointer. 785 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 786 Register &NegSizeReg, 787 bool &KillNegSizeReg, 788 Register &FramePointer) const { 789 // Get the instruction. 790 MachineInstr &MI = *II; 791 // Get the instruction's basic block. 792 MachineBasicBlock &MBB = *MI.getParent(); 793 // Get the basic block's function. 794 MachineFunction &MF = *MBB.getParent(); 795 // Get the frame info. 796 MachineFrameInfo &MFI = MF.getFrameInfo(); 797 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 798 // Get the instruction info. 799 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 800 // Determine whether 64-bit pointers are used. 801 bool LP64 = TM.isPPC64(); 802 DebugLoc dl = MI.getDebugLoc(); 803 // Get the total frame size. 804 unsigned FrameSize = MFI.getStackSize(); 805 806 // Get stack alignments. 807 const PPCFrameLowering *TFI = getFrameLowering(MF); 808 Align TargetAlign = TFI->getStackAlign(); 809 Align MaxAlign = MFI.getMaxAlign(); 810 811 // Determine the previous frame's address. If FrameSize can't be 812 // represented as 16 bits or we need special alignment, then we load the 813 // previous frame's address from 0(SP). Why not do an addis of the hi? 814 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 815 // Constructing the constant and adding would take 3 instructions. 816 // Fortunately, a frame greater than 32K is rare. 817 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 818 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 819 820 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 821 if (LP64) 822 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 823 .addReg(PPC::X31) 824 .addImm(FrameSize); 825 else 826 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 827 .addReg(PPC::R31) 828 .addImm(FrameSize); 829 } else if (LP64) { 830 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 831 .addImm(0) 832 .addReg(PPC::X1); 833 } else { 834 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 835 .addImm(0) 836 .addReg(PPC::R1); 837 } 838 // Determine the actual NegSizeReg according to alignment info. 839 if (LP64) { 840 if (MaxAlign > TargetAlign) { 841 unsigned UnalNegSizeReg = NegSizeReg; 842 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 843 844 // Unfortunately, there is no andi, only andi., and we can't insert that 845 // here because we might clobber cr0 while it is live. 846 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 847 .addImm(~(MaxAlign.value() - 1)); 848 849 unsigned NegSizeReg1 = NegSizeReg; 850 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 851 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 852 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 853 .addReg(NegSizeReg1, RegState::Kill); 854 KillNegSizeReg = true; 855 } 856 } else { 857 if (MaxAlign > TargetAlign) { 858 unsigned UnalNegSizeReg = NegSizeReg; 859 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 860 861 // Unfortunately, there is no andi, only andi., and we can't insert that 862 // here because we might clobber cr0 while it is live. 863 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 864 .addImm(~(MaxAlign.value() - 1)); 865 866 unsigned NegSizeReg1 = NegSizeReg; 867 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 868 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 869 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 870 .addReg(NegSizeReg1, RegState::Kill); 871 KillNegSizeReg = true; 872 } 873 } 874 } 875 876 void PPCRegisterInfo::lowerPrepareProbedAlloca( 877 MachineBasicBlock::iterator II) const { 878 MachineInstr &MI = *II; 879 // Get the instruction's basic block. 880 MachineBasicBlock &MBB = *MI.getParent(); 881 // Get the basic block's function. 882 MachineFunction &MF = *MBB.getParent(); 883 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 884 // Get the instruction info. 885 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 886 // Determine whether 64-bit pointers are used. 887 bool LP64 = TM.isPPC64(); 888 DebugLoc dl = MI.getDebugLoc(); 889 Register FramePointer = MI.getOperand(0).getReg(); 890 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 891 bool KillNegSizeReg = MI.getOperand(2).isKill(); 892 Register NegSizeReg = MI.getOperand(2).getReg(); 893 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 894 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 895 if (FramePointer == NegSizeReg) { 896 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 897 "NegSizeReg should be killed"); 898 // FramePointer is clobbered earlier than the use of NegSizeReg in 899 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 900 // misuse. 901 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 902 .addReg(NegSizeReg) 903 .addReg(NegSizeReg); 904 NegSizeReg = ActualNegSizeReg; 905 KillNegSizeReg = false; 906 } 907 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 908 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 909 // TargetAlign. 910 if (NegSizeReg != ActualNegSizeReg) 911 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 912 .addReg(NegSizeReg) 913 .addReg(NegSizeReg); 914 MBB.erase(II); 915 } 916 917 void PPCRegisterInfo::lowerDynamicAreaOffset( 918 MachineBasicBlock::iterator II) const { 919 // Get the instruction. 920 MachineInstr &MI = *II; 921 // Get the instruction's basic block. 922 MachineBasicBlock &MBB = *MI.getParent(); 923 // Get the basic block's function. 924 MachineFunction &MF = *MBB.getParent(); 925 // Get the frame info. 926 MachineFrameInfo &MFI = MF.getFrameInfo(); 927 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 928 // Get the instruction info. 929 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 930 931 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 932 bool is64Bit = TM.isPPC64(); 933 DebugLoc dl = MI.getDebugLoc(); 934 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 935 MI.getOperand(0).getReg()) 936 .addImm(maxCallFrameSize); 937 MBB.erase(II); 938 } 939 940 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 941 /// reserving a whole register (R0), we scrounge for one here. This generates 942 /// code like this: 943 /// 944 /// mfcr rA ; Move the conditional register into GPR rA. 945 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 946 /// stw rA, FI ; Store rA to the frame. 947 /// 948 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 949 unsigned FrameIndex) const { 950 // Get the instruction. 951 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 952 // Get the instruction's basic block. 953 MachineBasicBlock &MBB = *MI.getParent(); 954 MachineFunction &MF = *MBB.getParent(); 955 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 956 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 957 DebugLoc dl = MI.getDebugLoc(); 958 959 bool LP64 = TM.isPPC64(); 960 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 961 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 962 963 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 964 Register SrcReg = MI.getOperand(0).getReg(); 965 966 // We need to store the CR in the low 4-bits of the saved value. First, issue 967 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 968 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 969 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 970 971 // If the saved register wasn't CR0, shift the bits left so that they are in 972 // CR0's slot. 973 if (SrcReg != PPC::CR0) { 974 Register Reg1 = Reg; 975 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 976 977 // rlwinm rA, rA, ShiftBits, 0, 31. 978 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 979 .addReg(Reg1, RegState::Kill) 980 .addImm(getEncodingValue(SrcReg) * 4) 981 .addImm(0) 982 .addImm(31); 983 } 984 985 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 986 .addReg(Reg, RegState::Kill), 987 FrameIndex); 988 989 // Discard the pseudo instruction. 990 MBB.erase(II); 991 } 992 993 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 994 unsigned FrameIndex) const { 995 // Get the instruction. 996 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 997 // Get the instruction's basic block. 998 MachineBasicBlock &MBB = *MI.getParent(); 999 MachineFunction &MF = *MBB.getParent(); 1000 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1001 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1002 DebugLoc dl = MI.getDebugLoc(); 1003 1004 bool LP64 = TM.isPPC64(); 1005 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1006 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1007 1008 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1009 Register DestReg = MI.getOperand(0).getReg(); 1010 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) && 1011 "RESTORE_CR does not define its destination"); 1012 1013 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1014 Reg), FrameIndex); 1015 1016 // If the reloaded register isn't CR0, shift the bits right so that they are 1017 // in the right CR's slot. 1018 if (DestReg != PPC::CR0) { 1019 Register Reg1 = Reg; 1020 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1021 1022 unsigned ShiftBits = getEncodingValue(DestReg)*4; 1023 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 1024 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1025 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 1026 .addImm(31); 1027 } 1028 1029 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 1030 .addReg(Reg, RegState::Kill); 1031 1032 // Discard the pseudo instruction. 1033 MBB.erase(II); 1034 } 1035 1036 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 1037 unsigned FrameIndex) const { 1038 // Get the instruction. 1039 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 1040 // Get the instruction's basic block. 1041 MachineBasicBlock &MBB = *MI.getParent(); 1042 MachineFunction &MF = *MBB.getParent(); 1043 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1044 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1045 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 1046 DebugLoc dl = MI.getDebugLoc(); 1047 1048 bool LP64 = TM.isPPC64(); 1049 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1050 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1051 1052 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1053 Register SrcReg = MI.getOperand(0).getReg(); 1054 1055 // Search up the BB to find the definition of the CR bit. 1056 MachineBasicBlock::reverse_iterator Ins = MI; 1057 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 1058 ++Ins; 1059 unsigned CRBitSpillDistance = 0; 1060 bool SeenUse = false; 1061 for (; Ins != Rend; ++Ins) { 1062 // Definition found. 1063 if (Ins->modifiesRegister(SrcReg, TRI)) 1064 break; 1065 // Use found. 1066 if (Ins->readsRegister(SrcReg, TRI)) 1067 SeenUse = true; 1068 // Unable to find CR bit definition within maximum search distance. 1069 if (CRBitSpillDistance == MaxCRBitSpillDist) { 1070 Ins = MI; 1071 break; 1072 } 1073 // Skip debug instructions when counting CR bit spill distance. 1074 if (!Ins->isDebugInstr()) 1075 CRBitSpillDistance++; 1076 } 1077 1078 // Unable to find the definition of the CR bit in the MBB. 1079 if (Ins == MBB.rend()) 1080 Ins = MI; 1081 1082 bool SpillsKnownBit = false; 1083 // There is no need to extract the CR bit if its value is already known. 1084 switch (Ins->getOpcode()) { 1085 case PPC::CRUNSET: 1086 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 1087 .addImm(0); 1088 SpillsKnownBit = true; 1089 break; 1090 case PPC::CRSET: 1091 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 1092 .addImm(-32768); 1093 SpillsKnownBit = true; 1094 break; 1095 default: 1096 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 1097 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 1098 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 1099 // register), and SETNBC will set this. 1100 if (Subtarget.isISA3_1()) { 1101 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 1102 .addReg(SrcReg, RegState::Undef); 1103 break; 1104 } 1105 1106 // On Power9, we can use SETB to extract the LT bit. This only works for 1107 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 1108 // of the bit we care about (32-bit sign bit) will be set to the value of 1109 // the LT bit (regardless of the other bits in the CR field). 1110 if (Subtarget.isISA3_0()) { 1111 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 1112 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 1113 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 1114 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 1115 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 1116 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 1117 break; 1118 } 1119 } 1120 1121 // We need to move the CR field that contains the CR bit we are spilling. 1122 // The super register may not be explicitly defined (i.e. it can be defined 1123 // by a CR-logical that only defines the subreg) so we state that the CR 1124 // field is undef. Also, in order to preserve the kill flag on the CR bit, 1125 // we add it as an implicit use. 1126 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 1127 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 1128 .addReg(SrcReg, 1129 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 1130 1131 // If the saved register wasn't CR0LT, shift the bits left so that the bit 1132 // to store is the first one. Mask all but that bit. 1133 Register Reg1 = Reg; 1134 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1135 1136 // rlwinm rA, rA, ShiftBits, 0, 0. 1137 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1138 .addReg(Reg1, RegState::Kill) 1139 .addImm(getEncodingValue(SrcReg)) 1140 .addImm(0).addImm(0); 1141 } 1142 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 1143 .addReg(Reg, RegState::Kill), 1144 FrameIndex); 1145 1146 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 1147 // Discard the pseudo instruction. 1148 MBB.erase(II); 1149 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 1150 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 1151 Ins->removeOperand(0); 1152 } 1153 } 1154 1155 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 1156 unsigned FrameIndex) const { 1157 // Get the instruction. 1158 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 1159 // Get the instruction's basic block. 1160 MachineBasicBlock &MBB = *MI.getParent(); 1161 MachineFunction &MF = *MBB.getParent(); 1162 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1163 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1164 DebugLoc dl = MI.getDebugLoc(); 1165 1166 bool LP64 = TM.isPPC64(); 1167 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1168 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1169 1170 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1171 Register DestReg = MI.getOperand(0).getReg(); 1172 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) && 1173 "RESTORE_CRBIT does not define its destination"); 1174 1175 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1176 Reg), FrameIndex); 1177 1178 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 1179 1180 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1181 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 1182 .addReg(getCRFromCRBit(DestReg)); 1183 1184 unsigned ShiftBits = getEncodingValue(DestReg); 1185 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1186 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1187 .addReg(RegO, RegState::Kill) 1188 .addReg(Reg, RegState::Kill) 1189 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1190 .addImm(ShiftBits) 1191 .addImm(ShiftBits); 1192 1193 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1194 getCRFromCRBit(DestReg)) 1195 .addReg(RegO, RegState::Kill) 1196 // Make sure we have a use dependency all the way through this 1197 // sequence of instructions. We can't have the other bits in the CR 1198 // modified in between the mfocrf and the mtocrf. 1199 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1200 1201 // Discard the pseudo instruction. 1202 MBB.erase(II); 1203 } 1204 1205 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1206 MCRegister DestReg, MCRegister SrcReg) { 1207 #ifdef NDEBUG 1208 return; 1209 #else 1210 if (ReportAccMoves) { 1211 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1212 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1213 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1214 MBB.dump(); 1215 } 1216 #endif 1217 } 1218 1219 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1220 bool IsRestore) { 1221 #ifdef NDEBUG 1222 return; 1223 #else 1224 if (ReportAccMoves) { 1225 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1226 << (IsRestore ? "restore" : "spill") << ":\n"; 1227 MBB.dump(); 1228 } 1229 #endif 1230 } 1231 1232 static void spillRegPairs(MachineBasicBlock &MBB, 1233 MachineBasicBlock::iterator II, DebugLoc DL, 1234 const TargetInstrInfo &TII, Register SrcReg, 1235 unsigned FrameIndex, bool IsLittleEndian, 1236 bool IsKilled, bool TwoPairs) { 1237 unsigned Offset = 0; 1238 // The register arithmetic in this function does not support virtual 1239 // registers. 1240 assert(!SrcReg.isVirtual() && 1241 "Spilling register pairs does not support virtual registers."); 1242 1243 if (TwoPairs) 1244 Offset = IsLittleEndian ? 48 : 0; 1245 else 1246 Offset = IsLittleEndian ? 16 : 0; 1247 Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2 1248 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1249 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1250 .addReg(Reg, getKillRegState(IsKilled)), 1251 FrameIndex, Offset); 1252 Offset += IsLittleEndian ? -16 : 16; 1253 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1254 .addReg(Reg + 1, getKillRegState(IsKilled)), 1255 FrameIndex, Offset); 1256 if (TwoPairs) { 1257 Offset += IsLittleEndian ? -16 : 16; 1258 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1259 .addReg(Reg + 2, getKillRegState(IsKilled)), 1260 FrameIndex, Offset); 1261 Offset += IsLittleEndian ? -16 : 16; 1262 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1263 .addReg(Reg + 3, getKillRegState(IsKilled)), 1264 FrameIndex, Offset); 1265 } 1266 } 1267 1268 /// Remove any STXVP[X] instructions and split them out into a pair of 1269 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on 1270 /// the command line. 1271 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II, 1272 unsigned FrameIndex) const { 1273 assert(DisableAutoPairedVecSt && 1274 "Expecting to do this only if paired vector stores are disabled."); 1275 MachineInstr &MI = *II; // STXVP <SrcReg>, <offset> 1276 MachineBasicBlock &MBB = *MI.getParent(); 1277 MachineFunction &MF = *MBB.getParent(); 1278 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1279 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1280 DebugLoc DL = MI.getDebugLoc(); 1281 Register SrcReg = MI.getOperand(0).getReg(); 1282 bool IsLittleEndian = Subtarget.isLittleEndian(); 1283 bool IsKilled = MI.getOperand(0).isKill(); 1284 spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled, 1285 /* TwoPairs */ false); 1286 // Discard the original instruction. 1287 MBB.erase(II); 1288 } 1289 1290 static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) { 1291 #ifdef NDEBUG 1292 return; 1293 #else 1294 if (ReportAccMoves) { 1295 dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill") 1296 << ":\n"; 1297 MBB.dump(); 1298 } 1299 #endif 1300 } 1301 1302 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1303 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1304 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1305 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1306 /// handle the FI elimination. 1307 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1308 unsigned FrameIndex) const { 1309 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1310 MachineBasicBlock &MBB = *MI.getParent(); 1311 MachineFunction &MF = *MBB.getParent(); 1312 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1313 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1314 DebugLoc DL = MI.getDebugLoc(); 1315 Register SrcReg = MI.getOperand(0).getReg(); 1316 bool IsKilled = MI.getOperand(0).isKill(); 1317 1318 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1319 Register Reg = 1320 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1321 bool IsLittleEndian = Subtarget.isLittleEndian(); 1322 1323 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1324 1325 // De-prime the register being spilled, create two stores for the pair 1326 // subregisters accounting for endianness and then re-prime the register if 1327 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1328 // adjust the offset of the store that is within the 64-byte stack slot. 1329 if (IsPrimed) 1330 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1331 if (DisableAutoPairedVecSt) 1332 spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled, 1333 /* TwoPairs */ true); 1334 else { 1335 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1336 .addReg(Reg, getKillRegState(IsKilled)), 1337 FrameIndex, IsLittleEndian ? 32 : 0); 1338 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1339 .addReg(Reg + 1, getKillRegState(IsKilled)), 1340 FrameIndex, IsLittleEndian ? 0 : 32); 1341 } 1342 if (IsPrimed && !IsKilled) 1343 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1344 1345 // Discard the pseudo instruction. 1346 MBB.erase(II); 1347 } 1348 1349 /// lowerACCRestore - Generate the code to restore the accumulator register. 1350 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1351 unsigned FrameIndex) const { 1352 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1353 MachineBasicBlock &MBB = *MI.getParent(); 1354 MachineFunction &MF = *MBB.getParent(); 1355 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1356 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1357 DebugLoc DL = MI.getDebugLoc(); 1358 1359 Register DestReg = MI.getOperand(0).getReg(); 1360 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) && 1361 "RESTORE_ACC does not define its destination"); 1362 1363 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1364 Register Reg = 1365 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1366 bool IsLittleEndian = Subtarget.isLittleEndian(); 1367 1368 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1369 1370 // Create two loads for the pair subregisters accounting for endianness and 1371 // then prime the accumulator register being restored. 1372 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1373 FrameIndex, IsLittleEndian ? 32 : 0); 1374 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1375 FrameIndex, IsLittleEndian ? 0 : 32); 1376 if (IsPrimed) 1377 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1378 1379 // Discard the pseudo instruction. 1380 MBB.erase(II); 1381 } 1382 1383 /// lowerWACCSpilling - Generate the code for spilling the wide accumulator 1384 /// register. 1385 void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II, 1386 unsigned FrameIndex) const { 1387 MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset> 1388 MachineBasicBlock &MBB = *MI.getParent(); 1389 MachineFunction &MF = *MBB.getParent(); 1390 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1391 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1392 DebugLoc DL = MI.getDebugLoc(); 1393 bool IsLittleEndian = Subtarget.isLittleEndian(); 1394 1395 emitWAccSpillRestoreInfo(MBB, false); 1396 1397 const TargetRegisterClass *RC = &PPC::VSRpRCRegClass; 1398 Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC); 1399 Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC); 1400 Register SrcReg = MI.getOperand(0).getReg(); 1401 1402 BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0) 1403 .addDef(VSRpReg1) 1404 .addReg(SrcReg); 1405 1406 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1407 .addReg(VSRpReg0, RegState::Kill), 1408 FrameIndex, IsLittleEndian ? 32 : 0); 1409 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1410 .addReg(VSRpReg1, RegState::Kill), 1411 FrameIndex, IsLittleEndian ? 0 : 32); 1412 1413 // Discard the pseudo instruction. 1414 MBB.erase(II); 1415 } 1416 1417 /// lowerWACCRestore - Generate the code to restore the wide accumulator 1418 /// register. 1419 void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II, 1420 unsigned FrameIndex) const { 1421 MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset> 1422 MachineBasicBlock &MBB = *MI.getParent(); 1423 MachineFunction &MF = *MBB.getParent(); 1424 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1425 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1426 DebugLoc DL = MI.getDebugLoc(); 1427 bool IsLittleEndian = Subtarget.isLittleEndian(); 1428 1429 emitWAccSpillRestoreInfo(MBB, true); 1430 1431 const TargetRegisterClass *RC = &PPC::VSRpRCRegClass; 1432 Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC); 1433 Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC); 1434 Register DestReg = MI.getOperand(0).getReg(); 1435 1436 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0), 1437 FrameIndex, IsLittleEndian ? 32 : 0); 1438 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1), 1439 FrameIndex, IsLittleEndian ? 0 : 32); 1440 1441 // Kill VSRpReg0, VSRpReg1 (killedRegState::Killed) 1442 BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg) 1443 .addReg(VSRpReg0, RegState::Kill) 1444 .addReg(VSRpReg1, RegState::Kill); 1445 1446 // Discard the pseudo instruction. 1447 MBB.erase(II); 1448 } 1449 1450 /// lowerQuadwordSpilling - Generate code to spill paired general register. 1451 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II, 1452 unsigned FrameIndex) const { 1453 MachineInstr &MI = *II; 1454 MachineBasicBlock &MBB = *MI.getParent(); 1455 MachineFunction &MF = *MBB.getParent(); 1456 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1457 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1458 DebugLoc DL = MI.getDebugLoc(); 1459 1460 Register SrcReg = MI.getOperand(0).getReg(); 1461 bool IsKilled = MI.getOperand(0).isKill(); 1462 1463 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2; 1464 bool IsLittleEndian = Subtarget.isLittleEndian(); 1465 1466 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1467 .addReg(Reg, getKillRegState(IsKilled)), 1468 FrameIndex, IsLittleEndian ? 8 : 0); 1469 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1470 .addReg(Reg + 1, getKillRegState(IsKilled)), 1471 FrameIndex, IsLittleEndian ? 0 : 8); 1472 1473 // Discard the pseudo instruction. 1474 MBB.erase(II); 1475 } 1476 1477 /// lowerQuadwordRestore - Generate code to restore paired general register. 1478 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II, 1479 unsigned FrameIndex) const { 1480 MachineInstr &MI = *II; 1481 MachineBasicBlock &MBB = *MI.getParent(); 1482 MachineFunction &MF = *MBB.getParent(); 1483 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1484 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1485 DebugLoc DL = MI.getDebugLoc(); 1486 1487 Register DestReg = MI.getOperand(0).getReg(); 1488 assert(MI.definesRegister(DestReg, /*TRI=*/nullptr) && 1489 "RESTORE_QUADWORD does not define its destination"); 1490 1491 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2; 1492 bool IsLittleEndian = Subtarget.isLittleEndian(); 1493 1494 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex, 1495 IsLittleEndian ? 8 : 0); 1496 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex, 1497 IsLittleEndian ? 0 : 8); 1498 1499 // Discard the pseudo instruction. 1500 MBB.erase(II); 1501 } 1502 1503 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1504 Register Reg, int &FrameIdx) const { 1505 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1506 // prevent allocating an additional frame slot. 1507 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1508 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1509 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1510 // valid. 1511 // For 32-bit ELF, we have previously created the stack slot if needed, so 1512 // return its FrameIdx. 1513 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1514 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1515 return true; 1516 } 1517 return false; 1518 } 1519 1520 // If the offset must be a multiple of some value, return what that value is. 1521 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1522 switch (OpC) { 1523 default: 1524 return 1; 1525 case PPC::LWA: 1526 case PPC::LWA_32: 1527 case PPC::LD: 1528 case PPC::LDU: 1529 case PPC::STD: 1530 case PPC::STDU: 1531 case PPC::DFLOADf32: 1532 case PPC::DFLOADf64: 1533 case PPC::DFSTOREf32: 1534 case PPC::DFSTOREf64: 1535 case PPC::LXSD: 1536 case PPC::LXSSP: 1537 case PPC::STXSD: 1538 case PPC::STXSSP: 1539 case PPC::STQ: 1540 return 4; 1541 case PPC::EVLDD: 1542 case PPC::EVSTDD: 1543 return 8; 1544 case PPC::LXV: 1545 case PPC::STXV: 1546 case PPC::LQ: 1547 case PPC::LXVP: 1548 case PPC::STXVP: 1549 return 16; 1550 } 1551 } 1552 1553 // If the offset must be a multiple of some value, return what that value is. 1554 static unsigned offsetMinAlign(const MachineInstr &MI) { 1555 unsigned OpC = MI.getOpcode(); 1556 return offsetMinAlignForOpcode(OpC); 1557 } 1558 1559 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1560 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1561 unsigned FIOperandNum) { 1562 // Take into account whether it's an add or mem instruction 1563 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1564 if (MI.isInlineAsm()) 1565 OffsetOperandNo = FIOperandNum - 1; 1566 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1567 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1568 OffsetOperandNo = FIOperandNum + 1; 1569 1570 return OffsetOperandNo; 1571 } 1572 1573 bool 1574 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1575 int SPAdj, unsigned FIOperandNum, 1576 RegScavenger *RS) const { 1577 assert(SPAdj == 0 && "Unexpected"); 1578 1579 // Get the instruction. 1580 MachineInstr &MI = *II; 1581 // Get the instruction's basic block. 1582 MachineBasicBlock &MBB = *MI.getParent(); 1583 // Get the basic block's function. 1584 MachineFunction &MF = *MBB.getParent(); 1585 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1586 // Get the instruction info. 1587 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1588 // Get the frame info. 1589 MachineFrameInfo &MFI = MF.getFrameInfo(); 1590 DebugLoc dl = MI.getDebugLoc(); 1591 1592 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1593 1594 // Get the frame index. 1595 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1596 1597 // Get the frame pointer save index. Users of this index are primarily 1598 // DYNALLOC instructions. 1599 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1600 int FPSI = FI->getFramePointerSaveIndex(); 1601 // Get the instruction opcode. 1602 unsigned OpC = MI.getOpcode(); 1603 1604 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1605 lowerDynamicAreaOffset(II); 1606 // lowerDynamicAreaOffset erases II 1607 return true; 1608 } 1609 1610 // Special case for dynamic alloca. 1611 if (FPSI && FrameIndex == FPSI && 1612 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1613 lowerDynamicAlloc(II); 1614 // lowerDynamicAlloc erases II 1615 return true; 1616 } 1617 1618 if (FPSI && FrameIndex == FPSI && 1619 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1620 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1621 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1622 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1623 lowerPrepareProbedAlloca(II); 1624 // lowerPrepareProbedAlloca erases II 1625 return true; 1626 } 1627 1628 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1629 if (OpC == PPC::SPILL_CR) { 1630 lowerCRSpilling(II, FrameIndex); 1631 return true; 1632 } else if (OpC == PPC::RESTORE_CR) { 1633 lowerCRRestore(II, FrameIndex); 1634 return true; 1635 } else if (OpC == PPC::SPILL_CRBIT) { 1636 lowerCRBitSpilling(II, FrameIndex); 1637 return true; 1638 } else if (OpC == PPC::RESTORE_CRBIT) { 1639 lowerCRBitRestore(II, FrameIndex); 1640 return true; 1641 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1642 lowerACCSpilling(II, FrameIndex); 1643 return true; 1644 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1645 lowerACCRestore(II, FrameIndex); 1646 return true; 1647 } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) { 1648 lowerOctWordSpilling(II, FrameIndex); 1649 return true; 1650 } else if (OpC == PPC::SPILL_WACC) { 1651 lowerWACCSpilling(II, FrameIndex); 1652 return true; 1653 } else if (OpC == PPC::RESTORE_WACC) { 1654 lowerWACCRestore(II, FrameIndex); 1655 return true; 1656 } else if (OpC == PPC::SPILL_QUADWORD) { 1657 lowerQuadwordSpilling(II, FrameIndex); 1658 return true; 1659 } else if (OpC == PPC::RESTORE_QUADWORD) { 1660 lowerQuadwordRestore(II, FrameIndex); 1661 return true; 1662 } 1663 1664 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1665 MI.getOperand(FIOperandNum).ChangeToRegister( 1666 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1667 1668 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1669 // form (and must be r+r). 1670 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1671 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1672 1673 // Now add the frame object offset to the offset from r1. 1674 int64_t Offset = MFI.getObjectOffset(FrameIndex); 1675 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1676 1677 // If we're not using a Frame Pointer that has been set to the value of the 1678 // SP before having the stack size subtracted from it, then add the stack size 1679 // to Offset to get the correct offset. 1680 // Naked functions have stack size 0, although getStackSize may not reflect 1681 // that because we didn't call all the pieces that compute it for naked 1682 // functions. 1683 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1684 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1685 Offset += MFI.getStackSize(); 1686 } 1687 1688 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can 1689 // transform it to the prefixed version so we don't have to use the XForm. 1690 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) && 1691 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) && 1692 Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { 1693 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP; 1694 MI.setDesc(TII.get(NewOpc)); 1695 OpC = NewOpc; 1696 } 1697 1698 // If we can, encode the offset directly into the instruction. If this is a 1699 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1700 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1701 // clear can be encoded. This is extremely uncommon, because normally you 1702 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1703 // happen in invalid code. 1704 assert(OpC != PPC::DBG_VALUE && 1705 "This should be handled in a target-independent way"); 1706 // FIXME: This should be factored out to a separate function as prefixed 1707 // instructions add a number of opcodes for which we can use 34-bit imm. 1708 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1709 isUInt<8>(Offset) : 1710 isInt<16>(Offset); 1711 if (TII.isPrefixed(MI.getOpcode())) 1712 OffsetFitsMnemonic = isInt<34>(Offset); 1713 if (!noImmForm && ((OffsetFitsMnemonic && 1714 ((Offset % offsetMinAlign(MI)) == 0)) || 1715 OpC == TargetOpcode::STACKMAP || 1716 OpC == TargetOpcode::PATCHPOINT)) { 1717 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1718 return false; 1719 } 1720 1721 // The offset doesn't fit into a single register, scavenge one to build the 1722 // offset in. 1723 1724 bool is64Bit = TM.isPPC64(); 1725 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1726 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1727 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1728 unsigned NewOpcode = 0u; 1729 bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() && 1730 RS->getRegsAvailable(&PPC::VSFRCRegClass).any(); 1731 Register SRegHi, SReg, VSReg; 1732 1733 // The register scavenger is unable to get a GPR but can get a VSR. We 1734 // need to stash a GPR into a VSR so that we can free one up. 1735 if (ScavengingFailed && Subtarget.hasDirectMove()) { 1736 // Pick a volatile register and if we are spilling/restoring that 1737 // particular one, pick the next one. 1738 SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4; 1739 if (MI.getOperand(0).getReg() == SReg) 1740 SRegHi = SReg = SReg + 1; 1741 VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass); 1742 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg) 1743 .addReg(SReg); 1744 } else { 1745 SRegHi = MF.getRegInfo().createVirtualRegister(RC); 1746 SReg = MF.getRegInfo().createVirtualRegister(RC); 1747 } 1748 1749 // Insert a set of rA with the full offset value before the ld, st, or add 1750 if (isInt<16>(Offset)) 1751 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1752 .addImm(Offset); 1753 else if (isInt<32>(Offset)) { 1754 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1755 .addImm(Offset >> 16); 1756 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1757 .addReg(SRegHi, RegState::Kill) 1758 .addImm(Offset); 1759 } else { 1760 assert(is64Bit && "Huge stack is only supported on PPC64"); 1761 TII.materializeImmPostRA(MBB, II, dl, SReg, Offset); 1762 } 1763 1764 // Convert into indexed form of the instruction: 1765 // 1766 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1767 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1768 unsigned OperandBase; 1769 1770 if (noImmForm) 1771 OperandBase = 1; 1772 else if (OpC != TargetOpcode::INLINEASM && 1773 OpC != TargetOpcode::INLINEASM_BR) { 1774 assert(ImmToIdxMap.count(OpC) && 1775 "No indexed form of load or store available!"); 1776 NewOpcode = ImmToIdxMap.find(OpC)->second; 1777 MI.setDesc(TII.get(NewOpcode)); 1778 OperandBase = 1; 1779 } else { 1780 OperandBase = OffsetOperandNo; 1781 } 1782 1783 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1784 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1785 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1786 1787 // If we stashed a value from a GPR into a VSR, we need to get it back after 1788 // spilling the register. 1789 if (ScavengingFailed && Subtarget.hasDirectMove()) 1790 BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg) 1791 .addReg(VSReg); 1792 1793 // Since these are not real X-Form instructions, we must 1794 // add the registers and access 0(NewReg) rather than 1795 // emitting the X-Form pseudo. 1796 if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) { 1797 assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode"); 1798 Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); 1799 BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg) 1800 .addReg(SReg, RegState::Kill) 1801 .addReg(StackReg); 1802 MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ)); 1803 MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false); 1804 MI.getOperand(OperandBase).ChangeToImmediate(0); 1805 } 1806 return false; 1807 } 1808 1809 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1810 const PPCFrameLowering *TFI = getFrameLowering(MF); 1811 1812 if (!TM.isPPC64()) 1813 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1814 else 1815 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1816 } 1817 1818 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1819 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1820 if (!hasBasePointer(MF)) 1821 return getFrameRegister(MF); 1822 1823 if (TM.isPPC64()) 1824 return PPC::X30; 1825 1826 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1827 return PPC::R29; 1828 1829 return PPC::R30; 1830 } 1831 1832 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1833 if (!EnableBasePointer) 1834 return false; 1835 if (AlwaysBasePointer) 1836 return true; 1837 1838 // If we need to realign the stack, then the stack pointer can no longer 1839 // serve as an offset into the caller's stack space. As a result, we need a 1840 // base pointer. 1841 return hasStackRealignment(MF); 1842 } 1843 1844 /// Returns true if the instruction's frame index 1845 /// reference would be better served by a base register other than FP 1846 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1847 /// references it should create new base registers for. 1848 bool PPCRegisterInfo:: 1849 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1850 assert(Offset < 0 && "Local offset must be negative"); 1851 1852 // It's the load/store FI references that cause issues, as it can be difficult 1853 // to materialize the offset if it won't fit in the literal field. Estimate 1854 // based on the size of the local frame and some conservative assumptions 1855 // about the rest of the stack frame (note, this is pre-regalloc, so 1856 // we don't know everything for certain yet) whether this offset is likely 1857 // to be out of range of the immediate. Return true if so. 1858 1859 // We only generate virtual base registers for loads and stores that have 1860 // an r+i form. Return false for everything else. 1861 unsigned OpC = MI->getOpcode(); 1862 if (!ImmToIdxMap.count(OpC)) 1863 return false; 1864 1865 // Don't generate a new virtual base register just to add zero to it. 1866 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1867 MI->getOperand(2).getImm() == 0) 1868 return false; 1869 1870 MachineBasicBlock &MBB = *MI->getParent(); 1871 MachineFunction &MF = *MBB.getParent(); 1872 const PPCFrameLowering *TFI = getFrameLowering(MF); 1873 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1874 1875 // If we likely don't need a stack frame, then we probably don't need a 1876 // virtual base register either. 1877 if (!StackEst) 1878 return false; 1879 1880 // Estimate an offset from the stack pointer. 1881 // The incoming offset is relating to the SP at the start of the function, 1882 // but when we access the local it'll be relative to the SP after local 1883 // allocation, so adjust our SP-relative offset by that allocation size. 1884 Offset += StackEst; 1885 1886 // The frame pointer will point to the end of the stack, so estimate the 1887 // offset as the difference between the object offset and the FP location. 1888 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1889 } 1890 1891 /// Insert defining instruction(s) for BaseReg to 1892 /// be a pointer to FrameIdx at the beginning of the basic block. 1893 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1894 int FrameIdx, 1895 int64_t Offset) const { 1896 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1897 1898 MachineBasicBlock::iterator Ins = MBB->begin(); 1899 DebugLoc DL; // Defaults to "unknown" 1900 if (Ins != MBB->end()) 1901 DL = Ins->getDebugLoc(); 1902 1903 const MachineFunction &MF = *MBB->getParent(); 1904 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1905 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1906 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1907 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1908 const TargetRegisterClass *RC = getPointerRegClass(MF); 1909 Register BaseReg = MRI.createVirtualRegister(RC); 1910 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1911 1912 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1913 .addFrameIndex(FrameIdx).addImm(Offset); 1914 1915 return BaseReg; 1916 } 1917 1918 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1919 int64_t Offset) const { 1920 unsigned FIOperandNum = 0; 1921 while (!MI.getOperand(FIOperandNum).isFI()) { 1922 ++FIOperandNum; 1923 assert(FIOperandNum < MI.getNumOperands() && 1924 "Instr doesn't have FrameIndex operand!"); 1925 } 1926 1927 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1928 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1929 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1930 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1931 1932 MachineBasicBlock &MBB = *MI.getParent(); 1933 MachineFunction &MF = *MBB.getParent(); 1934 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1935 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1936 const MCInstrDesc &MCID = MI.getDesc(); 1937 MachineRegisterInfo &MRI = MF.getRegInfo(); 1938 MRI.constrainRegClass(BaseReg, 1939 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1940 } 1941 1942 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1943 Register BaseReg, 1944 int64_t Offset) const { 1945 unsigned FIOperandNum = 0; 1946 while (!MI->getOperand(FIOperandNum).isFI()) { 1947 ++FIOperandNum; 1948 assert(FIOperandNum < MI->getNumOperands() && 1949 "Instr doesn't have FrameIndex operand!"); 1950 } 1951 1952 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1953 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1954 1955 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1956 MI->getOpcode() == TargetOpcode::STACKMAP || 1957 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1958 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1959 } 1960