xref: /llvm-project/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp (revision 989f1c72e0f4236ac35a35cc9998ea34bc62d5cd)
1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reginfo"
48 
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51 
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54 
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57          cl::desc("Enable use of a base pointer for complex stack frames"));
58 
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61          cl::desc("Force the use of a base pointer in every function"));
62 
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65          cl::desc("Enable spills from gpr to vsr rather than stack"));
66 
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69                 cl::desc("Consider R1 caller preserved so stack saves of "
70                          "caller preserved registers can be LICM candidates"),
71                 cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                   cl::desc("Maximum search distance for definition of CR bit "
76                            "spill on ppc"),
77                   cl::Hidden, cl::init(100));
78 
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89                cl::desc("Emit information about accumulator register spills "
90                         "and copies"),
91                cl::Hidden, cl::init(false));
92 #endif
93 
94 static unsigned offsetMinAlignForOpcode(unsigned OpC);
95 
96 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
97   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
98                        TM.isPPC64() ? 0 : 1,
99                        TM.isPPC64() ? 0 : 1),
100     TM(TM) {
101   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
102   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
103   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
104   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
105   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
106   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
107   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
108   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
109   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
110 
111   // 64-bit
112   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
113   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
114   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
115   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
116   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
117 
118   // VSX
119   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
120   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
121   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
122   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
123   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
124   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
125   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
126   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
127   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
128   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
129   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
130   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
131 
132   // SPE
133   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
134   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
135   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
136   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
137 
138   // Power10
139   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
140   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
141   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
142   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
143   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
144   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
145 
146   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
147   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
148   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
149 
150   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
151   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
152   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
153   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
154   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
155 
156   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
157   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
158   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
159   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
160 }
161 
162 /// getPointerRegClass - Return the register class to use to hold pointers.
163 /// This is used for addressing modes.
164 const TargetRegisterClass *
165 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
166                                                                        const {
167   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
168   // when it checks for ZERO folding.
169   if (Kind == 1) {
170     if (TM.isPPC64())
171       return &PPC::G8RC_NOX0RegClass;
172     return &PPC::GPRC_NOR0RegClass;
173   }
174 
175   if (TM.isPPC64())
176     return &PPC::G8RCRegClass;
177   return &PPC::GPRCRegClass;
178 }
179 
180 const MCPhysReg*
181 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
182   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
183   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
184     if (!TM.isPPC64() && Subtarget.isAIXABI())
185       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
186     if (Subtarget.hasVSX()) {
187       if (Subtarget.pairedVectorMemops())
188         return CSR_64_AllRegs_VSRP_SaveList;
189       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
190         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
191       return CSR_64_AllRegs_VSX_SaveList;
192     }
193     if (Subtarget.hasAltivec()) {
194       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
195         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
196       return CSR_64_AllRegs_Altivec_SaveList;
197     }
198     return CSR_64_AllRegs_SaveList;
199   }
200 
201   // On PPC64, we might need to save r2 (but only if it is not reserved).
202   // We do not need to treat R2 as callee-saved when using PC-Relative calls
203   // because any direct uses of R2 will cause it to be reserved. If the function
204   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
205   // will use the @notoc relocation which will cause this function to set the
206   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
207   // clobbers the TOC.
208   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
209                 !Subtarget.isUsingPCRelativeCalls();
210 
211   // Cold calling convention CSRs.
212   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
213     if (Subtarget.isAIXABI())
214       report_fatal_error("Cold calling unimplemented on AIX.");
215     if (TM.isPPC64()) {
216       if (Subtarget.pairedVectorMemops())
217         return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
218                       : CSR_SVR64_ColdCC_VSRP_SaveList;
219       if (Subtarget.hasAltivec())
220         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
221                       : CSR_SVR64_ColdCC_Altivec_SaveList;
222       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
223                     : CSR_SVR64_ColdCC_SaveList;
224     }
225     // 32-bit targets.
226     if (Subtarget.pairedVectorMemops())
227       return CSR_SVR32_ColdCC_VSRP_SaveList;
228     else if (Subtarget.hasAltivec())
229       return CSR_SVR32_ColdCC_Altivec_SaveList;
230     else if (Subtarget.hasSPE())
231       return CSR_SVR32_ColdCC_SPE_SaveList;
232     return CSR_SVR32_ColdCC_SaveList;
233   }
234   // Standard calling convention CSRs.
235   if (TM.isPPC64()) {
236     if (Subtarget.pairedVectorMemops())
237       return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
238     if (Subtarget.hasAltivec() &&
239         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
240       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
241                     : CSR_PPC64_Altivec_SaveList;
242     }
243     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
244   }
245   // 32-bit targets.
246   if (Subtarget.isAIXABI()) {
247     if (Subtarget.hasAltivec())
248       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
249                                            : CSR_AIX32_SaveList;
250     return CSR_AIX32_SaveList;
251   }
252   if (Subtarget.pairedVectorMemops())
253     return CSR_SVR432_VSRP_SaveList;
254   if (Subtarget.hasAltivec())
255     return CSR_SVR432_Altivec_SaveList;
256   else if (Subtarget.hasSPE())
257     return CSR_SVR432_SPE_SaveList;
258   return CSR_SVR432_SaveList;
259 }
260 
261 const uint32_t *
262 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
263                                       CallingConv::ID CC) const {
264   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
265   if (CC == CallingConv::AnyReg) {
266     if (Subtarget.hasVSX()) {
267       if (Subtarget.pairedVectorMemops())
268         return CSR_64_AllRegs_VSRP_RegMask;
269       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
270         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
271       return CSR_64_AllRegs_VSX_RegMask;
272     }
273     if (Subtarget.hasAltivec()) {
274       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
275         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
276       return CSR_64_AllRegs_Altivec_RegMask;
277     }
278     return CSR_64_AllRegs_RegMask;
279   }
280 
281   if (Subtarget.isAIXABI()) {
282     return TM.isPPC64()
283                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
284                       ? CSR_PPC64_Altivec_RegMask
285                       : CSR_PPC64_RegMask)
286                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
287                       ? CSR_AIX32_Altivec_RegMask
288                       : CSR_AIX32_RegMask);
289   }
290 
291   if (CC == CallingConv::Cold) {
292     if (TM.isPPC64())
293       return Subtarget.pairedVectorMemops()
294                  ? CSR_SVR64_ColdCC_VSRP_RegMask
295                  : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
296                                            : CSR_SVR64_ColdCC_RegMask);
297     else
298       return Subtarget.pairedVectorMemops()
299                  ? CSR_SVR32_ColdCC_VSRP_RegMask
300                  : (Subtarget.hasAltivec()
301                         ? CSR_SVR32_ColdCC_Altivec_RegMask
302                         : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
303                                               : CSR_SVR32_ColdCC_RegMask));
304   }
305 
306   if (TM.isPPC64())
307     return Subtarget.pairedVectorMemops()
308                ? CSR_SVR464_VSRP_RegMask
309                : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
310                                          : CSR_PPC64_RegMask);
311   else
312     return Subtarget.pairedVectorMemops()
313                ? CSR_SVR432_VSRP_RegMask
314                : (Subtarget.hasAltivec()
315                       ? CSR_SVR432_Altivec_RegMask
316                       : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
317                                             : CSR_SVR432_RegMask));
318 }
319 
320 const uint32_t*
321 PPCRegisterInfo::getNoPreservedMask() const {
322   return CSR_NoRegs_RegMask;
323 }
324 
325 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
326   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
327     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
328 }
329 
330 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
331   BitVector Reserved(getNumRegs());
332   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
333   const PPCFrameLowering *TFI = getFrameLowering(MF);
334 
335   // The ZERO register is not really a register, but the representation of r0
336   // when used in instructions that treat r0 as the constant 0.
337   markSuperRegs(Reserved, PPC::ZERO);
338 
339   // The FP register is also not really a register, but is the representation
340   // of the frame pointer register used by ISD::FRAMEADDR.
341   markSuperRegs(Reserved, PPC::FP);
342 
343   // The BP register is also not really a register, but is the representation
344   // of the base pointer register used by setjmp.
345   markSuperRegs(Reserved, PPC::BP);
346 
347   // The counter registers must be reserved so that counter-based loops can
348   // be correctly formed (and the mtctr instructions are not DCE'd).
349   markSuperRegs(Reserved, PPC::CTR);
350   markSuperRegs(Reserved, PPC::CTR8);
351 
352   markSuperRegs(Reserved, PPC::R1);
353   markSuperRegs(Reserved, PPC::LR);
354   markSuperRegs(Reserved, PPC::LR8);
355   markSuperRegs(Reserved, PPC::RM);
356 
357   markSuperRegs(Reserved, PPC::VRSAVE);
358 
359   // The SVR4 ABI reserves r2 and r13
360   if (Subtarget.isSVR4ABI()) {
361     // We only reserve r2 if we need to use the TOC pointer. If we have no
362     // explicit uses of the TOC pointer (meaning we're a leaf function with
363     // no constant-pool loads, etc.) and we have no potential uses inside an
364     // inline asm block, then we can treat r2 has an ordinary callee-saved
365     // register.
366     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
367     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
368       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
369     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
370   }
371 
372   // Always reserve r2 on AIX for now.
373   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
374   if (Subtarget.isAIXABI())
375     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
376 
377   // On PPC64, r13 is the thread pointer. Never allocate this register.
378   if (TM.isPPC64())
379     markSuperRegs(Reserved, PPC::R13);
380 
381   if (TFI->needsFP(MF))
382     markSuperRegs(Reserved, PPC::R31);
383 
384   bool IsPositionIndependent = TM.isPositionIndependent();
385   if (hasBasePointer(MF)) {
386     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
387       markSuperRegs(Reserved, PPC::R29);
388     else
389       markSuperRegs(Reserved, PPC::R30);
390   }
391 
392   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
393     markSuperRegs(Reserved, PPC::R30);
394 
395   // Reserve Altivec registers when Altivec is unavailable.
396   if (!Subtarget.hasAltivec())
397     for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
398          IE = PPC::VRRCRegClass.end(); I != IE; ++I)
399       markSuperRegs(Reserved, *I);
400 
401   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
402       !TM.getAIXExtendedAltivecABI()) {
403     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
404     //  and cannot be used.
405     for (auto Reg : CSR_Altivec_SaveList) {
406       if (Reg == 0)
407         break;
408       markSuperRegs(Reserved, Reg);
409       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
410         Reserved.set(*AS);
411       }
412     }
413   }
414 
415   assert(checkAllSuperRegsMarked(Reserved));
416   return Reserved;
417 }
418 
419 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
420                                        MCRegister PhysReg) const {
421   // We cannot use getReservedRegs() to find the registers that are not asm
422   // clobberable because there are some reserved registers which can be
423   // clobbered by inline asm. For example, when LR is clobbered, the register is
424   // saved and restored. We will hardcode the registers that are not asm
425   // cloberable in this function.
426 
427   // The stack pointer (R1/X1) is not clobberable by inline asm
428   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
429 }
430 
431 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
432   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
433   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
434   const MachineFrameInfo &MFI = MF.getFrameInfo();
435   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
436 
437   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
438                     << ".\n");
439   // If the callee saved info is invalid we have to default to true for safety.
440   if (!MFI.isCalleeSavedInfoValid()) {
441     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
442     return true;
443   }
444 
445   // We will require the use of X-Forms because the frame is larger than what
446   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
447   // If we need an X-Form then we need a register to store the address offset.
448   unsigned FrameSize = MFI.getStackSize();
449   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
450   if (FrameSize & ~0x7FFF) {
451     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
452     return true;
453   }
454 
455   // The callee saved info is valid so it can be traversed.
456   // Checking for registers that need saving that do not have load or store
457   // forms where the address offset is an immediate.
458   for (unsigned i = 0; i < Info.size(); i++) {
459     // If the spill is to a register no scavenging is required.
460     if (Info[i].isSpilledToReg())
461       continue;
462 
463     int FrIdx = Info[i].getFrameIdx();
464     Register Reg = Info[i].getReg();
465 
466     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
467     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
468     if (!MFI.isFixedObjectIndex(FrIdx)) {
469       // This is not a fixed object. If it requires alignment then we may still
470       // need to use the XForm.
471       if (offsetMinAlignForOpcode(Opcode) > 1) {
472         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
473                           << " for register " << printReg(Reg, this) << ".\n");
474         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
475                           << "alignment.\n");
476         return true;
477       }
478     }
479 
480     // This is eiher:
481     // 1) A fixed frame index object which we know are aligned so
482     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
483     // need to consider the alignment here.
484     // 2) A not fixed object but in that case we now know that the min required
485     // alignment is no more than 1 based on the previous check.
486     if (InstrInfo->isXFormMemOp(Opcode)) {
487       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
488                         << " for register " << printReg(Reg, this) << ".\n");
489       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
490       return true;
491     }
492   }
493   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
494   return false;
495 }
496 
497 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
498     const MachineFunction &MF) const {
499   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
500   // Do not use virtual base registers when ROP protection is turned on.
501   // Virtual base registers break the layout of the local variable space and may
502   // push the ROP Hash location past the 512 byte range of the ROP store
503   // instruction.
504   return !Subtarget.hasROPProtect();
505 }
506 
507 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
508                                                const MachineFunction &MF) const {
509   assert(Register::isPhysicalRegister(PhysReg));
510   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
511   const MachineFrameInfo &MFI = MF.getFrameInfo();
512 
513   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
514     return false;
515   if (PhysReg == Subtarget.getTOCPointerRegister())
516     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
517     // The reason it's reserved is that it's the TOC pointer (and the function
518     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
519     // with no TOC access), we can't claim that it is preserved.
520     return (getReservedRegs(MF).test(PhysReg));
521   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
522       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
523     // The value of the stack pointer does not change within a function after
524     // the prologue and before the epilogue if there are no dynamic allocations
525     // and no inline asm which clobbers X1/R1.
526     return true;
527   return false;
528 }
529 
530 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
531                                             ArrayRef<MCPhysReg> Order,
532                                             SmallVectorImpl<MCPhysReg> &Hints,
533                                             const MachineFunction &MF,
534                                             const VirtRegMap *VRM,
535                                             const LiveRegMatrix *Matrix) const {
536   const MachineRegisterInfo *MRI = &MF.getRegInfo();
537 
538   // Call the base implementation first to set any hints based on the usual
539   // heuristics and decide what the return value should be. We want to return
540   // the same value returned by the base implementation. If the base
541   // implementation decides to return true and force the allocation then we
542   // will leave it as such. On the other hand if the base implementation
543   // decides to return false the following code will not force the allocation
544   // as we are just looking to provide a hint.
545   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
546       VirtReg, Order, Hints, MF, VRM, Matrix);
547   // We are interested in instructions that copy values to ACC/UACC.
548   // The copy into UACC will be simply a COPY to a subreg so we
549   // want to allocate the corresponding physical subreg for the source.
550   // The copy into ACC will be a BUILD_UACC so we want to allocate
551   // the same number UACC for the source.
552   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
553     const MachineOperand *ResultOp = nullptr;
554     Register ResultReg;
555     switch (Use.getOpcode()) {
556     case TargetOpcode::COPY: {
557       ResultOp = &Use.getOperand(0);
558       ResultReg = ResultOp->getReg();
559       if (Register::isVirtualRegister(ResultReg) &&
560           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
561           VRM->hasPhys(ResultReg)) {
562         Register UACCPhys = VRM->getPhys(ResultReg);
563         Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
564         // Ensure that the hint is a VSRp register.
565         if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
566           Hints.push_back(HintReg);
567       }
568       break;
569     }
570     case PPC::BUILD_UACC: {
571       ResultOp = &Use.getOperand(0);
572       ResultReg = ResultOp->getReg();
573       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
574           VRM->hasPhys(ResultReg)) {
575         Register ACCPhys = VRM->getPhys(ResultReg);
576         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
577                "Expecting an ACC register for BUILD_UACC.");
578         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
579         Hints.push_back(HintReg);
580       }
581       break;
582     }
583     }
584   }
585   return BaseImplRetVal;
586 }
587 
588 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
589                                               MachineFunction &MF) const {
590   const PPCFrameLowering *TFI = getFrameLowering(MF);
591   const unsigned DefaultSafety = 1;
592 
593   switch (RC->getID()) {
594   default:
595     return 0;
596   case PPC::G8RC_NOX0RegClassID:
597   case PPC::GPRC_NOR0RegClassID:
598   case PPC::SPERCRegClassID:
599   case PPC::G8RCRegClassID:
600   case PPC::GPRCRegClassID: {
601     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
602     return 32 - FP - DefaultSafety;
603   }
604   case PPC::F4RCRegClassID:
605   case PPC::F8RCRegClassID:
606   case PPC::VSLRCRegClassID:
607     return 32 - DefaultSafety;
608   case PPC::VFRCRegClassID:
609   case PPC::VRRCRegClassID: {
610     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
611     // Vector registers VR20-VR31 are reserved and cannot be used in the default
612     // Altivec ABI on AIX.
613     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
614       return 20 - DefaultSafety;
615   }
616     return 32 - DefaultSafety;
617   case PPC::VSFRCRegClassID:
618   case PPC::VSSRCRegClassID:
619   case PPC::VSRCRegClassID: {
620     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
621     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
622       // Vector registers VR20-VR31 are reserved and cannot be used in the
623       // default Altivec ABI on AIX.
624       return 52 - DefaultSafety;
625   }
626     return 64 - DefaultSafety;
627   case PPC::CRRCRegClassID:
628     return 8 - DefaultSafety;
629   }
630 }
631 
632 const TargetRegisterClass *
633 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
634                                            const MachineFunction &MF) const {
635   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
636   const auto *DefaultSuperclass =
637       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
638   if (Subtarget.hasVSX()) {
639     // With VSX, we can inflate various sub-register classes to the full VSX
640     // register set.
641 
642     // For Power9 we allow the user to enable GPR to vector spills.
643     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
644     // support to spill GPRC.
645     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
646       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
647           RC == &PPC::G8RCRegClass) {
648         InflateGP8RC++;
649         return &PPC::SPILLTOVSRRCRegClass;
650       }
651       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
652         InflateGPRC++;
653     }
654 
655     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
656       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
657         continue;
658 
659       switch ((*I)->getID()) {
660       case PPC::VSSRCRegClassID:
661         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
662       case PPC::VSFRCRegClassID:
663       case PPC::VSRCRegClassID:
664         return *I;
665       case PPC::VSRpRCRegClassID:
666         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
667       case PPC::ACCRCRegClassID:
668       case PPC::UACCRCRegClassID:
669         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
670       }
671     }
672   }
673 
674   return DefaultSuperclass;
675 }
676 
677 //===----------------------------------------------------------------------===//
678 // Stack Frame Processing methods
679 //===----------------------------------------------------------------------===//
680 
681 /// lowerDynamicAlloc - Generate the code for allocating an object in the
682 /// current frame.  The sequence of code will be in the general form
683 ///
684 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
685 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
686 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
687 ///
688 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
689   // Get the instruction.
690   MachineInstr &MI = *II;
691   // Get the instruction's basic block.
692   MachineBasicBlock &MBB = *MI.getParent();
693   // Get the basic block's function.
694   MachineFunction &MF = *MBB.getParent();
695   // Get the frame info.
696   MachineFrameInfo &MFI = MF.getFrameInfo();
697   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
698   // Get the instruction info.
699   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
700   // Determine whether 64-bit pointers are used.
701   bool LP64 = TM.isPPC64();
702   DebugLoc dl = MI.getDebugLoc();
703 
704   // Get the maximum call stack size.
705   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
706   Align MaxAlign = MFI.getMaxAlign();
707   assert(isAligned(MaxAlign, maxCallFrameSize) &&
708          "Maximum call-frame size not sufficiently aligned");
709   (void)MaxAlign;
710 
711   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
712   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
713   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
714   bool KillNegSizeReg = MI.getOperand(1).isKill();
715   Register NegSizeReg = MI.getOperand(1).getReg();
716 
717   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
718   // Grow the stack and update the stack pointer link, then determine the
719   // address of new allocated space.
720   if (LP64) {
721     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
722         .addReg(Reg, RegState::Kill)
723         .addReg(PPC::X1)
724         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
725     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
726         .addReg(PPC::X1)
727         .addImm(maxCallFrameSize);
728   } else {
729     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
730         .addReg(Reg, RegState::Kill)
731         .addReg(PPC::R1)
732         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
733     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
734         .addReg(PPC::R1)
735         .addImm(maxCallFrameSize);
736   }
737 
738   // Discard the DYNALLOC instruction.
739   MBB.erase(II);
740 }
741 
742 /// To accomplish dynamic stack allocation, we have to calculate exact size
743 /// subtracted from the stack pointer according alignment information and get
744 /// previous frame pointer.
745 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
746                                            Register &NegSizeReg,
747                                            bool &KillNegSizeReg,
748                                            Register &FramePointer) const {
749   // Get the instruction.
750   MachineInstr &MI = *II;
751   // Get the instruction's basic block.
752   MachineBasicBlock &MBB = *MI.getParent();
753   // Get the basic block's function.
754   MachineFunction &MF = *MBB.getParent();
755   // Get the frame info.
756   MachineFrameInfo &MFI = MF.getFrameInfo();
757   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
758   // Get the instruction info.
759   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
760   // Determine whether 64-bit pointers are used.
761   bool LP64 = TM.isPPC64();
762   DebugLoc dl = MI.getDebugLoc();
763   // Get the total frame size.
764   unsigned FrameSize = MFI.getStackSize();
765 
766   // Get stack alignments.
767   const PPCFrameLowering *TFI = getFrameLowering(MF);
768   Align TargetAlign = TFI->getStackAlign();
769   Align MaxAlign = MFI.getMaxAlign();
770 
771   // Determine the previous frame's address.  If FrameSize can't be
772   // represented as 16 bits or we need special alignment, then we load the
773   // previous frame's address from 0(SP).  Why not do an addis of the hi?
774   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
775   // Constructing the constant and adding would take 3 instructions.
776   // Fortunately, a frame greater than 32K is rare.
777   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
778   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
779 
780   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
781     if (LP64)
782       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
783           .addReg(PPC::X31)
784           .addImm(FrameSize);
785     else
786       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
787           .addReg(PPC::R31)
788           .addImm(FrameSize);
789   } else if (LP64) {
790     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
791         .addImm(0)
792         .addReg(PPC::X1);
793   } else {
794     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
795         .addImm(0)
796         .addReg(PPC::R1);
797   }
798   // Determine the actual NegSizeReg according to alignment info.
799   if (LP64) {
800     if (MaxAlign > TargetAlign) {
801       unsigned UnalNegSizeReg = NegSizeReg;
802       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
803 
804       // Unfortunately, there is no andi, only andi., and we can't insert that
805       // here because we might clobber cr0 while it is live.
806       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
807           .addImm(~(MaxAlign.value() - 1));
808 
809       unsigned NegSizeReg1 = NegSizeReg;
810       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
811       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
812           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
813           .addReg(NegSizeReg1, RegState::Kill);
814       KillNegSizeReg = true;
815     }
816   } else {
817     if (MaxAlign > TargetAlign) {
818       unsigned UnalNegSizeReg = NegSizeReg;
819       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
820 
821       // Unfortunately, there is no andi, only andi., and we can't insert that
822       // here because we might clobber cr0 while it is live.
823       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
824           .addImm(~(MaxAlign.value() - 1));
825 
826       unsigned NegSizeReg1 = NegSizeReg;
827       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
828       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
829           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
830           .addReg(NegSizeReg1, RegState::Kill);
831       KillNegSizeReg = true;
832     }
833   }
834 }
835 
836 void PPCRegisterInfo::lowerPrepareProbedAlloca(
837     MachineBasicBlock::iterator II) const {
838   MachineInstr &MI = *II;
839   // Get the instruction's basic block.
840   MachineBasicBlock &MBB = *MI.getParent();
841   // Get the basic block's function.
842   MachineFunction &MF = *MBB.getParent();
843   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
844   // Get the instruction info.
845   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
846   // Determine whether 64-bit pointers are used.
847   bool LP64 = TM.isPPC64();
848   DebugLoc dl = MI.getDebugLoc();
849   Register FramePointer = MI.getOperand(0).getReg();
850   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
851   bool KillNegSizeReg = MI.getOperand(2).isKill();
852   Register NegSizeReg = MI.getOperand(2).getReg();
853   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
854   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
855   if (FramePointer == NegSizeReg) {
856     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
857                              "NegSizeReg should be killed");
858     // FramePointer is clobbered earlier than the use of NegSizeReg in
859     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
860     // misuse.
861     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
862         .addReg(NegSizeReg)
863         .addReg(NegSizeReg);
864     NegSizeReg = ActualNegSizeReg;
865     KillNegSizeReg = false;
866   }
867   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
868   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
869   // TargetAlign.
870   if (NegSizeReg != ActualNegSizeReg)
871     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
872         .addReg(NegSizeReg)
873         .addReg(NegSizeReg);
874   MBB.erase(II);
875 }
876 
877 void PPCRegisterInfo::lowerDynamicAreaOffset(
878     MachineBasicBlock::iterator II) const {
879   // Get the instruction.
880   MachineInstr &MI = *II;
881   // Get the instruction's basic block.
882   MachineBasicBlock &MBB = *MI.getParent();
883   // Get the basic block's function.
884   MachineFunction &MF = *MBB.getParent();
885   // Get the frame info.
886   MachineFrameInfo &MFI = MF.getFrameInfo();
887   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
888   // Get the instruction info.
889   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
890 
891   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
892   bool is64Bit = TM.isPPC64();
893   DebugLoc dl = MI.getDebugLoc();
894   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
895           MI.getOperand(0).getReg())
896       .addImm(maxCallFrameSize);
897   MBB.erase(II);
898 }
899 
900 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
901 /// reserving a whole register (R0), we scrounge for one here. This generates
902 /// code like this:
903 ///
904 ///   mfcr rA                  ; Move the conditional register into GPR rA.
905 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
906 ///   stw rA, FI               ; Store rA to the frame.
907 ///
908 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
909                                       unsigned FrameIndex) const {
910   // Get the instruction.
911   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
912   // Get the instruction's basic block.
913   MachineBasicBlock &MBB = *MI.getParent();
914   MachineFunction &MF = *MBB.getParent();
915   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
916   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
917   DebugLoc dl = MI.getDebugLoc();
918 
919   bool LP64 = TM.isPPC64();
920   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
921   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
922 
923   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
924   Register SrcReg = MI.getOperand(0).getReg();
925 
926   // We need to store the CR in the low 4-bits of the saved value. First, issue
927   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
928   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
929       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
930 
931   // If the saved register wasn't CR0, shift the bits left so that they are in
932   // CR0's slot.
933   if (SrcReg != PPC::CR0) {
934     Register Reg1 = Reg;
935     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
936 
937     // rlwinm rA, rA, ShiftBits, 0, 31.
938     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
939       .addReg(Reg1, RegState::Kill)
940       .addImm(getEncodingValue(SrcReg) * 4)
941       .addImm(0)
942       .addImm(31);
943   }
944 
945   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
946                     .addReg(Reg, RegState::Kill),
947                     FrameIndex);
948 
949   // Discard the pseudo instruction.
950   MBB.erase(II);
951 }
952 
953 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
954                                       unsigned FrameIndex) const {
955   // Get the instruction.
956   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
957   // Get the instruction's basic block.
958   MachineBasicBlock &MBB = *MI.getParent();
959   MachineFunction &MF = *MBB.getParent();
960   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
961   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
962   DebugLoc dl = MI.getDebugLoc();
963 
964   bool LP64 = TM.isPPC64();
965   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
966   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
967 
968   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
969   Register DestReg = MI.getOperand(0).getReg();
970   assert(MI.definesRegister(DestReg) &&
971     "RESTORE_CR does not define its destination");
972 
973   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
974                               Reg), FrameIndex);
975 
976   // If the reloaded register isn't CR0, shift the bits right so that they are
977   // in the right CR's slot.
978   if (DestReg != PPC::CR0) {
979     Register Reg1 = Reg;
980     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
981 
982     unsigned ShiftBits = getEncodingValue(DestReg)*4;
983     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
984     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
985              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
986              .addImm(31);
987   }
988 
989   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
990              .addReg(Reg, RegState::Kill);
991 
992   // Discard the pseudo instruction.
993   MBB.erase(II);
994 }
995 
996 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
997                                          unsigned FrameIndex) const {
998   // Get the instruction.
999   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1000   // Get the instruction's basic block.
1001   MachineBasicBlock &MBB = *MI.getParent();
1002   MachineFunction &MF = *MBB.getParent();
1003   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1004   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1005   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1006   DebugLoc dl = MI.getDebugLoc();
1007 
1008   bool LP64 = TM.isPPC64();
1009   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1010   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1011 
1012   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1013   Register SrcReg = MI.getOperand(0).getReg();
1014 
1015   // Search up the BB to find the definition of the CR bit.
1016   MachineBasicBlock::reverse_iterator Ins = MI;
1017   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1018   ++Ins;
1019   unsigned CRBitSpillDistance = 0;
1020   bool SeenUse = false;
1021   for (; Ins != Rend; ++Ins) {
1022     // Definition found.
1023     if (Ins->modifiesRegister(SrcReg, TRI))
1024       break;
1025     // Use found.
1026     if (Ins->readsRegister(SrcReg, TRI))
1027       SeenUse = true;
1028     // Unable to find CR bit definition within maximum search distance.
1029     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1030       Ins = MI;
1031       break;
1032     }
1033     // Skip debug instructions when counting CR bit spill distance.
1034     if (!Ins->isDebugInstr())
1035       CRBitSpillDistance++;
1036   }
1037 
1038   // Unable to find the definition of the CR bit in the MBB.
1039   if (Ins == MBB.rend())
1040     Ins = MI;
1041 
1042   bool SpillsKnownBit = false;
1043   // There is no need to extract the CR bit if its value is already known.
1044   switch (Ins->getOpcode()) {
1045   case PPC::CRUNSET:
1046     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1047       .addImm(0);
1048     SpillsKnownBit = true;
1049     break;
1050   case PPC::CRSET:
1051     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1052       .addImm(-32768);
1053     SpillsKnownBit = true;
1054     break;
1055   default:
1056     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1057     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1058     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1059     // register), and SETNBC will set this.
1060     if (Subtarget.isISA3_1()) {
1061       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1062           .addReg(SrcReg, RegState::Undef);
1063       break;
1064     }
1065 
1066     // On Power9, we can use SETB to extract the LT bit. This only works for
1067     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1068     // of the bit we care about (32-bit sign bit) will be set to the value of
1069     // the LT bit (regardless of the other bits in the CR field).
1070     if (Subtarget.isISA3_0()) {
1071       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1072           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1073           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1074           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1075         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1076           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1077         break;
1078       }
1079     }
1080 
1081     // We need to move the CR field that contains the CR bit we are spilling.
1082     // The super register may not be explicitly defined (i.e. it can be defined
1083     // by a CR-logical that only defines the subreg) so we state that the CR
1084     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1085     // we add it as an implicit use.
1086     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1087       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1088       .addReg(SrcReg,
1089               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1090 
1091     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1092     // to store is the first one. Mask all but that bit.
1093     Register Reg1 = Reg;
1094     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1095 
1096     // rlwinm rA, rA, ShiftBits, 0, 0.
1097     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1098       .addReg(Reg1, RegState::Kill)
1099       .addImm(getEncodingValue(SrcReg))
1100       .addImm(0).addImm(0);
1101   }
1102   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1103                     .addReg(Reg, RegState::Kill),
1104                     FrameIndex);
1105 
1106   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1107   // Discard the pseudo instruction.
1108   MBB.erase(II);
1109   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1110     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1111     Ins->RemoveOperand(0);
1112   }
1113 }
1114 
1115 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1116                                       unsigned FrameIndex) const {
1117   // Get the instruction.
1118   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1119   // Get the instruction's basic block.
1120   MachineBasicBlock &MBB = *MI.getParent();
1121   MachineFunction &MF = *MBB.getParent();
1122   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1123   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1124   DebugLoc dl = MI.getDebugLoc();
1125 
1126   bool LP64 = TM.isPPC64();
1127   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1128   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1129 
1130   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1131   Register DestReg = MI.getOperand(0).getReg();
1132   assert(MI.definesRegister(DestReg) &&
1133     "RESTORE_CRBIT does not define its destination");
1134 
1135   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1136                               Reg), FrameIndex);
1137 
1138   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1139 
1140   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1141   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1142           .addReg(getCRFromCRBit(DestReg));
1143 
1144   unsigned ShiftBits = getEncodingValue(DestReg);
1145   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1146   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1147       .addReg(RegO, RegState::Kill)
1148       .addReg(Reg, RegState::Kill)
1149       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1150       .addImm(ShiftBits)
1151       .addImm(ShiftBits);
1152 
1153   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1154           getCRFromCRBit(DestReg))
1155       .addReg(RegO, RegState::Kill)
1156       // Make sure we have a use dependency all the way through this
1157       // sequence of instructions. We can't have the other bits in the CR
1158       // modified in between the mfocrf and the mtocrf.
1159       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1160 
1161   // Discard the pseudo instruction.
1162   MBB.erase(II);
1163 }
1164 
1165 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1166                                       MCRegister DestReg, MCRegister SrcReg) {
1167 #ifdef NDEBUG
1168   return;
1169 #else
1170   if (ReportAccMoves) {
1171     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1172     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1173     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1174     MBB.dump();
1175   }
1176 #endif
1177 }
1178 
1179 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1180                                     bool IsRestore) {
1181 #ifdef NDEBUG
1182   return;
1183 #else
1184   if (ReportAccMoves) {
1185     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1186            << (IsRestore ? "restore" : "spill") << ":\n";
1187     MBB.dump();
1188   }
1189 #endif
1190 }
1191 
1192 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1193 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1194 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1195 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1196 /// handle the FI elimination.
1197 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1198                                        unsigned FrameIndex) const {
1199   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1200   MachineBasicBlock &MBB = *MI.getParent();
1201   MachineFunction &MF = *MBB.getParent();
1202   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1203   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1204   DebugLoc DL = MI.getDebugLoc();
1205   Register SrcReg = MI.getOperand(0).getReg();
1206   bool IsKilled = MI.getOperand(0).isKill();
1207 
1208   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1209   Register Reg =
1210       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1211   bool IsLittleEndian = Subtarget.isLittleEndian();
1212 
1213   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1214 
1215   // De-prime the register being spilled, create two stores for the pair
1216   // subregisters accounting for endianness and then re-prime the register if
1217   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1218   // adjust the offset of the store that is within the 64-byte stack slot.
1219   if (IsPrimed)
1220     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1221   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1222                         .addReg(Reg, getKillRegState(IsKilled)),
1223                     FrameIndex, IsLittleEndian ? 32 : 0);
1224   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1225                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1226                     FrameIndex, IsLittleEndian ? 0 : 32);
1227   if (IsPrimed && !IsKilled)
1228     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1229 
1230   // Discard the pseudo instruction.
1231   MBB.erase(II);
1232 }
1233 
1234 /// lowerACCRestore - Generate the code to restore the accumulator register.
1235 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1236                                       unsigned FrameIndex) const {
1237   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1238   MachineBasicBlock &MBB = *MI.getParent();
1239   MachineFunction &MF = *MBB.getParent();
1240   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1241   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1242   DebugLoc DL = MI.getDebugLoc();
1243 
1244   Register DestReg = MI.getOperand(0).getReg();
1245   assert(MI.definesRegister(DestReg) &&
1246          "RESTORE_ACC does not define its destination");
1247 
1248   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1249   Register Reg =
1250       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1251   bool IsLittleEndian = Subtarget.isLittleEndian();
1252 
1253   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1254 
1255   // Create two loads for the pair subregisters accounting for endianness and
1256   // then prime the accumulator register being restored.
1257   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1258                     FrameIndex, IsLittleEndian ? 32 : 0);
1259   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1260                     FrameIndex, IsLittleEndian ? 0 : 32);
1261   if (IsPrimed)
1262     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1263 
1264   // Discard the pseudo instruction.
1265   MBB.erase(II);
1266 }
1267 
1268 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1269 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1270                                             unsigned FrameIndex) const {
1271   MachineInstr &MI = *II;
1272   MachineBasicBlock &MBB = *MI.getParent();
1273   MachineFunction &MF = *MBB.getParent();
1274   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1275   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1276   DebugLoc DL = MI.getDebugLoc();
1277 
1278   Register SrcReg = MI.getOperand(0).getReg();
1279   bool IsKilled = MI.getOperand(0).isKill();
1280 
1281   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1282   bool IsLittleEndian = Subtarget.isLittleEndian();
1283 
1284   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1285                         .addReg(Reg, getKillRegState(IsKilled)),
1286                     FrameIndex, IsLittleEndian ? 8 : 0);
1287   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1288                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1289                     FrameIndex, IsLittleEndian ? 0 : 8);
1290 
1291   // Discard the pseudo instruction.
1292   MBB.erase(II);
1293 }
1294 
1295 /// lowerQuadwordRestore - Generate code to restore paired general register.
1296 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1297                                            unsigned FrameIndex) const {
1298   MachineInstr &MI = *II;
1299   MachineBasicBlock &MBB = *MI.getParent();
1300   MachineFunction &MF = *MBB.getParent();
1301   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1302   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1303   DebugLoc DL = MI.getDebugLoc();
1304 
1305   Register DestReg = MI.getOperand(0).getReg();
1306   assert(MI.definesRegister(DestReg) &&
1307          "RESTORE_QUADWORD does not define its destination");
1308 
1309   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1310   bool IsLittleEndian = Subtarget.isLittleEndian();
1311 
1312   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1313                     IsLittleEndian ? 8 : 0);
1314   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1315                     IsLittleEndian ? 0 : 8);
1316 
1317   // Discard the pseudo instruction.
1318   MBB.erase(II);
1319 }
1320 
1321 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1322                                            Register Reg, int &FrameIdx) const {
1323   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1324   // prevent allocating an additional frame slot.
1325   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1326   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1327   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1328   // valid.
1329   // For 32-bit ELF, we have previously created the stack slot if needed, so
1330   // return its FrameIdx.
1331   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1332     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1333     return true;
1334   }
1335   return false;
1336 }
1337 
1338 // If the offset must be a multiple of some value, return what that value is.
1339 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1340   switch (OpC) {
1341   default:
1342     return 1;
1343   case PPC::LWA:
1344   case PPC::LWA_32:
1345   case PPC::LD:
1346   case PPC::LDU:
1347   case PPC::STD:
1348   case PPC::STDU:
1349   case PPC::DFLOADf32:
1350   case PPC::DFLOADf64:
1351   case PPC::DFSTOREf32:
1352   case PPC::DFSTOREf64:
1353   case PPC::LXSD:
1354   case PPC::LXSSP:
1355   case PPC::STXSD:
1356   case PPC::STXSSP:
1357   case PPC::STQ:
1358     return 4;
1359   case PPC::EVLDD:
1360   case PPC::EVSTDD:
1361     return 8;
1362   case PPC::LXV:
1363   case PPC::STXV:
1364   case PPC::LQ:
1365   case PPC::LXVP:
1366   case PPC::STXVP:
1367     return 16;
1368   }
1369 }
1370 
1371 // If the offset must be a multiple of some value, return what that value is.
1372 static unsigned offsetMinAlign(const MachineInstr &MI) {
1373   unsigned OpC = MI.getOpcode();
1374   return offsetMinAlignForOpcode(OpC);
1375 }
1376 
1377 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1378 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1379                                     unsigned FIOperandNum) {
1380   // Take into account whether it's an add or mem instruction
1381   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1382   if (MI.isInlineAsm())
1383     OffsetOperandNo = FIOperandNum - 1;
1384   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1385            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1386     OffsetOperandNo = FIOperandNum + 1;
1387 
1388   return OffsetOperandNo;
1389 }
1390 
1391 void
1392 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1393                                      int SPAdj, unsigned FIOperandNum,
1394                                      RegScavenger *RS) const {
1395   assert(SPAdj == 0 && "Unexpected");
1396 
1397   // Get the instruction.
1398   MachineInstr &MI = *II;
1399   // Get the instruction's basic block.
1400   MachineBasicBlock &MBB = *MI.getParent();
1401   // Get the basic block's function.
1402   MachineFunction &MF = *MBB.getParent();
1403   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1404   // Get the instruction info.
1405   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1406   // Get the frame info.
1407   MachineFrameInfo &MFI = MF.getFrameInfo();
1408   DebugLoc dl = MI.getDebugLoc();
1409 
1410   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1411 
1412   // Get the frame index.
1413   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1414 
1415   // Get the frame pointer save index.  Users of this index are primarily
1416   // DYNALLOC instructions.
1417   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1418   int FPSI = FI->getFramePointerSaveIndex();
1419   // Get the instruction opcode.
1420   unsigned OpC = MI.getOpcode();
1421 
1422   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1423     lowerDynamicAreaOffset(II);
1424     return;
1425   }
1426 
1427   // Special case for dynamic alloca.
1428   if (FPSI && FrameIndex == FPSI &&
1429       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1430     lowerDynamicAlloc(II);
1431     return;
1432   }
1433 
1434   if (FPSI && FrameIndex == FPSI &&
1435       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1436        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1437        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1438        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1439     lowerPrepareProbedAlloca(II);
1440     return;
1441   }
1442 
1443   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1444   if (OpC == PPC::SPILL_CR) {
1445     lowerCRSpilling(II, FrameIndex);
1446     return;
1447   } else if (OpC == PPC::RESTORE_CR) {
1448     lowerCRRestore(II, FrameIndex);
1449     return;
1450   } else if (OpC == PPC::SPILL_CRBIT) {
1451     lowerCRBitSpilling(II, FrameIndex);
1452     return;
1453   } else if (OpC == PPC::RESTORE_CRBIT) {
1454     lowerCRBitRestore(II, FrameIndex);
1455     return;
1456   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1457     lowerACCSpilling(II, FrameIndex);
1458     return;
1459   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1460     lowerACCRestore(II, FrameIndex);
1461     return;
1462   } else if (OpC == PPC::SPILL_QUADWORD) {
1463     lowerQuadwordSpilling(II, FrameIndex);
1464     return;
1465   } else if (OpC == PPC::RESTORE_QUADWORD) {
1466     lowerQuadwordRestore(II, FrameIndex);
1467     return;
1468   }
1469 
1470   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1471   MI.getOperand(FIOperandNum).ChangeToRegister(
1472     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1473 
1474   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1475   // form (and must be r+r).
1476   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1477                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1478 
1479   // Now add the frame object offset to the offset from r1.
1480   int Offset = MFI.getObjectOffset(FrameIndex);
1481   Offset += MI.getOperand(OffsetOperandNo).getImm();
1482 
1483   // If we're not using a Frame Pointer that has been set to the value of the
1484   // SP before having the stack size subtracted from it, then add the stack size
1485   // to Offset to get the correct offset.
1486   // Naked functions have stack size 0, although getStackSize may not reflect
1487   // that because we didn't call all the pieces that compute it for naked
1488   // functions.
1489   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1490     if (!(hasBasePointer(MF) && FrameIndex < 0))
1491       Offset += MFI.getStackSize();
1492   }
1493 
1494   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1495   // transform it to the prefixed version so we don't have to use the XForm.
1496   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1497       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1498       Subtarget.hasPrefixInstrs()) {
1499     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1500     MI.setDesc(TII.get(NewOpc));
1501     OpC = NewOpc;
1502   }
1503 
1504   // If we can, encode the offset directly into the instruction.  If this is a
1505   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1506   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1507   // clear can be encoded.  This is extremely uncommon, because normally you
1508   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1509   // happen in invalid code.
1510   assert(OpC != PPC::DBG_VALUE &&
1511          "This should be handled in a target-independent way");
1512   // FIXME: This should be factored out to a separate function as prefixed
1513   // instructions add a number of opcodes for which we can use 34-bit imm.
1514   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1515                             isUInt<8>(Offset) :
1516                             isInt<16>(Offset);
1517   if (TII.isPrefixed(MI.getOpcode()))
1518     OffsetFitsMnemonic = isInt<34>(Offset);
1519   if (!noImmForm && ((OffsetFitsMnemonic &&
1520                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1521                      OpC == TargetOpcode::STACKMAP ||
1522                      OpC == TargetOpcode::PATCHPOINT)) {
1523     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1524     return;
1525   }
1526 
1527   // The offset doesn't fit into a single register, scavenge one to build the
1528   // offset in.
1529 
1530   bool is64Bit = TM.isPPC64();
1531   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1532   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1533   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1534   Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1535            SReg = MF.getRegInfo().createVirtualRegister(RC);
1536 
1537   // Insert a set of rA with the full offset value before the ld, st, or add
1538   if (isInt<16>(Offset))
1539     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1540       .addImm(Offset);
1541   else {
1542     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1543       .addImm(Offset >> 16);
1544     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1545       .addReg(SRegHi, RegState::Kill)
1546       .addImm(Offset);
1547   }
1548 
1549   // Convert into indexed form of the instruction:
1550   //
1551   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1552   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1553   unsigned OperandBase;
1554 
1555   if (noImmForm)
1556     OperandBase = 1;
1557   else if (OpC != TargetOpcode::INLINEASM &&
1558            OpC != TargetOpcode::INLINEASM_BR) {
1559     assert(ImmToIdxMap.count(OpC) &&
1560            "No indexed form of load or store available!");
1561     unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
1562     MI.setDesc(TII.get(NewOpcode));
1563     OperandBase = 1;
1564   } else {
1565     OperandBase = OffsetOperandNo;
1566   }
1567 
1568   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1569   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1570   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1571 }
1572 
1573 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1574   const PPCFrameLowering *TFI = getFrameLowering(MF);
1575 
1576   if (!TM.isPPC64())
1577     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1578   else
1579     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1580 }
1581 
1582 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1583   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1584   if (!hasBasePointer(MF))
1585     return getFrameRegister(MF);
1586 
1587   if (TM.isPPC64())
1588     return PPC::X30;
1589 
1590   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1591     return PPC::R29;
1592 
1593   return PPC::R30;
1594 }
1595 
1596 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1597   if (!EnableBasePointer)
1598     return false;
1599   if (AlwaysBasePointer)
1600     return true;
1601 
1602   // If we need to realign the stack, then the stack pointer can no longer
1603   // serve as an offset into the caller's stack space. As a result, we need a
1604   // base pointer.
1605   return hasStackRealignment(MF);
1606 }
1607 
1608 /// Returns true if the instruction's frame index
1609 /// reference would be better served by a base register other than FP
1610 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1611 /// references it should create new base registers for.
1612 bool PPCRegisterInfo::
1613 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1614   assert(Offset < 0 && "Local offset must be negative");
1615 
1616   // It's the load/store FI references that cause issues, as it can be difficult
1617   // to materialize the offset if it won't fit in the literal field. Estimate
1618   // based on the size of the local frame and some conservative assumptions
1619   // about the rest of the stack frame (note, this is pre-regalloc, so
1620   // we don't know everything for certain yet) whether this offset is likely
1621   // to be out of range of the immediate. Return true if so.
1622 
1623   // We only generate virtual base registers for loads and stores that have
1624   // an r+i form. Return false for everything else.
1625   unsigned OpC = MI->getOpcode();
1626   if (!ImmToIdxMap.count(OpC))
1627     return false;
1628 
1629   // Don't generate a new virtual base register just to add zero to it.
1630   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1631       MI->getOperand(2).getImm() == 0)
1632     return false;
1633 
1634   MachineBasicBlock &MBB = *MI->getParent();
1635   MachineFunction &MF = *MBB.getParent();
1636   const PPCFrameLowering *TFI = getFrameLowering(MF);
1637   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1638 
1639   // If we likely don't need a stack frame, then we probably don't need a
1640   // virtual base register either.
1641   if (!StackEst)
1642     return false;
1643 
1644   // Estimate an offset from the stack pointer.
1645   // The incoming offset is relating to the SP at the start of the function,
1646   // but when we access the local it'll be relative to the SP after local
1647   // allocation, so adjust our SP-relative offset by that allocation size.
1648   Offset += StackEst;
1649 
1650   // The frame pointer will point to the end of the stack, so estimate the
1651   // offset as the difference between the object offset and the FP location.
1652   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1653 }
1654 
1655 /// Insert defining instruction(s) for BaseReg to
1656 /// be a pointer to FrameIdx at the beginning of the basic block.
1657 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1658                                                        int FrameIdx,
1659                                                        int64_t Offset) const {
1660   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1661 
1662   MachineBasicBlock::iterator Ins = MBB->begin();
1663   DebugLoc DL;                  // Defaults to "unknown"
1664   if (Ins != MBB->end())
1665     DL = Ins->getDebugLoc();
1666 
1667   const MachineFunction &MF = *MBB->getParent();
1668   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1669   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1670   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1671   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1672   const TargetRegisterClass *RC = getPointerRegClass(MF);
1673   Register BaseReg = MRI.createVirtualRegister(RC);
1674   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1675 
1676   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1677     .addFrameIndex(FrameIdx).addImm(Offset);
1678 
1679   return BaseReg;
1680 }
1681 
1682 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1683                                         int64_t Offset) const {
1684   unsigned FIOperandNum = 0;
1685   while (!MI.getOperand(FIOperandNum).isFI()) {
1686     ++FIOperandNum;
1687     assert(FIOperandNum < MI.getNumOperands() &&
1688            "Instr doesn't have FrameIndex operand!");
1689   }
1690 
1691   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1692   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1693   Offset += MI.getOperand(OffsetOperandNo).getImm();
1694   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1695 
1696   MachineBasicBlock &MBB = *MI.getParent();
1697   MachineFunction &MF = *MBB.getParent();
1698   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1699   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1700   const MCInstrDesc &MCID = MI.getDesc();
1701   MachineRegisterInfo &MRI = MF.getRegInfo();
1702   MRI.constrainRegClass(BaseReg,
1703                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1704 }
1705 
1706 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1707                                          Register BaseReg,
1708                                          int64_t Offset) const {
1709   unsigned FIOperandNum = 0;
1710   while (!MI->getOperand(FIOperandNum).isFI()) {
1711     ++FIOperandNum;
1712     assert(FIOperandNum < MI->getNumOperands() &&
1713            "Instr doesn't have FrameIndex operand!");
1714   }
1715 
1716   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1717   Offset += MI->getOperand(OffsetOperandNo).getImm();
1718 
1719   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1720          MI->getOpcode() == TargetOpcode::STACKMAP ||
1721          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1722          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1723 }
1724