xref: /llvm-project/llvm/lib/Target/PowerPC/PPCRegisterInfo.cpp (revision 7f230feeeac8a67b335f52bd2e900a05c6098f20)
1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reginfo"
48 
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51 
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54 
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57          cl::desc("Enable use of a base pointer for complex stack frames"));
58 
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61          cl::desc("Force the use of a base pointer in every function"));
62 
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65          cl::desc("Enable spills from gpr to vsr rather than stack"));
66 
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69                 cl::desc("Consider R1 caller preserved so stack saves of "
70                          "caller preserved registers can be LICM candidates"),
71                 cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                   cl::desc("Maximum search distance for definition of CR bit "
76                            "spill on ppc"),
77                   cl::Hidden, cl::init(100));
78 
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89                cl::desc("Emit information about accumulator register spills "
90                         "and copies"),
91                cl::Hidden, cl::init(false));
92 #endif
93 
94 static unsigned offsetMinAlignForOpcode(unsigned OpC);
95 
96 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
97   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
98                        TM.isPPC64() ? 0 : 1,
99                        TM.isPPC64() ? 0 : 1),
100     TM(TM) {
101   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
102   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
103   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
104   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
105   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
106   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
107   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
108   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
109   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
110 
111   // 64-bit
112   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
113   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
114   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
115   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
116   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
117 
118   // VSX
119   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
120   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
121   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
122   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
123   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
124   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
125   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
126   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
127   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
128   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
129   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
130   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
131 
132   // SPE
133   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
134   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
135   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
136   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
137 
138   // Power10
139   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
140   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
141   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
142   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
143   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
144   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
145 
146   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
147   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
148   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
149 
150   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
151   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
152   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
153   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
154   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
155 
156   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
157   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
158   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
159   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
160 }
161 
162 /// getPointerRegClass - Return the register class to use to hold pointers.
163 /// This is used for addressing modes.
164 const TargetRegisterClass *
165 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
166                                                                        const {
167   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
168   // when it checks for ZERO folding.
169   if (Kind == 1) {
170     if (TM.isPPC64())
171       return &PPC::G8RC_NOX0RegClass;
172     return &PPC::GPRC_NOR0RegClass;
173   }
174 
175   if (TM.isPPC64())
176     return &PPC::G8RCRegClass;
177   return &PPC::GPRCRegClass;
178 }
179 
180 const MCPhysReg*
181 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
182   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
183   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
184     if (!TM.isPPC64() && Subtarget.isAIXABI())
185       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
186     if (Subtarget.hasVSX()) {
187       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
188         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
189       return CSR_64_AllRegs_VSX_SaveList;
190     }
191     if (Subtarget.hasAltivec()) {
192       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
193         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
194       return CSR_64_AllRegs_Altivec_SaveList;
195     }
196     return CSR_64_AllRegs_SaveList;
197   }
198 
199   // On PPC64, we might need to save r2 (but only if it is not reserved).
200   // We do not need to treat R2 as callee-saved when using PC-Relative calls
201   // because any direct uses of R2 will cause it to be reserved. If the function
202   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
203   // will use the @notoc relocation which will cause this function to set the
204   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
205   // clobbers the TOC.
206   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
207                 !Subtarget.isUsingPCRelativeCalls();
208 
209   // Cold calling convention CSRs.
210   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
211     if (Subtarget.isAIXABI())
212       report_fatal_error("Cold calling unimplemented on AIX.");
213     if (TM.isPPC64()) {
214       if (Subtarget.hasAltivec())
215         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
216                       : CSR_SVR64_ColdCC_Altivec_SaveList;
217       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
218                     : CSR_SVR64_ColdCC_SaveList;
219     }
220     // 32-bit targets.
221     if (Subtarget.hasAltivec())
222       return CSR_SVR32_ColdCC_Altivec_SaveList;
223     else if (Subtarget.hasSPE())
224       return CSR_SVR32_ColdCC_SPE_SaveList;
225     return CSR_SVR32_ColdCC_SaveList;
226   }
227   // Standard calling convention CSRs.
228   if (TM.isPPC64()) {
229     if (Subtarget.hasAltivec() &&
230         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
231       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
232                     : CSR_PPC64_Altivec_SaveList;
233     }
234     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
235   }
236   // 32-bit targets.
237   if (Subtarget.isAIXABI()) {
238     if (Subtarget.hasAltivec())
239       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
240                                            : CSR_AIX32_SaveList;
241     return CSR_AIX32_SaveList;
242   }
243   if (Subtarget.hasAltivec())
244     return CSR_SVR432_Altivec_SaveList;
245   else if (Subtarget.hasSPE())
246     return CSR_SVR432_SPE_SaveList;
247   return CSR_SVR432_SaveList;
248 }
249 
250 const uint32_t *
251 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
252                                       CallingConv::ID CC) const {
253   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
254   if (CC == CallingConv::AnyReg) {
255     if (Subtarget.hasVSX()) {
256       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
257         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
258       return CSR_64_AllRegs_VSX_RegMask;
259     }
260     if (Subtarget.hasAltivec()) {
261       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
262         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
263       return CSR_64_AllRegs_Altivec_RegMask;
264     }
265     return CSR_64_AllRegs_RegMask;
266   }
267 
268   if (Subtarget.isAIXABI()) {
269     return TM.isPPC64()
270                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
271                       ? CSR_PPC64_Altivec_RegMask
272                       : CSR_PPC64_RegMask)
273                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
274                       ? CSR_AIX32_Altivec_RegMask
275                       : CSR_AIX32_RegMask);
276   }
277 
278   if (CC == CallingConv::Cold) {
279     return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
280                                                   : CSR_SVR64_ColdCC_RegMask)
281                         : (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask
282                                                   : (Subtarget.hasSPE()
283                                                   ? CSR_SVR32_ColdCC_SPE_RegMask
284                                                   : CSR_SVR32_ColdCC_RegMask));
285   }
286 
287   return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
288                                                 : CSR_PPC64_RegMask)
289                       : (Subtarget.hasAltivec()
290                              ? CSR_SVR432_Altivec_RegMask
291                              : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
292                                                    : CSR_SVR432_RegMask));
293 }
294 
295 const uint32_t*
296 PPCRegisterInfo::getNoPreservedMask() const {
297   return CSR_NoRegs_RegMask;
298 }
299 
300 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
301   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
302     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
303 }
304 
305 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
306   BitVector Reserved(getNumRegs());
307   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
308   const PPCFrameLowering *TFI = getFrameLowering(MF);
309 
310   // The ZERO register is not really a register, but the representation of r0
311   // when used in instructions that treat r0 as the constant 0.
312   markSuperRegs(Reserved, PPC::ZERO);
313 
314   // The FP register is also not really a register, but is the representation
315   // of the frame pointer register used by ISD::FRAMEADDR.
316   markSuperRegs(Reserved, PPC::FP);
317 
318   // The BP register is also not really a register, but is the representation
319   // of the base pointer register used by setjmp.
320   markSuperRegs(Reserved, PPC::BP);
321 
322   // The counter registers must be reserved so that counter-based loops can
323   // be correctly formed (and the mtctr instructions are not DCE'd).
324   markSuperRegs(Reserved, PPC::CTR);
325   markSuperRegs(Reserved, PPC::CTR8);
326 
327   markSuperRegs(Reserved, PPC::R1);
328   markSuperRegs(Reserved, PPC::LR);
329   markSuperRegs(Reserved, PPC::LR8);
330   markSuperRegs(Reserved, PPC::RM);
331 
332   markSuperRegs(Reserved, PPC::VRSAVE);
333 
334   // The SVR4 ABI reserves r2 and r13
335   if (Subtarget.isSVR4ABI()) {
336     // We only reserve r2 if we need to use the TOC pointer. If we have no
337     // explicit uses of the TOC pointer (meaning we're a leaf function with
338     // no constant-pool loads, etc.) and we have no potential uses inside an
339     // inline asm block, then we can treat r2 has an ordinary callee-saved
340     // register.
341     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
342     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
343       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
344     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
345   }
346 
347   // Always reserve r2 on AIX for now.
348   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
349   if (Subtarget.isAIXABI())
350     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
351 
352   // On PPC64, r13 is the thread pointer. Never allocate this register.
353   if (TM.isPPC64())
354     markSuperRegs(Reserved, PPC::R13);
355 
356   if (TFI->needsFP(MF))
357     markSuperRegs(Reserved, PPC::R31);
358 
359   bool IsPositionIndependent = TM.isPositionIndependent();
360   if (hasBasePointer(MF)) {
361     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
362       markSuperRegs(Reserved, PPC::R29);
363     else
364       markSuperRegs(Reserved, PPC::R30);
365   }
366 
367   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
368     markSuperRegs(Reserved, PPC::R30);
369 
370   // Reserve Altivec registers when Altivec is unavailable.
371   if (!Subtarget.hasAltivec())
372     for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
373          IE = PPC::VRRCRegClass.end(); I != IE; ++I)
374       markSuperRegs(Reserved, *I);
375 
376   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
377       !TM.getAIXExtendedAltivecABI()) {
378     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
379     //  and cannot be used.
380     for (auto Reg : CSR_Altivec_SaveList) {
381       if (Reg == 0)
382         break;
383       markSuperRegs(Reserved, Reg);
384       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
385         Reserved.set(*AS);
386       }
387     }
388   }
389 
390   assert(checkAllSuperRegsMarked(Reserved));
391   return Reserved;
392 }
393 
394 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
395                                        MCRegister PhysReg) const {
396   // We cannot use getReservedRegs() to find the registers that are not asm
397   // clobberable because there are some reserved registers which can be
398   // clobbered by inline asm. For example, when LR is clobbered, the register is
399   // saved and restored. We will hardcode the registers that are not asm
400   // cloberable in this function.
401 
402   // The stack pointer (R1/X1) is not clobberable by inline asm
403   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
404 }
405 
406 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
407   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
408   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
409   const MachineFrameInfo &MFI = MF.getFrameInfo();
410   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
411 
412   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
413                     << ".\n");
414   // If the callee saved info is invalid we have to default to true for safety.
415   if (!MFI.isCalleeSavedInfoValid()) {
416     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
417     return true;
418   }
419 
420   // We will require the use of X-Forms because the frame is larger than what
421   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
422   // If we need an X-Form then we need a register to store the address offset.
423   unsigned FrameSize = MFI.getStackSize();
424   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
425   if (FrameSize & ~0x7FFF) {
426     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
427     return true;
428   }
429 
430   // The callee saved info is valid so it can be traversed.
431   // Checking for registers that need saving that do not have load or store
432   // forms where the address offset is an immediate.
433   for (unsigned i = 0; i < Info.size(); i++) {
434     // If the spill is to a register no scavenging is required.
435     if (Info[i].isSpilledToReg())
436       continue;
437 
438     int FrIdx = Info[i].getFrameIdx();
439     Register Reg = Info[i].getReg();
440 
441     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
442     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
443     if (!MFI.isFixedObjectIndex(FrIdx)) {
444       // This is not a fixed object. If it requires alignment then we may still
445       // need to use the XForm.
446       if (offsetMinAlignForOpcode(Opcode) > 1) {
447         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
448                           << " for register " << printReg(Reg, this) << ".\n");
449         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
450                           << "alignment.\n");
451         return true;
452       }
453     }
454 
455     // This is eiher:
456     // 1) A fixed frame index object which we know are aligned so
457     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
458     // need to consider the alignment here.
459     // 2) A not fixed object but in that case we now know that the min required
460     // alignment is no more than 1 based on the previous check.
461     if (InstrInfo->isXFormMemOp(Opcode)) {
462       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
463                         << " for register " << printReg(Reg, this) << ".\n");
464       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
465       return true;
466     }
467   }
468   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
469   return false;
470 }
471 
472 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
473     const MachineFunction &MF) const {
474   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
475   // Do not use virtual base registers when ROP protection is turned on.
476   // Virtual base registers break the layout of the local variable space and may
477   // push the ROP Hash location past the 512 byte range of the ROP store
478   // instruction.
479   return !Subtarget.hasROPProtect();
480 }
481 
482 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
483                                                const MachineFunction &MF) const {
484   assert(Register::isPhysicalRegister(PhysReg));
485   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
486   const MachineFrameInfo &MFI = MF.getFrameInfo();
487 
488   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
489     return false;
490   if (PhysReg == Subtarget.getTOCPointerRegister())
491     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
492     // The reason it's reserved is that it's the TOC pointer (and the function
493     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
494     // with no TOC access), we can't claim that it is preserved.
495     return (getReservedRegs(MF).test(PhysReg));
496   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
497       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
498     // The value of the stack pointer does not change within a function after
499     // the prologue and before the epilogue if there are no dynamic allocations
500     // and no inline asm which clobbers X1/R1.
501     return true;
502   return false;
503 }
504 
505 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
506                                             ArrayRef<MCPhysReg> Order,
507                                             SmallVectorImpl<MCPhysReg> &Hints,
508                                             const MachineFunction &MF,
509                                             const VirtRegMap *VRM,
510                                             const LiveRegMatrix *Matrix) const {
511   const MachineRegisterInfo *MRI = &MF.getRegInfo();
512 
513   // Call the base implementation first to set any hints based on the usual
514   // heuristics and decide what the return value should be. We want to return
515   // the same value returned by the base implementation. If the base
516   // implementation decides to return true and force the allocation then we
517   // will leave it as such. On the other hand if the base implementation
518   // decides to return false the following code will not force the allocation
519   // as we are just looking to provide a hint.
520   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
521       VirtReg, Order, Hints, MF, VRM, Matrix);
522   // We are interested in instructions that copy values to ACC/UACC.
523   // The copy into UACC will be simply a COPY to a subreg so we
524   // want to allocate the corresponding physical subreg for the source.
525   // The copy into ACC will be a BUILD_UACC so we want to allocate
526   // the same number UACC for the source.
527   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
528     const MachineOperand *ResultOp = nullptr;
529     Register ResultReg;
530     switch (Use.getOpcode()) {
531     case TargetOpcode::COPY: {
532       ResultOp = &Use.getOperand(0);
533       ResultReg = ResultOp->getReg();
534       if (Register::isVirtualRegister(ResultReg) &&
535           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
536           VRM->hasPhys(ResultReg)) {
537         Register UACCPhys = VRM->getPhys(ResultReg);
538         Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
539         // Ensure that the hint is a VSRp register.
540         if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
541           Hints.push_back(HintReg);
542       }
543       break;
544     }
545     case PPC::BUILD_UACC: {
546       ResultOp = &Use.getOperand(0);
547       ResultReg = ResultOp->getReg();
548       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
549           VRM->hasPhys(ResultReg)) {
550         Register ACCPhys = VRM->getPhys(ResultReg);
551         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
552                "Expecting an ACC register for BUILD_UACC.");
553         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
554         Hints.push_back(HintReg);
555       }
556       break;
557     }
558     }
559   }
560   return BaseImplRetVal;
561 }
562 
563 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
564                                               MachineFunction &MF) const {
565   const PPCFrameLowering *TFI = getFrameLowering(MF);
566   const unsigned DefaultSafety = 1;
567 
568   switch (RC->getID()) {
569   default:
570     return 0;
571   case PPC::G8RC_NOX0RegClassID:
572   case PPC::GPRC_NOR0RegClassID:
573   case PPC::SPERCRegClassID:
574   case PPC::G8RCRegClassID:
575   case PPC::GPRCRegClassID: {
576     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
577     return 32 - FP - DefaultSafety;
578   }
579   case PPC::F4RCRegClassID:
580   case PPC::F8RCRegClassID:
581   case PPC::VSLRCRegClassID:
582     return 32 - DefaultSafety;
583   case PPC::VFRCRegClassID:
584   case PPC::VRRCRegClassID: {
585     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
586     // Vector registers VR20-VR31 are reserved and cannot be used in the default
587     // Altivec ABI on AIX.
588     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
589       return 20 - DefaultSafety;
590   }
591     return 32 - DefaultSafety;
592   case PPC::VSFRCRegClassID:
593   case PPC::VSSRCRegClassID:
594   case PPC::VSRCRegClassID: {
595     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
596     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
597       // Vector registers VR20-VR31 are reserved and cannot be used in the
598       // default Altivec ABI on AIX.
599       return 52 - DefaultSafety;
600   }
601     return 64 - DefaultSafety;
602   case PPC::CRRCRegClassID:
603     return 8 - DefaultSafety;
604   }
605 }
606 
607 const TargetRegisterClass *
608 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
609                                            const MachineFunction &MF) const {
610   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
611   const auto *DefaultSuperclass =
612       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
613   if (Subtarget.hasVSX()) {
614     // With VSX, we can inflate various sub-register classes to the full VSX
615     // register set.
616 
617     // For Power9 we allow the user to enable GPR to vector spills.
618     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
619     // support to spill GPRC.
620     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
621       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
622           RC == &PPC::G8RCRegClass) {
623         InflateGP8RC++;
624         return &PPC::SPILLTOVSRRCRegClass;
625       }
626       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
627         InflateGPRC++;
628     }
629 
630     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
631       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
632         continue;
633 
634       switch ((*I)->getID()) {
635       case PPC::VSSRCRegClassID:
636         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
637       case PPC::VSFRCRegClassID:
638       case PPC::VSRCRegClassID:
639         return *I;
640       case PPC::VSRpRCRegClassID:
641         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
642       case PPC::ACCRCRegClassID:
643       case PPC::UACCRCRegClassID:
644         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
645       }
646     }
647   }
648 
649   return DefaultSuperclass;
650 }
651 
652 //===----------------------------------------------------------------------===//
653 // Stack Frame Processing methods
654 //===----------------------------------------------------------------------===//
655 
656 /// lowerDynamicAlloc - Generate the code for allocating an object in the
657 /// current frame.  The sequence of code will be in the general form
658 ///
659 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
660 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
661 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
662 ///
663 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
664   // Get the instruction.
665   MachineInstr &MI = *II;
666   // Get the instruction's basic block.
667   MachineBasicBlock &MBB = *MI.getParent();
668   // Get the basic block's function.
669   MachineFunction &MF = *MBB.getParent();
670   // Get the frame info.
671   MachineFrameInfo &MFI = MF.getFrameInfo();
672   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
673   // Get the instruction info.
674   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
675   // Determine whether 64-bit pointers are used.
676   bool LP64 = TM.isPPC64();
677   DebugLoc dl = MI.getDebugLoc();
678 
679   // Get the maximum call stack size.
680   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
681   Align MaxAlign = MFI.getMaxAlign();
682   assert(isAligned(MaxAlign, maxCallFrameSize) &&
683          "Maximum call-frame size not sufficiently aligned");
684   (void)MaxAlign;
685 
686   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
687   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
688   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
689   bool KillNegSizeReg = MI.getOperand(1).isKill();
690   Register NegSizeReg = MI.getOperand(1).getReg();
691 
692   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
693   // Grow the stack and update the stack pointer link, then determine the
694   // address of new allocated space.
695   if (LP64) {
696     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
697         .addReg(Reg, RegState::Kill)
698         .addReg(PPC::X1)
699         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
700     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
701         .addReg(PPC::X1)
702         .addImm(maxCallFrameSize);
703   } else {
704     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
705         .addReg(Reg, RegState::Kill)
706         .addReg(PPC::R1)
707         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
708     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
709         .addReg(PPC::R1)
710         .addImm(maxCallFrameSize);
711   }
712 
713   // Discard the DYNALLOC instruction.
714   MBB.erase(II);
715 }
716 
717 /// To accomplish dynamic stack allocation, we have to calculate exact size
718 /// subtracted from the stack pointer according alignment information and get
719 /// previous frame pointer.
720 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
721                                            Register &NegSizeReg,
722                                            bool &KillNegSizeReg,
723                                            Register &FramePointer) const {
724   // Get the instruction.
725   MachineInstr &MI = *II;
726   // Get the instruction's basic block.
727   MachineBasicBlock &MBB = *MI.getParent();
728   // Get the basic block's function.
729   MachineFunction &MF = *MBB.getParent();
730   // Get the frame info.
731   MachineFrameInfo &MFI = MF.getFrameInfo();
732   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
733   // Get the instruction info.
734   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
735   // Determine whether 64-bit pointers are used.
736   bool LP64 = TM.isPPC64();
737   DebugLoc dl = MI.getDebugLoc();
738   // Get the total frame size.
739   unsigned FrameSize = MFI.getStackSize();
740 
741   // Get stack alignments.
742   const PPCFrameLowering *TFI = getFrameLowering(MF);
743   Align TargetAlign = TFI->getStackAlign();
744   Align MaxAlign = MFI.getMaxAlign();
745 
746   // Determine the previous frame's address.  If FrameSize can't be
747   // represented as 16 bits or we need special alignment, then we load the
748   // previous frame's address from 0(SP).  Why not do an addis of the hi?
749   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
750   // Constructing the constant and adding would take 3 instructions.
751   // Fortunately, a frame greater than 32K is rare.
752   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
753   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
754 
755   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
756     if (LP64)
757       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
758           .addReg(PPC::X31)
759           .addImm(FrameSize);
760     else
761       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
762           .addReg(PPC::R31)
763           .addImm(FrameSize);
764   } else if (LP64) {
765     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
766         .addImm(0)
767         .addReg(PPC::X1);
768   } else {
769     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
770         .addImm(0)
771         .addReg(PPC::R1);
772   }
773   // Determine the actual NegSizeReg according to alignment info.
774   if (LP64) {
775     if (MaxAlign > TargetAlign) {
776       unsigned UnalNegSizeReg = NegSizeReg;
777       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
778 
779       // Unfortunately, there is no andi, only andi., and we can't insert that
780       // here because we might clobber cr0 while it is live.
781       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
782           .addImm(~(MaxAlign.value() - 1));
783 
784       unsigned NegSizeReg1 = NegSizeReg;
785       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
786       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
787           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
788           .addReg(NegSizeReg1, RegState::Kill);
789       KillNegSizeReg = true;
790     }
791   } else {
792     if (MaxAlign > TargetAlign) {
793       unsigned UnalNegSizeReg = NegSizeReg;
794       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
795 
796       // Unfortunately, there is no andi, only andi., and we can't insert that
797       // here because we might clobber cr0 while it is live.
798       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
799           .addImm(~(MaxAlign.value() - 1));
800 
801       unsigned NegSizeReg1 = NegSizeReg;
802       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
803       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
804           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
805           .addReg(NegSizeReg1, RegState::Kill);
806       KillNegSizeReg = true;
807     }
808   }
809 }
810 
811 void PPCRegisterInfo::lowerPrepareProbedAlloca(
812     MachineBasicBlock::iterator II) const {
813   MachineInstr &MI = *II;
814   // Get the instruction's basic block.
815   MachineBasicBlock &MBB = *MI.getParent();
816   // Get the basic block's function.
817   MachineFunction &MF = *MBB.getParent();
818   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
819   // Get the instruction info.
820   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
821   // Determine whether 64-bit pointers are used.
822   bool LP64 = TM.isPPC64();
823   DebugLoc dl = MI.getDebugLoc();
824   Register FramePointer = MI.getOperand(0).getReg();
825   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
826   bool KillNegSizeReg = MI.getOperand(2).isKill();
827   Register NegSizeReg = MI.getOperand(2).getReg();
828   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
829   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
830   if (FramePointer == NegSizeReg) {
831     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
832                              "NegSizeReg should be killed");
833     // FramePointer is clobbered earlier than the use of NegSizeReg in
834     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
835     // misuse.
836     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
837         .addReg(NegSizeReg)
838         .addReg(NegSizeReg);
839     NegSizeReg = ActualNegSizeReg;
840     KillNegSizeReg = false;
841   }
842   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
843   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
844   // TargetAlign.
845   if (NegSizeReg != ActualNegSizeReg)
846     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
847         .addReg(NegSizeReg)
848         .addReg(NegSizeReg);
849   MBB.erase(II);
850 }
851 
852 void PPCRegisterInfo::lowerDynamicAreaOffset(
853     MachineBasicBlock::iterator II) const {
854   // Get the instruction.
855   MachineInstr &MI = *II;
856   // Get the instruction's basic block.
857   MachineBasicBlock &MBB = *MI.getParent();
858   // Get the basic block's function.
859   MachineFunction &MF = *MBB.getParent();
860   // Get the frame info.
861   MachineFrameInfo &MFI = MF.getFrameInfo();
862   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
863   // Get the instruction info.
864   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
865 
866   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
867   bool is64Bit = TM.isPPC64();
868   DebugLoc dl = MI.getDebugLoc();
869   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
870           MI.getOperand(0).getReg())
871       .addImm(maxCallFrameSize);
872   MBB.erase(II);
873 }
874 
875 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
876 /// reserving a whole register (R0), we scrounge for one here. This generates
877 /// code like this:
878 ///
879 ///   mfcr rA                  ; Move the conditional register into GPR rA.
880 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
881 ///   stw rA, FI               ; Store rA to the frame.
882 ///
883 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
884                                       unsigned FrameIndex) const {
885   // Get the instruction.
886   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
887   // Get the instruction's basic block.
888   MachineBasicBlock &MBB = *MI.getParent();
889   MachineFunction &MF = *MBB.getParent();
890   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
891   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
892   DebugLoc dl = MI.getDebugLoc();
893 
894   bool LP64 = TM.isPPC64();
895   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
896   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
897 
898   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
899   Register SrcReg = MI.getOperand(0).getReg();
900 
901   // We need to store the CR in the low 4-bits of the saved value. First, issue
902   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
903   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
904       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
905 
906   // If the saved register wasn't CR0, shift the bits left so that they are in
907   // CR0's slot.
908   if (SrcReg != PPC::CR0) {
909     Register Reg1 = Reg;
910     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
911 
912     // rlwinm rA, rA, ShiftBits, 0, 31.
913     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
914       .addReg(Reg1, RegState::Kill)
915       .addImm(getEncodingValue(SrcReg) * 4)
916       .addImm(0)
917       .addImm(31);
918   }
919 
920   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
921                     .addReg(Reg, RegState::Kill),
922                     FrameIndex);
923 
924   // Discard the pseudo instruction.
925   MBB.erase(II);
926 }
927 
928 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
929                                       unsigned FrameIndex) const {
930   // Get the instruction.
931   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
932   // Get the instruction's basic block.
933   MachineBasicBlock &MBB = *MI.getParent();
934   MachineFunction &MF = *MBB.getParent();
935   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
936   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
937   DebugLoc dl = MI.getDebugLoc();
938 
939   bool LP64 = TM.isPPC64();
940   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
941   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
942 
943   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
944   Register DestReg = MI.getOperand(0).getReg();
945   assert(MI.definesRegister(DestReg) &&
946     "RESTORE_CR does not define its destination");
947 
948   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
949                               Reg), FrameIndex);
950 
951   // If the reloaded register isn't CR0, shift the bits right so that they are
952   // in the right CR's slot.
953   if (DestReg != PPC::CR0) {
954     Register Reg1 = Reg;
955     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
956 
957     unsigned ShiftBits = getEncodingValue(DestReg)*4;
958     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
959     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
960              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
961              .addImm(31);
962   }
963 
964   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
965              .addReg(Reg, RegState::Kill);
966 
967   // Discard the pseudo instruction.
968   MBB.erase(II);
969 }
970 
971 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
972                                          unsigned FrameIndex) const {
973   // Get the instruction.
974   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
975   // Get the instruction's basic block.
976   MachineBasicBlock &MBB = *MI.getParent();
977   MachineFunction &MF = *MBB.getParent();
978   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
979   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
980   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
981   DebugLoc dl = MI.getDebugLoc();
982 
983   bool LP64 = TM.isPPC64();
984   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
985   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
986 
987   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
988   Register SrcReg = MI.getOperand(0).getReg();
989 
990   // Search up the BB to find the definition of the CR bit.
991   MachineBasicBlock::reverse_iterator Ins = MI;
992   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
993   ++Ins;
994   unsigned CRBitSpillDistance = 0;
995   bool SeenUse = false;
996   for (; Ins != Rend; ++Ins) {
997     // Definition found.
998     if (Ins->modifiesRegister(SrcReg, TRI))
999       break;
1000     // Use found.
1001     if (Ins->readsRegister(SrcReg, TRI))
1002       SeenUse = true;
1003     // Unable to find CR bit definition within maximum search distance.
1004     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1005       Ins = MI;
1006       break;
1007     }
1008     // Skip debug instructions when counting CR bit spill distance.
1009     if (!Ins->isDebugInstr())
1010       CRBitSpillDistance++;
1011   }
1012 
1013   // Unable to find the definition of the CR bit in the MBB.
1014   if (Ins == MBB.rend())
1015     Ins = MI;
1016 
1017   bool SpillsKnownBit = false;
1018   // There is no need to extract the CR bit if its value is already known.
1019   switch (Ins->getOpcode()) {
1020   case PPC::CRUNSET:
1021     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1022       .addImm(0);
1023     SpillsKnownBit = true;
1024     break;
1025   case PPC::CRSET:
1026     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1027       .addImm(-32768);
1028     SpillsKnownBit = true;
1029     break;
1030   default:
1031     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1032     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1033     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1034     // register), and SETNBC will set this.
1035     if (Subtarget.isISA3_1()) {
1036       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1037           .addReg(SrcReg, RegState::Undef);
1038       break;
1039     }
1040 
1041     // On Power9, we can use SETB to extract the LT bit. This only works for
1042     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1043     // of the bit we care about (32-bit sign bit) will be set to the value of
1044     // the LT bit (regardless of the other bits in the CR field).
1045     if (Subtarget.isISA3_0()) {
1046       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1047           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1048           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1049           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1050         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1051           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1052         break;
1053       }
1054     }
1055 
1056     // We need to move the CR field that contains the CR bit we are spilling.
1057     // The super register may not be explicitly defined (i.e. it can be defined
1058     // by a CR-logical that only defines the subreg) so we state that the CR
1059     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1060     // we add it as an implicit use.
1061     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1062       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1063       .addReg(SrcReg,
1064               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1065 
1066     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1067     // to store is the first one. Mask all but that bit.
1068     Register Reg1 = Reg;
1069     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1070 
1071     // rlwinm rA, rA, ShiftBits, 0, 0.
1072     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1073       .addReg(Reg1, RegState::Kill)
1074       .addImm(getEncodingValue(SrcReg))
1075       .addImm(0).addImm(0);
1076   }
1077   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1078                     .addReg(Reg, RegState::Kill),
1079                     FrameIndex);
1080 
1081   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1082   // Discard the pseudo instruction.
1083   MBB.erase(II);
1084   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1085     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1086     Ins->RemoveOperand(0);
1087   }
1088 }
1089 
1090 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1091                                       unsigned FrameIndex) const {
1092   // Get the instruction.
1093   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1094   // Get the instruction's basic block.
1095   MachineBasicBlock &MBB = *MI.getParent();
1096   MachineFunction &MF = *MBB.getParent();
1097   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1098   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1099   DebugLoc dl = MI.getDebugLoc();
1100 
1101   bool LP64 = TM.isPPC64();
1102   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1103   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1104 
1105   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1106   Register DestReg = MI.getOperand(0).getReg();
1107   assert(MI.definesRegister(DestReg) &&
1108     "RESTORE_CRBIT does not define its destination");
1109 
1110   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1111                               Reg), FrameIndex);
1112 
1113   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1114 
1115   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1116   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1117           .addReg(getCRFromCRBit(DestReg));
1118 
1119   unsigned ShiftBits = getEncodingValue(DestReg);
1120   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1121   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1122       .addReg(RegO, RegState::Kill)
1123       .addReg(Reg, RegState::Kill)
1124       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1125       .addImm(ShiftBits)
1126       .addImm(ShiftBits);
1127 
1128   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1129           getCRFromCRBit(DestReg))
1130       .addReg(RegO, RegState::Kill)
1131       // Make sure we have a use dependency all the way through this
1132       // sequence of instructions. We can't have the other bits in the CR
1133       // modified in between the mfocrf and the mtocrf.
1134       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1135 
1136   // Discard the pseudo instruction.
1137   MBB.erase(II);
1138 }
1139 
1140 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1141                                       MCRegister DestReg, MCRegister SrcReg) {
1142 #ifdef NDEBUG
1143   return;
1144 #else
1145   if (ReportAccMoves) {
1146     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1147     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1148     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1149     MBB.dump();
1150   }
1151 #endif
1152 }
1153 
1154 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1155                                     bool IsRestore) {
1156 #ifdef NDEBUG
1157   return;
1158 #else
1159   if (ReportAccMoves) {
1160     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1161            << (IsRestore ? "restore" : "spill") << ":\n";
1162     MBB.dump();
1163   }
1164 #endif
1165 }
1166 
1167 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1168 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1169 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1170 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1171 /// handle the FI elimination.
1172 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1173                                        unsigned FrameIndex) const {
1174   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1175   MachineBasicBlock &MBB = *MI.getParent();
1176   MachineFunction &MF = *MBB.getParent();
1177   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1178   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1179   DebugLoc DL = MI.getDebugLoc();
1180   Register SrcReg = MI.getOperand(0).getReg();
1181   bool IsKilled = MI.getOperand(0).isKill();
1182 
1183   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1184   Register Reg =
1185       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1186   bool IsLittleEndian = Subtarget.isLittleEndian();
1187 
1188   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1189 
1190   // De-prime the register being spilled, create two stores for the pair
1191   // subregisters accounting for endianness and then re-prime the register if
1192   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1193   // adjust the offset of the store that is within the 64-byte stack slot.
1194   if (IsPrimed)
1195     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1196   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1197                         .addReg(Reg, getKillRegState(IsKilled)),
1198                     FrameIndex, IsLittleEndian ? 32 : 0);
1199   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1200                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1201                     FrameIndex, IsLittleEndian ? 0 : 32);
1202   if (IsPrimed && !IsKilled)
1203     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1204 
1205   // Discard the pseudo instruction.
1206   MBB.erase(II);
1207 }
1208 
1209 /// lowerACCRestore - Generate the code to restore the accumulator register.
1210 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1211                                       unsigned FrameIndex) const {
1212   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1213   MachineBasicBlock &MBB = *MI.getParent();
1214   MachineFunction &MF = *MBB.getParent();
1215   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1216   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1217   DebugLoc DL = MI.getDebugLoc();
1218 
1219   Register DestReg = MI.getOperand(0).getReg();
1220   assert(MI.definesRegister(DestReg) &&
1221          "RESTORE_ACC does not define its destination");
1222 
1223   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1224   Register Reg =
1225       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1226   bool IsLittleEndian = Subtarget.isLittleEndian();
1227 
1228   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1229 
1230   // Create two loads for the pair subregisters accounting for endianness and
1231   // then prime the accumulator register being restored.
1232   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1233                     FrameIndex, IsLittleEndian ? 32 : 0);
1234   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1235                     FrameIndex, IsLittleEndian ? 0 : 32);
1236   if (IsPrimed)
1237     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1238 
1239   // Discard the pseudo instruction.
1240   MBB.erase(II);
1241 }
1242 
1243 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1244 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1245                                             unsigned FrameIndex) const {
1246   MachineInstr &MI = *II;
1247   MachineBasicBlock &MBB = *MI.getParent();
1248   MachineFunction &MF = *MBB.getParent();
1249   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1250   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1251   DebugLoc DL = MI.getDebugLoc();
1252 
1253   Register SrcReg = MI.getOperand(0).getReg();
1254   bool IsKilled = MI.getOperand(0).isKill();
1255 
1256   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1257   bool IsLittleEndian = Subtarget.isLittleEndian();
1258 
1259   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1260                         .addReg(Reg, getKillRegState(IsKilled)),
1261                     FrameIndex, IsLittleEndian ? 8 : 0);
1262   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1263                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1264                     FrameIndex, IsLittleEndian ? 0 : 8);
1265 
1266   // Discard the pseudo instruction.
1267   MBB.erase(II);
1268 }
1269 
1270 /// lowerQuadwordRestore - Generate code to restore paired general register.
1271 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1272                                            unsigned FrameIndex) const {
1273   MachineInstr &MI = *II;
1274   MachineBasicBlock &MBB = *MI.getParent();
1275   MachineFunction &MF = *MBB.getParent();
1276   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1277   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1278   DebugLoc DL = MI.getDebugLoc();
1279 
1280   Register DestReg = MI.getOperand(0).getReg();
1281   assert(MI.definesRegister(DestReg) &&
1282          "RESTORE_QUADWORD does not define its destination");
1283 
1284   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1285   bool IsLittleEndian = Subtarget.isLittleEndian();
1286 
1287   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1288                     IsLittleEndian ? 8 : 0);
1289   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1290                     IsLittleEndian ? 0 : 8);
1291 
1292   // Discard the pseudo instruction.
1293   MBB.erase(II);
1294 }
1295 
1296 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1297                                            Register Reg, int &FrameIdx) const {
1298   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1299   // prevent allocating an additional frame slot.
1300   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1301   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1302   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1303   // valid.
1304   // For 32-bit ELF, we have previously created the stack slot if needed, so
1305   // return its FrameIdx.
1306   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1307     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1308     return true;
1309   }
1310   return false;
1311 }
1312 
1313 // If the offset must be a multiple of some value, return what that value is.
1314 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1315   switch (OpC) {
1316   default:
1317     return 1;
1318   case PPC::LWA:
1319   case PPC::LWA_32:
1320   case PPC::LD:
1321   case PPC::LDU:
1322   case PPC::STD:
1323   case PPC::STDU:
1324   case PPC::DFLOADf32:
1325   case PPC::DFLOADf64:
1326   case PPC::DFSTOREf32:
1327   case PPC::DFSTOREf64:
1328   case PPC::LXSD:
1329   case PPC::LXSSP:
1330   case PPC::STXSD:
1331   case PPC::STXSSP:
1332   case PPC::STQ:
1333     return 4;
1334   case PPC::EVLDD:
1335   case PPC::EVSTDD:
1336     return 8;
1337   case PPC::LXV:
1338   case PPC::STXV:
1339   case PPC::LQ:
1340   case PPC::LXVP:
1341   case PPC::STXVP:
1342     return 16;
1343   }
1344 }
1345 
1346 // If the offset must be a multiple of some value, return what that value is.
1347 static unsigned offsetMinAlign(const MachineInstr &MI) {
1348   unsigned OpC = MI.getOpcode();
1349   return offsetMinAlignForOpcode(OpC);
1350 }
1351 
1352 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1353 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1354                                     unsigned FIOperandNum) {
1355   // Take into account whether it's an add or mem instruction
1356   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1357   if (MI.isInlineAsm())
1358     OffsetOperandNo = FIOperandNum - 1;
1359   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1360            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1361     OffsetOperandNo = FIOperandNum + 1;
1362 
1363   return OffsetOperandNo;
1364 }
1365 
1366 void
1367 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1368                                      int SPAdj, unsigned FIOperandNum,
1369                                      RegScavenger *RS) const {
1370   assert(SPAdj == 0 && "Unexpected");
1371 
1372   // Get the instruction.
1373   MachineInstr &MI = *II;
1374   // Get the instruction's basic block.
1375   MachineBasicBlock &MBB = *MI.getParent();
1376   // Get the basic block's function.
1377   MachineFunction &MF = *MBB.getParent();
1378   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1379   // Get the instruction info.
1380   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1381   // Get the frame info.
1382   MachineFrameInfo &MFI = MF.getFrameInfo();
1383   DebugLoc dl = MI.getDebugLoc();
1384 
1385   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1386 
1387   // Get the frame index.
1388   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1389 
1390   // Get the frame pointer save index.  Users of this index are primarily
1391   // DYNALLOC instructions.
1392   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1393   int FPSI = FI->getFramePointerSaveIndex();
1394   // Get the instruction opcode.
1395   unsigned OpC = MI.getOpcode();
1396 
1397   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1398     lowerDynamicAreaOffset(II);
1399     return;
1400   }
1401 
1402   // Special case for dynamic alloca.
1403   if (FPSI && FrameIndex == FPSI &&
1404       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1405     lowerDynamicAlloc(II);
1406     return;
1407   }
1408 
1409   if (FPSI && FrameIndex == FPSI &&
1410       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1411        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1412        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1413        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1414     lowerPrepareProbedAlloca(II);
1415     return;
1416   }
1417 
1418   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1419   if (OpC == PPC::SPILL_CR) {
1420     lowerCRSpilling(II, FrameIndex);
1421     return;
1422   } else if (OpC == PPC::RESTORE_CR) {
1423     lowerCRRestore(II, FrameIndex);
1424     return;
1425   } else if (OpC == PPC::SPILL_CRBIT) {
1426     lowerCRBitSpilling(II, FrameIndex);
1427     return;
1428   } else if (OpC == PPC::RESTORE_CRBIT) {
1429     lowerCRBitRestore(II, FrameIndex);
1430     return;
1431   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1432     lowerACCSpilling(II, FrameIndex);
1433     return;
1434   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1435     lowerACCRestore(II, FrameIndex);
1436     return;
1437   } else if (OpC == PPC::SPILL_QUADWORD) {
1438     lowerQuadwordSpilling(II, FrameIndex);
1439     return;
1440   } else if (OpC == PPC::RESTORE_QUADWORD) {
1441     lowerQuadwordRestore(II, FrameIndex);
1442     return;
1443   }
1444 
1445   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1446   MI.getOperand(FIOperandNum).ChangeToRegister(
1447     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1448 
1449   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1450   // form (and must be r+r).
1451   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1452                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1453 
1454   // Now add the frame object offset to the offset from r1.
1455   int Offset = MFI.getObjectOffset(FrameIndex);
1456   Offset += MI.getOperand(OffsetOperandNo).getImm();
1457 
1458   // If we're not using a Frame Pointer that has been set to the value of the
1459   // SP before having the stack size subtracted from it, then add the stack size
1460   // to Offset to get the correct offset.
1461   // Naked functions have stack size 0, although getStackSize may not reflect
1462   // that because we didn't call all the pieces that compute it for naked
1463   // functions.
1464   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1465     if (!(hasBasePointer(MF) && FrameIndex < 0))
1466       Offset += MFI.getStackSize();
1467   }
1468 
1469   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1470   // transform it to the prefixed version so we don't have to use the XForm.
1471   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1472       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1473       Subtarget.hasPrefixInstrs()) {
1474     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1475     MI.setDesc(TII.get(NewOpc));
1476     OpC = NewOpc;
1477   }
1478 
1479   // If we can, encode the offset directly into the instruction.  If this is a
1480   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1481   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1482   // clear can be encoded.  This is extremely uncommon, because normally you
1483   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1484   // happen in invalid code.
1485   assert(OpC != PPC::DBG_VALUE &&
1486          "This should be handled in a target-independent way");
1487   // FIXME: This should be factored out to a separate function as prefixed
1488   // instructions add a number of opcodes for which we can use 34-bit imm.
1489   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1490                             isUInt<8>(Offset) :
1491                             isInt<16>(Offset);
1492   if (TII.isPrefixed(MI.getOpcode()))
1493     OffsetFitsMnemonic = isInt<34>(Offset);
1494   if (!noImmForm && ((OffsetFitsMnemonic &&
1495                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1496                      OpC == TargetOpcode::STACKMAP ||
1497                      OpC == TargetOpcode::PATCHPOINT)) {
1498     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1499     return;
1500   }
1501 
1502   // The offset doesn't fit into a single register, scavenge one to build the
1503   // offset in.
1504 
1505   bool is64Bit = TM.isPPC64();
1506   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1507   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1508   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1509   Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1510            SReg = MF.getRegInfo().createVirtualRegister(RC);
1511 
1512   // Insert a set of rA with the full offset value before the ld, st, or add
1513   if (isInt<16>(Offset))
1514     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1515       .addImm(Offset);
1516   else {
1517     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1518       .addImm(Offset >> 16);
1519     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1520       .addReg(SRegHi, RegState::Kill)
1521       .addImm(Offset);
1522   }
1523 
1524   // Convert into indexed form of the instruction:
1525   //
1526   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1527   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1528   unsigned OperandBase;
1529 
1530   if (noImmForm)
1531     OperandBase = 1;
1532   else if (OpC != TargetOpcode::INLINEASM &&
1533            OpC != TargetOpcode::INLINEASM_BR) {
1534     assert(ImmToIdxMap.count(OpC) &&
1535            "No indexed form of load or store available!");
1536     unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
1537     MI.setDesc(TII.get(NewOpcode));
1538     OperandBase = 1;
1539   } else {
1540     OperandBase = OffsetOperandNo;
1541   }
1542 
1543   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1544   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1545   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1546 }
1547 
1548 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1549   const PPCFrameLowering *TFI = getFrameLowering(MF);
1550 
1551   if (!TM.isPPC64())
1552     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1553   else
1554     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1555 }
1556 
1557 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1558   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1559   if (!hasBasePointer(MF))
1560     return getFrameRegister(MF);
1561 
1562   if (TM.isPPC64())
1563     return PPC::X30;
1564 
1565   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1566     return PPC::R29;
1567 
1568   return PPC::R30;
1569 }
1570 
1571 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1572   if (!EnableBasePointer)
1573     return false;
1574   if (AlwaysBasePointer)
1575     return true;
1576 
1577   // If we need to realign the stack, then the stack pointer can no longer
1578   // serve as an offset into the caller's stack space. As a result, we need a
1579   // base pointer.
1580   return hasStackRealignment(MF);
1581 }
1582 
1583 /// Returns true if the instruction's frame index
1584 /// reference would be better served by a base register other than FP
1585 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1586 /// references it should create new base registers for.
1587 bool PPCRegisterInfo::
1588 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1589   assert(Offset < 0 && "Local offset must be negative");
1590 
1591   // It's the load/store FI references that cause issues, as it can be difficult
1592   // to materialize the offset if it won't fit in the literal field. Estimate
1593   // based on the size of the local frame and some conservative assumptions
1594   // about the rest of the stack frame (note, this is pre-regalloc, so
1595   // we don't know everything for certain yet) whether this offset is likely
1596   // to be out of range of the immediate. Return true if so.
1597 
1598   // We only generate virtual base registers for loads and stores that have
1599   // an r+i form. Return false for everything else.
1600   unsigned OpC = MI->getOpcode();
1601   if (!ImmToIdxMap.count(OpC))
1602     return false;
1603 
1604   // Don't generate a new virtual base register just to add zero to it.
1605   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1606       MI->getOperand(2).getImm() == 0)
1607     return false;
1608 
1609   MachineBasicBlock &MBB = *MI->getParent();
1610   MachineFunction &MF = *MBB.getParent();
1611   const PPCFrameLowering *TFI = getFrameLowering(MF);
1612   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1613 
1614   // If we likely don't need a stack frame, then we probably don't need a
1615   // virtual base register either.
1616   if (!StackEst)
1617     return false;
1618 
1619   // Estimate an offset from the stack pointer.
1620   // The incoming offset is relating to the SP at the start of the function,
1621   // but when we access the local it'll be relative to the SP after local
1622   // allocation, so adjust our SP-relative offset by that allocation size.
1623   Offset += StackEst;
1624 
1625   // The frame pointer will point to the end of the stack, so estimate the
1626   // offset as the difference between the object offset and the FP location.
1627   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1628 }
1629 
1630 /// Insert defining instruction(s) for BaseReg to
1631 /// be a pointer to FrameIdx at the beginning of the basic block.
1632 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1633                                                        int FrameIdx,
1634                                                        int64_t Offset) const {
1635   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1636 
1637   MachineBasicBlock::iterator Ins = MBB->begin();
1638   DebugLoc DL;                  // Defaults to "unknown"
1639   if (Ins != MBB->end())
1640     DL = Ins->getDebugLoc();
1641 
1642   const MachineFunction &MF = *MBB->getParent();
1643   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1644   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1645   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1646   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1647   const TargetRegisterClass *RC = getPointerRegClass(MF);
1648   Register BaseReg = MRI.createVirtualRegister(RC);
1649   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1650 
1651   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1652     .addFrameIndex(FrameIdx).addImm(Offset);
1653 
1654   return BaseReg;
1655 }
1656 
1657 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1658                                         int64_t Offset) const {
1659   unsigned FIOperandNum = 0;
1660   while (!MI.getOperand(FIOperandNum).isFI()) {
1661     ++FIOperandNum;
1662     assert(FIOperandNum < MI.getNumOperands() &&
1663            "Instr doesn't have FrameIndex operand!");
1664   }
1665 
1666   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1667   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1668   Offset += MI.getOperand(OffsetOperandNo).getImm();
1669   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1670 
1671   MachineBasicBlock &MBB = *MI.getParent();
1672   MachineFunction &MF = *MBB.getParent();
1673   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1674   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1675   const MCInstrDesc &MCID = MI.getDesc();
1676   MachineRegisterInfo &MRI = MF.getRegInfo();
1677   MRI.constrainRegClass(BaseReg,
1678                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1679 }
1680 
1681 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1682                                          Register BaseReg,
1683                                          int64_t Offset) const {
1684   unsigned FIOperandNum = 0;
1685   while (!MI->getOperand(FIOperandNum).isFI()) {
1686     ++FIOperandNum;
1687     assert(FIOperandNum < MI->getNumOperands() &&
1688            "Instr doesn't have FrameIndex operand!");
1689   }
1690 
1691   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1692   Offset += MI->getOperand(OffsetOperandNo).getImm();
1693 
1694   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1695          MI->getOpcode() == TargetOpcode::STACKMAP ||
1696          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1697          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1698 }
1699