1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetOptions.h" 42 #include <cstdlib> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "reginfo" 47 48 #define GET_REGINFO_TARGET_DESC 49 #include "PPCGenRegisterInfo.inc" 50 51 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 52 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 53 54 static cl::opt<bool> 55 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 56 cl::desc("Enable use of a base pointer for complex stack frames")); 57 58 static cl::opt<bool> 59 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 60 cl::desc("Force the use of a base pointer in every function")); 61 62 static cl::opt<bool> 63 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 64 cl::desc("Enable spills from gpr to vsr rather than stack")); 65 66 static cl::opt<bool> 67 StackPtrConst("ppc-stack-ptr-caller-preserved", 68 cl::desc("Consider R1 caller preserved so stack saves of " 69 "caller preserved registers can be LICM candidates"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<unsigned> 73 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 74 cl::desc("Maximum search distance for definition of CR bit " 75 "spill on ppc"), 76 cl::Hidden, cl::init(100)); 77 78 // Copies/moves of physical accumulators are expensive operations 79 // that should be avoided whenever possible. MMA instructions are 80 // meant to be used in performance-sensitive computational kernels. 81 // This option is provided, at least for the time being, to give the 82 // user a tool to detect this expensive operation and either rework 83 // their code or report a compiler bug if that turns out to be the 84 // cause. 85 #ifndef NDEBUG 86 static cl::opt<bool> 87 ReportAccMoves("ppc-report-acc-moves", 88 cl::desc("Emit information about accumulator register spills " 89 "and copies"), 90 cl::Hidden, cl::init(false)); 91 #endif 92 93 static unsigned offsetMinAlignForOpcode(unsigned OpC); 94 95 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 96 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 97 TM.isPPC64() ? 0 : 1, 98 TM.isPPC64() ? 0 : 1), 99 TM(TM) { 100 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 101 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 102 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 103 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 104 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 105 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 106 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 107 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 108 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 109 110 // 64-bit 111 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 112 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 113 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 114 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 115 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 116 117 // VSX 118 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 119 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 120 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 121 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 122 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 123 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 124 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 125 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 126 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 127 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 128 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 129 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 130 131 // SPE 132 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 133 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 134 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 135 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 136 137 // Power10 138 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8; 139 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8; 140 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8; 141 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8; 142 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX; 143 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX; 144 145 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8; 146 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8; 147 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8; 148 149 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX; 150 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX; 151 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX; 152 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX; 153 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX; 154 155 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX; 156 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX; 157 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX; 158 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX; 159 } 160 161 /// getPointerRegClass - Return the register class to use to hold pointers. 162 /// This is used for addressing modes. 163 const TargetRegisterClass * 164 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 165 const { 166 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value 167 // when it checks for ZERO folding. 168 if (Kind == 1) { 169 if (TM.isPPC64()) 170 return &PPC::G8RC_NOX0RegClass; 171 return &PPC::GPRC_NOR0RegClass; 172 } 173 174 if (TM.isPPC64()) 175 return &PPC::G8RCRegClass; 176 return &PPC::GPRCRegClass; 177 } 178 179 const MCPhysReg* 180 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 181 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 182 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 183 if (!TM.isPPC64() && Subtarget.isAIXABI()) 184 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 185 if (Subtarget.hasVSX()) { 186 if (Subtarget.pairedVectorMemops()) 187 return CSR_64_AllRegs_VSRP_SaveList; 188 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 189 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 190 return CSR_64_AllRegs_VSX_SaveList; 191 } 192 if (Subtarget.hasAltivec()) { 193 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 194 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 195 return CSR_64_AllRegs_Altivec_SaveList; 196 } 197 return CSR_64_AllRegs_SaveList; 198 } 199 200 // On PPC64, we might need to save r2 (but only if it is not reserved). 201 // We do not need to treat R2 as callee-saved when using PC-Relative calls 202 // because any direct uses of R2 will cause it to be reserved. If the function 203 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 204 // will use the @notoc relocation which will cause this function to set the 205 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 206 // clobbers the TOC. 207 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 208 !Subtarget.isUsingPCRelativeCalls(); 209 210 // Cold calling convention CSRs. 211 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 212 if (Subtarget.isAIXABI()) 213 report_fatal_error("Cold calling unimplemented on AIX."); 214 if (TM.isPPC64()) { 215 if (Subtarget.pairedVectorMemops()) 216 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList 217 : CSR_SVR64_ColdCC_VSRP_SaveList; 218 if (Subtarget.hasAltivec()) 219 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 220 : CSR_SVR64_ColdCC_Altivec_SaveList; 221 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 222 : CSR_SVR64_ColdCC_SaveList; 223 } 224 // 32-bit targets. 225 if (Subtarget.pairedVectorMemops()) 226 return CSR_SVR32_ColdCC_VSRP_SaveList; 227 else if (Subtarget.hasAltivec()) 228 return CSR_SVR32_ColdCC_Altivec_SaveList; 229 else if (Subtarget.hasSPE()) 230 return CSR_SVR32_ColdCC_SPE_SaveList; 231 return CSR_SVR32_ColdCC_SaveList; 232 } 233 // Standard calling convention CSRs. 234 if (TM.isPPC64()) { 235 if (Subtarget.pairedVectorMemops()) 236 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList; 237 if (Subtarget.hasAltivec() && 238 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 239 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 240 : CSR_PPC64_Altivec_SaveList; 241 } 242 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 243 } 244 // 32-bit targets. 245 if (Subtarget.isAIXABI()) { 246 if (Subtarget.hasAltivec()) 247 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 248 : CSR_AIX32_SaveList; 249 return CSR_AIX32_SaveList; 250 } 251 if (Subtarget.pairedVectorMemops()) 252 return CSR_SVR432_VSRP_SaveList; 253 if (Subtarget.hasAltivec()) 254 return CSR_SVR432_Altivec_SaveList; 255 else if (Subtarget.hasSPE()) 256 return CSR_SVR432_SPE_SaveList; 257 return CSR_SVR432_SaveList; 258 } 259 260 const uint32_t * 261 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 262 CallingConv::ID CC) const { 263 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 264 if (CC == CallingConv::AnyReg) { 265 if (Subtarget.hasVSX()) { 266 if (Subtarget.pairedVectorMemops()) 267 return CSR_64_AllRegs_VSRP_RegMask; 268 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 269 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 270 return CSR_64_AllRegs_VSX_RegMask; 271 } 272 if (Subtarget.hasAltivec()) { 273 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 274 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 275 return CSR_64_AllRegs_Altivec_RegMask; 276 } 277 return CSR_64_AllRegs_RegMask; 278 } 279 280 if (Subtarget.isAIXABI()) { 281 return TM.isPPC64() 282 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 283 ? CSR_PPC64_Altivec_RegMask 284 : CSR_PPC64_RegMask) 285 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 286 ? CSR_AIX32_Altivec_RegMask 287 : CSR_AIX32_RegMask); 288 } 289 290 if (CC == CallingConv::Cold) { 291 if (TM.isPPC64()) 292 return Subtarget.pairedVectorMemops() 293 ? CSR_SVR64_ColdCC_VSRP_RegMask 294 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 295 : CSR_SVR64_ColdCC_RegMask); 296 else 297 return Subtarget.pairedVectorMemops() 298 ? CSR_SVR32_ColdCC_VSRP_RegMask 299 : (Subtarget.hasAltivec() 300 ? CSR_SVR32_ColdCC_Altivec_RegMask 301 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask 302 : CSR_SVR32_ColdCC_RegMask)); 303 } 304 305 if (TM.isPPC64()) 306 return Subtarget.pairedVectorMemops() 307 ? CSR_SVR464_VSRP_RegMask 308 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 309 : CSR_PPC64_RegMask); 310 else 311 return Subtarget.pairedVectorMemops() 312 ? CSR_SVR432_VSRP_RegMask 313 : (Subtarget.hasAltivec() 314 ? CSR_SVR432_Altivec_RegMask 315 : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask 316 : CSR_SVR432_RegMask)); 317 } 318 319 const uint32_t* 320 PPCRegisterInfo::getNoPreservedMask() const { 321 return CSR_NoRegs_RegMask; 322 } 323 324 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 325 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 326 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 327 } 328 329 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 330 BitVector Reserved(getNumRegs()); 331 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 332 const PPCFrameLowering *TFI = getFrameLowering(MF); 333 334 // The ZERO register is not really a register, but the representation of r0 335 // when used in instructions that treat r0 as the constant 0. 336 markSuperRegs(Reserved, PPC::ZERO); 337 338 // The FP register is also not really a register, but is the representation 339 // of the frame pointer register used by ISD::FRAMEADDR. 340 markSuperRegs(Reserved, PPC::FP); 341 342 // The BP register is also not really a register, but is the representation 343 // of the base pointer register used by setjmp. 344 markSuperRegs(Reserved, PPC::BP); 345 346 // The counter registers must be reserved so that counter-based loops can 347 // be correctly formed (and the mtctr instructions are not DCE'd). 348 markSuperRegs(Reserved, PPC::CTR); 349 markSuperRegs(Reserved, PPC::CTR8); 350 351 markSuperRegs(Reserved, PPC::R1); 352 markSuperRegs(Reserved, PPC::LR); 353 markSuperRegs(Reserved, PPC::LR8); 354 markSuperRegs(Reserved, PPC::RM); 355 356 markSuperRegs(Reserved, PPC::VRSAVE); 357 358 // The SVR4 ABI reserves r2 and r13 359 if (Subtarget.isSVR4ABI()) { 360 // We only reserve r2 if we need to use the TOC pointer. If we have no 361 // explicit uses of the TOC pointer (meaning we're a leaf function with 362 // no constant-pool loads, etc.) and we have no potential uses inside an 363 // inline asm block, then we can treat r2 has an ordinary callee-saved 364 // register. 365 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 366 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) 367 markSuperRegs(Reserved, PPC::R2); // System-reserved register 368 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register 369 } 370 371 // Always reserve r2 on AIX for now. 372 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. 373 if (Subtarget.isAIXABI()) 374 markSuperRegs(Reserved, PPC::R2); // System-reserved register 375 376 // On PPC64, r13 is the thread pointer. Never allocate this register. 377 if (TM.isPPC64()) 378 markSuperRegs(Reserved, PPC::R13); 379 380 if (TFI->needsFP(MF)) 381 markSuperRegs(Reserved, PPC::R31); 382 383 bool IsPositionIndependent = TM.isPositionIndependent(); 384 if (hasBasePointer(MF)) { 385 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 386 markSuperRegs(Reserved, PPC::R29); 387 else 388 markSuperRegs(Reserved, PPC::R30); 389 } 390 391 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 392 markSuperRegs(Reserved, PPC::R30); 393 394 // Reserve Altivec registers when Altivec is unavailable. 395 if (!Subtarget.hasAltivec()) 396 for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(), 397 IE = PPC::VRRCRegClass.end(); I != IE; ++I) 398 markSuperRegs(Reserved, *I); 399 400 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 401 !TM.getAIXExtendedAltivecABI()) { 402 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 403 // and cannot be used. 404 for (auto Reg : CSR_Altivec_SaveList) { 405 if (Reg == 0) 406 break; 407 markSuperRegs(Reserved, Reg); 408 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 409 Reserved.set(*AS); 410 } 411 } 412 } 413 414 assert(checkAllSuperRegsMarked(Reserved)); 415 return Reserved; 416 } 417 418 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF, 419 MCRegister PhysReg) const { 420 // We cannot use getReservedRegs() to find the registers that are not asm 421 // clobberable because there are some reserved registers which can be 422 // clobbered by inline asm. For example, when LR is clobbered, the register is 423 // saved and restored. We will hardcode the registers that are not asm 424 // cloberable in this function. 425 426 // The stack pointer (R1/X1) is not clobberable by inline asm 427 return PhysReg != PPC::R1 && PhysReg != PPC::X1; 428 } 429 430 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 431 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 432 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 433 const MachineFrameInfo &MFI = MF.getFrameInfo(); 434 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 435 436 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 437 << ".\n"); 438 // If the callee saved info is invalid we have to default to true for safety. 439 if (!MFI.isCalleeSavedInfoValid()) { 440 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 441 return true; 442 } 443 444 // We will require the use of X-Forms because the frame is larger than what 445 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 446 // If we need an X-Form then we need a register to store the address offset. 447 unsigned FrameSize = MFI.getStackSize(); 448 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 449 if (FrameSize & ~0x7FFF) { 450 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 451 return true; 452 } 453 454 // The callee saved info is valid so it can be traversed. 455 // Checking for registers that need saving that do not have load or store 456 // forms where the address offset is an immediate. 457 for (unsigned i = 0; i < Info.size(); i++) { 458 // If the spill is to a register no scavenging is required. 459 if (Info[i].isSpilledToReg()) 460 continue; 461 462 int FrIdx = Info[i].getFrameIdx(); 463 Register Reg = Info[i].getReg(); 464 465 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 466 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 467 if (!MFI.isFixedObjectIndex(FrIdx)) { 468 // This is not a fixed object. If it requires alignment then we may still 469 // need to use the XForm. 470 if (offsetMinAlignForOpcode(Opcode) > 1) { 471 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 472 << " for register " << printReg(Reg, this) << ".\n"); 473 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 474 << "alignment.\n"); 475 return true; 476 } 477 } 478 479 // This is eiher: 480 // 1) A fixed frame index object which we know are aligned so 481 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 482 // need to consider the alignment here. 483 // 2) A not fixed object but in that case we now know that the min required 484 // alignment is no more than 1 based on the previous check. 485 if (InstrInfo->isXFormMemOp(Opcode)) { 486 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 487 << " for register " << printReg(Reg, this) << ".\n"); 488 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 489 return true; 490 } 491 } 492 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 493 return false; 494 } 495 496 bool PPCRegisterInfo::requiresVirtualBaseRegisters( 497 const MachineFunction &MF) const { 498 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 499 // Do not use virtual base registers when ROP protection is turned on. 500 // Virtual base registers break the layout of the local variable space and may 501 // push the ROP Hash location past the 512 byte range of the ROP store 502 // instruction. 503 return !Subtarget.hasROPProtect(); 504 } 505 506 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 507 const MachineFunction &MF) const { 508 assert(Register::isPhysicalRegister(PhysReg)); 509 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 510 const MachineFrameInfo &MFI = MF.getFrameInfo(); 511 512 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 513 return false; 514 if (PhysReg == Subtarget.getTOCPointerRegister()) 515 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 516 // The reason it's reserved is that it's the TOC pointer (and the function 517 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 518 // with no TOC access), we can't claim that it is preserved. 519 return (getReservedRegs(MF).test(PhysReg)); 520 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 521 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 522 // The value of the stack pointer does not change within a function after 523 // the prologue and before the epilogue if there are no dynamic allocations 524 // and no inline asm which clobbers X1/R1. 525 return true; 526 return false; 527 } 528 529 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg, 530 ArrayRef<MCPhysReg> Order, 531 SmallVectorImpl<MCPhysReg> &Hints, 532 const MachineFunction &MF, 533 const VirtRegMap *VRM, 534 const LiveRegMatrix *Matrix) const { 535 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 536 537 // Call the base implementation first to set any hints based on the usual 538 // heuristics and decide what the return value should be. We want to return 539 // the same value returned by the base implementation. If the base 540 // implementation decides to return true and force the allocation then we 541 // will leave it as such. On the other hand if the base implementation 542 // decides to return false the following code will not force the allocation 543 // as we are just looking to provide a hint. 544 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints( 545 VirtReg, Order, Hints, MF, VRM, Matrix); 546 // We are interested in instructions that copy values to ACC/UACC. 547 // The copy into UACC will be simply a COPY to a subreg so we 548 // want to allocate the corresponding physical subreg for the source. 549 // The copy into ACC will be a BUILD_UACC so we want to allocate 550 // the same number UACC for the source. 551 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) { 552 const MachineOperand *ResultOp = nullptr; 553 Register ResultReg; 554 switch (Use.getOpcode()) { 555 case TargetOpcode::COPY: { 556 ResultOp = &Use.getOperand(0); 557 ResultReg = ResultOp->getReg(); 558 if (Register::isVirtualRegister(ResultReg) && 559 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) && 560 VRM->hasPhys(ResultReg)) { 561 Register UACCPhys = VRM->getPhys(ResultReg); 562 Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg()); 563 // Ensure that the hint is a VSRp register. 564 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31) 565 Hints.push_back(HintReg); 566 } 567 break; 568 } 569 case PPC::BUILD_UACC: { 570 ResultOp = &Use.getOperand(0); 571 ResultReg = ResultOp->getReg(); 572 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) && 573 VRM->hasPhys(ResultReg)) { 574 Register ACCPhys = VRM->getPhys(ResultReg); 575 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) && 576 "Expecting an ACC register for BUILD_UACC."); 577 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0); 578 Hints.push_back(HintReg); 579 } 580 break; 581 } 582 } 583 } 584 return BaseImplRetVal; 585 } 586 587 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 588 MachineFunction &MF) const { 589 const PPCFrameLowering *TFI = getFrameLowering(MF); 590 const unsigned DefaultSafety = 1; 591 592 switch (RC->getID()) { 593 default: 594 return 0; 595 case PPC::G8RC_NOX0RegClassID: 596 case PPC::GPRC_NOR0RegClassID: 597 case PPC::SPERCRegClassID: 598 case PPC::G8RCRegClassID: 599 case PPC::GPRCRegClassID: { 600 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 601 return 32 - FP - DefaultSafety; 602 } 603 case PPC::F4RCRegClassID: 604 case PPC::F8RCRegClassID: 605 case PPC::VSLRCRegClassID: 606 return 32 - DefaultSafety; 607 case PPC::VFRCRegClassID: 608 case PPC::VRRCRegClassID: { 609 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 610 // Vector registers VR20-VR31 are reserved and cannot be used in the default 611 // Altivec ABI on AIX. 612 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 613 return 20 - DefaultSafety; 614 } 615 return 32 - DefaultSafety; 616 case PPC::VSFRCRegClassID: 617 case PPC::VSSRCRegClassID: 618 case PPC::VSRCRegClassID: { 619 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 620 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 621 // Vector registers VR20-VR31 are reserved and cannot be used in the 622 // default Altivec ABI on AIX. 623 return 52 - DefaultSafety; 624 } 625 return 64 - DefaultSafety; 626 case PPC::CRRCRegClassID: 627 return 8 - DefaultSafety; 628 } 629 } 630 631 const TargetRegisterClass * 632 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 633 const MachineFunction &MF) const { 634 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 635 const auto *DefaultSuperclass = 636 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 637 if (Subtarget.hasVSX()) { 638 // With VSX, we can inflate various sub-register classes to the full VSX 639 // register set. 640 641 // For Power9 we allow the user to enable GPR to vector spills. 642 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 643 // support to spill GPRC. 644 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 645 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 646 RC == &PPC::G8RCRegClass) { 647 InflateGP8RC++; 648 return &PPC::SPILLTOVSRRCRegClass; 649 } 650 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 651 InflateGPRC++; 652 } 653 654 for (const auto *I = RC->getSuperClasses(); *I; ++I) { 655 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC)) 656 continue; 657 658 switch ((*I)->getID()) { 659 case PPC::VSSRCRegClassID: 660 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass; 661 case PPC::VSFRCRegClassID: 662 case PPC::VSRCRegClassID: 663 return *I; 664 case PPC::VSRpRCRegClassID: 665 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass; 666 case PPC::ACCRCRegClassID: 667 case PPC::UACCRCRegClassID: 668 return Subtarget.hasMMA() ? *I : DefaultSuperclass; 669 } 670 } 671 } 672 673 return DefaultSuperclass; 674 } 675 676 //===----------------------------------------------------------------------===// 677 // Stack Frame Processing methods 678 //===----------------------------------------------------------------------===// 679 680 /// lowerDynamicAlloc - Generate the code for allocating an object in the 681 /// current frame. The sequence of code will be in the general form 682 /// 683 /// addi R0, SP, \#frameSize ; get the address of the previous frame 684 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 685 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 686 /// 687 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 688 // Get the instruction. 689 MachineInstr &MI = *II; 690 // Get the instruction's basic block. 691 MachineBasicBlock &MBB = *MI.getParent(); 692 // Get the basic block's function. 693 MachineFunction &MF = *MBB.getParent(); 694 // Get the frame info. 695 MachineFrameInfo &MFI = MF.getFrameInfo(); 696 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 697 // Get the instruction info. 698 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 699 // Determine whether 64-bit pointers are used. 700 bool LP64 = TM.isPPC64(); 701 DebugLoc dl = MI.getDebugLoc(); 702 703 // Get the maximum call stack size. 704 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 705 Align MaxAlign = MFI.getMaxAlign(); 706 assert(isAligned(MaxAlign, maxCallFrameSize) && 707 "Maximum call-frame size not sufficiently aligned"); 708 (void)MaxAlign; 709 710 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 711 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 712 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 713 bool KillNegSizeReg = MI.getOperand(1).isKill(); 714 Register NegSizeReg = MI.getOperand(1).getReg(); 715 716 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 717 // Grow the stack and update the stack pointer link, then determine the 718 // address of new allocated space. 719 if (LP64) { 720 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 721 .addReg(Reg, RegState::Kill) 722 .addReg(PPC::X1) 723 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 724 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 725 .addReg(PPC::X1) 726 .addImm(maxCallFrameSize); 727 } else { 728 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 729 .addReg(Reg, RegState::Kill) 730 .addReg(PPC::R1) 731 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 732 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 733 .addReg(PPC::R1) 734 .addImm(maxCallFrameSize); 735 } 736 737 // Discard the DYNALLOC instruction. 738 MBB.erase(II); 739 } 740 741 /// To accomplish dynamic stack allocation, we have to calculate exact size 742 /// subtracted from the stack pointer according alignment information and get 743 /// previous frame pointer. 744 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 745 Register &NegSizeReg, 746 bool &KillNegSizeReg, 747 Register &FramePointer) const { 748 // Get the instruction. 749 MachineInstr &MI = *II; 750 // Get the instruction's basic block. 751 MachineBasicBlock &MBB = *MI.getParent(); 752 // Get the basic block's function. 753 MachineFunction &MF = *MBB.getParent(); 754 // Get the frame info. 755 MachineFrameInfo &MFI = MF.getFrameInfo(); 756 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 757 // Get the instruction info. 758 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 759 // Determine whether 64-bit pointers are used. 760 bool LP64 = TM.isPPC64(); 761 DebugLoc dl = MI.getDebugLoc(); 762 // Get the total frame size. 763 unsigned FrameSize = MFI.getStackSize(); 764 765 // Get stack alignments. 766 const PPCFrameLowering *TFI = getFrameLowering(MF); 767 Align TargetAlign = TFI->getStackAlign(); 768 Align MaxAlign = MFI.getMaxAlign(); 769 770 // Determine the previous frame's address. If FrameSize can't be 771 // represented as 16 bits or we need special alignment, then we load the 772 // previous frame's address from 0(SP). Why not do an addis of the hi? 773 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 774 // Constructing the constant and adding would take 3 instructions. 775 // Fortunately, a frame greater than 32K is rare. 776 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 777 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 778 779 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 780 if (LP64) 781 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 782 .addReg(PPC::X31) 783 .addImm(FrameSize); 784 else 785 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 786 .addReg(PPC::R31) 787 .addImm(FrameSize); 788 } else if (LP64) { 789 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 790 .addImm(0) 791 .addReg(PPC::X1); 792 } else { 793 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 794 .addImm(0) 795 .addReg(PPC::R1); 796 } 797 // Determine the actual NegSizeReg according to alignment info. 798 if (LP64) { 799 if (MaxAlign > TargetAlign) { 800 unsigned UnalNegSizeReg = NegSizeReg; 801 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 802 803 // Unfortunately, there is no andi, only andi., and we can't insert that 804 // here because we might clobber cr0 while it is live. 805 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 806 .addImm(~(MaxAlign.value() - 1)); 807 808 unsigned NegSizeReg1 = NegSizeReg; 809 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 810 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 811 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 812 .addReg(NegSizeReg1, RegState::Kill); 813 KillNegSizeReg = true; 814 } 815 } else { 816 if (MaxAlign > TargetAlign) { 817 unsigned UnalNegSizeReg = NegSizeReg; 818 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 819 820 // Unfortunately, there is no andi, only andi., and we can't insert that 821 // here because we might clobber cr0 while it is live. 822 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 823 .addImm(~(MaxAlign.value() - 1)); 824 825 unsigned NegSizeReg1 = NegSizeReg; 826 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 827 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 828 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 829 .addReg(NegSizeReg1, RegState::Kill); 830 KillNegSizeReg = true; 831 } 832 } 833 } 834 835 void PPCRegisterInfo::lowerPrepareProbedAlloca( 836 MachineBasicBlock::iterator II) const { 837 MachineInstr &MI = *II; 838 // Get the instruction's basic block. 839 MachineBasicBlock &MBB = *MI.getParent(); 840 // Get the basic block's function. 841 MachineFunction &MF = *MBB.getParent(); 842 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 843 // Get the instruction info. 844 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 845 // Determine whether 64-bit pointers are used. 846 bool LP64 = TM.isPPC64(); 847 DebugLoc dl = MI.getDebugLoc(); 848 Register FramePointer = MI.getOperand(0).getReg(); 849 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 850 bool KillNegSizeReg = MI.getOperand(2).isKill(); 851 Register NegSizeReg = MI.getOperand(2).getReg(); 852 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 853 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 854 if (FramePointer == NegSizeReg) { 855 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 856 "NegSizeReg should be killed"); 857 // FramePointer is clobbered earlier than the use of NegSizeReg in 858 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 859 // misuse. 860 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 861 .addReg(NegSizeReg) 862 .addReg(NegSizeReg); 863 NegSizeReg = ActualNegSizeReg; 864 KillNegSizeReg = false; 865 } 866 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 867 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 868 // TargetAlign. 869 if (NegSizeReg != ActualNegSizeReg) 870 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 871 .addReg(NegSizeReg) 872 .addReg(NegSizeReg); 873 MBB.erase(II); 874 } 875 876 void PPCRegisterInfo::lowerDynamicAreaOffset( 877 MachineBasicBlock::iterator II) const { 878 // Get the instruction. 879 MachineInstr &MI = *II; 880 // Get the instruction's basic block. 881 MachineBasicBlock &MBB = *MI.getParent(); 882 // Get the basic block's function. 883 MachineFunction &MF = *MBB.getParent(); 884 // Get the frame info. 885 MachineFrameInfo &MFI = MF.getFrameInfo(); 886 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 887 // Get the instruction info. 888 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 889 890 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 891 bool is64Bit = TM.isPPC64(); 892 DebugLoc dl = MI.getDebugLoc(); 893 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 894 MI.getOperand(0).getReg()) 895 .addImm(maxCallFrameSize); 896 MBB.erase(II); 897 } 898 899 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 900 /// reserving a whole register (R0), we scrounge for one here. This generates 901 /// code like this: 902 /// 903 /// mfcr rA ; Move the conditional register into GPR rA. 904 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 905 /// stw rA, FI ; Store rA to the frame. 906 /// 907 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 908 unsigned FrameIndex) const { 909 // Get the instruction. 910 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 911 // Get the instruction's basic block. 912 MachineBasicBlock &MBB = *MI.getParent(); 913 MachineFunction &MF = *MBB.getParent(); 914 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 915 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 916 DebugLoc dl = MI.getDebugLoc(); 917 918 bool LP64 = TM.isPPC64(); 919 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 920 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 921 922 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 923 Register SrcReg = MI.getOperand(0).getReg(); 924 925 // We need to store the CR in the low 4-bits of the saved value. First, issue 926 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 927 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 928 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 929 930 // If the saved register wasn't CR0, shift the bits left so that they are in 931 // CR0's slot. 932 if (SrcReg != PPC::CR0) { 933 Register Reg1 = Reg; 934 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 935 936 // rlwinm rA, rA, ShiftBits, 0, 31. 937 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 938 .addReg(Reg1, RegState::Kill) 939 .addImm(getEncodingValue(SrcReg) * 4) 940 .addImm(0) 941 .addImm(31); 942 } 943 944 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 945 .addReg(Reg, RegState::Kill), 946 FrameIndex); 947 948 // Discard the pseudo instruction. 949 MBB.erase(II); 950 } 951 952 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 953 unsigned FrameIndex) const { 954 // Get the instruction. 955 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 956 // Get the instruction's basic block. 957 MachineBasicBlock &MBB = *MI.getParent(); 958 MachineFunction &MF = *MBB.getParent(); 959 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 960 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 961 DebugLoc dl = MI.getDebugLoc(); 962 963 bool LP64 = TM.isPPC64(); 964 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 965 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 966 967 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 968 Register DestReg = MI.getOperand(0).getReg(); 969 assert(MI.definesRegister(DestReg) && 970 "RESTORE_CR does not define its destination"); 971 972 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 973 Reg), FrameIndex); 974 975 // If the reloaded register isn't CR0, shift the bits right so that they are 976 // in the right CR's slot. 977 if (DestReg != PPC::CR0) { 978 Register Reg1 = Reg; 979 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 980 981 unsigned ShiftBits = getEncodingValue(DestReg)*4; 982 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 983 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 984 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 985 .addImm(31); 986 } 987 988 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 989 .addReg(Reg, RegState::Kill); 990 991 // Discard the pseudo instruction. 992 MBB.erase(II); 993 } 994 995 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 996 unsigned FrameIndex) const { 997 // Get the instruction. 998 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 999 // Get the instruction's basic block. 1000 MachineBasicBlock &MBB = *MI.getParent(); 1001 MachineFunction &MF = *MBB.getParent(); 1002 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1003 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1004 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 1005 DebugLoc dl = MI.getDebugLoc(); 1006 1007 bool LP64 = TM.isPPC64(); 1008 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1009 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1010 1011 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1012 Register SrcReg = MI.getOperand(0).getReg(); 1013 1014 // Search up the BB to find the definition of the CR bit. 1015 MachineBasicBlock::reverse_iterator Ins = MI; 1016 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 1017 ++Ins; 1018 unsigned CRBitSpillDistance = 0; 1019 bool SeenUse = false; 1020 for (; Ins != Rend; ++Ins) { 1021 // Definition found. 1022 if (Ins->modifiesRegister(SrcReg, TRI)) 1023 break; 1024 // Use found. 1025 if (Ins->readsRegister(SrcReg, TRI)) 1026 SeenUse = true; 1027 // Unable to find CR bit definition within maximum search distance. 1028 if (CRBitSpillDistance == MaxCRBitSpillDist) { 1029 Ins = MI; 1030 break; 1031 } 1032 // Skip debug instructions when counting CR bit spill distance. 1033 if (!Ins->isDebugInstr()) 1034 CRBitSpillDistance++; 1035 } 1036 1037 // Unable to find the definition of the CR bit in the MBB. 1038 if (Ins == MBB.rend()) 1039 Ins = MI; 1040 1041 bool SpillsKnownBit = false; 1042 // There is no need to extract the CR bit if its value is already known. 1043 switch (Ins->getOpcode()) { 1044 case PPC::CRUNSET: 1045 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 1046 .addImm(0); 1047 SpillsKnownBit = true; 1048 break; 1049 case PPC::CRSET: 1050 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 1051 .addImm(-32768); 1052 SpillsKnownBit = true; 1053 break; 1054 default: 1055 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 1056 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 1057 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 1058 // register), and SETNBC will set this. 1059 if (Subtarget.isISA3_1()) { 1060 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 1061 .addReg(SrcReg, RegState::Undef); 1062 break; 1063 } 1064 1065 // On Power9, we can use SETB to extract the LT bit. This only works for 1066 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 1067 // of the bit we care about (32-bit sign bit) will be set to the value of 1068 // the LT bit (regardless of the other bits in the CR field). 1069 if (Subtarget.isISA3_0()) { 1070 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 1071 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 1072 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 1073 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 1074 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 1075 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 1076 break; 1077 } 1078 } 1079 1080 // We need to move the CR field that contains the CR bit we are spilling. 1081 // The super register may not be explicitly defined (i.e. it can be defined 1082 // by a CR-logical that only defines the subreg) so we state that the CR 1083 // field is undef. Also, in order to preserve the kill flag on the CR bit, 1084 // we add it as an implicit use. 1085 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 1086 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 1087 .addReg(SrcReg, 1088 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 1089 1090 // If the saved register wasn't CR0LT, shift the bits left so that the bit 1091 // to store is the first one. Mask all but that bit. 1092 Register Reg1 = Reg; 1093 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1094 1095 // rlwinm rA, rA, ShiftBits, 0, 0. 1096 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1097 .addReg(Reg1, RegState::Kill) 1098 .addImm(getEncodingValue(SrcReg)) 1099 .addImm(0).addImm(0); 1100 } 1101 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 1102 .addReg(Reg, RegState::Kill), 1103 FrameIndex); 1104 1105 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 1106 // Discard the pseudo instruction. 1107 MBB.erase(II); 1108 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 1109 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 1110 Ins->RemoveOperand(0); 1111 } 1112 } 1113 1114 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 1115 unsigned FrameIndex) const { 1116 // Get the instruction. 1117 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 1118 // Get the instruction's basic block. 1119 MachineBasicBlock &MBB = *MI.getParent(); 1120 MachineFunction &MF = *MBB.getParent(); 1121 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1122 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1123 DebugLoc dl = MI.getDebugLoc(); 1124 1125 bool LP64 = TM.isPPC64(); 1126 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1127 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1128 1129 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1130 Register DestReg = MI.getOperand(0).getReg(); 1131 assert(MI.definesRegister(DestReg) && 1132 "RESTORE_CRBIT does not define its destination"); 1133 1134 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1135 Reg), FrameIndex); 1136 1137 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 1138 1139 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1140 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 1141 .addReg(getCRFromCRBit(DestReg)); 1142 1143 unsigned ShiftBits = getEncodingValue(DestReg); 1144 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1145 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1146 .addReg(RegO, RegState::Kill) 1147 .addReg(Reg, RegState::Kill) 1148 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1149 .addImm(ShiftBits) 1150 .addImm(ShiftBits); 1151 1152 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1153 getCRFromCRBit(DestReg)) 1154 .addReg(RegO, RegState::Kill) 1155 // Make sure we have a use dependency all the way through this 1156 // sequence of instructions. We can't have the other bits in the CR 1157 // modified in between the mfocrf and the mtocrf. 1158 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1159 1160 // Discard the pseudo instruction. 1161 MBB.erase(II); 1162 } 1163 1164 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1165 MCRegister DestReg, MCRegister SrcReg) { 1166 #ifdef NDEBUG 1167 return; 1168 #else 1169 if (ReportAccMoves) { 1170 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1171 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1172 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1173 MBB.dump(); 1174 } 1175 #endif 1176 } 1177 1178 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1179 bool IsRestore) { 1180 #ifdef NDEBUG 1181 return; 1182 #else 1183 if (ReportAccMoves) { 1184 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1185 << (IsRestore ? "restore" : "spill") << ":\n"; 1186 MBB.dump(); 1187 } 1188 #endif 1189 } 1190 1191 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1192 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1193 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1194 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1195 /// handle the FI elimination. 1196 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1197 unsigned FrameIndex) const { 1198 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1199 MachineBasicBlock &MBB = *MI.getParent(); 1200 MachineFunction &MF = *MBB.getParent(); 1201 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1202 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1203 DebugLoc DL = MI.getDebugLoc(); 1204 Register SrcReg = MI.getOperand(0).getReg(); 1205 bool IsKilled = MI.getOperand(0).isKill(); 1206 1207 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1208 Register Reg = 1209 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1210 bool IsLittleEndian = Subtarget.isLittleEndian(); 1211 1212 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1213 1214 // De-prime the register being spilled, create two stores for the pair 1215 // subregisters accounting for endianness and then re-prime the register if 1216 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1217 // adjust the offset of the store that is within the 64-byte stack slot. 1218 if (IsPrimed) 1219 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1220 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1221 .addReg(Reg, getKillRegState(IsKilled)), 1222 FrameIndex, IsLittleEndian ? 32 : 0); 1223 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1224 .addReg(Reg + 1, getKillRegState(IsKilled)), 1225 FrameIndex, IsLittleEndian ? 0 : 32); 1226 if (IsPrimed && !IsKilled) 1227 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1228 1229 // Discard the pseudo instruction. 1230 MBB.erase(II); 1231 } 1232 1233 /// lowerACCRestore - Generate the code to restore the accumulator register. 1234 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1235 unsigned FrameIndex) const { 1236 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1237 MachineBasicBlock &MBB = *MI.getParent(); 1238 MachineFunction &MF = *MBB.getParent(); 1239 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1240 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1241 DebugLoc DL = MI.getDebugLoc(); 1242 1243 Register DestReg = MI.getOperand(0).getReg(); 1244 assert(MI.definesRegister(DestReg) && 1245 "RESTORE_ACC does not define its destination"); 1246 1247 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1248 Register Reg = 1249 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1250 bool IsLittleEndian = Subtarget.isLittleEndian(); 1251 1252 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1253 1254 // Create two loads for the pair subregisters accounting for endianness and 1255 // then prime the accumulator register being restored. 1256 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1257 FrameIndex, IsLittleEndian ? 32 : 0); 1258 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1259 FrameIndex, IsLittleEndian ? 0 : 32); 1260 if (IsPrimed) 1261 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1262 1263 // Discard the pseudo instruction. 1264 MBB.erase(II); 1265 } 1266 1267 /// lowerQuadwordSpilling - Generate code to spill paired general register. 1268 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II, 1269 unsigned FrameIndex) const { 1270 MachineInstr &MI = *II; 1271 MachineBasicBlock &MBB = *MI.getParent(); 1272 MachineFunction &MF = *MBB.getParent(); 1273 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1274 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1275 DebugLoc DL = MI.getDebugLoc(); 1276 1277 Register SrcReg = MI.getOperand(0).getReg(); 1278 bool IsKilled = MI.getOperand(0).isKill(); 1279 1280 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2; 1281 bool IsLittleEndian = Subtarget.isLittleEndian(); 1282 1283 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1284 .addReg(Reg, getKillRegState(IsKilled)), 1285 FrameIndex, IsLittleEndian ? 8 : 0); 1286 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1287 .addReg(Reg + 1, getKillRegState(IsKilled)), 1288 FrameIndex, IsLittleEndian ? 0 : 8); 1289 1290 // Discard the pseudo instruction. 1291 MBB.erase(II); 1292 } 1293 1294 /// lowerQuadwordRestore - Generate code to restore paired general register. 1295 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II, 1296 unsigned FrameIndex) const { 1297 MachineInstr &MI = *II; 1298 MachineBasicBlock &MBB = *MI.getParent(); 1299 MachineFunction &MF = *MBB.getParent(); 1300 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1301 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1302 DebugLoc DL = MI.getDebugLoc(); 1303 1304 Register DestReg = MI.getOperand(0).getReg(); 1305 assert(MI.definesRegister(DestReg) && 1306 "RESTORE_QUADWORD does not define its destination"); 1307 1308 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2; 1309 bool IsLittleEndian = Subtarget.isLittleEndian(); 1310 1311 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex, 1312 IsLittleEndian ? 8 : 0); 1313 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex, 1314 IsLittleEndian ? 0 : 8); 1315 1316 // Discard the pseudo instruction. 1317 MBB.erase(II); 1318 } 1319 1320 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1321 Register Reg, int &FrameIdx) const { 1322 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1323 // prevent allocating an additional frame slot. 1324 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1325 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1326 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1327 // valid. 1328 // For 32-bit ELF, we have previously created the stack slot if needed, so 1329 // return its FrameIdx. 1330 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1331 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1332 return true; 1333 } 1334 return false; 1335 } 1336 1337 // If the offset must be a multiple of some value, return what that value is. 1338 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1339 switch (OpC) { 1340 default: 1341 return 1; 1342 case PPC::LWA: 1343 case PPC::LWA_32: 1344 case PPC::LD: 1345 case PPC::LDU: 1346 case PPC::STD: 1347 case PPC::STDU: 1348 case PPC::DFLOADf32: 1349 case PPC::DFLOADf64: 1350 case PPC::DFSTOREf32: 1351 case PPC::DFSTOREf64: 1352 case PPC::LXSD: 1353 case PPC::LXSSP: 1354 case PPC::STXSD: 1355 case PPC::STXSSP: 1356 case PPC::STQ: 1357 return 4; 1358 case PPC::EVLDD: 1359 case PPC::EVSTDD: 1360 return 8; 1361 case PPC::LXV: 1362 case PPC::STXV: 1363 case PPC::LQ: 1364 case PPC::LXVP: 1365 case PPC::STXVP: 1366 return 16; 1367 } 1368 } 1369 1370 // If the offset must be a multiple of some value, return what that value is. 1371 static unsigned offsetMinAlign(const MachineInstr &MI) { 1372 unsigned OpC = MI.getOpcode(); 1373 return offsetMinAlignForOpcode(OpC); 1374 } 1375 1376 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1377 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1378 unsigned FIOperandNum) { 1379 // Take into account whether it's an add or mem instruction 1380 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1381 if (MI.isInlineAsm()) 1382 OffsetOperandNo = FIOperandNum - 1; 1383 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1384 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1385 OffsetOperandNo = FIOperandNum + 1; 1386 1387 return OffsetOperandNo; 1388 } 1389 1390 void 1391 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1392 int SPAdj, unsigned FIOperandNum, 1393 RegScavenger *RS) const { 1394 assert(SPAdj == 0 && "Unexpected"); 1395 1396 // Get the instruction. 1397 MachineInstr &MI = *II; 1398 // Get the instruction's basic block. 1399 MachineBasicBlock &MBB = *MI.getParent(); 1400 // Get the basic block's function. 1401 MachineFunction &MF = *MBB.getParent(); 1402 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1403 // Get the instruction info. 1404 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1405 // Get the frame info. 1406 MachineFrameInfo &MFI = MF.getFrameInfo(); 1407 DebugLoc dl = MI.getDebugLoc(); 1408 1409 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1410 1411 // Get the frame index. 1412 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1413 1414 // Get the frame pointer save index. Users of this index are primarily 1415 // DYNALLOC instructions. 1416 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1417 int FPSI = FI->getFramePointerSaveIndex(); 1418 // Get the instruction opcode. 1419 unsigned OpC = MI.getOpcode(); 1420 1421 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1422 lowerDynamicAreaOffset(II); 1423 return; 1424 } 1425 1426 // Special case for dynamic alloca. 1427 if (FPSI && FrameIndex == FPSI && 1428 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1429 lowerDynamicAlloc(II); 1430 return; 1431 } 1432 1433 if (FPSI && FrameIndex == FPSI && 1434 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1435 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1436 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1437 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1438 lowerPrepareProbedAlloca(II); 1439 return; 1440 } 1441 1442 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1443 if (OpC == PPC::SPILL_CR) { 1444 lowerCRSpilling(II, FrameIndex); 1445 return; 1446 } else if (OpC == PPC::RESTORE_CR) { 1447 lowerCRRestore(II, FrameIndex); 1448 return; 1449 } else if (OpC == PPC::SPILL_CRBIT) { 1450 lowerCRBitSpilling(II, FrameIndex); 1451 return; 1452 } else if (OpC == PPC::RESTORE_CRBIT) { 1453 lowerCRBitRestore(II, FrameIndex); 1454 return; 1455 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1456 lowerACCSpilling(II, FrameIndex); 1457 return; 1458 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1459 lowerACCRestore(II, FrameIndex); 1460 return; 1461 } else if (OpC == PPC::SPILL_QUADWORD) { 1462 lowerQuadwordSpilling(II, FrameIndex); 1463 return; 1464 } else if (OpC == PPC::RESTORE_QUADWORD) { 1465 lowerQuadwordRestore(II, FrameIndex); 1466 return; 1467 } 1468 1469 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1470 MI.getOperand(FIOperandNum).ChangeToRegister( 1471 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1472 1473 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1474 // form (and must be r+r). 1475 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1476 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1477 1478 // Now add the frame object offset to the offset from r1. 1479 int Offset = MFI.getObjectOffset(FrameIndex); 1480 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1481 1482 // If we're not using a Frame Pointer that has been set to the value of the 1483 // SP before having the stack size subtracted from it, then add the stack size 1484 // to Offset to get the correct offset. 1485 // Naked functions have stack size 0, although getStackSize may not reflect 1486 // that because we didn't call all the pieces that compute it for naked 1487 // functions. 1488 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1489 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1490 Offset += MFI.getStackSize(); 1491 } 1492 1493 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can 1494 // transform it to the prefixed version so we don't have to use the XForm. 1495 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) && 1496 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) && 1497 Subtarget.hasPrefixInstrs()) { 1498 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP; 1499 MI.setDesc(TII.get(NewOpc)); 1500 OpC = NewOpc; 1501 } 1502 1503 // If we can, encode the offset directly into the instruction. If this is a 1504 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1505 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1506 // clear can be encoded. This is extremely uncommon, because normally you 1507 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1508 // happen in invalid code. 1509 assert(OpC != PPC::DBG_VALUE && 1510 "This should be handled in a target-independent way"); 1511 // FIXME: This should be factored out to a separate function as prefixed 1512 // instructions add a number of opcodes for which we can use 34-bit imm. 1513 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1514 isUInt<8>(Offset) : 1515 isInt<16>(Offset); 1516 if (TII.isPrefixed(MI.getOpcode())) 1517 OffsetFitsMnemonic = isInt<34>(Offset); 1518 if (!noImmForm && ((OffsetFitsMnemonic && 1519 ((Offset % offsetMinAlign(MI)) == 0)) || 1520 OpC == TargetOpcode::STACKMAP || 1521 OpC == TargetOpcode::PATCHPOINT)) { 1522 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1523 return; 1524 } 1525 1526 // The offset doesn't fit into a single register, scavenge one to build the 1527 // offset in. 1528 1529 bool is64Bit = TM.isPPC64(); 1530 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1531 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1532 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1533 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC), 1534 SReg = MF.getRegInfo().createVirtualRegister(RC); 1535 1536 // Insert a set of rA with the full offset value before the ld, st, or add 1537 if (isInt<16>(Offset)) 1538 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1539 .addImm(Offset); 1540 else { 1541 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1542 .addImm(Offset >> 16); 1543 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1544 .addReg(SRegHi, RegState::Kill) 1545 .addImm(Offset); 1546 } 1547 1548 // Convert into indexed form of the instruction: 1549 // 1550 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1551 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1552 unsigned OperandBase; 1553 1554 if (noImmForm) 1555 OperandBase = 1; 1556 else if (OpC != TargetOpcode::INLINEASM && 1557 OpC != TargetOpcode::INLINEASM_BR) { 1558 assert(ImmToIdxMap.count(OpC) && 1559 "No indexed form of load or store available!"); 1560 unsigned NewOpcode = ImmToIdxMap.find(OpC)->second; 1561 MI.setDesc(TII.get(NewOpcode)); 1562 OperandBase = 1; 1563 } else { 1564 OperandBase = OffsetOperandNo; 1565 } 1566 1567 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1568 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1569 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1570 } 1571 1572 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1573 const PPCFrameLowering *TFI = getFrameLowering(MF); 1574 1575 if (!TM.isPPC64()) 1576 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1577 else 1578 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1579 } 1580 1581 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1582 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1583 if (!hasBasePointer(MF)) 1584 return getFrameRegister(MF); 1585 1586 if (TM.isPPC64()) 1587 return PPC::X30; 1588 1589 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1590 return PPC::R29; 1591 1592 return PPC::R30; 1593 } 1594 1595 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1596 if (!EnableBasePointer) 1597 return false; 1598 if (AlwaysBasePointer) 1599 return true; 1600 1601 // If we need to realign the stack, then the stack pointer can no longer 1602 // serve as an offset into the caller's stack space. As a result, we need a 1603 // base pointer. 1604 return hasStackRealignment(MF); 1605 } 1606 1607 /// Returns true if the instruction's frame index 1608 /// reference would be better served by a base register other than FP 1609 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1610 /// references it should create new base registers for. 1611 bool PPCRegisterInfo:: 1612 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1613 assert(Offset < 0 && "Local offset must be negative"); 1614 1615 // It's the load/store FI references that cause issues, as it can be difficult 1616 // to materialize the offset if it won't fit in the literal field. Estimate 1617 // based on the size of the local frame and some conservative assumptions 1618 // about the rest of the stack frame (note, this is pre-regalloc, so 1619 // we don't know everything for certain yet) whether this offset is likely 1620 // to be out of range of the immediate. Return true if so. 1621 1622 // We only generate virtual base registers for loads and stores that have 1623 // an r+i form. Return false for everything else. 1624 unsigned OpC = MI->getOpcode(); 1625 if (!ImmToIdxMap.count(OpC)) 1626 return false; 1627 1628 // Don't generate a new virtual base register just to add zero to it. 1629 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1630 MI->getOperand(2).getImm() == 0) 1631 return false; 1632 1633 MachineBasicBlock &MBB = *MI->getParent(); 1634 MachineFunction &MF = *MBB.getParent(); 1635 const PPCFrameLowering *TFI = getFrameLowering(MF); 1636 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1637 1638 // If we likely don't need a stack frame, then we probably don't need a 1639 // virtual base register either. 1640 if (!StackEst) 1641 return false; 1642 1643 // Estimate an offset from the stack pointer. 1644 // The incoming offset is relating to the SP at the start of the function, 1645 // but when we access the local it'll be relative to the SP after local 1646 // allocation, so adjust our SP-relative offset by that allocation size. 1647 Offset += StackEst; 1648 1649 // The frame pointer will point to the end of the stack, so estimate the 1650 // offset as the difference between the object offset and the FP location. 1651 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1652 } 1653 1654 /// Insert defining instruction(s) for BaseReg to 1655 /// be a pointer to FrameIdx at the beginning of the basic block. 1656 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1657 int FrameIdx, 1658 int64_t Offset) const { 1659 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1660 1661 MachineBasicBlock::iterator Ins = MBB->begin(); 1662 DebugLoc DL; // Defaults to "unknown" 1663 if (Ins != MBB->end()) 1664 DL = Ins->getDebugLoc(); 1665 1666 const MachineFunction &MF = *MBB->getParent(); 1667 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1668 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1669 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1670 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1671 const TargetRegisterClass *RC = getPointerRegClass(MF); 1672 Register BaseReg = MRI.createVirtualRegister(RC); 1673 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1674 1675 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1676 .addFrameIndex(FrameIdx).addImm(Offset); 1677 1678 return BaseReg; 1679 } 1680 1681 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1682 int64_t Offset) const { 1683 unsigned FIOperandNum = 0; 1684 while (!MI.getOperand(FIOperandNum).isFI()) { 1685 ++FIOperandNum; 1686 assert(FIOperandNum < MI.getNumOperands() && 1687 "Instr doesn't have FrameIndex operand!"); 1688 } 1689 1690 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1691 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1692 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1693 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1694 1695 MachineBasicBlock &MBB = *MI.getParent(); 1696 MachineFunction &MF = *MBB.getParent(); 1697 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1698 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1699 const MCInstrDesc &MCID = MI.getDesc(); 1700 MachineRegisterInfo &MRI = MF.getRegInfo(); 1701 MRI.constrainRegClass(BaseReg, 1702 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1703 } 1704 1705 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1706 Register BaseReg, 1707 int64_t Offset) const { 1708 unsigned FIOperandNum = 0; 1709 while (!MI->getOperand(FIOperandNum).isFI()) { 1710 ++FIOperandNum; 1711 assert(FIOperandNum < MI->getNumOperands() && 1712 "Instr doesn't have FrameIndex operand!"); 1713 } 1714 1715 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1716 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1717 1718 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1719 MI->getOpcode() == TargetOpcode::STACKMAP || 1720 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1721 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1722 } 1723