1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include "llvm/Target/TargetOptions.h" 42 #include <cstdlib> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "reginfo" 47 48 #define GET_REGINFO_TARGET_DESC 49 #include "PPCGenRegisterInfo.inc" 50 51 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 52 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 53 54 static cl::opt<bool> 55 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 56 cl::desc("Enable use of a base pointer for complex stack frames")); 57 58 static cl::opt<bool> 59 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 60 cl::desc("Force the use of a base pointer in every function")); 61 62 static cl::opt<bool> 63 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 64 cl::desc("Enable spills from gpr to vsr rather than stack")); 65 66 static cl::opt<bool> 67 StackPtrConst("ppc-stack-ptr-caller-preserved", 68 cl::desc("Consider R1 caller preserved so stack saves of " 69 "caller preserved registers can be LICM candidates"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<unsigned> 73 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 74 cl::desc("Maximum search distance for definition of CR bit " 75 "spill on ppc"), 76 cl::Hidden, cl::init(100)); 77 78 // Copies/moves of physical accumulators are expensive operations 79 // that should be avoided whenever possible. MMA instructions are 80 // meant to be used in performance-sensitive computational kernels. 81 // This option is provided, at least for the time being, to give the 82 // user a tool to detect this expensive operation and either rework 83 // their code or report a compiler bug if that turns out to be the 84 // cause. 85 #ifndef NDEBUG 86 static cl::opt<bool> 87 ReportAccMoves("ppc-report-acc-moves", 88 cl::desc("Emit information about accumulator register spills " 89 "and copies"), 90 cl::Hidden, cl::init(false)); 91 #endif 92 93 static unsigned offsetMinAlignForOpcode(unsigned OpC); 94 95 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 96 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 97 TM.isPPC64() ? 0 : 1, 98 TM.isPPC64() ? 0 : 1), 99 TM(TM) { 100 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 101 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 102 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 103 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 104 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 105 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 106 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 107 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 108 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 109 110 // 64-bit 111 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 112 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 113 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 114 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 115 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 116 117 // VSX 118 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 119 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 120 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 121 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 122 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 123 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 124 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 125 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 126 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 127 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 128 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 129 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 130 131 // SPE 132 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 133 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 134 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 135 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 136 } 137 138 /// getPointerRegClass - Return the register class to use to hold pointers. 139 /// This is used for addressing modes. 140 const TargetRegisterClass * 141 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 142 const { 143 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value 144 // when it checks for ZERO folding. 145 if (Kind == 1) { 146 if (TM.isPPC64()) 147 return &PPC::G8RC_NOX0RegClass; 148 return &PPC::GPRC_NOR0RegClass; 149 } 150 151 if (TM.isPPC64()) 152 return &PPC::G8RCRegClass; 153 return &PPC::GPRCRegClass; 154 } 155 156 const MCPhysReg* 157 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 158 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 159 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 160 if (!TM.isPPC64() && Subtarget.isAIXABI()) 161 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 162 if (Subtarget.hasVSX()) { 163 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 164 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 165 return CSR_64_AllRegs_VSX_SaveList; 166 } 167 if (Subtarget.hasAltivec()) { 168 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 169 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 170 return CSR_64_AllRegs_Altivec_SaveList; 171 } 172 return CSR_64_AllRegs_SaveList; 173 } 174 175 // On PPC64, we might need to save r2 (but only if it is not reserved). 176 // We do not need to treat R2 as callee-saved when using PC-Relative calls 177 // because any direct uses of R2 will cause it to be reserved. If the function 178 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 179 // will use the @notoc relocation which will cause this function to set the 180 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 181 // clobbers the TOC. 182 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 183 !Subtarget.isUsingPCRelativeCalls(); 184 185 // Cold calling convention CSRs. 186 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 187 if (Subtarget.isAIXABI()) 188 report_fatal_error("Cold calling unimplemented on AIX."); 189 if (TM.isPPC64()) { 190 if (Subtarget.hasAltivec()) 191 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 192 : CSR_SVR64_ColdCC_Altivec_SaveList; 193 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 194 : CSR_SVR64_ColdCC_SaveList; 195 } 196 // 32-bit targets. 197 if (Subtarget.hasAltivec()) 198 return CSR_SVR32_ColdCC_Altivec_SaveList; 199 else if (Subtarget.hasSPE()) 200 return CSR_SVR32_ColdCC_SPE_SaveList; 201 return CSR_SVR32_ColdCC_SaveList; 202 } 203 // Standard calling convention CSRs. 204 if (TM.isPPC64()) { 205 if (Subtarget.hasAltivec() && 206 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 207 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 208 : CSR_PPC64_Altivec_SaveList; 209 } 210 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 211 } 212 // 32-bit targets. 213 if (Subtarget.isAIXABI()) { 214 if (Subtarget.hasAltivec()) 215 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 216 : CSR_AIX32_SaveList; 217 return CSR_AIX32_SaveList; 218 } 219 if (Subtarget.hasAltivec()) 220 return CSR_SVR432_Altivec_SaveList; 221 else if (Subtarget.hasSPE()) 222 return CSR_SVR432_SPE_SaveList; 223 return CSR_SVR432_SaveList; 224 } 225 226 const uint32_t * 227 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 228 CallingConv::ID CC) const { 229 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 230 if (CC == CallingConv::AnyReg) { 231 if (Subtarget.hasVSX()) { 232 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 233 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 234 return CSR_64_AllRegs_VSX_RegMask; 235 } 236 if (Subtarget.hasAltivec()) { 237 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 238 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 239 return CSR_64_AllRegs_Altivec_RegMask; 240 } 241 return CSR_64_AllRegs_RegMask; 242 } 243 244 if (Subtarget.isAIXABI()) { 245 return TM.isPPC64() 246 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 247 ? CSR_PPC64_Altivec_RegMask 248 : CSR_PPC64_RegMask) 249 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 250 ? CSR_AIX32_Altivec_RegMask 251 : CSR_AIX32_RegMask); 252 } 253 254 if (CC == CallingConv::Cold) { 255 return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 256 : CSR_SVR64_ColdCC_RegMask) 257 : (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask 258 : (Subtarget.hasSPE() 259 ? CSR_SVR32_ColdCC_SPE_RegMask 260 : CSR_SVR32_ColdCC_RegMask)); 261 } 262 263 return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 264 : CSR_PPC64_RegMask) 265 : (Subtarget.hasAltivec() 266 ? CSR_SVR432_Altivec_RegMask 267 : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask 268 : CSR_SVR432_RegMask)); 269 } 270 271 const uint32_t* 272 PPCRegisterInfo::getNoPreservedMask() const { 273 return CSR_NoRegs_RegMask; 274 } 275 276 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 277 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 278 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 279 } 280 281 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 282 BitVector Reserved(getNumRegs()); 283 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 284 const PPCFrameLowering *TFI = getFrameLowering(MF); 285 286 // The ZERO register is not really a register, but the representation of r0 287 // when used in instructions that treat r0 as the constant 0. 288 markSuperRegs(Reserved, PPC::ZERO); 289 290 // The FP register is also not really a register, but is the representation 291 // of the frame pointer register used by ISD::FRAMEADDR. 292 markSuperRegs(Reserved, PPC::FP); 293 294 // The BP register is also not really a register, but is the representation 295 // of the base pointer register used by setjmp. 296 markSuperRegs(Reserved, PPC::BP); 297 298 // The counter registers must be reserved so that counter-based loops can 299 // be correctly formed (and the mtctr instructions are not DCE'd). 300 markSuperRegs(Reserved, PPC::CTR); 301 markSuperRegs(Reserved, PPC::CTR8); 302 303 markSuperRegs(Reserved, PPC::R1); 304 markSuperRegs(Reserved, PPC::LR); 305 markSuperRegs(Reserved, PPC::LR8); 306 markSuperRegs(Reserved, PPC::RM); 307 308 markSuperRegs(Reserved, PPC::VRSAVE); 309 310 // The SVR4 ABI reserves r2 and r13 311 if (Subtarget.isSVR4ABI()) { 312 // We only reserve r2 if we need to use the TOC pointer. If we have no 313 // explicit uses of the TOC pointer (meaning we're a leaf function with 314 // no constant-pool loads, etc.) and we have no potential uses inside an 315 // inline asm block, then we can treat r2 has an ordinary callee-saved 316 // register. 317 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 318 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) 319 markSuperRegs(Reserved, PPC::R2); // System-reserved register 320 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register 321 } 322 323 // Always reserve r2 on AIX for now. 324 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. 325 if (Subtarget.isAIXABI()) 326 markSuperRegs(Reserved, PPC::R2); // System-reserved register 327 328 // On PPC64, r13 is the thread pointer. Never allocate this register. 329 if (TM.isPPC64()) 330 markSuperRegs(Reserved, PPC::R13); 331 332 if (TFI->needsFP(MF)) 333 markSuperRegs(Reserved, PPC::R31); 334 335 bool IsPositionIndependent = TM.isPositionIndependent(); 336 if (hasBasePointer(MF)) { 337 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 338 markSuperRegs(Reserved, PPC::R29); 339 else 340 markSuperRegs(Reserved, PPC::R30); 341 } 342 343 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 344 markSuperRegs(Reserved, PPC::R30); 345 346 // Reserve Altivec registers when Altivec is unavailable. 347 if (!Subtarget.hasAltivec()) 348 for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(), 349 IE = PPC::VRRCRegClass.end(); I != IE; ++I) 350 markSuperRegs(Reserved, *I); 351 352 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 353 !TM.getAIXExtendedAltivecABI()) { 354 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 355 // and cannot be used. 356 for (auto Reg : CSR_Altivec_SaveList) { 357 if (Reg == 0) 358 break; 359 markSuperRegs(Reserved, Reg); 360 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 361 Reserved.set(*AS); 362 } 363 } 364 } 365 366 assert(checkAllSuperRegsMarked(Reserved)); 367 return Reserved; 368 } 369 370 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 371 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 372 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 373 const MachineFrameInfo &MFI = MF.getFrameInfo(); 374 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 375 376 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 377 << ".\n"); 378 // If the callee saved info is invalid we have to default to true for safety. 379 if (!MFI.isCalleeSavedInfoValid()) { 380 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 381 return true; 382 } 383 384 // We will require the use of X-Forms because the frame is larger than what 385 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 386 // If we need an X-Form then we need a register to store the address offset. 387 unsigned FrameSize = MFI.getStackSize(); 388 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 389 if (FrameSize & ~0x7FFF) { 390 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 391 return true; 392 } 393 394 // The callee saved info is valid so it can be traversed. 395 // Checking for registers that need saving that do not have load or store 396 // forms where the address offset is an immediate. 397 for (unsigned i = 0; i < Info.size(); i++) { 398 // If the spill is to a register no scavenging is required. 399 if (Info[i].isSpilledToReg()) 400 continue; 401 402 int FrIdx = Info[i].getFrameIdx(); 403 unsigned Reg = Info[i].getReg(); 404 405 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 406 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 407 if (!MFI.isFixedObjectIndex(FrIdx)) { 408 // This is not a fixed object. If it requires alignment then we may still 409 // need to use the XForm. 410 if (offsetMinAlignForOpcode(Opcode) > 1) { 411 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 412 << " for register " << printReg(Reg, this) << ".\n"); 413 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 414 << "alignment.\n"); 415 return true; 416 } 417 } 418 419 // This is eiher: 420 // 1) A fixed frame index object which we know are aligned so 421 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 422 // need to consider the alignment here. 423 // 2) A not fixed object but in that case we now know that the min required 424 // alignment is no more than 1 based on the previous check. 425 if (InstrInfo->isXFormMemOp(Opcode)) { 426 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 427 << " for register " << printReg(Reg, this) << ".\n"); 428 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 429 return true; 430 } 431 } 432 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 433 return false; 434 } 435 436 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 437 const MachineFunction &MF) const { 438 assert(Register::isPhysicalRegister(PhysReg)); 439 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 440 const MachineFrameInfo &MFI = MF.getFrameInfo(); 441 442 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 443 return false; 444 if (PhysReg == Subtarget.getTOCPointerRegister()) 445 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 446 // The reason it's reserved is that it's the TOC pointer (and the function 447 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 448 // with no TOC access), we can't claim that it is preserved. 449 return (getReservedRegs(MF).test(PhysReg)); 450 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 451 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 452 // The value of the stack pointer does not change within a function after 453 // the prologue and before the epilogue if there are no dynamic allocations 454 // and no inline asm which clobbers X1/R1. 455 return true; 456 return false; 457 } 458 459 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 460 MachineFunction &MF) const { 461 const PPCFrameLowering *TFI = getFrameLowering(MF); 462 const unsigned DefaultSafety = 1; 463 464 switch (RC->getID()) { 465 default: 466 return 0; 467 case PPC::G8RC_NOX0RegClassID: 468 case PPC::GPRC_NOR0RegClassID: 469 case PPC::SPERCRegClassID: 470 case PPC::G8RCRegClassID: 471 case PPC::GPRCRegClassID: { 472 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 473 return 32 - FP - DefaultSafety; 474 } 475 case PPC::F4RCRegClassID: 476 case PPC::F8RCRegClassID: 477 case PPC::VSLRCRegClassID: 478 return 32 - DefaultSafety; 479 case PPC::VFRCRegClassID: 480 case PPC::VRRCRegClassID: { 481 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 482 // Vector registers VR20-VR31 are reserved and cannot be used in the default 483 // Altivec ABI on AIX. 484 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 485 return 20 - DefaultSafety; 486 } 487 return 32 - DefaultSafety; 488 case PPC::VSFRCRegClassID: 489 case PPC::VSSRCRegClassID: 490 case PPC::VSRCRegClassID: { 491 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 492 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 493 // Vector registers VR20-VR31 are reserved and cannot be used in the 494 // default Altivec ABI on AIX. 495 return 52 - DefaultSafety; 496 } 497 return 64 - DefaultSafety; 498 case PPC::CRRCRegClassID: 499 return 8 - DefaultSafety; 500 } 501 } 502 503 const TargetRegisterClass * 504 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 505 const MachineFunction &MF) const { 506 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 507 if (Subtarget.hasVSX()) { 508 // With VSX, we can inflate various sub-register classes to the full VSX 509 // register set. 510 511 // For Power9 we allow the user to enable GPR to vector spills. 512 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 513 // support to spill GPRC. 514 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 515 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 516 RC == &PPC::G8RCRegClass) { 517 InflateGP8RC++; 518 return &PPC::SPILLTOVSRRCRegClass; 519 } 520 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 521 InflateGPRC++; 522 } 523 if (RC == &PPC::F8RCRegClass) 524 return &PPC::VSFRCRegClass; 525 else if (RC == &PPC::VRRCRegClass) 526 return &PPC::VSRCRegClass; 527 else if (RC == &PPC::F4RCRegClass && Subtarget.hasP8Vector()) 528 return &PPC::VSSRCRegClass; 529 } 530 531 return TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // Stack Frame Processing methods 536 //===----------------------------------------------------------------------===// 537 538 /// lowerDynamicAlloc - Generate the code for allocating an object in the 539 /// current frame. The sequence of code will be in the general form 540 /// 541 /// addi R0, SP, \#frameSize ; get the address of the previous frame 542 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 543 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 544 /// 545 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 546 // Get the instruction. 547 MachineInstr &MI = *II; 548 // Get the instruction's basic block. 549 MachineBasicBlock &MBB = *MI.getParent(); 550 // Get the basic block's function. 551 MachineFunction &MF = *MBB.getParent(); 552 // Get the frame info. 553 MachineFrameInfo &MFI = MF.getFrameInfo(); 554 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 555 // Get the instruction info. 556 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 557 // Determine whether 64-bit pointers are used. 558 bool LP64 = TM.isPPC64(); 559 DebugLoc dl = MI.getDebugLoc(); 560 561 // Get the maximum call stack size. 562 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 563 Align MaxAlign = MFI.getMaxAlign(); 564 assert(isAligned(MaxAlign, maxCallFrameSize) && 565 "Maximum call-frame size not sufficiently aligned"); 566 (void)MaxAlign; 567 568 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 569 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 570 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 571 bool KillNegSizeReg = MI.getOperand(1).isKill(); 572 Register NegSizeReg = MI.getOperand(1).getReg(); 573 574 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 575 // Grow the stack and update the stack pointer link, then determine the 576 // address of new allocated space. 577 if (LP64) { 578 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 579 .addReg(Reg, RegState::Kill) 580 .addReg(PPC::X1) 581 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 582 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 583 .addReg(PPC::X1) 584 .addImm(maxCallFrameSize); 585 } else { 586 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 587 .addReg(Reg, RegState::Kill) 588 .addReg(PPC::R1) 589 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 590 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 591 .addReg(PPC::R1) 592 .addImm(maxCallFrameSize); 593 } 594 595 // Discard the DYNALLOC instruction. 596 MBB.erase(II); 597 } 598 599 /// To accomplish dynamic stack allocation, we have to calculate exact size 600 /// subtracted from the stack pointer according alignment information and get 601 /// previous frame pointer. 602 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 603 Register &NegSizeReg, 604 bool &KillNegSizeReg, 605 Register &FramePointer) const { 606 // Get the instruction. 607 MachineInstr &MI = *II; 608 // Get the instruction's basic block. 609 MachineBasicBlock &MBB = *MI.getParent(); 610 // Get the basic block's function. 611 MachineFunction &MF = *MBB.getParent(); 612 // Get the frame info. 613 MachineFrameInfo &MFI = MF.getFrameInfo(); 614 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 615 // Get the instruction info. 616 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 617 // Determine whether 64-bit pointers are used. 618 bool LP64 = TM.isPPC64(); 619 DebugLoc dl = MI.getDebugLoc(); 620 // Get the total frame size. 621 unsigned FrameSize = MFI.getStackSize(); 622 623 // Get stack alignments. 624 const PPCFrameLowering *TFI = getFrameLowering(MF); 625 Align TargetAlign = TFI->getStackAlign(); 626 Align MaxAlign = MFI.getMaxAlign(); 627 628 // Determine the previous frame's address. If FrameSize can't be 629 // represented as 16 bits or we need special alignment, then we load the 630 // previous frame's address from 0(SP). Why not do an addis of the hi? 631 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 632 // Constructing the constant and adding would take 3 instructions. 633 // Fortunately, a frame greater than 32K is rare. 634 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 635 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 636 637 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 638 if (LP64) 639 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 640 .addReg(PPC::X31) 641 .addImm(FrameSize); 642 else 643 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 644 .addReg(PPC::R31) 645 .addImm(FrameSize); 646 } else if (LP64) { 647 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 648 .addImm(0) 649 .addReg(PPC::X1); 650 } else { 651 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 652 .addImm(0) 653 .addReg(PPC::R1); 654 } 655 // Determine the actual NegSizeReg according to alignment info. 656 if (LP64) { 657 if (MaxAlign > TargetAlign) { 658 unsigned UnalNegSizeReg = NegSizeReg; 659 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 660 661 // Unfortunately, there is no andi, only andi., and we can't insert that 662 // here because we might clobber cr0 while it is live. 663 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 664 .addImm(~(MaxAlign.value() - 1)); 665 666 unsigned NegSizeReg1 = NegSizeReg; 667 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 668 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 669 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 670 .addReg(NegSizeReg1, RegState::Kill); 671 KillNegSizeReg = true; 672 } 673 } else { 674 if (MaxAlign > TargetAlign) { 675 unsigned UnalNegSizeReg = NegSizeReg; 676 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 677 678 // Unfortunately, there is no andi, only andi., and we can't insert that 679 // here because we might clobber cr0 while it is live. 680 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 681 .addImm(~(MaxAlign.value() - 1)); 682 683 unsigned NegSizeReg1 = NegSizeReg; 684 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 685 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 686 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 687 .addReg(NegSizeReg1, RegState::Kill); 688 KillNegSizeReg = true; 689 } 690 } 691 } 692 693 void PPCRegisterInfo::lowerPrepareProbedAlloca( 694 MachineBasicBlock::iterator II) const { 695 MachineInstr &MI = *II; 696 // Get the instruction's basic block. 697 MachineBasicBlock &MBB = *MI.getParent(); 698 // Get the basic block's function. 699 MachineFunction &MF = *MBB.getParent(); 700 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 701 // Get the instruction info. 702 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 703 // Determine whether 64-bit pointers are used. 704 bool LP64 = TM.isPPC64(); 705 DebugLoc dl = MI.getDebugLoc(); 706 Register FramePointer = MI.getOperand(0).getReg(); 707 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 708 bool KillNegSizeReg = MI.getOperand(2).isKill(); 709 Register NegSizeReg = MI.getOperand(2).getReg(); 710 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 711 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 712 if (FramePointer == NegSizeReg) { 713 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 714 "NegSizeReg should be killed"); 715 // FramePointer is clobbered earlier than the use of NegSizeReg in 716 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 717 // misuse. 718 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 719 .addReg(NegSizeReg) 720 .addReg(NegSizeReg); 721 NegSizeReg = ActualNegSizeReg; 722 KillNegSizeReg = false; 723 } 724 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 725 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 726 // TargetAlign. 727 if (NegSizeReg != ActualNegSizeReg) 728 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 729 .addReg(NegSizeReg) 730 .addReg(NegSizeReg); 731 MBB.erase(II); 732 } 733 734 void PPCRegisterInfo::lowerDynamicAreaOffset( 735 MachineBasicBlock::iterator II) const { 736 // Get the instruction. 737 MachineInstr &MI = *II; 738 // Get the instruction's basic block. 739 MachineBasicBlock &MBB = *MI.getParent(); 740 // Get the basic block's function. 741 MachineFunction &MF = *MBB.getParent(); 742 // Get the frame info. 743 MachineFrameInfo &MFI = MF.getFrameInfo(); 744 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 745 // Get the instruction info. 746 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 747 748 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 749 bool is64Bit = TM.isPPC64(); 750 DebugLoc dl = MI.getDebugLoc(); 751 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 752 MI.getOperand(0).getReg()) 753 .addImm(maxCallFrameSize); 754 MBB.erase(II); 755 } 756 757 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 758 /// reserving a whole register (R0), we scrounge for one here. This generates 759 /// code like this: 760 /// 761 /// mfcr rA ; Move the conditional register into GPR rA. 762 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 763 /// stw rA, FI ; Store rA to the frame. 764 /// 765 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 766 unsigned FrameIndex) const { 767 // Get the instruction. 768 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 769 // Get the instruction's basic block. 770 MachineBasicBlock &MBB = *MI.getParent(); 771 MachineFunction &MF = *MBB.getParent(); 772 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 773 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 774 DebugLoc dl = MI.getDebugLoc(); 775 776 bool LP64 = TM.isPPC64(); 777 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 778 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 779 780 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 781 Register SrcReg = MI.getOperand(0).getReg(); 782 783 // We need to store the CR in the low 4-bits of the saved value. First, issue 784 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 785 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 786 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 787 788 // If the saved register wasn't CR0, shift the bits left so that they are in 789 // CR0's slot. 790 if (SrcReg != PPC::CR0) { 791 Register Reg1 = Reg; 792 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 793 794 // rlwinm rA, rA, ShiftBits, 0, 31. 795 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 796 .addReg(Reg1, RegState::Kill) 797 .addImm(getEncodingValue(SrcReg) * 4) 798 .addImm(0) 799 .addImm(31); 800 } 801 802 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 803 .addReg(Reg, RegState::Kill), 804 FrameIndex); 805 806 // Discard the pseudo instruction. 807 MBB.erase(II); 808 } 809 810 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 811 unsigned FrameIndex) const { 812 // Get the instruction. 813 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 814 // Get the instruction's basic block. 815 MachineBasicBlock &MBB = *MI.getParent(); 816 MachineFunction &MF = *MBB.getParent(); 817 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 818 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 819 DebugLoc dl = MI.getDebugLoc(); 820 821 bool LP64 = TM.isPPC64(); 822 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 823 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 824 825 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 826 Register DestReg = MI.getOperand(0).getReg(); 827 assert(MI.definesRegister(DestReg) && 828 "RESTORE_CR does not define its destination"); 829 830 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 831 Reg), FrameIndex); 832 833 // If the reloaded register isn't CR0, shift the bits right so that they are 834 // in the right CR's slot. 835 if (DestReg != PPC::CR0) { 836 Register Reg1 = Reg; 837 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 838 839 unsigned ShiftBits = getEncodingValue(DestReg)*4; 840 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 841 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 842 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 843 .addImm(31); 844 } 845 846 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 847 .addReg(Reg, RegState::Kill); 848 849 // Discard the pseudo instruction. 850 MBB.erase(II); 851 } 852 853 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 854 unsigned FrameIndex) const { 855 // Get the instruction. 856 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 857 // Get the instruction's basic block. 858 MachineBasicBlock &MBB = *MI.getParent(); 859 MachineFunction &MF = *MBB.getParent(); 860 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 861 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 862 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 863 DebugLoc dl = MI.getDebugLoc(); 864 865 bool LP64 = TM.isPPC64(); 866 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 867 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 868 869 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 870 Register SrcReg = MI.getOperand(0).getReg(); 871 872 // Search up the BB to find the definition of the CR bit. 873 MachineBasicBlock::reverse_iterator Ins = MI; 874 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 875 ++Ins; 876 unsigned CRBitSpillDistance = 0; 877 bool SeenUse = false; 878 for (; Ins != Rend; ++Ins) { 879 // Definition found. 880 if (Ins->modifiesRegister(SrcReg, TRI)) 881 break; 882 // Use found. 883 if (Ins->readsRegister(SrcReg, TRI)) 884 SeenUse = true; 885 // Unable to find CR bit definition within maximum search distance. 886 if (CRBitSpillDistance == MaxCRBitSpillDist) { 887 Ins = MI; 888 break; 889 } 890 // Skip debug instructions when counting CR bit spill distance. 891 if (!Ins->isDebugInstr()) 892 CRBitSpillDistance++; 893 } 894 895 // Unable to find the definition of the CR bit in the MBB. 896 if (Ins == MBB.rend()) 897 Ins = MI; 898 899 bool SpillsKnownBit = false; 900 // There is no need to extract the CR bit if its value is already known. 901 switch (Ins->getOpcode()) { 902 case PPC::CRUNSET: 903 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 904 .addImm(0); 905 SpillsKnownBit = true; 906 break; 907 case PPC::CRSET: 908 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 909 .addImm(-32768); 910 SpillsKnownBit = true; 911 break; 912 default: 913 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 914 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 915 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 916 // register), and SETNBC will set this. 917 if (Subtarget.isISA3_1()) { 918 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 919 .addReg(SrcReg, RegState::Undef); 920 break; 921 } 922 923 // On Power9, we can use SETB to extract the LT bit. This only works for 924 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 925 // of the bit we care about (32-bit sign bit) will be set to the value of 926 // the LT bit (regardless of the other bits in the CR field). 927 if (Subtarget.isISA3_0()) { 928 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 929 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 930 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 931 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 932 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 933 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 934 break; 935 } 936 } 937 938 // We need to move the CR field that contains the CR bit we are spilling. 939 // The super register may not be explicitly defined (i.e. it can be defined 940 // by a CR-logical that only defines the subreg) so we state that the CR 941 // field is undef. Also, in order to preserve the kill flag on the CR bit, 942 // we add it as an implicit use. 943 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 944 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 945 .addReg(SrcReg, 946 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 947 948 // If the saved register wasn't CR0LT, shift the bits left so that the bit 949 // to store is the first one. Mask all but that bit. 950 Register Reg1 = Reg; 951 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 952 953 // rlwinm rA, rA, ShiftBits, 0, 0. 954 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 955 .addReg(Reg1, RegState::Kill) 956 .addImm(getEncodingValue(SrcReg)) 957 .addImm(0).addImm(0); 958 } 959 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 960 .addReg(Reg, RegState::Kill), 961 FrameIndex); 962 963 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 964 // Discard the pseudo instruction. 965 MBB.erase(II); 966 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 967 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 968 Ins->RemoveOperand(0); 969 } 970 } 971 972 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 973 unsigned FrameIndex) const { 974 // Get the instruction. 975 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 976 // Get the instruction's basic block. 977 MachineBasicBlock &MBB = *MI.getParent(); 978 MachineFunction &MF = *MBB.getParent(); 979 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 980 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 981 DebugLoc dl = MI.getDebugLoc(); 982 983 bool LP64 = TM.isPPC64(); 984 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 985 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 986 987 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 988 Register DestReg = MI.getOperand(0).getReg(); 989 assert(MI.definesRegister(DestReg) && 990 "RESTORE_CRBIT does not define its destination"); 991 992 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 993 Reg), FrameIndex); 994 995 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 996 997 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 998 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 999 .addReg(getCRFromCRBit(DestReg)); 1000 1001 unsigned ShiftBits = getEncodingValue(DestReg); 1002 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1003 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1004 .addReg(RegO, RegState::Kill) 1005 .addReg(Reg, RegState::Kill) 1006 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1007 .addImm(ShiftBits) 1008 .addImm(ShiftBits); 1009 1010 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1011 getCRFromCRBit(DestReg)) 1012 .addReg(RegO, RegState::Kill) 1013 // Make sure we have a use dependency all the way through this 1014 // sequence of instructions. We can't have the other bits in the CR 1015 // modified in between the mfocrf and the mtocrf. 1016 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1017 1018 // Discard the pseudo instruction. 1019 MBB.erase(II); 1020 } 1021 1022 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1023 MCRegister DestReg, MCRegister SrcReg) { 1024 #ifdef NDEBUG 1025 return; 1026 #else 1027 if (ReportAccMoves) { 1028 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1029 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1030 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1031 MBB.dump(); 1032 } 1033 #endif 1034 } 1035 1036 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1037 bool IsRestore) { 1038 #ifdef NDEBUG 1039 return; 1040 #else 1041 if (ReportAccMoves) { 1042 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1043 << (IsRestore ? "restore" : "spill") << ":\n"; 1044 MBB.dump(); 1045 } 1046 #endif 1047 } 1048 1049 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1050 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1051 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1052 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1053 /// handle the FI elimination. 1054 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1055 unsigned FrameIndex) const { 1056 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1057 MachineBasicBlock &MBB = *MI.getParent(); 1058 MachineFunction &MF = *MBB.getParent(); 1059 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1060 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1061 DebugLoc DL = MI.getDebugLoc(); 1062 Register SrcReg = MI.getOperand(0).getReg(); 1063 bool IsKilled = MI.getOperand(0).isKill(); 1064 1065 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1066 Register Reg = 1067 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1068 bool IsLittleEndian = Subtarget.isLittleEndian(); 1069 1070 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1071 1072 // De-prime the register being spilled, create two stores for the pair 1073 // subregisters accounting for endianness and then re-prime the register if 1074 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1075 // adjust the offset of the store that is within the 64-byte stack slot. 1076 if (IsPrimed) 1077 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1078 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1079 .addReg(Reg, getKillRegState(IsKilled)), 1080 FrameIndex, IsLittleEndian ? 32 : 0); 1081 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1082 .addReg(Reg + 1, getKillRegState(IsKilled)), 1083 FrameIndex, IsLittleEndian ? 0 : 32); 1084 if (IsPrimed && !IsKilled) 1085 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1086 1087 // Discard the pseudo instruction. 1088 MBB.erase(II); 1089 } 1090 1091 /// lowerACCRestore - Generate the code to restore the accumulator register. 1092 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1093 unsigned FrameIndex) const { 1094 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1095 MachineBasicBlock &MBB = *MI.getParent(); 1096 MachineFunction &MF = *MBB.getParent(); 1097 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1098 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1099 DebugLoc DL = MI.getDebugLoc(); 1100 1101 Register DestReg = MI.getOperand(0).getReg(); 1102 assert(MI.definesRegister(DestReg) && 1103 "RESTORE_ACC does not define its destination"); 1104 1105 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1106 Register Reg = 1107 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1108 bool IsLittleEndian = Subtarget.isLittleEndian(); 1109 1110 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1111 1112 // Create two loads for the pair subregisters accounting for endianness and 1113 // then prime the accumulator register being restored. 1114 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1115 FrameIndex, IsLittleEndian ? 32 : 0); 1116 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1117 FrameIndex, IsLittleEndian ? 0 : 32); 1118 if (IsPrimed) 1119 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1120 1121 // Discard the pseudo instruction. 1122 MBB.erase(II); 1123 } 1124 1125 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1126 Register Reg, int &FrameIdx) const { 1127 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1128 // prevent allocating an additional frame slot. 1129 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1130 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1131 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1132 // valid. 1133 // For 32-bit ELF, we have previously created the stack slot if needed, so 1134 // return its FrameIdx. 1135 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1136 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1137 return true; 1138 } 1139 return false; 1140 } 1141 1142 // If the offset must be a multiple of some value, return what that value is. 1143 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1144 switch (OpC) { 1145 default: 1146 return 1; 1147 case PPC::LWA: 1148 case PPC::LWA_32: 1149 case PPC::LD: 1150 case PPC::LDU: 1151 case PPC::STD: 1152 case PPC::STDU: 1153 case PPC::DFLOADf32: 1154 case PPC::DFLOADf64: 1155 case PPC::DFSTOREf32: 1156 case PPC::DFSTOREf64: 1157 case PPC::LXSD: 1158 case PPC::LXSSP: 1159 case PPC::STXSD: 1160 case PPC::STXSSP: 1161 return 4; 1162 case PPC::EVLDD: 1163 case PPC::EVSTDD: 1164 return 8; 1165 case PPC::LXV: 1166 case PPC::STXV: 1167 return 16; 1168 } 1169 } 1170 1171 // If the offset must be a multiple of some value, return what that value is. 1172 static unsigned offsetMinAlign(const MachineInstr &MI) { 1173 unsigned OpC = MI.getOpcode(); 1174 return offsetMinAlignForOpcode(OpC); 1175 } 1176 1177 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1178 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1179 unsigned FIOperandNum) { 1180 // Take into account whether it's an add or mem instruction 1181 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1182 if (MI.isInlineAsm()) 1183 OffsetOperandNo = FIOperandNum - 1; 1184 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1185 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1186 OffsetOperandNo = FIOperandNum + 1; 1187 1188 return OffsetOperandNo; 1189 } 1190 1191 void 1192 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1193 int SPAdj, unsigned FIOperandNum, 1194 RegScavenger *RS) const { 1195 assert(SPAdj == 0 && "Unexpected"); 1196 1197 // Get the instruction. 1198 MachineInstr &MI = *II; 1199 // Get the instruction's basic block. 1200 MachineBasicBlock &MBB = *MI.getParent(); 1201 // Get the basic block's function. 1202 MachineFunction &MF = *MBB.getParent(); 1203 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1204 // Get the instruction info. 1205 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1206 // Get the frame info. 1207 MachineFrameInfo &MFI = MF.getFrameInfo(); 1208 DebugLoc dl = MI.getDebugLoc(); 1209 1210 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1211 1212 // Get the frame index. 1213 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1214 1215 // Get the frame pointer save index. Users of this index are primarily 1216 // DYNALLOC instructions. 1217 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1218 int FPSI = FI->getFramePointerSaveIndex(); 1219 // Get the instruction opcode. 1220 unsigned OpC = MI.getOpcode(); 1221 1222 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1223 lowerDynamicAreaOffset(II); 1224 return; 1225 } 1226 1227 // Special case for dynamic alloca. 1228 if (FPSI && FrameIndex == FPSI && 1229 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1230 lowerDynamicAlloc(II); 1231 return; 1232 } 1233 1234 if (FPSI && FrameIndex == FPSI && 1235 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1236 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1237 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1238 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1239 lowerPrepareProbedAlloca(II); 1240 return; 1241 } 1242 1243 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1244 if (OpC == PPC::SPILL_CR) { 1245 lowerCRSpilling(II, FrameIndex); 1246 return; 1247 } else if (OpC == PPC::RESTORE_CR) { 1248 lowerCRRestore(II, FrameIndex); 1249 return; 1250 } else if (OpC == PPC::SPILL_CRBIT) { 1251 lowerCRBitSpilling(II, FrameIndex); 1252 return; 1253 } else if (OpC == PPC::RESTORE_CRBIT) { 1254 lowerCRBitRestore(II, FrameIndex); 1255 return; 1256 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1257 lowerACCSpilling(II, FrameIndex); 1258 return; 1259 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1260 lowerACCRestore(II, FrameIndex); 1261 return; 1262 } 1263 1264 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1265 MI.getOperand(FIOperandNum).ChangeToRegister( 1266 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1267 1268 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1269 // form (and must be r+r). 1270 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1271 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1272 1273 // Now add the frame object offset to the offset from r1. 1274 int Offset = MFI.getObjectOffset(FrameIndex); 1275 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1276 1277 // If we're not using a Frame Pointer that has been set to the value of the 1278 // SP before having the stack size subtracted from it, then add the stack size 1279 // to Offset to get the correct offset. 1280 // Naked functions have stack size 0, although getStackSize may not reflect 1281 // that because we didn't call all the pieces that compute it for naked 1282 // functions. 1283 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1284 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1285 Offset += MFI.getStackSize(); 1286 } 1287 1288 // If we can, encode the offset directly into the instruction. If this is a 1289 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1290 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1291 // clear can be encoded. This is extremely uncommon, because normally you 1292 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1293 // happen in invalid code. 1294 assert(OpC != PPC::DBG_VALUE && 1295 "This should be handled in a target-independent way"); 1296 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1297 isUInt<8>(Offset) : 1298 isInt<16>(Offset); 1299 if (!noImmForm && ((OffsetFitsMnemonic && 1300 ((Offset % offsetMinAlign(MI)) == 0)) || 1301 OpC == TargetOpcode::STACKMAP || 1302 OpC == TargetOpcode::PATCHPOINT)) { 1303 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1304 return; 1305 } 1306 1307 // The offset doesn't fit into a single register, scavenge one to build the 1308 // offset in. 1309 1310 bool is64Bit = TM.isPPC64(); 1311 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1312 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1313 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1314 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC), 1315 SReg = MF.getRegInfo().createVirtualRegister(RC); 1316 1317 // Insert a set of rA with the full offset value before the ld, st, or add 1318 if (isInt<16>(Offset)) 1319 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1320 .addImm(Offset); 1321 else { 1322 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1323 .addImm(Offset >> 16); 1324 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1325 .addReg(SRegHi, RegState::Kill) 1326 .addImm(Offset); 1327 } 1328 1329 // Convert into indexed form of the instruction: 1330 // 1331 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1332 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1333 unsigned OperandBase; 1334 1335 if (noImmForm) 1336 OperandBase = 1; 1337 else if (OpC != TargetOpcode::INLINEASM && 1338 OpC != TargetOpcode::INLINEASM_BR) { 1339 assert(ImmToIdxMap.count(OpC) && 1340 "No indexed form of load or store available!"); 1341 unsigned NewOpcode = ImmToIdxMap.find(OpC)->second; 1342 MI.setDesc(TII.get(NewOpcode)); 1343 OperandBase = 1; 1344 } else { 1345 OperandBase = OffsetOperandNo; 1346 } 1347 1348 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1349 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1350 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1351 } 1352 1353 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1354 const PPCFrameLowering *TFI = getFrameLowering(MF); 1355 1356 if (!TM.isPPC64()) 1357 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1358 else 1359 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1360 } 1361 1362 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1363 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1364 if (!hasBasePointer(MF)) 1365 return getFrameRegister(MF); 1366 1367 if (TM.isPPC64()) 1368 return PPC::X30; 1369 1370 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1371 return PPC::R29; 1372 1373 return PPC::R30; 1374 } 1375 1376 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1377 if (!EnableBasePointer) 1378 return false; 1379 if (AlwaysBasePointer) 1380 return true; 1381 1382 // If we need to realign the stack, then the stack pointer can no longer 1383 // serve as an offset into the caller's stack space. As a result, we need a 1384 // base pointer. 1385 return hasStackRealignment(MF); 1386 } 1387 1388 /// Returns true if the instruction's frame index 1389 /// reference would be better served by a base register other than FP 1390 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1391 /// references it should create new base registers for. 1392 bool PPCRegisterInfo:: 1393 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1394 assert(Offset < 0 && "Local offset must be negative"); 1395 1396 // It's the load/store FI references that cause issues, as it can be difficult 1397 // to materialize the offset if it won't fit in the literal field. Estimate 1398 // based on the size of the local frame and some conservative assumptions 1399 // about the rest of the stack frame (note, this is pre-regalloc, so 1400 // we don't know everything for certain yet) whether this offset is likely 1401 // to be out of range of the immediate. Return true if so. 1402 1403 // We only generate virtual base registers for loads and stores that have 1404 // an r+i form. Return false for everything else. 1405 unsigned OpC = MI->getOpcode(); 1406 if (!ImmToIdxMap.count(OpC)) 1407 return false; 1408 1409 // Don't generate a new virtual base register just to add zero to it. 1410 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1411 MI->getOperand(2).getImm() == 0) 1412 return false; 1413 1414 MachineBasicBlock &MBB = *MI->getParent(); 1415 MachineFunction &MF = *MBB.getParent(); 1416 const PPCFrameLowering *TFI = getFrameLowering(MF); 1417 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1418 1419 // If we likely don't need a stack frame, then we probably don't need a 1420 // virtual base register either. 1421 if (!StackEst) 1422 return false; 1423 1424 // Estimate an offset from the stack pointer. 1425 // The incoming offset is relating to the SP at the start of the function, 1426 // but when we access the local it'll be relative to the SP after local 1427 // allocation, so adjust our SP-relative offset by that allocation size. 1428 Offset += StackEst; 1429 1430 // The frame pointer will point to the end of the stack, so estimate the 1431 // offset as the difference between the object offset and the FP location. 1432 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1433 } 1434 1435 /// Insert defining instruction(s) for BaseReg to 1436 /// be a pointer to FrameIdx at the beginning of the basic block. 1437 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1438 int FrameIdx, 1439 int64_t Offset) const { 1440 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1441 1442 MachineBasicBlock::iterator Ins = MBB->begin(); 1443 DebugLoc DL; // Defaults to "unknown" 1444 if (Ins != MBB->end()) 1445 DL = Ins->getDebugLoc(); 1446 1447 const MachineFunction &MF = *MBB->getParent(); 1448 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1449 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1450 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1451 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1452 const TargetRegisterClass *RC = getPointerRegClass(MF); 1453 Register BaseReg = MRI.createVirtualRegister(RC); 1454 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1455 1456 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1457 .addFrameIndex(FrameIdx).addImm(Offset); 1458 1459 return BaseReg; 1460 } 1461 1462 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1463 int64_t Offset) const { 1464 unsigned FIOperandNum = 0; 1465 while (!MI.getOperand(FIOperandNum).isFI()) { 1466 ++FIOperandNum; 1467 assert(FIOperandNum < MI.getNumOperands() && 1468 "Instr doesn't have FrameIndex operand!"); 1469 } 1470 1471 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1472 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1473 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1474 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1475 1476 MachineBasicBlock &MBB = *MI.getParent(); 1477 MachineFunction &MF = *MBB.getParent(); 1478 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1479 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1480 const MCInstrDesc &MCID = MI.getDesc(); 1481 MachineRegisterInfo &MRI = MF.getRegInfo(); 1482 MRI.constrainRegClass(BaseReg, 1483 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1484 } 1485 1486 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1487 Register BaseReg, 1488 int64_t Offset) const { 1489 unsigned FIOperandNum = 0; 1490 while (!MI->getOperand(FIOperandNum).isFI()) { 1491 ++FIOperandNum; 1492 assert(FIOperandNum < MI->getNumOperands() && 1493 "Instr doesn't have FrameIndex operand!"); 1494 } 1495 1496 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1497 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1498 1499 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1500 MI->getOpcode() == TargetOpcode::STACKMAP || 1501 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1502 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1503 } 1504