1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the PowerPC implementation of the TargetRegisterInfo 10 // class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCRegisterInfo.h" 15 #include "PPCFrameLowering.h" 16 #include "PPCInstrBuilder.h" 17 #include "PPCMachineFunctionInfo.h" 18 #include "PPCSubtarget.h" 19 #include "PPCTargetMachine.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterScavenging.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include <cstdlib> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "reginfo" 48 49 #define GET_REGINFO_TARGET_DESC 50 #include "PPCGenRegisterInfo.inc" 51 52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); 53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); 54 55 static cl::opt<bool> 56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), 57 cl::desc("Enable use of a base pointer for complex stack frames")); 58 59 static cl::opt<bool> 60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), 61 cl::desc("Force the use of a base pointer in every function")); 62 63 static cl::opt<bool> 64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), 65 cl::desc("Enable spills from gpr to vsr rather than stack")); 66 67 static cl::opt<bool> 68 StackPtrConst("ppc-stack-ptr-caller-preserved", 69 cl::desc("Consider R1 caller preserved so stack saves of " 70 "caller preserved registers can be LICM candidates"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> 74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist", 75 cl::desc("Maximum search distance for definition of CR bit " 76 "spill on ppc"), 77 cl::Hidden, cl::init(100)); 78 79 // Copies/moves of physical accumulators are expensive operations 80 // that should be avoided whenever possible. MMA instructions are 81 // meant to be used in performance-sensitive computational kernels. 82 // This option is provided, at least for the time being, to give the 83 // user a tool to detect this expensive operation and either rework 84 // their code or report a compiler bug if that turns out to be the 85 // cause. 86 #ifndef NDEBUG 87 static cl::opt<bool> 88 ReportAccMoves("ppc-report-acc-moves", 89 cl::desc("Emit information about accumulator register spills " 90 "and copies"), 91 cl::Hidden, cl::init(false)); 92 #endif 93 94 extern cl::opt<bool> DisableAutoPairedVecSt; 95 96 static unsigned offsetMinAlignForOpcode(unsigned OpC); 97 98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) 99 : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, 100 TM.isPPC64() ? 0 : 1, 101 TM.isPPC64() ? 0 : 1), 102 TM(TM) { 103 ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; 104 ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; 105 ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; 106 ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; 107 ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; 108 ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; 109 ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; 110 ImmToIdxMap[PPC::ADDI] = PPC::ADD4; 111 ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; 112 113 // 64-bit 114 ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; 115 ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; 116 ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; 117 ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; 118 ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; 119 ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO; 120 ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO; 121 122 // VSX 123 ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; 124 ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; 125 ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; 126 ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; 127 ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; 128 ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; 129 ImmToIdxMap[PPC::LXV] = PPC::LXVX; 130 ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; 131 ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; 132 ImmToIdxMap[PPC::STXV] = PPC::STXVX; 133 ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; 134 ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; 135 136 // SPE 137 ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; 138 ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; 139 ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; 140 ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; 141 142 // Power10 143 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8; 144 ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8; 145 ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8; 146 ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8; 147 ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX; 148 ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX; 149 150 ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8; 151 ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8; 152 ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8; 153 154 ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX; 155 ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX; 156 ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX; 157 ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX; 158 ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX; 159 160 ImmToIdxMap[PPC::LXVP] = PPC::LXVPX; 161 ImmToIdxMap[PPC::STXVP] = PPC::STXVPX; 162 ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX; 163 ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX; 164 } 165 166 /// getPointerRegClass - Return the register class to use to hold pointers. 167 /// This is used for addressing modes. 168 const TargetRegisterClass * 169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) 170 const { 171 // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value 172 // when it checks for ZERO folding. 173 if (Kind == 1) { 174 if (TM.isPPC64()) 175 return &PPC::G8RC_NOX0RegClass; 176 return &PPC::GPRC_NOR0RegClass; 177 } 178 179 if (TM.isPPC64()) 180 return &PPC::G8RCRegClass; 181 return &PPC::GPRCRegClass; 182 } 183 184 const MCPhysReg* 185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 186 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>(); 187 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { 188 if (!TM.isPPC64() && Subtarget.isAIXABI()) 189 report_fatal_error("AnyReg unimplemented on 32-bit AIX."); 190 if (Subtarget.hasVSX()) { 191 if (Subtarget.pairedVectorMemops()) 192 return CSR_64_AllRegs_VSRP_SaveList; 193 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 194 return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; 195 return CSR_64_AllRegs_VSX_SaveList; 196 } 197 if (Subtarget.hasAltivec()) { 198 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 199 return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; 200 return CSR_64_AllRegs_Altivec_SaveList; 201 } 202 return CSR_64_AllRegs_SaveList; 203 } 204 205 // On PPC64, we might need to save r2 (but only if it is not reserved). 206 // We do not need to treat R2 as callee-saved when using PC-Relative calls 207 // because any direct uses of R2 will cause it to be reserved. If the function 208 // is a leaf or the only uses of R2 are implicit uses for calls, the calls 209 // will use the @notoc relocation which will cause this function to set the 210 // st_other bit to 1, thereby communicating to its caller that it arbitrarily 211 // clobbers the TOC. 212 bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && 213 !Subtarget.isUsingPCRelativeCalls(); 214 215 // Cold calling convention CSRs. 216 if (MF->getFunction().getCallingConv() == CallingConv::Cold) { 217 if (Subtarget.isAIXABI()) 218 report_fatal_error("Cold calling unimplemented on AIX."); 219 if (TM.isPPC64()) { 220 if (Subtarget.pairedVectorMemops()) 221 return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList 222 : CSR_SVR64_ColdCC_VSRP_SaveList; 223 if (Subtarget.hasAltivec()) 224 return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList 225 : CSR_SVR64_ColdCC_Altivec_SaveList; 226 return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList 227 : CSR_SVR64_ColdCC_SaveList; 228 } 229 // 32-bit targets. 230 if (Subtarget.pairedVectorMemops()) 231 return CSR_SVR32_ColdCC_VSRP_SaveList; 232 else if (Subtarget.hasAltivec()) 233 return CSR_SVR32_ColdCC_Altivec_SaveList; 234 else if (Subtarget.hasSPE()) 235 return CSR_SVR32_ColdCC_SPE_SaveList; 236 return CSR_SVR32_ColdCC_SaveList; 237 } 238 // Standard calling convention CSRs. 239 if (TM.isPPC64()) { 240 if (Subtarget.pairedVectorMemops()) 241 return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList; 242 if (Subtarget.hasAltivec() && 243 (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { 244 return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList 245 : CSR_PPC64_Altivec_SaveList; 246 } 247 return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; 248 } 249 // 32-bit targets. 250 if (Subtarget.isAIXABI()) { 251 if (Subtarget.hasAltivec()) 252 return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList 253 : CSR_AIX32_SaveList; 254 return CSR_AIX32_SaveList; 255 } 256 if (Subtarget.pairedVectorMemops()) 257 return CSR_SVR432_VSRP_SaveList; 258 if (Subtarget.hasAltivec()) 259 return CSR_SVR432_Altivec_SaveList; 260 else if (Subtarget.hasSPE()) { 261 if (TM.isPositionIndependent() && !TM.isPPC64()) 262 return CSR_SVR432_SPE_NO_S30_31_SaveList; 263 return CSR_SVR432_SPE_SaveList; 264 } 265 return CSR_SVR432_SaveList; 266 } 267 268 const uint32_t * 269 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, 270 CallingConv::ID CC) const { 271 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 272 if (CC == CallingConv::AnyReg) { 273 if (Subtarget.hasVSX()) { 274 if (Subtarget.pairedVectorMemops()) 275 return CSR_64_AllRegs_VSRP_RegMask; 276 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 277 return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; 278 return CSR_64_AllRegs_VSX_RegMask; 279 } 280 if (Subtarget.hasAltivec()) { 281 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) 282 return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; 283 return CSR_64_AllRegs_Altivec_RegMask; 284 } 285 return CSR_64_AllRegs_RegMask; 286 } 287 288 if (Subtarget.isAIXABI()) { 289 return TM.isPPC64() 290 ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 291 ? CSR_PPC64_Altivec_RegMask 292 : CSR_PPC64_RegMask) 293 : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) 294 ? CSR_AIX32_Altivec_RegMask 295 : CSR_AIX32_RegMask); 296 } 297 298 if (CC == CallingConv::Cold) { 299 if (TM.isPPC64()) 300 return Subtarget.pairedVectorMemops() 301 ? CSR_SVR64_ColdCC_VSRP_RegMask 302 : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask 303 : CSR_SVR64_ColdCC_RegMask); 304 else 305 return Subtarget.pairedVectorMemops() 306 ? CSR_SVR32_ColdCC_VSRP_RegMask 307 : (Subtarget.hasAltivec() 308 ? CSR_SVR32_ColdCC_Altivec_RegMask 309 : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask 310 : CSR_SVR32_ColdCC_RegMask)); 311 } 312 313 if (TM.isPPC64()) 314 return Subtarget.pairedVectorMemops() 315 ? CSR_SVR464_VSRP_RegMask 316 : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask 317 : CSR_PPC64_RegMask); 318 else 319 return Subtarget.pairedVectorMemops() 320 ? CSR_SVR432_VSRP_RegMask 321 : (Subtarget.hasAltivec() 322 ? CSR_SVR432_Altivec_RegMask 323 : (Subtarget.hasSPE() 324 ? (TM.isPositionIndependent() 325 ? CSR_SVR432_SPE_NO_S30_31_RegMask 326 : CSR_SVR432_SPE_RegMask) 327 : CSR_SVR432_RegMask)); 328 } 329 330 const uint32_t* 331 PPCRegisterInfo::getNoPreservedMask() const { 332 return CSR_NoRegs_RegMask; 333 } 334 335 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { 336 for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) 337 Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); 338 } 339 340 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { 341 BitVector Reserved(getNumRegs()); 342 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 343 const PPCFrameLowering *TFI = getFrameLowering(MF); 344 345 // The ZERO register is not really a register, but the representation of r0 346 // when used in instructions that treat r0 as the constant 0. 347 markSuperRegs(Reserved, PPC::ZERO); 348 349 // The FP register is also not really a register, but is the representation 350 // of the frame pointer register used by ISD::FRAMEADDR. 351 markSuperRegs(Reserved, PPC::FP); 352 353 // The BP register is also not really a register, but is the representation 354 // of the base pointer register used by setjmp. 355 markSuperRegs(Reserved, PPC::BP); 356 357 // The counter registers must be reserved so that counter-based loops can 358 // be correctly formed (and the mtctr instructions are not DCE'd). 359 markSuperRegs(Reserved, PPC::CTR); 360 markSuperRegs(Reserved, PPC::CTR8); 361 362 markSuperRegs(Reserved, PPC::R1); 363 markSuperRegs(Reserved, PPC::LR); 364 markSuperRegs(Reserved, PPC::LR8); 365 markSuperRegs(Reserved, PPC::RM); 366 367 markSuperRegs(Reserved, PPC::VRSAVE); 368 369 // The SVR4 ABI reserves r2 and r13 370 if (Subtarget.isSVR4ABI()) { 371 // We only reserve r2 if we need to use the TOC pointer. If we have no 372 // explicit uses of the TOC pointer (meaning we're a leaf function with 373 // no constant-pool loads, etc.) and we have no potential uses inside an 374 // inline asm block, then we can treat r2 has an ordinary callee-saved 375 // register. 376 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 377 if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) 378 markSuperRegs(Reserved, PPC::R2); // System-reserved register 379 markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register 380 } 381 382 // Always reserve r2 on AIX for now. 383 // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. 384 if (Subtarget.isAIXABI()) 385 markSuperRegs(Reserved, PPC::R2); // System-reserved register 386 387 // On PPC64, r13 is the thread pointer. Never allocate this register. 388 if (TM.isPPC64()) 389 markSuperRegs(Reserved, PPC::R13); 390 391 if (TFI->needsFP(MF)) 392 markSuperRegs(Reserved, PPC::R31); 393 394 bool IsPositionIndependent = TM.isPositionIndependent(); 395 if (hasBasePointer(MF)) { 396 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 397 markSuperRegs(Reserved, PPC::R29); 398 else 399 markSuperRegs(Reserved, PPC::R30); 400 } 401 402 if (Subtarget.is32BitELFABI() && IsPositionIndependent) 403 markSuperRegs(Reserved, PPC::R30); 404 405 // Reserve Altivec registers when Altivec is unavailable. 406 if (!Subtarget.hasAltivec()) 407 for (MCRegister Reg : PPC::VRRCRegClass) 408 markSuperRegs(Reserved, Reg); 409 410 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && 411 !TM.getAIXExtendedAltivecABI()) { 412 // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved 413 // and cannot be used. 414 for (auto Reg : CSR_Altivec_SaveList) { 415 if (Reg == 0) 416 break; 417 markSuperRegs(Reserved, Reg); 418 for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { 419 Reserved.set(*AS); 420 } 421 } 422 } 423 424 assert(checkAllSuperRegsMarked(Reserved)); 425 return Reserved; 426 } 427 428 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF, 429 MCRegister PhysReg) const { 430 // We cannot use getReservedRegs() to find the registers that are not asm 431 // clobberable because there are some reserved registers which can be 432 // clobbered by inline asm. For example, when LR is clobbered, the register is 433 // saved and restored. We will hardcode the registers that are not asm 434 // cloberable in this function. 435 436 // The stack pointer (R1/X1) is not clobberable by inline asm 437 return PhysReg != PPC::R1 && PhysReg != PPC::X1; 438 } 439 440 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { 441 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 442 const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); 443 const MachineFrameInfo &MFI = MF.getFrameInfo(); 444 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo(); 445 446 LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() 447 << ".\n"); 448 // If the callee saved info is invalid we have to default to true for safety. 449 if (!MFI.isCalleeSavedInfoValid()) { 450 LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); 451 return true; 452 } 453 454 // We will require the use of X-Forms because the frame is larger than what 455 // can be represented in signed 16 bits that fit in the immediate of a D-Form. 456 // If we need an X-Form then we need a register to store the address offset. 457 unsigned FrameSize = MFI.getStackSize(); 458 // Signed 16 bits means that the FrameSize cannot be more than 15 bits. 459 if (FrameSize & ~0x7FFF) { 460 LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); 461 return true; 462 } 463 464 // The callee saved info is valid so it can be traversed. 465 // Checking for registers that need saving that do not have load or store 466 // forms where the address offset is an immediate. 467 for (const CalleeSavedInfo &CSI : Info) { 468 // If the spill is to a register no scavenging is required. 469 if (CSI.isSpilledToReg()) 470 continue; 471 472 int FrIdx = CSI.getFrameIdx(); 473 Register Reg = CSI.getReg(); 474 475 const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); 476 unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); 477 if (!MFI.isFixedObjectIndex(FrIdx)) { 478 // This is not a fixed object. If it requires alignment then we may still 479 // need to use the XForm. 480 if (offsetMinAlignForOpcode(Opcode) > 1) { 481 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 482 << " for register " << printReg(Reg, this) << ".\n"); 483 LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " 484 << "alignment.\n"); 485 return true; 486 } 487 } 488 489 // This is eiher: 490 // 1) A fixed frame index object which we know are aligned so 491 // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't 492 // need to consider the alignment here. 493 // 2) A not fixed object but in that case we now know that the min required 494 // alignment is no more than 1 based on the previous check. 495 if (InstrInfo->isXFormMemOp(Opcode)) { 496 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 497 << " for register " << printReg(Reg, this) << ".\n"); 498 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); 499 return true; 500 } 501 502 // This is a spill/restore of a quadword. 503 if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) { 504 LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) 505 << " for register " << printReg(Reg, this) << ".\n"); 506 LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n"); 507 return true; 508 } 509 } 510 LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); 511 return false; 512 } 513 514 bool PPCRegisterInfo::requiresVirtualBaseRegisters( 515 const MachineFunction &MF) const { 516 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 517 // Do not use virtual base registers when ROP protection is turned on. 518 // Virtual base registers break the layout of the local variable space and may 519 // push the ROP Hash location past the 512 byte range of the ROP store 520 // instruction. 521 return !Subtarget.hasROPProtect(); 522 } 523 524 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, 525 const MachineFunction &MF) const { 526 assert(Register::isPhysicalRegister(PhysReg)); 527 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 528 const MachineFrameInfo &MFI = MF.getFrameInfo(); 529 530 if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) 531 return false; 532 if (PhysReg == Subtarget.getTOCPointerRegister()) 533 // X2/R2 is guaranteed to be preserved within a function if it is reserved. 534 // The reason it's reserved is that it's the TOC pointer (and the function 535 // uses the TOC). In functions where it isn't reserved (i.e. leaf functions 536 // with no TOC access), we can't claim that it is preserved. 537 return (getReservedRegs(MF).test(PhysReg)); 538 if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && 539 !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) 540 // The value of the stack pointer does not change within a function after 541 // the prologue and before the epilogue if there are no dynamic allocations 542 // and no inline asm which clobbers X1/R1. 543 return true; 544 return false; 545 } 546 547 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg, 548 ArrayRef<MCPhysReg> Order, 549 SmallVectorImpl<MCPhysReg> &Hints, 550 const MachineFunction &MF, 551 const VirtRegMap *VRM, 552 const LiveRegMatrix *Matrix) const { 553 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 554 555 // Call the base implementation first to set any hints based on the usual 556 // heuristics and decide what the return value should be. We want to return 557 // the same value returned by the base implementation. If the base 558 // implementation decides to return true and force the allocation then we 559 // will leave it as such. On the other hand if the base implementation 560 // decides to return false the following code will not force the allocation 561 // as we are just looking to provide a hint. 562 bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints( 563 VirtReg, Order, Hints, MF, VRM, Matrix); 564 // We are interested in instructions that copy values to ACC/UACC. 565 // The copy into UACC will be simply a COPY to a subreg so we 566 // want to allocate the corresponding physical subreg for the source. 567 // The copy into ACC will be a BUILD_UACC so we want to allocate 568 // the same number UACC for the source. 569 const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg); 570 for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) { 571 const MachineOperand *ResultOp = nullptr; 572 Register ResultReg; 573 switch (Use.getOpcode()) { 574 case TargetOpcode::COPY: { 575 ResultOp = &Use.getOperand(0); 576 ResultReg = ResultOp->getReg(); 577 if (Register::isVirtualRegister(ResultReg) && 578 MRI->getRegClass(ResultReg)->contains(PPC::UACC0) && 579 VRM->hasPhys(ResultReg)) { 580 Register UACCPhys = VRM->getPhys(ResultReg); 581 Register HintReg; 582 if (RegClass->contains(PPC::VSRp0)) { 583 HintReg = getSubReg(UACCPhys, ResultOp->getSubReg()); 584 // Ensure that the hint is a VSRp register. 585 if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31) 586 Hints.push_back(HintReg); 587 } else if (RegClass->contains(PPC::ACC0)) { 588 HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0); 589 if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7) 590 Hints.push_back(HintReg); 591 } 592 } 593 break; 594 } 595 case PPC::BUILD_UACC: { 596 ResultOp = &Use.getOperand(0); 597 ResultReg = ResultOp->getReg(); 598 if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) && 599 VRM->hasPhys(ResultReg)) { 600 Register ACCPhys = VRM->getPhys(ResultReg); 601 assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) && 602 "Expecting an ACC register for BUILD_UACC."); 603 Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0); 604 Hints.push_back(HintReg); 605 } 606 break; 607 } 608 } 609 } 610 return BaseImplRetVal; 611 } 612 613 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, 614 MachineFunction &MF) const { 615 const PPCFrameLowering *TFI = getFrameLowering(MF); 616 const unsigned DefaultSafety = 1; 617 618 switch (RC->getID()) { 619 default: 620 return 0; 621 case PPC::G8RC_NOX0RegClassID: 622 case PPC::GPRC_NOR0RegClassID: 623 case PPC::SPERCRegClassID: 624 case PPC::G8RCRegClassID: 625 case PPC::GPRCRegClassID: { 626 unsigned FP = TFI->hasFP(MF) ? 1 : 0; 627 return 32 - FP - DefaultSafety; 628 } 629 case PPC::F4RCRegClassID: 630 case PPC::F8RCRegClassID: 631 case PPC::VSLRCRegClassID: 632 return 32 - DefaultSafety; 633 case PPC::VFRCRegClassID: 634 case PPC::VRRCRegClassID: { 635 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 636 // Vector registers VR20-VR31 are reserved and cannot be used in the default 637 // Altivec ABI on AIX. 638 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 639 return 20 - DefaultSafety; 640 } 641 return 32 - DefaultSafety; 642 case PPC::VSFRCRegClassID: 643 case PPC::VSSRCRegClassID: 644 case PPC::VSRCRegClassID: { 645 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 646 if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) 647 // Vector registers VR20-VR31 are reserved and cannot be used in the 648 // default Altivec ABI on AIX. 649 return 52 - DefaultSafety; 650 } 651 return 64 - DefaultSafety; 652 case PPC::CRRCRegClassID: 653 return 8 - DefaultSafety; 654 } 655 } 656 657 const TargetRegisterClass * 658 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, 659 const MachineFunction &MF) const { 660 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 661 const auto *DefaultSuperclass = 662 TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); 663 if (Subtarget.hasVSX()) { 664 // With VSX, we can inflate various sub-register classes to the full VSX 665 // register set. 666 667 // For Power9 we allow the user to enable GPR to vector spills. 668 // FIXME: Currently limited to spilling GP8RC. A follow on patch will add 669 // support to spill GPRC. 670 if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { 671 if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && 672 RC == &PPC::G8RCRegClass) { 673 InflateGP8RC++; 674 return &PPC::SPILLTOVSRRCRegClass; 675 } 676 if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) 677 InflateGPRC++; 678 } 679 680 for (const auto *I = RC->getSuperClasses(); *I; ++I) { 681 if (getRegSizeInBits(**I) != getRegSizeInBits(*RC)) 682 continue; 683 684 switch ((*I)->getID()) { 685 case PPC::VSSRCRegClassID: 686 return Subtarget.hasP8Vector() ? *I : DefaultSuperclass; 687 case PPC::VSFRCRegClassID: 688 case PPC::VSRCRegClassID: 689 return *I; 690 case PPC::VSRpRCRegClassID: 691 return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass; 692 case PPC::ACCRCRegClassID: 693 case PPC::UACCRCRegClassID: 694 return Subtarget.hasMMA() ? *I : DefaultSuperclass; 695 } 696 } 697 } 698 699 return DefaultSuperclass; 700 } 701 702 //===----------------------------------------------------------------------===// 703 // Stack Frame Processing methods 704 //===----------------------------------------------------------------------===// 705 706 /// lowerDynamicAlloc - Generate the code for allocating an object in the 707 /// current frame. The sequence of code will be in the general form 708 /// 709 /// addi R0, SP, \#frameSize ; get the address of the previous frame 710 /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size 711 /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation 712 /// 713 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { 714 // Get the instruction. 715 MachineInstr &MI = *II; 716 // Get the instruction's basic block. 717 MachineBasicBlock &MBB = *MI.getParent(); 718 // Get the basic block's function. 719 MachineFunction &MF = *MBB.getParent(); 720 // Get the frame info. 721 MachineFrameInfo &MFI = MF.getFrameInfo(); 722 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 723 // Get the instruction info. 724 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 725 // Determine whether 64-bit pointers are used. 726 bool LP64 = TM.isPPC64(); 727 DebugLoc dl = MI.getDebugLoc(); 728 729 // Get the maximum call stack size. 730 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 731 Align MaxAlign = MFI.getMaxAlign(); 732 assert(isAligned(MaxAlign, maxCallFrameSize) && 733 "Maximum call-frame size not sufficiently aligned"); 734 (void)MaxAlign; 735 736 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 737 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 738 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 739 bool KillNegSizeReg = MI.getOperand(1).isKill(); 740 Register NegSizeReg = MI.getOperand(1).getReg(); 741 742 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); 743 // Grow the stack and update the stack pointer link, then determine the 744 // address of new allocated space. 745 if (LP64) { 746 BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) 747 .addReg(Reg, RegState::Kill) 748 .addReg(PPC::X1) 749 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 750 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) 751 .addReg(PPC::X1) 752 .addImm(maxCallFrameSize); 753 } else { 754 BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) 755 .addReg(Reg, RegState::Kill) 756 .addReg(PPC::R1) 757 .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); 758 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) 759 .addReg(PPC::R1) 760 .addImm(maxCallFrameSize); 761 } 762 763 // Discard the DYNALLOC instruction. 764 MBB.erase(II); 765 } 766 767 /// To accomplish dynamic stack allocation, we have to calculate exact size 768 /// subtracted from the stack pointer according alignment information and get 769 /// previous frame pointer. 770 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, 771 Register &NegSizeReg, 772 bool &KillNegSizeReg, 773 Register &FramePointer) const { 774 // Get the instruction. 775 MachineInstr &MI = *II; 776 // Get the instruction's basic block. 777 MachineBasicBlock &MBB = *MI.getParent(); 778 // Get the basic block's function. 779 MachineFunction &MF = *MBB.getParent(); 780 // Get the frame info. 781 MachineFrameInfo &MFI = MF.getFrameInfo(); 782 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 783 // Get the instruction info. 784 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 785 // Determine whether 64-bit pointers are used. 786 bool LP64 = TM.isPPC64(); 787 DebugLoc dl = MI.getDebugLoc(); 788 // Get the total frame size. 789 unsigned FrameSize = MFI.getStackSize(); 790 791 // Get stack alignments. 792 const PPCFrameLowering *TFI = getFrameLowering(MF); 793 Align TargetAlign = TFI->getStackAlign(); 794 Align MaxAlign = MFI.getMaxAlign(); 795 796 // Determine the previous frame's address. If FrameSize can't be 797 // represented as 16 bits or we need special alignment, then we load the 798 // previous frame's address from 0(SP). Why not do an addis of the hi? 799 // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. 800 // Constructing the constant and adding would take 3 instructions. 801 // Fortunately, a frame greater than 32K is rare. 802 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 803 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 804 805 if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { 806 if (LP64) 807 BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) 808 .addReg(PPC::X31) 809 .addImm(FrameSize); 810 else 811 BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) 812 .addReg(PPC::R31) 813 .addImm(FrameSize); 814 } else if (LP64) { 815 BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) 816 .addImm(0) 817 .addReg(PPC::X1); 818 } else { 819 BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) 820 .addImm(0) 821 .addReg(PPC::R1); 822 } 823 // Determine the actual NegSizeReg according to alignment info. 824 if (LP64) { 825 if (MaxAlign > TargetAlign) { 826 unsigned UnalNegSizeReg = NegSizeReg; 827 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 828 829 // Unfortunately, there is no andi, only andi., and we can't insert that 830 // here because we might clobber cr0 while it is live. 831 BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) 832 .addImm(~(MaxAlign.value() - 1)); 833 834 unsigned NegSizeReg1 = NegSizeReg; 835 NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); 836 BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) 837 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 838 .addReg(NegSizeReg1, RegState::Kill); 839 KillNegSizeReg = true; 840 } 841 } else { 842 if (MaxAlign > TargetAlign) { 843 unsigned UnalNegSizeReg = NegSizeReg; 844 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 845 846 // Unfortunately, there is no andi, only andi., and we can't insert that 847 // here because we might clobber cr0 while it is live. 848 BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) 849 .addImm(~(MaxAlign.value() - 1)); 850 851 unsigned NegSizeReg1 = NegSizeReg; 852 NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); 853 BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) 854 .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) 855 .addReg(NegSizeReg1, RegState::Kill); 856 KillNegSizeReg = true; 857 } 858 } 859 } 860 861 void PPCRegisterInfo::lowerPrepareProbedAlloca( 862 MachineBasicBlock::iterator II) const { 863 MachineInstr &MI = *II; 864 // Get the instruction's basic block. 865 MachineBasicBlock &MBB = *MI.getParent(); 866 // Get the basic block's function. 867 MachineFunction &MF = *MBB.getParent(); 868 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 869 // Get the instruction info. 870 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 871 // Determine whether 64-bit pointers are used. 872 bool LP64 = TM.isPPC64(); 873 DebugLoc dl = MI.getDebugLoc(); 874 Register FramePointer = MI.getOperand(0).getReg(); 875 const Register ActualNegSizeReg = MI.getOperand(1).getReg(); 876 bool KillNegSizeReg = MI.getOperand(2).isKill(); 877 Register NegSizeReg = MI.getOperand(2).getReg(); 878 const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); 879 // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. 880 if (FramePointer == NegSizeReg) { 881 assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " 882 "NegSizeReg should be killed"); 883 // FramePointer is clobbered earlier than the use of NegSizeReg in 884 // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid 885 // misuse. 886 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 887 .addReg(NegSizeReg) 888 .addReg(NegSizeReg); 889 NegSizeReg = ActualNegSizeReg; 890 KillNegSizeReg = false; 891 } 892 prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); 893 // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > 894 // TargetAlign. 895 if (NegSizeReg != ActualNegSizeReg) 896 BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) 897 .addReg(NegSizeReg) 898 .addReg(NegSizeReg); 899 MBB.erase(II); 900 } 901 902 void PPCRegisterInfo::lowerDynamicAreaOffset( 903 MachineBasicBlock::iterator II) const { 904 // Get the instruction. 905 MachineInstr &MI = *II; 906 // Get the instruction's basic block. 907 MachineBasicBlock &MBB = *MI.getParent(); 908 // Get the basic block's function. 909 MachineFunction &MF = *MBB.getParent(); 910 // Get the frame info. 911 MachineFrameInfo &MFI = MF.getFrameInfo(); 912 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 913 // Get the instruction info. 914 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 915 916 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); 917 bool is64Bit = TM.isPPC64(); 918 DebugLoc dl = MI.getDebugLoc(); 919 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), 920 MI.getOperand(0).getReg()) 921 .addImm(maxCallFrameSize); 922 MBB.erase(II); 923 } 924 925 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of 926 /// reserving a whole register (R0), we scrounge for one here. This generates 927 /// code like this: 928 /// 929 /// mfcr rA ; Move the conditional register into GPR rA. 930 /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. 931 /// stw rA, FI ; Store rA to the frame. 932 /// 933 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, 934 unsigned FrameIndex) const { 935 // Get the instruction. 936 MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset> 937 // Get the instruction's basic block. 938 MachineBasicBlock &MBB = *MI.getParent(); 939 MachineFunction &MF = *MBB.getParent(); 940 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 941 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 942 DebugLoc dl = MI.getDebugLoc(); 943 944 bool LP64 = TM.isPPC64(); 945 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 946 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 947 948 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 949 Register SrcReg = MI.getOperand(0).getReg(); 950 951 // We need to store the CR in the low 4-bits of the saved value. First, issue 952 // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. 953 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 954 .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); 955 956 // If the saved register wasn't CR0, shift the bits left so that they are in 957 // CR0's slot. 958 if (SrcReg != PPC::CR0) { 959 Register Reg1 = Reg; 960 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 961 962 // rlwinm rA, rA, ShiftBits, 0, 31. 963 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 964 .addReg(Reg1, RegState::Kill) 965 .addImm(getEncodingValue(SrcReg) * 4) 966 .addImm(0) 967 .addImm(31); 968 } 969 970 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 971 .addReg(Reg, RegState::Kill), 972 FrameIndex); 973 974 // Discard the pseudo instruction. 975 MBB.erase(II); 976 } 977 978 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, 979 unsigned FrameIndex) const { 980 // Get the instruction. 981 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset> 982 // Get the instruction's basic block. 983 MachineBasicBlock &MBB = *MI.getParent(); 984 MachineFunction &MF = *MBB.getParent(); 985 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 986 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 987 DebugLoc dl = MI.getDebugLoc(); 988 989 bool LP64 = TM.isPPC64(); 990 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 991 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 992 993 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 994 Register DestReg = MI.getOperand(0).getReg(); 995 assert(MI.definesRegister(DestReg) && 996 "RESTORE_CR does not define its destination"); 997 998 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 999 Reg), FrameIndex); 1000 1001 // If the reloaded register isn't CR0, shift the bits right so that they are 1002 // in the right CR's slot. 1003 if (DestReg != PPC::CR0) { 1004 Register Reg1 = Reg; 1005 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1006 1007 unsigned ShiftBits = getEncodingValue(DestReg)*4; 1008 // rlwinm r11, r11, 32-ShiftBits, 0, 31. 1009 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1010 .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) 1011 .addImm(31); 1012 } 1013 1014 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) 1015 .addReg(Reg, RegState::Kill); 1016 1017 // Discard the pseudo instruction. 1018 MBB.erase(II); 1019 } 1020 1021 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, 1022 unsigned FrameIndex) const { 1023 // Get the instruction. 1024 MachineInstr &MI = *II; // ; SPILL_CRBIT <SrcReg>, <offset> 1025 // Get the instruction's basic block. 1026 MachineBasicBlock &MBB = *MI.getParent(); 1027 MachineFunction &MF = *MBB.getParent(); 1028 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1029 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1030 const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); 1031 DebugLoc dl = MI.getDebugLoc(); 1032 1033 bool LP64 = TM.isPPC64(); 1034 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1035 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1036 1037 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1038 Register SrcReg = MI.getOperand(0).getReg(); 1039 1040 // Search up the BB to find the definition of the CR bit. 1041 MachineBasicBlock::reverse_iterator Ins = MI; 1042 MachineBasicBlock::reverse_iterator Rend = MBB.rend(); 1043 ++Ins; 1044 unsigned CRBitSpillDistance = 0; 1045 bool SeenUse = false; 1046 for (; Ins != Rend; ++Ins) { 1047 // Definition found. 1048 if (Ins->modifiesRegister(SrcReg, TRI)) 1049 break; 1050 // Use found. 1051 if (Ins->readsRegister(SrcReg, TRI)) 1052 SeenUse = true; 1053 // Unable to find CR bit definition within maximum search distance. 1054 if (CRBitSpillDistance == MaxCRBitSpillDist) { 1055 Ins = MI; 1056 break; 1057 } 1058 // Skip debug instructions when counting CR bit spill distance. 1059 if (!Ins->isDebugInstr()) 1060 CRBitSpillDistance++; 1061 } 1062 1063 // Unable to find the definition of the CR bit in the MBB. 1064 if (Ins == MBB.rend()) 1065 Ins = MI; 1066 1067 bool SpillsKnownBit = false; 1068 // There is no need to extract the CR bit if its value is already known. 1069 switch (Ins->getOpcode()) { 1070 case PPC::CRUNSET: 1071 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) 1072 .addImm(0); 1073 SpillsKnownBit = true; 1074 break; 1075 case PPC::CRSET: 1076 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) 1077 .addImm(-32768); 1078 SpillsKnownBit = true; 1079 break; 1080 default: 1081 // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all 1082 // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, 1083 // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit 1084 // register), and SETNBC will set this. 1085 if (Subtarget.isISA3_1()) { 1086 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) 1087 .addReg(SrcReg, RegState::Undef); 1088 break; 1089 } 1090 1091 // On Power9, we can use SETB to extract the LT bit. This only works for 1092 // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value 1093 // of the bit we care about (32-bit sign bit) will be set to the value of 1094 // the LT bit (regardless of the other bits in the CR field). 1095 if (Subtarget.isISA3_0()) { 1096 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || 1097 SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || 1098 SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || 1099 SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { 1100 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) 1101 .addReg(getCRFromCRBit(SrcReg), RegState::Undef); 1102 break; 1103 } 1104 } 1105 1106 // We need to move the CR field that contains the CR bit we are spilling. 1107 // The super register may not be explicitly defined (i.e. it can be defined 1108 // by a CR-logical that only defines the subreg) so we state that the CR 1109 // field is undef. Also, in order to preserve the kill flag on the CR bit, 1110 // we add it as an implicit use. 1111 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) 1112 .addReg(getCRFromCRBit(SrcReg), RegState::Undef) 1113 .addReg(SrcReg, 1114 RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); 1115 1116 // If the saved register wasn't CR0LT, shift the bits left so that the bit 1117 // to store is the first one. Mask all but that bit. 1118 Register Reg1 = Reg; 1119 Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1120 1121 // rlwinm rA, rA, ShiftBits, 0, 0. 1122 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) 1123 .addReg(Reg1, RegState::Kill) 1124 .addImm(getEncodingValue(SrcReg)) 1125 .addImm(0).addImm(0); 1126 } 1127 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) 1128 .addReg(Reg, RegState::Kill), 1129 FrameIndex); 1130 1131 bool KillsCRBit = MI.killsRegister(SrcReg, TRI); 1132 // Discard the pseudo instruction. 1133 MBB.erase(II); 1134 if (SpillsKnownBit && KillsCRBit && !SeenUse) { 1135 Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); 1136 Ins->removeOperand(0); 1137 } 1138 } 1139 1140 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, 1141 unsigned FrameIndex) const { 1142 // Get the instruction. 1143 MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CRBIT <offset> 1144 // Get the instruction's basic block. 1145 MachineBasicBlock &MBB = *MI.getParent(); 1146 MachineFunction &MF = *MBB.getParent(); 1147 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1148 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1149 DebugLoc dl = MI.getDebugLoc(); 1150 1151 bool LP64 = TM.isPPC64(); 1152 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1153 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1154 1155 Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1156 Register DestReg = MI.getOperand(0).getReg(); 1157 assert(MI.definesRegister(DestReg) && 1158 "RESTORE_CRBIT does not define its destination"); 1159 1160 addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), 1161 Reg), FrameIndex); 1162 1163 BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); 1164 1165 Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); 1166 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) 1167 .addReg(getCRFromCRBit(DestReg)); 1168 1169 unsigned ShiftBits = getEncodingValue(DestReg); 1170 // rlwimi r11, r10, 32-ShiftBits, ..., ... 1171 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) 1172 .addReg(RegO, RegState::Kill) 1173 .addReg(Reg, RegState::Kill) 1174 .addImm(ShiftBits ? 32 - ShiftBits : 0) 1175 .addImm(ShiftBits) 1176 .addImm(ShiftBits); 1177 1178 BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), 1179 getCRFromCRBit(DestReg)) 1180 .addReg(RegO, RegState::Kill) 1181 // Make sure we have a use dependency all the way through this 1182 // sequence of instructions. We can't have the other bits in the CR 1183 // modified in between the mfocrf and the mtocrf. 1184 .addReg(getCRFromCRBit(DestReg), RegState::Implicit); 1185 1186 // Discard the pseudo instruction. 1187 MBB.erase(II); 1188 } 1189 1190 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, 1191 MCRegister DestReg, MCRegister SrcReg) { 1192 #ifdef NDEBUG 1193 return; 1194 #else 1195 if (ReportAccMoves) { 1196 std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; 1197 std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; 1198 dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; 1199 MBB.dump(); 1200 } 1201 #endif 1202 } 1203 1204 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, 1205 bool IsRestore) { 1206 #ifdef NDEBUG 1207 return; 1208 #else 1209 if (ReportAccMoves) { 1210 dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " 1211 << (IsRestore ? "restore" : "spill") << ":\n"; 1212 MBB.dump(); 1213 } 1214 #endif 1215 } 1216 1217 static void spillRegPairs(MachineBasicBlock &MBB, 1218 MachineBasicBlock::iterator II, DebugLoc DL, 1219 const TargetInstrInfo &TII, Register SrcReg, 1220 unsigned FrameIndex, bool IsLittleEndian, 1221 bool IsKilled, bool TwoPairs) { 1222 unsigned Offset = 0; 1223 if (TwoPairs) 1224 Offset = IsLittleEndian ? 48 : 0; 1225 else 1226 Offset = IsLittleEndian ? 16 : 0; 1227 Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2 1228 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; 1229 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1230 .addReg(Reg, getKillRegState(IsKilled)), 1231 FrameIndex, Offset); 1232 Offset += IsLittleEndian ? -16 : 16; 1233 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1234 .addReg(Reg + 1, getKillRegState(IsKilled)), 1235 FrameIndex, Offset); 1236 if (TwoPairs) { 1237 Offset += IsLittleEndian ? -16 : 16; 1238 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1239 .addReg(Reg + 2, getKillRegState(IsKilled)), 1240 FrameIndex, Offset); 1241 Offset += IsLittleEndian ? -16 : 16; 1242 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) 1243 .addReg(Reg + 3, getKillRegState(IsKilled)), 1244 FrameIndex, Offset); 1245 } 1246 } 1247 1248 /// Remove any STXVP[X] instructions and split them out into a pair of 1249 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on 1250 /// the command line. 1251 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II, 1252 unsigned FrameIndex) const { 1253 assert(DisableAutoPairedVecSt && 1254 "Expecting to do this only if paired vector stores are disabled."); 1255 MachineInstr &MI = *II; // STXVP <SrcReg>, <offset> 1256 MachineBasicBlock &MBB = *MI.getParent(); 1257 MachineFunction &MF = *MBB.getParent(); 1258 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1259 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1260 DebugLoc DL = MI.getDebugLoc(); 1261 Register SrcReg = MI.getOperand(0).getReg(); 1262 bool IsLittleEndian = Subtarget.isLittleEndian(); 1263 bool IsKilled = MI.getOperand(0).isKill(); 1264 spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled, 1265 /* TwoPairs */ false); 1266 // Discard the original instruction. 1267 MBB.erase(II); 1268 } 1269 1270 /// lowerACCSpilling - Generate the code for spilling the accumulator register. 1271 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually 1272 /// eliminate the FrameIndex here nor compute the stack offset. We simply 1273 /// create a real instruction with an FI and rely on eliminateFrameIndex to 1274 /// handle the FI elimination. 1275 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, 1276 unsigned FrameIndex) const { 1277 MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset> 1278 MachineBasicBlock &MBB = *MI.getParent(); 1279 MachineFunction &MF = *MBB.getParent(); 1280 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1281 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1282 DebugLoc DL = MI.getDebugLoc(); 1283 Register SrcReg = MI.getOperand(0).getReg(); 1284 bool IsKilled = MI.getOperand(0).isKill(); 1285 1286 bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); 1287 Register Reg = 1288 PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1289 bool IsLittleEndian = Subtarget.isLittleEndian(); 1290 1291 emitAccSpillRestoreInfo(MBB, IsPrimed, false); 1292 1293 // De-prime the register being spilled, create two stores for the pair 1294 // subregisters accounting for endianness and then re-prime the register if 1295 // it isn't killed. This uses the Offset parameter to addFrameReference() to 1296 // adjust the offset of the store that is within the 64-byte stack slot. 1297 if (IsPrimed) 1298 BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); 1299 if (DisableAutoPairedVecSt) 1300 spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled, 1301 /* TwoPairs */ true); 1302 else { 1303 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1304 .addReg(Reg, getKillRegState(IsKilled)), 1305 FrameIndex, IsLittleEndian ? 32 : 0); 1306 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) 1307 .addReg(Reg + 1, getKillRegState(IsKilled)), 1308 FrameIndex, IsLittleEndian ? 0 : 32); 1309 } 1310 if (IsPrimed && !IsKilled) 1311 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); 1312 1313 // Discard the pseudo instruction. 1314 MBB.erase(II); 1315 } 1316 1317 /// lowerACCRestore - Generate the code to restore the accumulator register. 1318 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, 1319 unsigned FrameIndex) const { 1320 MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset> 1321 MachineBasicBlock &MBB = *MI.getParent(); 1322 MachineFunction &MF = *MBB.getParent(); 1323 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1324 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1325 DebugLoc DL = MI.getDebugLoc(); 1326 1327 Register DestReg = MI.getOperand(0).getReg(); 1328 assert(MI.definesRegister(DestReg) && 1329 "RESTORE_ACC does not define its destination"); 1330 1331 bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); 1332 Register Reg = 1333 PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; 1334 bool IsLittleEndian = Subtarget.isLittleEndian(); 1335 1336 emitAccSpillRestoreInfo(MBB, IsPrimed, true); 1337 1338 // Create two loads for the pair subregisters accounting for endianness and 1339 // then prime the accumulator register being restored. 1340 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), 1341 FrameIndex, IsLittleEndian ? 32 : 0); 1342 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), 1343 FrameIndex, IsLittleEndian ? 0 : 32); 1344 if (IsPrimed) 1345 BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); 1346 1347 // Discard the pseudo instruction. 1348 MBB.erase(II); 1349 } 1350 1351 /// lowerQuadwordSpilling - Generate code to spill paired general register. 1352 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II, 1353 unsigned FrameIndex) const { 1354 MachineInstr &MI = *II; 1355 MachineBasicBlock &MBB = *MI.getParent(); 1356 MachineFunction &MF = *MBB.getParent(); 1357 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1358 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1359 DebugLoc DL = MI.getDebugLoc(); 1360 1361 Register SrcReg = MI.getOperand(0).getReg(); 1362 bool IsKilled = MI.getOperand(0).isKill(); 1363 1364 Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2; 1365 bool IsLittleEndian = Subtarget.isLittleEndian(); 1366 1367 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1368 .addReg(Reg, getKillRegState(IsKilled)), 1369 FrameIndex, IsLittleEndian ? 8 : 0); 1370 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) 1371 .addReg(Reg + 1, getKillRegState(IsKilled)), 1372 FrameIndex, IsLittleEndian ? 0 : 8); 1373 1374 // Discard the pseudo instruction. 1375 MBB.erase(II); 1376 } 1377 1378 /// lowerQuadwordRestore - Generate code to restore paired general register. 1379 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II, 1380 unsigned FrameIndex) const { 1381 MachineInstr &MI = *II; 1382 MachineBasicBlock &MBB = *MI.getParent(); 1383 MachineFunction &MF = *MBB.getParent(); 1384 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1385 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1386 DebugLoc DL = MI.getDebugLoc(); 1387 1388 Register DestReg = MI.getOperand(0).getReg(); 1389 assert(MI.definesRegister(DestReg) && 1390 "RESTORE_QUADWORD does not define its destination"); 1391 1392 Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2; 1393 bool IsLittleEndian = Subtarget.isLittleEndian(); 1394 1395 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex, 1396 IsLittleEndian ? 8 : 0); 1397 addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex, 1398 IsLittleEndian ? 0 : 8); 1399 1400 // Discard the pseudo instruction. 1401 MBB.erase(II); 1402 } 1403 1404 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 1405 Register Reg, int &FrameIdx) const { 1406 // For the nonvolatile condition registers (CR2, CR3, CR4) return true to 1407 // prevent allocating an additional frame slot. 1408 // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, 1409 // for 32-bit AIX the CR save area is in the linkage area at SP+4. 1410 // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos 1411 // valid. 1412 // For 32-bit ELF, we have previously created the stack slot if needed, so 1413 // return its FrameIdx. 1414 if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { 1415 FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex(); 1416 return true; 1417 } 1418 return false; 1419 } 1420 1421 // If the offset must be a multiple of some value, return what that value is. 1422 static unsigned offsetMinAlignForOpcode(unsigned OpC) { 1423 switch (OpC) { 1424 default: 1425 return 1; 1426 case PPC::LWA: 1427 case PPC::LWA_32: 1428 case PPC::LD: 1429 case PPC::LDU: 1430 case PPC::STD: 1431 case PPC::STDU: 1432 case PPC::DFLOADf32: 1433 case PPC::DFLOADf64: 1434 case PPC::DFSTOREf32: 1435 case PPC::DFSTOREf64: 1436 case PPC::LXSD: 1437 case PPC::LXSSP: 1438 case PPC::STXSD: 1439 case PPC::STXSSP: 1440 case PPC::STQ: 1441 return 4; 1442 case PPC::EVLDD: 1443 case PPC::EVSTDD: 1444 return 8; 1445 case PPC::LXV: 1446 case PPC::STXV: 1447 case PPC::LQ: 1448 case PPC::LXVP: 1449 case PPC::STXVP: 1450 return 16; 1451 } 1452 } 1453 1454 // If the offset must be a multiple of some value, return what that value is. 1455 static unsigned offsetMinAlign(const MachineInstr &MI) { 1456 unsigned OpC = MI.getOpcode(); 1457 return offsetMinAlignForOpcode(OpC); 1458 } 1459 1460 // Return the OffsetOperandNo given the FIOperandNum (and the instruction). 1461 static unsigned getOffsetONFromFION(const MachineInstr &MI, 1462 unsigned FIOperandNum) { 1463 // Take into account whether it's an add or mem instruction 1464 unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; 1465 if (MI.isInlineAsm()) 1466 OffsetOperandNo = FIOperandNum - 1; 1467 else if (MI.getOpcode() == TargetOpcode::STACKMAP || 1468 MI.getOpcode() == TargetOpcode::PATCHPOINT) 1469 OffsetOperandNo = FIOperandNum + 1; 1470 1471 return OffsetOperandNo; 1472 } 1473 1474 void 1475 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1476 int SPAdj, unsigned FIOperandNum, 1477 RegScavenger *RS) const { 1478 assert(SPAdj == 0 && "Unexpected"); 1479 1480 // Get the instruction. 1481 MachineInstr &MI = *II; 1482 // Get the instruction's basic block. 1483 MachineBasicBlock &MBB = *MI.getParent(); 1484 // Get the basic block's function. 1485 MachineFunction &MF = *MBB.getParent(); 1486 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1487 // Get the instruction info. 1488 const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); 1489 // Get the frame info. 1490 MachineFrameInfo &MFI = MF.getFrameInfo(); 1491 DebugLoc dl = MI.getDebugLoc(); 1492 1493 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1494 1495 // Get the frame index. 1496 int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); 1497 1498 // Get the frame pointer save index. Users of this index are primarily 1499 // DYNALLOC instructions. 1500 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 1501 int FPSI = FI->getFramePointerSaveIndex(); 1502 // Get the instruction opcode. 1503 unsigned OpC = MI.getOpcode(); 1504 1505 if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { 1506 lowerDynamicAreaOffset(II); 1507 return; 1508 } 1509 1510 // Special case for dynamic alloca. 1511 if (FPSI && FrameIndex == FPSI && 1512 (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { 1513 lowerDynamicAlloc(II); 1514 return; 1515 } 1516 1517 if (FPSI && FrameIndex == FPSI && 1518 (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || 1519 OpC == PPC::PREPARE_PROBED_ALLOCA_32 || 1520 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || 1521 OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { 1522 lowerPrepareProbedAlloca(II); 1523 return; 1524 } 1525 1526 // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. 1527 if (OpC == PPC::SPILL_CR) { 1528 lowerCRSpilling(II, FrameIndex); 1529 return; 1530 } else if (OpC == PPC::RESTORE_CR) { 1531 lowerCRRestore(II, FrameIndex); 1532 return; 1533 } else if (OpC == PPC::SPILL_CRBIT) { 1534 lowerCRBitSpilling(II, FrameIndex); 1535 return; 1536 } else if (OpC == PPC::RESTORE_CRBIT) { 1537 lowerCRBitRestore(II, FrameIndex); 1538 return; 1539 } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { 1540 lowerACCSpilling(II, FrameIndex); 1541 return; 1542 } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { 1543 lowerACCRestore(II, FrameIndex); 1544 return; 1545 } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) { 1546 lowerOctWordSpilling(II, FrameIndex); 1547 return; 1548 } else if (OpC == PPC::SPILL_QUADWORD) { 1549 lowerQuadwordSpilling(II, FrameIndex); 1550 return; 1551 } else if (OpC == PPC::RESTORE_QUADWORD) { 1552 lowerQuadwordRestore(II, FrameIndex); 1553 return; 1554 } 1555 1556 // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). 1557 MI.getOperand(FIOperandNum).ChangeToRegister( 1558 FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); 1559 1560 // If the instruction is not present in ImmToIdxMap, then it has no immediate 1561 // form (and must be r+r). 1562 bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && 1563 OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); 1564 1565 // Now add the frame object offset to the offset from r1. 1566 int64_t Offset = MFI.getObjectOffset(FrameIndex); 1567 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1568 1569 // If we're not using a Frame Pointer that has been set to the value of the 1570 // SP before having the stack size subtracted from it, then add the stack size 1571 // to Offset to get the correct offset. 1572 // Naked functions have stack size 0, although getStackSize may not reflect 1573 // that because we didn't call all the pieces that compute it for naked 1574 // functions. 1575 if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { 1576 if (!(hasBasePointer(MF) && FrameIndex < 0)) 1577 Offset += MFI.getStackSize(); 1578 } 1579 1580 // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can 1581 // transform it to the prefixed version so we don't have to use the XForm. 1582 if ((OpC == PPC::LXVP || OpC == PPC::STXVP) && 1583 (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) && 1584 Subtarget.hasPrefixInstrs()) { 1585 unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP; 1586 MI.setDesc(TII.get(NewOpc)); 1587 OpC = NewOpc; 1588 } 1589 1590 // If we can, encode the offset directly into the instruction. If this is a 1591 // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If 1592 // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits 1593 // clear can be encoded. This is extremely uncommon, because normally you 1594 // only "std" to a stack slot that is at least 4-byte aligned, but it can 1595 // happen in invalid code. 1596 assert(OpC != PPC::DBG_VALUE && 1597 "This should be handled in a target-independent way"); 1598 // FIXME: This should be factored out to a separate function as prefixed 1599 // instructions add a number of opcodes for which we can use 34-bit imm. 1600 bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? 1601 isUInt<8>(Offset) : 1602 isInt<16>(Offset); 1603 if (TII.isPrefixed(MI.getOpcode())) 1604 OffsetFitsMnemonic = isInt<34>(Offset); 1605 if (!noImmForm && ((OffsetFitsMnemonic && 1606 ((Offset % offsetMinAlign(MI)) == 0)) || 1607 OpC == TargetOpcode::STACKMAP || 1608 OpC == TargetOpcode::PATCHPOINT)) { 1609 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1610 return; 1611 } 1612 1613 // The offset doesn't fit into a single register, scavenge one to build the 1614 // offset in. 1615 1616 bool is64Bit = TM.isPPC64(); 1617 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 1618 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 1619 const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; 1620 Register SRegHi = MF.getRegInfo().createVirtualRegister(RC), 1621 SReg = MF.getRegInfo().createVirtualRegister(RC); 1622 unsigned NewOpcode = 0u; 1623 1624 // Insert a set of rA with the full offset value before the ld, st, or add 1625 if (isInt<16>(Offset)) 1626 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) 1627 .addImm(Offset); 1628 else if (isInt<32>(Offset)) { 1629 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) 1630 .addImm(Offset >> 16); 1631 BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) 1632 .addReg(SRegHi, RegState::Kill) 1633 .addImm(Offset); 1634 } else { 1635 assert(is64Bit && "Huge stack is only supported on PPC64"); 1636 TII.materializeImmPostRA(MBB, II, dl, SReg, Offset); 1637 } 1638 1639 // Convert into indexed form of the instruction: 1640 // 1641 // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 1642 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 1643 unsigned OperandBase; 1644 1645 if (noImmForm) 1646 OperandBase = 1; 1647 else if (OpC != TargetOpcode::INLINEASM && 1648 OpC != TargetOpcode::INLINEASM_BR) { 1649 assert(ImmToIdxMap.count(OpC) && 1650 "No indexed form of load or store available!"); 1651 NewOpcode = ImmToIdxMap.find(OpC)->second; 1652 MI.setDesc(TII.get(NewOpcode)); 1653 OperandBase = 1; 1654 } else { 1655 OperandBase = OffsetOperandNo; 1656 } 1657 1658 Register StackReg = MI.getOperand(FIOperandNum).getReg(); 1659 MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); 1660 MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); 1661 1662 // Since these are not real X-Form instructions, we must 1663 // add the registers and access 0(NewReg) rather than 1664 // emitting the X-Form pseudo. 1665 if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) { 1666 assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode"); 1667 Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); 1668 BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg) 1669 .addReg(SReg, RegState::Kill) 1670 .addReg(StackReg); 1671 MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ)); 1672 MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false); 1673 MI.getOperand(OperandBase).ChangeToImmediate(0); 1674 } 1675 } 1676 1677 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1678 const PPCFrameLowering *TFI = getFrameLowering(MF); 1679 1680 if (!TM.isPPC64()) 1681 return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; 1682 else 1683 return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; 1684 } 1685 1686 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { 1687 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1688 if (!hasBasePointer(MF)) 1689 return getFrameRegister(MF); 1690 1691 if (TM.isPPC64()) 1692 return PPC::X30; 1693 1694 if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) 1695 return PPC::R29; 1696 1697 return PPC::R30; 1698 } 1699 1700 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { 1701 if (!EnableBasePointer) 1702 return false; 1703 if (AlwaysBasePointer) 1704 return true; 1705 1706 // If we need to realign the stack, then the stack pointer can no longer 1707 // serve as an offset into the caller's stack space. As a result, we need a 1708 // base pointer. 1709 return hasStackRealignment(MF); 1710 } 1711 1712 /// Returns true if the instruction's frame index 1713 /// reference would be better served by a base register other than FP 1714 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 1715 /// references it should create new base registers for. 1716 bool PPCRegisterInfo:: 1717 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 1718 assert(Offset < 0 && "Local offset must be negative"); 1719 1720 // It's the load/store FI references that cause issues, as it can be difficult 1721 // to materialize the offset if it won't fit in the literal field. Estimate 1722 // based on the size of the local frame and some conservative assumptions 1723 // about the rest of the stack frame (note, this is pre-regalloc, so 1724 // we don't know everything for certain yet) whether this offset is likely 1725 // to be out of range of the immediate. Return true if so. 1726 1727 // We only generate virtual base registers for loads and stores that have 1728 // an r+i form. Return false for everything else. 1729 unsigned OpC = MI->getOpcode(); 1730 if (!ImmToIdxMap.count(OpC)) 1731 return false; 1732 1733 // Don't generate a new virtual base register just to add zero to it. 1734 if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && 1735 MI->getOperand(2).getImm() == 0) 1736 return false; 1737 1738 MachineBasicBlock &MBB = *MI->getParent(); 1739 MachineFunction &MF = *MBB.getParent(); 1740 const PPCFrameLowering *TFI = getFrameLowering(MF); 1741 unsigned StackEst = TFI->determineFrameLayout(MF, true); 1742 1743 // If we likely don't need a stack frame, then we probably don't need a 1744 // virtual base register either. 1745 if (!StackEst) 1746 return false; 1747 1748 // Estimate an offset from the stack pointer. 1749 // The incoming offset is relating to the SP at the start of the function, 1750 // but when we access the local it'll be relative to the SP after local 1751 // allocation, so adjust our SP-relative offset by that allocation size. 1752 Offset += StackEst; 1753 1754 // The frame pointer will point to the end of the stack, so estimate the 1755 // offset as the difference between the object offset and the FP location. 1756 return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); 1757 } 1758 1759 /// Insert defining instruction(s) for BaseReg to 1760 /// be a pointer to FrameIdx at the beginning of the basic block. 1761 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, 1762 int FrameIdx, 1763 int64_t Offset) const { 1764 unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; 1765 1766 MachineBasicBlock::iterator Ins = MBB->begin(); 1767 DebugLoc DL; // Defaults to "unknown" 1768 if (Ins != MBB->end()) 1769 DL = Ins->getDebugLoc(); 1770 1771 const MachineFunction &MF = *MBB->getParent(); 1772 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1773 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1774 const MCInstrDesc &MCID = TII.get(ADDriOpc); 1775 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1776 const TargetRegisterClass *RC = getPointerRegClass(MF); 1777 Register BaseReg = MRI.createVirtualRegister(RC); 1778 MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); 1779 1780 BuildMI(*MBB, Ins, DL, MCID, BaseReg) 1781 .addFrameIndex(FrameIdx).addImm(Offset); 1782 1783 return BaseReg; 1784 } 1785 1786 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, 1787 int64_t Offset) const { 1788 unsigned FIOperandNum = 0; 1789 while (!MI.getOperand(FIOperandNum).isFI()) { 1790 ++FIOperandNum; 1791 assert(FIOperandNum < MI.getNumOperands() && 1792 "Instr doesn't have FrameIndex operand!"); 1793 } 1794 1795 MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); 1796 unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); 1797 Offset += MI.getOperand(OffsetOperandNo).getImm(); 1798 MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); 1799 1800 MachineBasicBlock &MBB = *MI.getParent(); 1801 MachineFunction &MF = *MBB.getParent(); 1802 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 1803 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 1804 const MCInstrDesc &MCID = MI.getDesc(); 1805 MachineRegisterInfo &MRI = MF.getRegInfo(); 1806 MRI.constrainRegClass(BaseReg, 1807 TII.getRegClass(MCID, FIOperandNum, this, MF)); 1808 } 1809 1810 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, 1811 Register BaseReg, 1812 int64_t Offset) const { 1813 unsigned FIOperandNum = 0; 1814 while (!MI->getOperand(FIOperandNum).isFI()) { 1815 ++FIOperandNum; 1816 assert(FIOperandNum < MI->getNumOperands() && 1817 "Instr doesn't have FrameIndex operand!"); 1818 } 1819 1820 unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); 1821 Offset += MI->getOperand(OffsetOperandNo).getImm(); 1822 1823 return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm 1824 MI->getOpcode() == TargetOpcode::STACKMAP || 1825 MI->getOpcode() == TargetOpcode::PATCHPOINT || 1826 (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); 1827 } 1828