xref: /llvm-project/llvm/lib/Target/PowerPC/PPCPreEmitPeephole.cpp (revision 1c0941e1524f499e3fbde48fc3bdd0e70fc8f2e4)
1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LivePhysRegs.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "ppc-pre-emit-peephole"
31 
32 STATISTIC(NumRRConvertedInPreEmit,
33           "Number of r+r instructions converted to r+i in pre-emit peephole");
34 STATISTIC(NumRemovedInPreEmit,
35           "Number of instructions deleted in pre-emit peephole");
36 STATISTIC(NumberOfSelfCopies,
37           "Number of self copy instructions eliminated");
38 STATISTIC(NumFrameOffFoldInPreEmit,
39           "Number of folding frame offset by using r+r in pre-emit peephole");
40 STATISTIC(NumRotateInstrFoldInPreEmit,
41           "Number of folding Rotate instructions in pre-emit peephole");
42 
43 static cl::opt<bool>
44 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true),
45                      cl::desc("enable PC Relative linker optimization"));
46 
47 static cl::opt<bool>
48 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
49                    cl::desc("Run pre-emit peephole optimizations."));
50 
51 namespace {
52 
53 static bool hasPCRelativeForm(MachineInstr &Use) {
54   switch (Use.getOpcode()) {
55   default:
56     return false;
57   case PPC::LBZ:
58   case PPC::LBZ8:
59   case PPC::LHA:
60   case PPC::LHA8:
61   case PPC::LHZ:
62   case PPC::LHZ8:
63   case PPC::LWZ:
64   case PPC::LWZ8:
65   case PPC::STB:
66   case PPC::STB8:
67   case PPC::STH:
68   case PPC::STH8:
69   case PPC::STW:
70   case PPC::STW8:
71   case PPC::LD:
72   case PPC::STD:
73   case PPC::LWA:
74   case PPC::LXSD:
75   case PPC::LXSSP:
76   case PPC::LXV:
77   case PPC::STXSD:
78   case PPC::STXSSP:
79   case PPC::STXV:
80   case PPC::LFD:
81   case PPC::LFS:
82   case PPC::STFD:
83   case PPC::STFS:
84   case PPC::DFLOADf32:
85   case PPC::DFLOADf64:
86   case PPC::DFSTOREf32:
87   case PPC::DFSTOREf64:
88     return true;
89   }
90 }
91 
92   class PPCPreEmitPeephole : public MachineFunctionPass {
93   public:
94     static char ID;
95     PPCPreEmitPeephole() : MachineFunctionPass(ID) {
96       initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
97     }
98 
99     void getAnalysisUsage(AnalysisUsage &AU) const override {
100       MachineFunctionPass::getAnalysisUsage(AU);
101     }
102 
103     MachineFunctionProperties getRequiredProperties() const override {
104       return MachineFunctionProperties().set(
105           MachineFunctionProperties::Property::NoVRegs);
106     }
107 
108     // This function removes any redundant load immediates. It has two level
109     // loops - The outer loop finds the load immediates BBI that could be used
110     // to replace following redundancy. The inner loop scans instructions that
111     // after BBI to find redundancy and update kill/dead flags accordingly. If
112     // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
113     // that modify the def register of BBI would break the scanning.
114     // DeadOrKillToUnset is a pointer to the previous operand that had the
115     // kill/dead flag set. It keeps track of the def register of BBI, the use
116     // registers of AfterBBIs and the def registers of AfterBBIs.
117     bool removeRedundantLIs(MachineBasicBlock &MBB,
118                             const TargetRegisterInfo *TRI) {
119       LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
120                  MBB.dump(); dbgs() << "\n");
121 
122       DenseSet<MachineInstr *> InstrsToErase;
123       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
124         // Skip load immediate that is marked to be erased later because it
125         // cannot be used to replace any other instructions.
126         if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
127           continue;
128         // Skip non-load immediate.
129         unsigned Opc = BBI->getOpcode();
130         if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
131             Opc != PPC::LIS8)
132           continue;
133         // Skip load immediate, where the operand is a relocation (e.g., $r3 =
134         // LI target-flags(ppc-lo) %const.0).
135         if (!BBI->getOperand(1).isImm())
136           continue;
137         assert(BBI->getOperand(0).isReg() &&
138                "Expected a register for the first operand");
139 
140         LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
141 
142         Register Reg = BBI->getOperand(0).getReg();
143         int64_t Imm = BBI->getOperand(1).getImm();
144         MachineOperand *DeadOrKillToUnset = nullptr;
145         if (BBI->getOperand(0).isDead()) {
146           DeadOrKillToUnset = &BBI->getOperand(0);
147           LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
148                             << " from load immediate " << *BBI
149                             << " is a unsetting candidate\n");
150         }
151         // This loop scans instructions after BBI to see if there is any
152         // redundant load immediate.
153         for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
154              ++AfterBBI) {
155           // Track the operand that kill Reg. We would unset the kill flag of
156           // the operand if there is a following redundant load immediate.
157           int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
158 
159           // We can't just clear implicit kills, so if we encounter one, stop
160           // looking further.
161           if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
162             LLVM_DEBUG(dbgs()
163                        << "Encountered an implicit kill, cannot proceed: ");
164             LLVM_DEBUG(AfterBBI->dump());
165             break;
166           }
167 
168           if (KillIdx != -1) {
169             assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
170             DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
171             LLVM_DEBUG(dbgs()
172                        << " Kill flag of " << *DeadOrKillToUnset << " from "
173                        << *AfterBBI << " is a unsetting candidate\n");
174           }
175 
176           if (!AfterBBI->modifiesRegister(Reg, TRI))
177             continue;
178           // Finish scanning because Reg is overwritten by a non-load
179           // instruction.
180           if (AfterBBI->getOpcode() != Opc)
181             break;
182           assert(AfterBBI->getOperand(0).isReg() &&
183                  "Expected a register for the first operand");
184           // Finish scanning because Reg is overwritten by a relocation or a
185           // different value.
186           if (!AfterBBI->getOperand(1).isImm() ||
187               AfterBBI->getOperand(1).getImm() != Imm)
188             break;
189 
190           // It loads same immediate value to the same Reg, which is redundant.
191           // We would unset kill flag in previous Reg usage to extend live range
192           // of Reg first, then remove the redundancy.
193           if (DeadOrKillToUnset) {
194             LLVM_DEBUG(dbgs()
195                        << " Unset dead/kill flag of " << *DeadOrKillToUnset
196                        << " from " << *DeadOrKillToUnset->getParent());
197             if (DeadOrKillToUnset->isDef())
198               DeadOrKillToUnset->setIsDead(false);
199             else
200               DeadOrKillToUnset->setIsKill(false);
201           }
202           DeadOrKillToUnset =
203               AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
204           if (DeadOrKillToUnset)
205             LLVM_DEBUG(dbgs()
206                        << " Dead flag of " << *DeadOrKillToUnset << " from "
207                        << *AfterBBI << " is a unsetting candidate\n");
208           InstrsToErase.insert(&*AfterBBI);
209           LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
210                      AfterBBI->dump());
211         }
212       }
213 
214       for (MachineInstr *MI : InstrsToErase) {
215         MI->eraseFromParent();
216       }
217       NumRemovedInPreEmit += InstrsToErase.size();
218       return !InstrsToErase.empty();
219     }
220 
221     // Check if this instruction is a PLDpc that is part of a GOT indirect
222     // access.
223     bool isGOTPLDpc(MachineInstr &Instr) {
224       if (Instr.getOpcode() != PPC::PLDpc)
225         return false;
226 
227       // The result must be a register.
228       const MachineOperand &LoadedAddressReg = Instr.getOperand(0);
229       if (!LoadedAddressReg.isReg())
230         return false;
231 
232       // Make sure that this is a global symbol.
233       const MachineOperand &SymbolOp = Instr.getOperand(1);
234       if (!SymbolOp.isGlobal())
235         return false;
236 
237       // Finally return true only if the GOT flag is present.
238       return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG);
239     }
240 
241     bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) {
242       MachineFunction *MF = MBB.getParent();
243       // If the linker opt is disabled then just return.
244       if (!EnablePCRelLinkerOpt)
245         return false;
246 
247       // Add this linker opt only if we are using PC Relative memops.
248       if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls())
249         return false;
250 
251       // Struct to keep track of one def/use pair for a GOT indirect access.
252       struct GOTDefUsePair {
253         MachineBasicBlock::iterator DefInst;
254         MachineBasicBlock::iterator UseInst;
255         Register DefReg;
256         Register UseReg;
257         bool StillValid;
258       };
259       // Vector of def/ues pairs in this basic block.
260       SmallVector<GOTDefUsePair, 4> CandPairs;
261       SmallVector<GOTDefUsePair, 4> ValidPairs;
262       bool MadeChange = false;
263 
264       // Run through all of the instructions in the basic block and try to
265       // collect potential pairs of GOT indirect access instructions.
266       for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
267         // Look for the initial GOT indirect load.
268         if (isGOTPLDpc(*BBI)) {
269           GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(),
270                                     BBI->getOperand(0).getReg(),
271                                     PPC::NoRegister, true};
272           CandPairs.push_back(CurrentPair);
273           continue;
274         }
275 
276         // We haven't encountered any new PLD instructions, nothing to check.
277         if (CandPairs.empty())
278           continue;
279 
280         // Run through the candidate pairs and see if any of the registers
281         // defined in the PLD instructions are used by this instruction.
282         // Note: the size of CandPairs can change in the loop.
283         for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) {
284           GOTDefUsePair &Pair = CandPairs[Idx];
285           // The instruction does not use or modify this PLD's def reg,
286           // ignore it.
287           if (!BBI->readsRegister(Pair.DefReg, TRI) &&
288               !BBI->modifiesRegister(Pair.DefReg, TRI))
289             continue;
290 
291           // The use needs to be used in the address compuation and not
292           // as the register being stored for a store.
293           const MachineOperand *UseOp =
294               hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr;
295 
296           // Check for a valid use.
297           if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg &&
298               UseOp->isUse() && UseOp->isKill()) {
299             Pair.UseInst = BBI;
300             Pair.UseReg = BBI->getOperand(0).getReg();
301             ValidPairs.push_back(Pair);
302           }
303           CandPairs.erase(CandPairs.begin() + Idx);
304         }
305       }
306 
307       // Go through all of the pairs and check for any more valid uses.
308       for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) {
309         // We shouldn't be here if we don't have a valid pair.
310         assert(Pair->UseInst.isValid() && Pair->StillValid &&
311                "Kept an invalid def/use pair for GOT PCRel opt");
312         // We have found a potential pair. Search through the instructions
313         // between the def and the use to see if it is valid to mark this as a
314         // linker opt.
315         MachineBasicBlock::iterator BBI = Pair->DefInst;
316         ++BBI;
317         for (; BBI != Pair->UseInst; ++BBI) {
318           if (BBI->readsRegister(Pair->UseReg, TRI) ||
319               BBI->modifiesRegister(Pair->UseReg, TRI)) {
320             Pair->StillValid = false;
321             break;
322           }
323         }
324 
325         if (!Pair->StillValid)
326           continue;
327 
328         // The load/store instruction that uses the address from the PLD will
329         // either use a register (for a store) or define a register (for the
330         // load). That register will be added as an implicit def to the PLD
331         // and as an implicit use on the second memory op. This is a precaution
332         // to prevent future passes from using that register between the two
333         // instructions.
334         MachineOperand ImplDef =
335             MachineOperand::CreateReg(Pair->UseReg, true, true);
336         MachineOperand ImplUse =
337             MachineOperand::CreateReg(Pair->UseReg, false, true);
338         Pair->DefInst->addOperand(ImplDef);
339         Pair->UseInst->addOperand(ImplUse);
340 
341         // Create the symbol.
342         MCContext &Context = MF->getContext();
343         MCSymbol *Symbol =
344             Context.createTempSymbol(Twine("pcrel"), false, false);
345         MachineOperand PCRelLabel =
346             MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG);
347         Pair->DefInst->addOperand(*MF, PCRelLabel);
348         Pair->UseInst->addOperand(*MF, PCRelLabel);
349         MadeChange |= true;
350       }
351       return MadeChange;
352     }
353 
354     // This function removes redundant pairs of accumulator prime/unprime
355     // instructions. In some situations, it's possible the compiler inserts an
356     // accumulator prime instruction followed by an unprime instruction (e.g.
357     // when we store an accumulator after restoring it from a spill). If the
358     // accumulator is not used between the two, they can be removed. This
359     // function removes these redundant pairs from basic blocks.
360     // The algorithm is quite straightforward - every time we encounter a prime
361     // instruction, the primed register is added to a candidate set. Any use
362     // other than a prime removes the candidate from the set and any de-prime
363     // of a current candidate marks both the prime and de-prime for removal.
364     // This way we ensure we only remove prime/de-prime *pairs* with no
365     // intervening uses.
366     bool removeAccPrimeUnprime(MachineBasicBlock &MBB) {
367       DenseSet<MachineInstr *> InstrsToErase;
368       // Initially, none of the acc registers are candidates.
369       SmallVector<MachineInstr *, 8> Candidates(
370           PPC::UACCRCRegClass.getNumRegs(), nullptr);
371 
372       for (MachineInstr &BBI : MBB.instrs()) {
373         unsigned Opc = BBI.getOpcode();
374         // If we are visiting a xxmtacc instruction, we add it and its operand
375         // register to the candidate set.
376         if (Opc == PPC::XXMTACC) {
377           Register Acc = BBI.getOperand(0).getReg();
378           assert(PPC::ACCRCRegClass.contains(Acc) &&
379                  "Unexpected register for XXMTACC");
380           Candidates[Acc - PPC::ACC0] = &BBI;
381         }
382         // If we are visiting a xxmfacc instruction and its operand register is
383         // in the candidate set, we mark the two instructions for removal.
384         else if (Opc == PPC::XXMFACC) {
385           Register Acc = BBI.getOperand(0).getReg();
386           assert(PPC::ACCRCRegClass.contains(Acc) &&
387                  "Unexpected register for XXMFACC");
388           if (!Candidates[Acc - PPC::ACC0])
389             continue;
390           InstrsToErase.insert(&BBI);
391           InstrsToErase.insert(Candidates[Acc - PPC::ACC0]);
392         }
393         // If we are visiting an instruction using an accumulator register
394         // as operand, we remove it from the candidate set.
395         else {
396           for (MachineOperand &Operand : BBI.operands()) {
397             if (!Operand.isReg())
398               continue;
399             Register Reg = Operand.getReg();
400             if (PPC::ACCRCRegClass.contains(Reg))
401               Candidates[Reg - PPC::ACC0] = nullptr;
402           }
403         }
404       }
405 
406       for (MachineInstr *MI : InstrsToErase)
407         MI->eraseFromParent();
408       NumRemovedInPreEmit += InstrsToErase.size();
409       return !InstrsToErase.empty();
410     }
411 
412     bool runOnMachineFunction(MachineFunction &MF) override {
413       if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
414         // Remove UNENCODED_NOP even when this pass is disabled.
415         // This needs to be done unconditionally so we don't emit zeros
416         // in the instruction stream.
417         SmallVector<MachineInstr *, 4> InstrsToErase;
418         for (MachineBasicBlock &MBB : MF)
419           for (MachineInstr &MI : MBB)
420             if (MI.getOpcode() == PPC::UNENCODED_NOP)
421               InstrsToErase.push_back(&MI);
422         for (MachineInstr *MI : InstrsToErase)
423           MI->eraseFromParent();
424         return false;
425       }
426       bool Changed = false;
427       const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
428       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
429       SmallVector<MachineInstr *, 4> InstrsToErase;
430       for (MachineBasicBlock &MBB : MF) {
431         Changed |= removeRedundantLIs(MBB, TRI);
432         Changed |= addLinkerOpt(MBB, TRI);
433         Changed |= removeAccPrimeUnprime(MBB);
434         for (MachineInstr &MI : MBB) {
435           unsigned Opc = MI.getOpcode();
436           if (Opc == PPC::UNENCODED_NOP) {
437             InstrsToErase.push_back(&MI);
438             continue;
439           }
440           // Detect self copies - these can result from running AADB.
441           if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
442             const MCInstrDesc &MCID = TII->get(Opc);
443             if (MCID.getNumOperands() == 3 &&
444                 MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
445                 MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
446               NumberOfSelfCopies++;
447               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
448               LLVM_DEBUG(MI.dump());
449               InstrsToErase.push_back(&MI);
450               continue;
451             }
452             else if (MCID.getNumOperands() == 2 &&
453                      MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
454               NumberOfSelfCopies++;
455               LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
456               LLVM_DEBUG(MI.dump());
457               InstrsToErase.push_back(&MI);
458               continue;
459             }
460           }
461           MachineInstr *DefMIToErase = nullptr;
462           if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
463             Changed = true;
464             NumRRConvertedInPreEmit++;
465             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
466             LLVM_DEBUG(MI.dump());
467             if (DefMIToErase) {
468               InstrsToErase.push_back(DefMIToErase);
469             }
470           }
471           if (TII->foldFrameOffset(MI)) {
472             Changed = true;
473             NumFrameOffFoldInPreEmit++;
474             LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
475             LLVM_DEBUG(MI.dump());
476           }
477           MachineInstr *ToErase = nullptr;
478           if (TII->simplifyRotateAndMaskInstr(MI, ToErase)) {
479             Changed = true;
480             NumRotateInstrFoldInPreEmit++;
481             if (ToErase)
482               InstrsToErase.push_back(ToErase);
483           }
484         }
485 
486         // Eliminate conditional branch based on a constant CR bit by
487         // CRSET or CRUNSET. We eliminate the conditional branch or
488         // convert it into an unconditional branch. Also, if the CR bit
489         // is not used by other instructions, we eliminate CRSET as well.
490         auto I = MBB.getFirstInstrTerminator();
491         if (I == MBB.instr_end())
492           continue;
493         MachineInstr *Br = &*I;
494         if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
495           continue;
496         MachineInstr *CRSetMI = nullptr;
497         Register CRBit = Br->getOperand(0).getReg();
498         unsigned CRReg = getCRFromCRBit(CRBit);
499         bool SeenUse = false;
500         MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
501         for (It++; It != Er; It++) {
502           if (It->modifiesRegister(CRBit, TRI)) {
503             if ((It->getOpcode() == PPC::CRUNSET ||
504                  It->getOpcode() == PPC::CRSET) &&
505                 It->getOperand(0).getReg() == CRBit)
506               CRSetMI = &*It;
507             break;
508           }
509           if (It->readsRegister(CRBit, TRI))
510             SeenUse = true;
511         }
512         if (!CRSetMI) continue;
513 
514         unsigned CRSetOp = CRSetMI->getOpcode();
515         if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
516             (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
517           // Remove this branch since it cannot be taken.
518           InstrsToErase.push_back(Br);
519           MBB.removeSuccessor(Br->getOperand(1).getMBB());
520         }
521         else {
522           // This conditional branch is always taken. So, remove all branches
523           // and insert an unconditional branch to the destination of this.
524           MachineBasicBlock::iterator It = Br, Er = MBB.end();
525           for (; It != Er; It++) {
526             if (It->isDebugInstr()) continue;
527             assert(It->isTerminator() && "Non-terminator after a terminator");
528             InstrsToErase.push_back(&*It);
529           }
530           if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
531             ArrayRef<MachineOperand> NoCond;
532             TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
533                               NoCond, Br->getDebugLoc());
534           }
535           for (auto &Succ : MBB.successors())
536             if (Succ != Br->getOperand(1).getMBB()) {
537               MBB.removeSuccessor(Succ);
538               break;
539             }
540         }
541 
542         // If the CRBit is not used by another instruction, we can eliminate
543         // CRSET/CRUNSET instruction.
544         if (!SeenUse) {
545           // We need to check use of the CRBit in successors.
546           for (auto &SuccMBB : MBB.successors())
547             if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
548               SeenUse = true;
549               break;
550             }
551           if (!SeenUse)
552             InstrsToErase.push_back(CRSetMI);
553         }
554       }
555       for (MachineInstr *MI : InstrsToErase) {
556         LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
557         LLVM_DEBUG(MI->dump());
558         MI->eraseFromParent();
559         NumRemovedInPreEmit++;
560       }
561       return Changed;
562     }
563   };
564 }
565 
566 INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
567                 false, false)
568 char PPCPreEmitPeephole::ID = 0;
569 
570 FunctionPass *llvm::createPPCPreEmitPeepholePass() {
571   return new PPCPreEmitPeephole();
572 }
573