1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 // 9 // This pass performs peephole optimizations to clean up ugly code 10 // sequences at the MachineInstruction layer. It runs at the end of 11 // the SSA phases, following VSX swap removal. A pass of dead code 12 // elimination follows this one for quick clean-up of any dead 13 // instructions introduced here. Although we could do this as callbacks 14 // from the generic peephole pass, this would have a couple of bad 15 // effects: it might remove optimization opportunities for VSX swap 16 // removal, and it would miss cleanups made possible following VSX 17 // swap removal. 18 // 19 // NOTE: We run the verifier after this pass in Asserts/Debug builds so it 20 // is important to keep the code valid after transformations. 21 // Common causes of errors stem from violating the contract specified 22 // by kill flags. Whenever a transformation changes the live range of 23 // a register, that register should be added to the work list using 24 // addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation 25 // is changing the definition of a register (i.e. removing the single 26 // definition of the original vreg), it needs to provide a dummy 27 // definition of that register using addDummyDef(<MBB>, <Reg>). 28 //===---------------------------------------------------------------------===// 29 30 #include "MCTargetDesc/PPCMCTargetDesc.h" 31 #include "MCTargetDesc/PPCPredicates.h" 32 #include "PPC.h" 33 #include "PPCInstrBuilder.h" 34 #include "PPCInstrInfo.h" 35 #include "PPCMachineFunctionInfo.h" 36 #include "PPCTargetMachine.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 40 #include "llvm/CodeGen/MachineDominators.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunctionPass.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachinePostDominators.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Support/Debug.h" 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "ppc-mi-peepholes" 52 53 STATISTIC(RemoveTOCSave, "Number of TOC saves removed"); 54 STATISTIC(MultiTOCSaves, 55 "Number of functions with multiple TOC saves that must be kept"); 56 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue"); 57 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); 58 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); 59 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); 60 STATISTIC(NumConvertedToImmediateForm, 61 "Number of instructions converted to their immediate form"); 62 STATISTIC(NumFunctionsEnteredInMIPeephole, 63 "Number of functions entered in PPC MI Peepholes"); 64 STATISTIC(NumFixedPointIterations, 65 "Number of fixed-point iterations converting reg-reg instructions " 66 "to reg-imm ones"); 67 STATISTIC(NumRotatesCollapsed, 68 "Number of pairs of rotate left, clear left/right collapsed"); 69 STATISTIC(NumEXTSWAndSLDICombined, 70 "Number of pairs of EXTSW and SLDI combined as EXTSWSLI"); 71 STATISTIC(NumLoadImmZeroFoldedAndRemoved, 72 "Number of LI(8) reg, 0 that are folded to r0 and removed"); 73 74 static cl::opt<bool> 75 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true), 76 cl::desc("Iterate to a fixed point when attempting to " 77 "convert reg-reg instructions to reg-imm")); 78 79 static cl::opt<bool> 80 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true), 81 cl::desc("Convert eligible reg+reg instructions to reg+imm")); 82 83 static cl::opt<bool> 84 EnableSExtElimination("ppc-eliminate-signext", 85 cl::desc("enable elimination of sign-extensions"), 86 cl::init(true), cl::Hidden); 87 88 static cl::opt<bool> 89 EnableZExtElimination("ppc-eliminate-zeroext", 90 cl::desc("enable elimination of zero-extensions"), 91 cl::init(true), cl::Hidden); 92 93 static cl::opt<bool> 94 EnableTrapOptimization("ppc-opt-conditional-trap", 95 cl::desc("enable optimization of conditional traps"), 96 cl::init(false), cl::Hidden); 97 98 namespace { 99 100 struct PPCMIPeephole : public MachineFunctionPass { 101 102 static char ID; 103 const PPCInstrInfo *TII; 104 MachineFunction *MF; 105 MachineRegisterInfo *MRI; 106 LiveVariables *LV; 107 108 PPCMIPeephole() : MachineFunctionPass(ID) { 109 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); 110 } 111 112 private: 113 MachineDominatorTree *MDT; 114 MachinePostDominatorTree *MPDT; 115 MachineBlockFrequencyInfo *MBFI; 116 uint64_t EntryFreq; 117 SmallSet<Register, 16> RegsToUpdate; 118 119 // Initialize class variables. 120 void initialize(MachineFunction &MFParm); 121 122 // Perform peepholes. 123 bool simplifyCode(); 124 125 // Perform peepholes. 126 bool eliminateRedundantCompare(); 127 bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); 128 bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase); 129 bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI, 130 MachineInstr *&ToErase); 131 void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, 132 MachineInstr *MI); 133 134 // A number of transformations will eliminate the definition of a register 135 // as all of its uses will be removed. However, this leaves a register 136 // without a definition for LiveVariables. Such transformations should 137 // use this function to provide a dummy definition of the register that 138 // will simply be removed by DCE. 139 void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) { 140 BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg); 141 } 142 void addRegToUpdateWithLine(Register Reg, int Line); 143 void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI, 144 SmallVectorImpl<MachineInstr *> &PHIs, 145 Register Dst); 146 147 public: 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<LiveVariables>(); 151 AU.addRequired<MachineDominatorTree>(); 152 AU.addRequired<MachinePostDominatorTree>(); 153 AU.addRequired<MachineBlockFrequencyInfo>(); 154 AU.addPreserved<LiveVariables>(); 155 AU.addPreserved<MachineDominatorTree>(); 156 AU.addPreserved<MachinePostDominatorTree>(); 157 AU.addPreserved<MachineBlockFrequencyInfo>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 // Main entry point for this pass. 162 bool runOnMachineFunction(MachineFunction &MF) override { 163 initialize(MF); 164 // At this point, TOC pointer should not be used in a function that uses 165 // PC-Relative addressing. 166 assert((MF.getRegInfo().use_empty(PPC::X2) || 167 !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) && 168 "TOC pointer used in a function using PC-Relative addressing!"); 169 if (skipFunction(MF.getFunction())) 170 return false; 171 bool Changed = simplifyCode(); 172 #ifndef NDEBUG 173 if (Changed) 174 MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with " 175 "-mllvm -disable-ppc-peephole"); 176 #endif 177 return Changed; 178 } 179 }; 180 181 #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__) 182 void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) { 183 if (!Register::isVirtualRegister(Reg)) 184 return; 185 if (RegsToUpdate.insert(Reg).second) 186 LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg) 187 << " on line " << Line 188 << " for re-computation of kill flags\n"); 189 } 190 191 // Initialize class variables. 192 void PPCMIPeephole::initialize(MachineFunction &MFParm) { 193 MF = &MFParm; 194 MRI = &MF->getRegInfo(); 195 MDT = &getAnalysis<MachineDominatorTree>(); 196 MPDT = &getAnalysis<MachinePostDominatorTree>(); 197 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 198 LV = &getAnalysis<LiveVariables>(); 199 EntryFreq = MBFI->getEntryFreq(); 200 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 201 RegsToUpdate.clear(); 202 LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); 203 LLVM_DEBUG(MF->dump()); 204 } 205 206 static MachineInstr *getVRegDefOrNull(MachineOperand *Op, 207 MachineRegisterInfo *MRI) { 208 assert(Op && "Invalid Operand!"); 209 if (!Op->isReg()) 210 return nullptr; 211 212 Register Reg = Op->getReg(); 213 if (!Reg.isVirtual()) 214 return nullptr; 215 216 return MRI->getVRegDef(Reg); 217 } 218 219 // This function returns number of known zero bits in output of MI 220 // starting from the most significant bit. 221 static unsigned getKnownLeadingZeroCount(const unsigned Reg, 222 const PPCInstrInfo *TII, 223 const MachineRegisterInfo *MRI) { 224 MachineInstr *MI = MRI->getVRegDef(Reg); 225 unsigned Opcode = MI->getOpcode(); 226 if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || 227 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec) 228 return MI->getOperand(3).getImm(); 229 230 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && 231 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) 232 return MI->getOperand(3).getImm(); 233 234 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || 235 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || 236 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && 237 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) 238 return 32 + MI->getOperand(3).getImm(); 239 240 if (Opcode == PPC::ANDI_rec) { 241 uint16_t Imm = MI->getOperand(2).getImm(); 242 return 48 + llvm::countl_zero(Imm); 243 } 244 245 if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || 246 Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || 247 Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) 248 // The result ranges from 0 to 32. 249 return 58; 250 251 if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || 252 Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec) 253 // The result ranges from 0 to 64. 254 return 57; 255 256 if (Opcode == PPC::LHZ || Opcode == PPC::LHZX || 257 Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || 258 Opcode == PPC::LHZU || Opcode == PPC::LHZUX || 259 Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) 260 return 48; 261 262 if (Opcode == PPC::LBZ || Opcode == PPC::LBZX || 263 Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || 264 Opcode == PPC::LBZU || Opcode == PPC::LBZUX || 265 Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) 266 return 56; 267 268 if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec || 269 Opcode == PPC::AND8_rec) 270 return std::max( 271 getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), 272 getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); 273 274 if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR || 275 Opcode == PPC::XOR8 || Opcode == PPC::OR_rec || 276 Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec || 277 Opcode == PPC::XOR8_rec) 278 return std::min( 279 getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI), 280 getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI)); 281 282 if (TII->isZeroExtended(Reg, MRI)) 283 return 32; 284 285 return 0; 286 } 287 288 // This function maintains a map for the pairs <TOC Save Instr, Keep> 289 // Each time a new TOC save is encountered, it checks if any of the existing 290 // ones are dominated by the new one. If so, it marks the existing one as 291 // redundant by setting it's entry in the map as false. It then adds the new 292 // instruction to the map with either true or false depending on if any 293 // existing instructions dominated the new one. 294 void PPCMIPeephole::UpdateTOCSaves( 295 std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { 296 assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here"); 297 // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part, 298 // here only support it under ELFv2. 299 if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) { 300 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 301 302 MachineBasicBlock *Entry = &MF->front(); 303 uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency(); 304 305 // If the block in which the TOC save resides is in a block that 306 // post-dominates Entry, or a block that is hotter than entry (keep in mind 307 // that early MachineLICM has already run so the TOC save won't be hoisted) 308 // we can just do the save in the prologue. 309 if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry)) 310 FI->setMustSaveTOC(true); 311 312 // If we are saving the TOC in the prologue, all the TOC saves can be 313 // removed from the code. 314 if (FI->mustSaveTOC()) { 315 for (auto &TOCSave : TOCSaves) 316 TOCSave.second = false; 317 // Add new instruction to map. 318 TOCSaves[MI] = false; 319 return; 320 } 321 } 322 323 bool Keep = true; 324 for (auto &I : TOCSaves) { 325 MachineInstr *CurrInst = I.first; 326 // If new instruction dominates an existing one, mark existing one as 327 // redundant. 328 if (I.second && MDT->dominates(MI, CurrInst)) 329 I.second = false; 330 // Check if the new instruction is redundant. 331 if (MDT->dominates(CurrInst, MI)) { 332 Keep = false; 333 break; 334 } 335 } 336 // Add new instruction to map. 337 TOCSaves[MI] = Keep; 338 } 339 340 // This function returns a list of all PHI nodes in the tree starting from 341 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes. 342 // The list initially only contains the root PHI. When we visit a PHI node, we 343 // add it to the list. We continue to look for other PHI node operands while 344 // there are nodes to visit in the list. The function returns false if the 345 // optimization cannot be applied on this tree. 346 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI, 347 MachineInstr *RootPHI, 348 SmallVectorImpl<MachineInstr *> &PHIs) { 349 PHIs.push_back(RootPHI); 350 unsigned VisitedIndex = 0; 351 while (VisitedIndex < PHIs.size()) { 352 MachineInstr *VisitedPHI = PHIs[VisitedIndex]; 353 for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands(); 354 PHIOp != NumOps; PHIOp += 2) { 355 Register RegOp = VisitedPHI->getOperand(PHIOp).getReg(); 356 if (!RegOp.isVirtual()) 357 return false; 358 MachineInstr *Instr = MRI->getVRegDef(RegOp); 359 // While collecting the PHI nodes, we check if they can be converted (i.e. 360 // all the operands are either copies, implicit defs or PHI nodes). 361 unsigned Opcode = Instr->getOpcode(); 362 if (Opcode == PPC::COPY) { 363 Register Reg = Instr->getOperand(1).getReg(); 364 if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass) 365 return false; 366 } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI) 367 return false; 368 // If we detect a cycle in the PHI nodes, we exit. It would be 369 // possible to change cycles as well, but that would add a lot 370 // of complexity for a case that is unlikely to occur with MMA 371 // code. 372 if (Opcode != PPC::PHI) 373 continue; 374 if (llvm::is_contained(PHIs, Instr)) 375 return false; 376 PHIs.push_back(Instr); 377 } 378 VisitedIndex++; 379 } 380 return true; 381 } 382 383 // This function changes the unprimed accumulator PHI nodes in the PHIs list to 384 // primed accumulator PHI nodes. The list is traversed in reverse order to 385 // change all the PHI operands of a PHI node before changing the node itself. 386 // We keep a map to associate each changed PHI node to its non-changed form. 387 void PPCMIPeephole::convertUnprimedAccPHIs( 388 const PPCInstrInfo *TII, MachineRegisterInfo *MRI, 389 SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) { 390 DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap; 391 for (MachineInstr *PHI : llvm::reverse(PHIs)) { 392 SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps; 393 // We check if the current PHI node can be changed by looking at its 394 // operands. If all the operands are either copies from primed 395 // accumulators, implicit definitions or other unprimed accumulator 396 // PHI nodes, we change it. 397 for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps; 398 PHIOp += 2) { 399 Register RegOp = PHI->getOperand(PHIOp).getReg(); 400 MachineInstr *PHIInput = MRI->getVRegDef(RegOp); 401 unsigned Opcode = PHIInput->getOpcode(); 402 assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF || 403 Opcode == PPC::PHI) && 404 "Unexpected instruction"); 405 if (Opcode == PPC::COPY) { 406 assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) == 407 &PPC::ACCRCRegClass && 408 "Unexpected register class"); 409 PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)}); 410 } else if (Opcode == PPC::IMPLICIT_DEF) { 411 Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); 412 BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(), 413 TII->get(PPC::IMPLICIT_DEF), AccReg); 414 PHIOps.push_back({MachineOperand::CreateReg(AccReg, false), 415 PHI->getOperand(PHIOp + 1)}); 416 } else if (Opcode == PPC::PHI) { 417 // We found a PHI operand. At this point we know this operand 418 // has already been changed so we get its associated changed form 419 // from the map. 420 assert(ChangedPHIMap.count(PHIInput) == 1 && 421 "This PHI node should have already been changed."); 422 MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput); 423 PHIOps.push_back({MachineOperand::CreateReg( 424 PrimedAccPHI->getOperand(0).getReg(), false), 425 PHI->getOperand(PHIOp + 1)}); 426 } 427 } 428 Register AccReg = Dst; 429 // If the PHI node we are changing is the root node, the register it defines 430 // will be the destination register of the original copy (of the PHI def). 431 // For all other PHI's in the list, we need to create another primed 432 // accumulator virtual register as the PHI will no longer define the 433 // unprimed accumulator. 434 if (PHI != PHIs[0]) 435 AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); 436 MachineInstrBuilder NewPHI = BuildMI( 437 *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg); 438 for (auto RegMBB : PHIOps) { 439 NewPHI.add(RegMBB.first).add(RegMBB.second); 440 if (MRI->isSSA()) 441 addRegToUpdate(RegMBB.first.getReg()); 442 } 443 ChangedPHIMap[PHI] = NewPHI.getInstr(); 444 LLVM_DEBUG(dbgs() << "Converting PHI: "); 445 LLVM_DEBUG(PHI->dump()); 446 LLVM_DEBUG(dbgs() << "To: "); 447 LLVM_DEBUG(NewPHI.getInstr()->dump()); 448 } 449 } 450 451 // Perform peephole optimizations. 452 bool PPCMIPeephole::simplifyCode() { 453 bool Simplified = false; 454 bool TrapOpt = false; 455 MachineInstr* ToErase = nullptr; 456 std::map<MachineInstr *, bool> TOCSaves; 457 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); 458 NumFunctionsEnteredInMIPeephole++; 459 if (ConvertRegReg) { 460 // Fixed-point conversion of reg/reg instructions fed by load-immediate 461 // into reg/imm instructions. FIXME: This is expensive, control it with 462 // an option. 463 bool SomethingChanged = false; 464 do { 465 NumFixedPointIterations++; 466 SomethingChanged = false; 467 for (MachineBasicBlock &MBB : *MF) { 468 for (MachineInstr &MI : MBB) { 469 if (MI.isDebugInstr()) 470 continue; 471 472 SmallSet<Register, 4> RRToRIRegsToUpdate; 473 if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate)) 474 continue; 475 for (Register R : RRToRIRegsToUpdate) 476 addRegToUpdate(R); 477 // The updated instruction may now have new register operands. 478 // Conservatively add them to recompute the flags as well. 479 for (const MachineOperand &MO : MI.operands()) 480 if (MO.isReg()) 481 addRegToUpdate(MO.getReg()); 482 // We don't erase anything in case the def has other uses. Let DCE 483 // remove it if it can be removed. 484 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); 485 LLVM_DEBUG(MI.dump()); 486 NumConvertedToImmediateForm++; 487 SomethingChanged = true; 488 Simplified = true; 489 continue; 490 } 491 } 492 } while (SomethingChanged && FixedPointRegToImm); 493 } 494 495 // Since we are deleting this instruction, we need to run LiveVariables 496 // on any of its definitions that are marked as needing an update since 497 // we can't run LiveVariables on a deleted register. This only needs 498 // to be done for defs since uses will have their own defining 499 // instructions so we won't be running LiveVariables on a deleted reg. 500 auto recomputeLVForDyingInstr = [&]() { 501 if (RegsToUpdate.empty()) 502 return; 503 for (MachineOperand &MO : ToErase->operands()) { 504 if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg())) 505 continue; 506 Register RegToUpdate = MO.getReg(); 507 RegsToUpdate.erase(RegToUpdate); 508 // If some transformation has introduced an additional definition of 509 // this register (breaking SSA), we can safely convert this def to 510 // a def of an invalid register as the instruction is going away. 511 if (!MRI->getUniqueVRegDef(RegToUpdate)) 512 MO.setReg(PPC::NoRegister); 513 LV->recomputeForSingleDefVirtReg(RegToUpdate); 514 } 515 }; 516 517 for (MachineBasicBlock &MBB : *MF) { 518 for (MachineInstr &MI : MBB) { 519 520 // If the previous instruction was marked for elimination, 521 // remove it now. 522 if (ToErase) { 523 LLVM_DEBUG(dbgs() << "Deleting instruction: "); 524 LLVM_DEBUG(ToErase->dump()); 525 recomputeLVForDyingInstr(); 526 ToErase->eraseFromParent(); 527 ToErase = nullptr; 528 } 529 // If a conditional trap instruction got optimized to an 530 // unconditional trap, eliminate all the instructions after 531 // the trap. 532 if (EnableTrapOptimization && TrapOpt) { 533 ToErase = &MI; 534 continue; 535 } 536 537 // Ignore debug instructions. 538 if (MI.isDebugInstr()) 539 continue; 540 541 // Per-opcode peepholes. 542 switch (MI.getOpcode()) { 543 544 default: 545 break; 546 case PPC::COPY: { 547 Register Src = MI.getOperand(1).getReg(); 548 Register Dst = MI.getOperand(0).getReg(); 549 if (!Src.isVirtual() || !Dst.isVirtual()) 550 break; 551 if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass || 552 MRI->getRegClass(Dst) != &PPC::ACCRCRegClass) 553 break; 554 555 // We are copying an unprimed accumulator to a primed accumulator. 556 // If the input to the copy is a PHI that is fed only by (i) copies in 557 // the other direction (ii) implicitly defined unprimed accumulators or 558 // (iii) other PHI nodes satisfying (i) and (ii), we can change 559 // the PHI to a PHI on primed accumulators (as long as we also change 560 // its operands). To detect and change such copies, we first get a list 561 // of all the PHI nodes starting from the root PHI node in BFS order. 562 // We then visit all these PHI nodes to check if they can be changed to 563 // primed accumulator PHI nodes and if so, we change them. 564 MachineInstr *RootPHI = MRI->getVRegDef(Src); 565 if (RootPHI->getOpcode() != PPC::PHI) 566 break; 567 568 SmallVector<MachineInstr *, 4> PHIs; 569 if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs)) 570 break; 571 572 convertUnprimedAccPHIs(TII, MRI, PHIs, Dst); 573 574 ToErase = &MI; 575 break; 576 } 577 case PPC::LI: 578 case PPC::LI8: { 579 // If we are materializing a zero, look for any use operands for which 580 // zero means immediate zero. All such operands can be replaced with 581 // PPC::ZERO. 582 if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0) 583 break; 584 Register MIDestReg = MI.getOperand(0).getReg(); 585 bool Folded = false; 586 for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg)) 587 Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg); 588 if (MRI->use_nodbg_empty(MIDestReg)) { 589 ++NumLoadImmZeroFoldedAndRemoved; 590 ToErase = &MI; 591 } 592 if (Folded) 593 addRegToUpdate(MIDestReg); 594 Simplified |= Folded; 595 break; 596 } 597 case PPC::STW: 598 case PPC::STD: { 599 MachineFrameInfo &MFI = MF->getFrameInfo(); 600 if (MFI.hasVarSizedObjects() || 601 (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() && 602 !MF->getSubtarget<PPCSubtarget>().isAIXABI())) 603 break; 604 // When encountering a TOC save instruction, call UpdateTOCSaves 605 // to add it to the TOCSaves map and mark any existing TOC saves 606 // it dominates as redundant. 607 if (TII->isTOCSaveMI(MI)) 608 UpdateTOCSaves(TOCSaves, &MI); 609 break; 610 } 611 case PPC::XXPERMDI: { 612 // Perform simplifications of 2x64 vector swaps and splats. 613 // A swap is identified by an immediate value of 2, and a splat 614 // is identified by an immediate value of 0 or 3. 615 int Immed = MI.getOperand(3).getImm(); 616 617 if (Immed == 1) 618 break; 619 620 // For each of these simplifications, we need the two source 621 // regs to match. Unfortunately, MachineCSE ignores COPY and 622 // SUBREG_TO_REG, so for example we can see 623 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. 624 // We have to look through chains of COPY and SUBREG_TO_REG 625 // to find the real source values for comparison. 626 Register TrueReg1 = 627 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 628 Register TrueReg2 = 629 TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI); 630 631 if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual())) 632 break; 633 634 MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); 635 636 if (!DefMI) 637 break; 638 639 unsigned DefOpc = DefMI->getOpcode(); 640 641 // If this is a splat fed by a splatting load, the splat is 642 // redundant. Replace with a copy. This doesn't happen directly due 643 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting 644 // a load of a double to a vector of 64-bit integers. 645 auto isConversionOfLoadAndSplat = [=]() -> bool { 646 if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) 647 return false; 648 Register FeedReg1 = 649 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); 650 if (FeedReg1.isVirtual()) { 651 MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1); 652 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) 653 return true; 654 } 655 return false; 656 }; 657 if ((Immed == 0 || Immed == 3) && 658 (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) { 659 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " 660 "to load-and-splat/copy: "); 661 LLVM_DEBUG(MI.dump()); 662 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 663 MI.getOperand(0).getReg()) 664 .add(MI.getOperand(1)); 665 addRegToUpdate(MI.getOperand(1).getReg()); 666 ToErase = &MI; 667 Simplified = true; 668 } 669 670 // If this is a splat or a swap fed by another splat, we 671 // can replace it with a copy. 672 if (DefOpc == PPC::XXPERMDI) { 673 Register DefReg1 = DefMI->getOperand(1).getReg(); 674 Register DefReg2 = DefMI->getOperand(2).getReg(); 675 unsigned DefImmed = DefMI->getOperand(3).getImm(); 676 677 // If the two inputs are not the same register, check to see if 678 // they originate from the same virtual register after only 679 // copy-like instructions. 680 if (DefReg1 != DefReg2) { 681 Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI); 682 Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI); 683 684 if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual())) 685 break; 686 } 687 688 if (DefImmed == 0 || DefImmed == 3) { 689 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " 690 "to splat/copy: "); 691 LLVM_DEBUG(MI.dump()); 692 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 693 MI.getOperand(0).getReg()) 694 .add(MI.getOperand(1)); 695 addRegToUpdate(MI.getOperand(1).getReg()); 696 ToErase = &MI; 697 Simplified = true; 698 } 699 700 // If this is a splat fed by a swap, we can simplify modify 701 // the splat to splat the other value from the swap's input 702 // parameter. 703 else if ((Immed == 0 || Immed == 3) && DefImmed == 2) { 704 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: "); 705 LLVM_DEBUG(MI.dump()); 706 addRegToUpdate(MI.getOperand(1).getReg()); 707 addRegToUpdate(MI.getOperand(2).getReg()); 708 MI.getOperand(1).setReg(DefReg1); 709 MI.getOperand(2).setReg(DefReg2); 710 MI.getOperand(3).setImm(3 - Immed); 711 addRegToUpdate(DefReg1); 712 addRegToUpdate(DefReg2); 713 Simplified = true; 714 } 715 716 // If this is a swap fed by a swap, we can replace it 717 // with a copy from the first swap's input. 718 else if (Immed == 2 && DefImmed == 2) { 719 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: "); 720 LLVM_DEBUG(MI.dump()); 721 addRegToUpdate(MI.getOperand(1).getReg()); 722 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 723 MI.getOperand(0).getReg()) 724 .add(DefMI->getOperand(1)); 725 addRegToUpdate(DefMI->getOperand(0).getReg()); 726 addRegToUpdate(DefMI->getOperand(1).getReg()); 727 ToErase = &MI; 728 Simplified = true; 729 } 730 } else if ((Immed == 0 || Immed == 3 || Immed == 2) && 731 DefOpc == PPC::XXPERMDIs && 732 (DefMI->getOperand(2).getImm() == 0 || 733 DefMI->getOperand(2).getImm() == 3)) { 734 ToErase = &MI; 735 Simplified = true; 736 // Swap of a splat, convert to copy. 737 if (Immed == 2) { 738 LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): "); 739 LLVM_DEBUG(MI.dump()); 740 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 741 MI.getOperand(0).getReg()) 742 .add(MI.getOperand(1)); 743 addRegToUpdate(MI.getOperand(1).getReg()); 744 break; 745 } 746 // Splat fed by another splat - switch the output of the first 747 // and remove the second. 748 DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 749 LLVM_DEBUG(dbgs() << "Removing redundant splat: "); 750 LLVM_DEBUG(MI.dump()); 751 } else if (Immed == 2 && 752 (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH || 753 DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW || 754 DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH || 755 DefOpc == PPC::VSPLTISW)) { 756 // Swap of various vector splats, convert to copy. 757 ToErase = &MI; 758 Simplified = true; 759 LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => " 760 "copy(vsplt(is)?[b|h|w]|xxspltw): "); 761 LLVM_DEBUG(MI.dump()); 762 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 763 MI.getOperand(0).getReg()) 764 .add(MI.getOperand(1)); 765 addRegToUpdate(MI.getOperand(1).getReg()); 766 } else if ((Immed == 0 || Immed == 3 || Immed == 2) && 767 TII->isLoadFromConstantPool(DefMI)) { 768 const Constant *C = TII->getConstantFromConstantPool(DefMI); 769 if (C && C->getType()->isVectorTy() && C->getSplatValue()) { 770 ToErase = &MI; 771 Simplified = true; 772 LLVM_DEBUG(dbgs() 773 << "Optimizing swap(splat pattern from constant-pool) " 774 "=> copy(splat pattern from constant-pool): "); 775 LLVM_DEBUG(MI.dump()); 776 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 777 MI.getOperand(0).getReg()) 778 .add(MI.getOperand(1)); 779 addRegToUpdate(MI.getOperand(1).getReg()); 780 } 781 } 782 break; 783 } 784 case PPC::VSPLTB: 785 case PPC::VSPLTH: 786 case PPC::XXSPLTW: { 787 unsigned MyOpcode = MI.getOpcode(); 788 unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; 789 Register TrueReg = 790 TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI); 791 if (!TrueReg.isVirtual()) 792 break; 793 MachineInstr *DefMI = MRI->getVRegDef(TrueReg); 794 if (!DefMI) 795 break; 796 unsigned DefOpcode = DefMI->getOpcode(); 797 auto isConvertOfSplat = [=]() -> bool { 798 if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) 799 return false; 800 Register ConvReg = DefMI->getOperand(1).getReg(); 801 if (!ConvReg.isVirtual()) 802 return false; 803 MachineInstr *Splt = MRI->getVRegDef(ConvReg); 804 return Splt && (Splt->getOpcode() == PPC::LXVWSX || 805 Splt->getOpcode() == PPC::XXSPLTW); 806 }; 807 bool AlreadySplat = (MyOpcode == DefOpcode) || 808 (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || 809 (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || 810 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || 811 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || 812 (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| 813 (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); 814 // If the instruction[s] that feed this splat have already splat 815 // the value, this splat is redundant. 816 if (AlreadySplat) { 817 LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: "); 818 LLVM_DEBUG(MI.dump()); 819 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 820 MI.getOperand(0).getReg()) 821 .add(MI.getOperand(OpNo)); 822 addRegToUpdate(MI.getOperand(OpNo).getReg()); 823 ToErase = &MI; 824 Simplified = true; 825 } 826 // Splat fed by a shift. Usually when we align value to splat into 827 // vector element zero. 828 if (DefOpcode == PPC::XXSLDWI) { 829 Register ShiftRes = DefMI->getOperand(0).getReg(); 830 Register ShiftOp1 = DefMI->getOperand(1).getReg(); 831 Register ShiftOp2 = DefMI->getOperand(2).getReg(); 832 unsigned ShiftImm = DefMI->getOperand(3).getImm(); 833 unsigned SplatImm = 834 MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm(); 835 if (ShiftOp1 == ShiftOp2) { 836 unsigned NewElem = (SplatImm + ShiftImm) & 0x3; 837 if (MRI->hasOneNonDBGUse(ShiftRes)) { 838 LLVM_DEBUG(dbgs() << "Removing redundant shift: "); 839 LLVM_DEBUG(DefMI->dump()); 840 ToErase = DefMI; 841 } 842 Simplified = true; 843 LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm 844 << " to " << NewElem << " in instruction: "); 845 LLVM_DEBUG(MI.dump()); 846 addRegToUpdate(MI.getOperand(OpNo).getReg()); 847 addRegToUpdate(ShiftOp1); 848 MI.getOperand(OpNo).setReg(ShiftOp1); 849 MI.getOperand(2).setImm(NewElem); 850 } 851 } 852 break; 853 } 854 case PPC::XVCVDPSP: { 855 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. 856 Register TrueReg = 857 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 858 if (!TrueReg.isVirtual()) 859 break; 860 MachineInstr *DefMI = MRI->getVRegDef(TrueReg); 861 862 // This can occur when building a vector of single precision or integer 863 // values. 864 if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { 865 Register DefsReg1 = 866 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); 867 Register DefsReg2 = 868 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); 869 if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual()) 870 break; 871 MachineInstr *P1 = MRI->getVRegDef(DefsReg1); 872 MachineInstr *P2 = MRI->getVRegDef(DefsReg2); 873 874 if (!P1 || !P2) 875 break; 876 877 // Remove the passed FRSP/XSRSP instruction if it only feeds this MI 878 // and set any uses of that FRSP/XSRSP (in this MI) to the source of 879 // the FRSP/XSRSP. 880 auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { 881 unsigned Opc = RoundInstr->getOpcode(); 882 if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) && 883 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { 884 Simplified = true; 885 Register ConvReg1 = RoundInstr->getOperand(1).getReg(); 886 Register FRSPDefines = RoundInstr->getOperand(0).getReg(); 887 MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines)); 888 for (int i = 0, e = Use.getNumOperands(); i < e; ++i) 889 if (Use.getOperand(i).isReg() && 890 Use.getOperand(i).getReg() == FRSPDefines) 891 Use.getOperand(i).setReg(ConvReg1); 892 LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n"); 893 LLVM_DEBUG(RoundInstr->dump()); 894 LLVM_DEBUG(dbgs() << "As it feeds instruction:\n"); 895 LLVM_DEBUG(MI.dump()); 896 LLVM_DEBUG(dbgs() << "Through instruction:\n"); 897 LLVM_DEBUG(DefMI->dump()); 898 RoundInstr->eraseFromParent(); 899 addRegToUpdate(ConvReg1); 900 } 901 }; 902 903 // If the input to XVCVDPSP is a vector that was built (even 904 // partially) out of FRSP's, the FRSP(s) can safely be removed 905 // since this instruction performs the same operation. 906 if (P1 != P2) { 907 removeFRSPIfPossible(P1); 908 removeFRSPIfPossible(P2); 909 break; 910 } 911 removeFRSPIfPossible(P1); 912 } 913 break; 914 } 915 case PPC::EXTSH: 916 case PPC::EXTSH8: 917 case PPC::EXTSH8_32_64: { 918 if (!EnableSExtElimination) break; 919 Register NarrowReg = MI.getOperand(1).getReg(); 920 if (!NarrowReg.isVirtual()) 921 break; 922 923 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); 924 unsigned SrcOpcode = SrcMI->getOpcode(); 925 // If we've used a zero-extending load that we will sign-extend, 926 // just do a sign-extending load. 927 if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) { 928 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) 929 break; 930 // Determine the new opcode. We need to make sure that if the original 931 // instruction has a 64 bit opcode we keep using a 64 bit opcode. 932 // Likewise if the source is X-Form the new opcode should also be 933 // X-Form. 934 unsigned Opc = PPC::LHA; 935 bool SourceIsXForm = SrcOpcode == PPC::LHZX; 936 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 || 937 MI.getOpcode() == PPC::EXTSH8_32_64; 938 939 if (SourceIsXForm && MIIs64Bit) 940 Opc = PPC::LHAX8; 941 else if (SourceIsXForm && !MIIs64Bit) 942 Opc = PPC::LHAX; 943 else if (MIIs64Bit) 944 Opc = PPC::LHA8; 945 946 addRegToUpdate(NarrowReg); 947 addRegToUpdate(MI.getOperand(0).getReg()); 948 949 // We are removing a definition of NarrowReg which will cause 950 // problems in AliveBlocks. Add an implicit def that will be 951 // removed so that AliveBlocks are updated correctly. 952 addDummyDef(MBB, &MI, NarrowReg); 953 LLVM_DEBUG(dbgs() << "Zero-extending load\n"); 954 LLVM_DEBUG(SrcMI->dump()); 955 LLVM_DEBUG(dbgs() << "and sign-extension\n"); 956 LLVM_DEBUG(MI.dump()); 957 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); 958 SrcMI->setDesc(TII->get(Opc)); 959 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 960 ToErase = &MI; 961 Simplified = true; 962 NumEliminatedSExt++; 963 } 964 break; 965 } 966 case PPC::EXTSW: 967 case PPC::EXTSW_32: 968 case PPC::EXTSW_32_64: { 969 if (!EnableSExtElimination) break; 970 Register NarrowReg = MI.getOperand(1).getReg(); 971 if (!NarrowReg.isVirtual()) 972 break; 973 974 MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); 975 unsigned SrcOpcode = SrcMI->getOpcode(); 976 // If we've used a zero-extending load that we will sign-extend, 977 // just do a sign-extending load. 978 if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) { 979 if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) 980 break; 981 982 // The transformation from a zero-extending load to a sign-extending 983 // load is only legal when the displacement is a multiple of 4. 984 // If the displacement is not at least 4 byte aligned, don't perform 985 // the transformation. 986 bool IsWordAligned = false; 987 if (SrcMI->getOperand(1).isGlobal()) { 988 const GlobalObject *GO = 989 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal()); 990 if (GO && GO->getAlign() && *GO->getAlign() >= 4 && 991 (SrcMI->getOperand(1).getOffset() % 4 == 0)) 992 IsWordAligned = true; 993 } else if (SrcMI->getOperand(1).isImm()) { 994 int64_t Value = SrcMI->getOperand(1).getImm(); 995 if (Value % 4 == 0) 996 IsWordAligned = true; 997 } 998 999 // Determine the new opcode. We need to make sure that if the original 1000 // instruction has a 64 bit opcode we keep using a 64 bit opcode. 1001 // Likewise if the source is X-Form the new opcode should also be 1002 // X-Form. 1003 unsigned Opc = PPC::LWA_32; 1004 bool SourceIsXForm = SrcOpcode == PPC::LWZX; 1005 bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW || 1006 MI.getOpcode() == PPC::EXTSW_32_64; 1007 1008 if (SourceIsXForm && MIIs64Bit) 1009 Opc = PPC::LWAX; 1010 else if (SourceIsXForm && !MIIs64Bit) 1011 Opc = PPC::LWAX_32; 1012 else if (MIIs64Bit) 1013 Opc = PPC::LWA; 1014 1015 if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32)) 1016 break; 1017 1018 addRegToUpdate(NarrowReg); 1019 addRegToUpdate(MI.getOperand(0).getReg()); 1020 1021 // We are removing a definition of NarrowReg which will cause 1022 // problems in AliveBlocks. Add an implicit def that will be 1023 // removed so that AliveBlocks are updated correctly. 1024 addDummyDef(MBB, &MI, NarrowReg); 1025 LLVM_DEBUG(dbgs() << "Zero-extending load\n"); 1026 LLVM_DEBUG(SrcMI->dump()); 1027 LLVM_DEBUG(dbgs() << "and sign-extension\n"); 1028 LLVM_DEBUG(MI.dump()); 1029 LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); 1030 SrcMI->setDesc(TII->get(Opc)); 1031 SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); 1032 ToErase = &MI; 1033 Simplified = true; 1034 NumEliminatedSExt++; 1035 } else if (MI.getOpcode() == PPC::EXTSW_32_64 && 1036 TII->isSignExtended(NarrowReg, MRI)) { 1037 // We can eliminate EXTSW if the input is known to be already 1038 // sign-extended. 1039 LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n"); 1040 Register TmpReg = 1041 MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); 1042 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), 1043 TmpReg); 1044 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), 1045 MI.getOperand(0).getReg()) 1046 .addReg(TmpReg) 1047 .addReg(NarrowReg) 1048 .addImm(PPC::sub_32); 1049 ToErase = &MI; 1050 Simplified = true; 1051 NumEliminatedSExt++; 1052 } 1053 break; 1054 } 1055 case PPC::RLDICL: { 1056 // We can eliminate RLDICL (e.g. for zero-extension) 1057 // if all bits to clear are already zero in the input. 1058 // This code assume following code sequence for zero-extension. 1059 // %6 = COPY %5:sub_32; (optional) 1060 // %8 = IMPLICIT_DEF; 1061 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; 1062 if (!EnableZExtElimination) break; 1063 1064 if (MI.getOperand(2).getImm() != 0) 1065 break; 1066 1067 Register SrcReg = MI.getOperand(1).getReg(); 1068 if (!SrcReg.isVirtual()) 1069 break; 1070 1071 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1072 if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && 1073 SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) 1074 break; 1075 1076 MachineInstr *ImpDefMI, *SubRegMI; 1077 ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); 1078 SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); 1079 if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; 1080 1081 SrcMI = SubRegMI; 1082 if (SubRegMI->getOpcode() == PPC::COPY) { 1083 Register CopyReg = SubRegMI->getOperand(1).getReg(); 1084 if (CopyReg.isVirtual()) 1085 SrcMI = MRI->getVRegDef(CopyReg); 1086 } 1087 if (!SrcMI->getOperand(0).isReg()) 1088 break; 1089 1090 unsigned KnownZeroCount = 1091 getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI); 1092 if (MI.getOperand(3).getImm() <= KnownZeroCount) { 1093 LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n"); 1094 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 1095 MI.getOperand(0).getReg()) 1096 .addReg(SrcReg); 1097 addRegToUpdate(SrcReg); 1098 ToErase = &MI; 1099 Simplified = true; 1100 NumEliminatedZExt++; 1101 } 1102 break; 1103 } 1104 1105 // TODO: Any instruction that has an immediate form fed only by a PHI 1106 // whose operands are all load immediate can be folded away. We currently 1107 // do this for ADD instructions, but should expand it to arithmetic and 1108 // binary instructions with immediate forms in the future. 1109 case PPC::ADD4: 1110 case PPC::ADD8: { 1111 auto isSingleUsePHI = [&](MachineOperand *PhiOp) { 1112 assert(PhiOp && "Invalid Operand!"); 1113 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); 1114 1115 return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && 1116 MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); 1117 }; 1118 1119 auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, 1120 MachineOperand *PhiOp) { 1121 assert(PhiOp && "Invalid Operand!"); 1122 assert(DominatorOp && "Invalid Operand!"); 1123 MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); 1124 MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); 1125 1126 // Note: the vregs only show up at odd indices position of PHI Node, 1127 // the even indices position save the BB info. 1128 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { 1129 MachineInstr *LiMI = 1130 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); 1131 if (!LiMI || 1132 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) 1133 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || 1134 !MDT->dominates(DefDomMI, LiMI)) 1135 return false; 1136 } 1137 1138 return true; 1139 }; 1140 1141 MachineOperand Op1 = MI.getOperand(1); 1142 MachineOperand Op2 = MI.getOperand(2); 1143 if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) 1144 std::swap(Op1, Op2); 1145 else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) 1146 break; // We don't have an ADD fed by LI's that can be transformed 1147 1148 // Now we know that Op1 is the PHI node and Op2 is the dominator 1149 Register DominatorReg = Op2.getReg(); 1150 1151 const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 1152 ? &PPC::G8RC_and_G8RC_NOX0RegClass 1153 : &PPC::GPRC_and_GPRC_NOR0RegClass; 1154 MRI->setRegClass(DominatorReg, TRC); 1155 1156 // replace LIs with ADDIs 1157 MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); 1158 for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { 1159 MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); 1160 LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: "); 1161 LLVM_DEBUG(LiMI->dump()); 1162 1163 // There could be repeated registers in the PHI, e.g: %1 = 1164 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've 1165 // already replaced the def instruction, skip. 1166 if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) 1167 continue; 1168 1169 assert((LiMI->getOpcode() == PPC::LI || 1170 LiMI->getOpcode() == PPC::LI8) && 1171 "Invalid Opcode!"); 1172 auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI 1173 LiMI->removeOperand(1); // remove the imm of LI 1174 LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI 1175 : PPC::ADDI8)); 1176 MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) 1177 .addReg(DominatorReg) 1178 .addImm(LiImm); // restore the imm of LI 1179 LLVM_DEBUG(LiMI->dump()); 1180 } 1181 1182 // Replace ADD with COPY 1183 LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: "); 1184 LLVM_DEBUG(MI.dump()); 1185 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), 1186 MI.getOperand(0).getReg()) 1187 .add(Op1); 1188 addRegToUpdate(Op1.getReg()); 1189 addRegToUpdate(Op2.getReg()); 1190 ToErase = &MI; 1191 Simplified = true; 1192 NumOptADDLIs++; 1193 break; 1194 } 1195 case PPC::RLDICR: { 1196 Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) || 1197 combineSEXTAndSHL(MI, ToErase); 1198 break; 1199 } 1200 case PPC::ANDI_rec: 1201 case PPC::ANDI8_rec: 1202 case PPC::ANDIS_rec: 1203 case PPC::ANDIS8_rec: { 1204 Register TrueReg = 1205 TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); 1206 if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg)) 1207 break; 1208 1209 MachineInstr *SrcMI = MRI->getVRegDef(TrueReg); 1210 if (!SrcMI) 1211 break; 1212 1213 unsigned SrcOpCode = SrcMI->getOpcode(); 1214 if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR) 1215 break; 1216 1217 Register SrcReg, DstReg; 1218 SrcReg = SrcMI->getOperand(1).getReg(); 1219 DstReg = MI.getOperand(1).getReg(); 1220 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg); 1221 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DstReg); 1222 if (DstRC != SrcRC) 1223 break; 1224 1225 uint64_t AndImm = MI.getOperand(2).getImm(); 1226 if (MI.getOpcode() == PPC::ANDIS_rec || 1227 MI.getOpcode() == PPC::ANDIS8_rec) 1228 AndImm <<= 16; 1229 uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm); 1230 uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm); 1231 uint64_t ImmSrc = SrcMI->getOperand(3).getImm(); 1232 1233 // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0` 1234 // if all bits to AND are already zero in the input. 1235 bool PatternResultZero = 1236 (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) || 1237 (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc); 1238 1239 // We can eliminate RLDICL/RLDICR if it's used to clear bits and all 1240 // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec. 1241 bool PatternRemoveRotate = 1242 SrcMI->getOperand(2).getImm() == 0 && 1243 ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) || 1244 (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63))); 1245 1246 if (!PatternResultZero && !PatternRemoveRotate) 1247 break; 1248 1249 LLVM_DEBUG(dbgs() << "Combining pair: "); 1250 LLVM_DEBUG(SrcMI->dump()); 1251 LLVM_DEBUG(MI.dump()); 1252 if (PatternResultZero) 1253 MI.getOperand(2).setImm(0); 1254 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 1255 LLVM_DEBUG(dbgs() << "To: "); 1256 LLVM_DEBUG(MI.dump()); 1257 addRegToUpdate(MI.getOperand(1).getReg()); 1258 addRegToUpdate(SrcMI->getOperand(0).getReg()); 1259 Simplified = true; 1260 break; 1261 } 1262 case PPC::RLWINM: 1263 case PPC::RLWINM_rec: 1264 case PPC::RLWINM8: 1265 case PPC::RLWINM8_rec: { 1266 // We might replace operand 1 of the instruction which will 1267 // require we recompute kill flags for it. 1268 Register OrigOp1Reg = MI.getOperand(1).isReg() 1269 ? MI.getOperand(1).getReg() 1270 : PPC::NoRegister; 1271 Simplified = TII->combineRLWINM(MI, &ToErase); 1272 if (Simplified) { 1273 addRegToUpdate(OrigOp1Reg); 1274 if (MI.getOperand(1).isReg()) 1275 addRegToUpdate(MI.getOperand(1).getReg()); 1276 ++NumRotatesCollapsed; 1277 } 1278 break; 1279 } 1280 // We will replace TD/TW/TDI/TWI with an unconditional trap if it will 1281 // always trap, we will delete the node if it will never trap. 1282 case PPC::TDI: 1283 case PPC::TWI: 1284 case PPC::TD: 1285 case PPC::TW: { 1286 if (!EnableTrapOptimization) break; 1287 MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI); 1288 MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI); 1289 bool IsOperand2Immediate = MI.getOperand(2).isImm(); 1290 // We can only do the optimization if we can get immediates 1291 // from both operands 1292 if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI || 1293 LiMI1->getOpcode() == PPC::LI8))) 1294 break; 1295 if (!IsOperand2Immediate && 1296 !(LiMI2 && (LiMI2->getOpcode() == PPC::LI || 1297 LiMI2->getOpcode() == PPC::LI8))) 1298 break; 1299 1300 auto ImmOperand0 = MI.getOperand(0).getImm(); 1301 auto ImmOperand1 = LiMI1->getOperand(1).getImm(); 1302 auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm() 1303 : LiMI2->getOperand(1).getImm(); 1304 1305 // We will replace the MI with an unconditional trap if it will always 1306 // trap. 1307 if ((ImmOperand0 == 31) || 1308 ((ImmOperand0 & 0x10) && 1309 ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) || 1310 ((ImmOperand0 & 0x8) && 1311 ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) || 1312 ((ImmOperand0 & 0x2) && 1313 ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) || 1314 ((ImmOperand0 & 0x1) && 1315 ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) || 1316 ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) { 1317 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP)); 1318 TrapOpt = true; 1319 } 1320 // We will delete the MI if it will never trap. 1321 ToErase = &MI; 1322 Simplified = true; 1323 break; 1324 } 1325 } 1326 } 1327 1328 // If the last instruction was marked for elimination, 1329 // remove it now. 1330 if (ToErase) { 1331 recomputeLVForDyingInstr(); 1332 ToErase->eraseFromParent(); 1333 ToErase = nullptr; 1334 } 1335 // Reset TrapOpt to false at the end of the basic block. 1336 if (EnableTrapOptimization) 1337 TrapOpt = false; 1338 } 1339 1340 // Eliminate all the TOC save instructions which are redundant. 1341 Simplified |= eliminateRedundantTOCSaves(TOCSaves); 1342 PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); 1343 if (FI->mustSaveTOC()) 1344 NumTOCSavesInPrologue++; 1345 1346 // We try to eliminate redundant compare instruction. 1347 Simplified |= eliminateRedundantCompare(); 1348 1349 // If we have made any modifications and added any registers to the set of 1350 // registers for which we need to update the kill flags, do so by recomputing 1351 // LiveVariables for those registers. 1352 for (Register Reg : RegsToUpdate) { 1353 if (!MRI->reg_empty(Reg)) 1354 LV->recomputeForSingleDefVirtReg(Reg); 1355 } 1356 return Simplified; 1357 } 1358 1359 // helper functions for eliminateRedundantCompare 1360 static bool isEqOrNe(MachineInstr *BI) { 1361 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1362 unsigned PredCond = PPC::getPredicateCondition(Pred); 1363 return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); 1364 } 1365 1366 static bool isSupportedCmpOp(unsigned opCode) { 1367 return (opCode == PPC::CMPLD || opCode == PPC::CMPD || 1368 opCode == PPC::CMPLW || opCode == PPC::CMPW || 1369 opCode == PPC::CMPLDI || opCode == PPC::CMPDI || 1370 opCode == PPC::CMPLWI || opCode == PPC::CMPWI); 1371 } 1372 1373 static bool is64bitCmpOp(unsigned opCode) { 1374 return (opCode == PPC::CMPLD || opCode == PPC::CMPD || 1375 opCode == PPC::CMPLDI || opCode == PPC::CMPDI); 1376 } 1377 1378 static bool isSignedCmpOp(unsigned opCode) { 1379 return (opCode == PPC::CMPD || opCode == PPC::CMPW || 1380 opCode == PPC::CMPDI || opCode == PPC::CMPWI); 1381 } 1382 1383 static unsigned getSignedCmpOpCode(unsigned opCode) { 1384 if (opCode == PPC::CMPLD) return PPC::CMPD; 1385 if (opCode == PPC::CMPLW) return PPC::CMPW; 1386 if (opCode == PPC::CMPLDI) return PPC::CMPDI; 1387 if (opCode == PPC::CMPLWI) return PPC::CMPWI; 1388 return opCode; 1389 } 1390 1391 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or 1392 // (LT x) to (LE x-1) 1393 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { 1394 uint64_t Imm = CMPI->getOperand(2).getImm(); 1395 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); 1396 if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) 1397 return 0; 1398 1399 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1400 unsigned PredCond = PPC::getPredicateCondition(Pred); 1401 unsigned PredHint = PPC::getPredicateHint(Pred); 1402 if (PredCond == PPC::PRED_GE) 1403 return PPC::getPredicate(PPC::PRED_GT, PredHint); 1404 if (PredCond == PPC::PRED_LT) 1405 return PPC::getPredicate(PPC::PRED_LE, PredHint); 1406 1407 return 0; 1408 } 1409 1410 // We can increment immediate x in (GT x) by changing it to (GE x+1) or 1411 // (LE x) to (LT x+1) 1412 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { 1413 uint64_t Imm = CMPI->getOperand(2).getImm(); 1414 bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); 1415 if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) 1416 return 0; 1417 1418 PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); 1419 unsigned PredCond = PPC::getPredicateCondition(Pred); 1420 unsigned PredHint = PPC::getPredicateHint(Pred); 1421 if (PredCond == PPC::PRED_GT) 1422 return PPC::getPredicate(PPC::PRED_GE, PredHint); 1423 if (PredCond == PPC::PRED_LE) 1424 return PPC::getPredicate(PPC::PRED_LT, PredHint); 1425 1426 return 0; 1427 } 1428 1429 // This takes a Phi node and returns a register value for the specified BB. 1430 static unsigned getIncomingRegForBlock(MachineInstr *Phi, 1431 MachineBasicBlock *MBB) { 1432 for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { 1433 MachineOperand &MO = Phi->getOperand(I); 1434 if (MO.getMBB() == MBB) 1435 return Phi->getOperand(I-1).getReg(); 1436 } 1437 llvm_unreachable("invalid src basic block for this Phi node\n"); 1438 return 0; 1439 } 1440 1441 // This function tracks the source of the register through register copy. 1442 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 1443 // assuming that the control comes from BB1 into BB2. 1444 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, 1445 MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { 1446 unsigned SrcReg = Reg; 1447 while (true) { 1448 unsigned NextReg = SrcReg; 1449 MachineInstr *Inst = MRI->getVRegDef(SrcReg); 1450 if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { 1451 NextReg = getIncomingRegForBlock(Inst, BB1); 1452 // We track through PHI only once to avoid infinite loop. 1453 BB1 = nullptr; 1454 } 1455 else if (Inst->isFullCopy()) 1456 NextReg = Inst->getOperand(1).getReg(); 1457 if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg)) 1458 break; 1459 SrcReg = NextReg; 1460 } 1461 return SrcReg; 1462 } 1463 1464 static bool eligibleForCompareElimination(MachineBasicBlock &MBB, 1465 MachineBasicBlock *&PredMBB, 1466 MachineBasicBlock *&MBBtoMoveCmp, 1467 MachineRegisterInfo *MRI) { 1468 1469 auto isEligibleBB = [&](MachineBasicBlock &BB) { 1470 auto BII = BB.getFirstInstrTerminator(); 1471 // We optimize BBs ending with a conditional branch. 1472 // We check only for BCC here, not BCCLR, because BCCLR 1473 // will be formed only later in the pipeline. 1474 if (BB.succ_size() == 2 && 1475 BII != BB.instr_end() && 1476 (*BII).getOpcode() == PPC::BCC && 1477 (*BII).getOperand(1).isReg()) { 1478 // We optimize only if the condition code is used only by one BCC. 1479 Register CndReg = (*BII).getOperand(1).getReg(); 1480 if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg)) 1481 return false; 1482 1483 MachineInstr *CMPI = MRI->getVRegDef(CndReg); 1484 // We assume compare and branch are in the same BB for ease of analysis. 1485 if (CMPI->getParent() != &BB) 1486 return false; 1487 1488 // We skip this BB if a physical register is used in comparison. 1489 for (MachineOperand &MO : CMPI->operands()) 1490 if (MO.isReg() && !MO.getReg().isVirtual()) 1491 return false; 1492 1493 return true; 1494 } 1495 return false; 1496 }; 1497 1498 // If this BB has more than one successor, we can create a new BB and 1499 // move the compare instruction in the new BB. 1500 // So far, we do not move compare instruction to a BB having multiple 1501 // successors to avoid potentially increasing code size. 1502 auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { 1503 return BB.succ_size() == 1; 1504 }; 1505 1506 if (!isEligibleBB(MBB)) 1507 return false; 1508 1509 unsigned NumPredBBs = MBB.pred_size(); 1510 if (NumPredBBs == 1) { 1511 MachineBasicBlock *TmpMBB = *MBB.pred_begin(); 1512 if (isEligibleBB(*TmpMBB)) { 1513 PredMBB = TmpMBB; 1514 MBBtoMoveCmp = nullptr; 1515 return true; 1516 } 1517 } 1518 else if (NumPredBBs == 2) { 1519 // We check for partially redundant case. 1520 // So far, we support cases with only two predecessors 1521 // to avoid increasing the number of instructions. 1522 MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); 1523 MachineBasicBlock *Pred1MBB = *PI; 1524 MachineBasicBlock *Pred2MBB = *(PI+1); 1525 1526 if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { 1527 // We assume Pred1MBB is the BB containing the compare to be merged and 1528 // Pred2MBB is the BB to which we will append a compare instruction. 1529 // Proceed as is if Pred1MBB is different from MBB. 1530 } 1531 else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { 1532 // We need to swap Pred1MBB and Pred2MBB to canonicalize. 1533 std::swap(Pred1MBB, Pred2MBB); 1534 } 1535 else return false; 1536 1537 if (Pred1MBB == &MBB) 1538 return false; 1539 1540 // Here, Pred2MBB is the BB to which we need to append a compare inst. 1541 // We cannot move the compare instruction if operands are not available 1542 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). 1543 MachineInstr *BI = &*MBB.getFirstInstrTerminator(); 1544 MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); 1545 for (int I = 1; I <= 2; I++) 1546 if (CMPI->getOperand(I).isReg()) { 1547 MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); 1548 if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) 1549 return false; 1550 } 1551 1552 PredMBB = Pred1MBB; 1553 MBBtoMoveCmp = Pred2MBB; 1554 return true; 1555 } 1556 1557 return false; 1558 } 1559 1560 // This function will iterate over the input map containing a pair of TOC save 1561 // instruction and a flag. The flag will be set to false if the TOC save is 1562 // proven redundant. This function will erase from the basic block all the TOC 1563 // saves marked as redundant. 1564 bool PPCMIPeephole::eliminateRedundantTOCSaves( 1565 std::map<MachineInstr *, bool> &TOCSaves) { 1566 bool Simplified = false; 1567 int NumKept = 0; 1568 for (auto TOCSave : TOCSaves) { 1569 if (!TOCSave.second) { 1570 TOCSave.first->eraseFromParent(); 1571 RemoveTOCSave++; 1572 Simplified = true; 1573 } else { 1574 NumKept++; 1575 } 1576 } 1577 1578 if (NumKept > 1) 1579 MultiTOCSaves++; 1580 1581 return Simplified; 1582 } 1583 1584 // If multiple conditional branches are executed based on the (essentially) 1585 // same comparison, we merge compare instructions into one and make multiple 1586 // conditional branches on this comparison. 1587 // For example, 1588 // if (a == 0) { ... } 1589 // else if (a < 0) { ... } 1590 // can be executed by one compare and two conditional branches instead of 1591 // two pairs of a compare and a conditional branch. 1592 // 1593 // This method merges two compare instructions in two MBBs and modifies the 1594 // compare and conditional branch instructions if needed. 1595 // For the above example, the input for this pass looks like: 1596 // cmplwi r3, 0 1597 // beq 0, .LBB0_3 1598 // cmpwi r3, -1 1599 // bgt 0, .LBB0_4 1600 // So, before merging two compares, we need to modify these instructions as 1601 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq 1602 // beq 0, .LBB0_3 1603 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0 1604 // bge 0, .LBB0_4 1605 1606 bool PPCMIPeephole::eliminateRedundantCompare() { 1607 bool Simplified = false; 1608 1609 for (MachineBasicBlock &MBB2 : *MF) { 1610 MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; 1611 1612 // For fully redundant case, we select two basic blocks MBB1 and MBB2 1613 // as an optimization target if 1614 // - both MBBs end with a conditional branch, 1615 // - MBB1 is the only predecessor of MBB2, and 1616 // - compare does not take a physical register as a operand in both MBBs. 1617 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. 1618 // 1619 // As partially redundant case, we additionally handle if MBB2 has one 1620 // additional predecessor, which has only one successor (MBB2). 1621 // In this case, we move the compare instruction originally in MBB2 into 1622 // MBBtoMoveCmp. This partially redundant case is typically appear by 1623 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. 1624 // 1625 // Overview of CFG of related basic blocks 1626 // Fully redundant case Partially redundant case 1627 // -------- ---------------- -------- 1628 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ) 1629 // -------- ---------------- -------- 1630 // | \ (w/ 1 succ) \ | \ 1631 // | \ \ | \ 1632 // | \ | 1633 // -------- -------- 1634 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred 1635 // -------- and 2 succ) -------- and 2 succ) 1636 // | \ | \ 1637 // | \ | \ 1638 // 1639 if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) 1640 continue; 1641 1642 MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator(); 1643 MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); 1644 1645 MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator(); 1646 MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); 1647 bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); 1648 1649 // We cannot optimize an unsupported compare opcode or 1650 // a mix of 32-bit and 64-bit comparisons 1651 if (!isSupportedCmpOp(CMPI1->getOpcode()) || 1652 !isSupportedCmpOp(CMPI2->getOpcode()) || 1653 is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) 1654 continue; 1655 1656 unsigned NewOpCode = 0; 1657 unsigned NewPredicate1 = 0, NewPredicate2 = 0; 1658 int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; 1659 bool SwapOperands = false; 1660 1661 if (CMPI1->getOpcode() != CMPI2->getOpcode()) { 1662 // Typically, unsigned comparison is used for equality check, but 1663 // we replace it with a signed comparison if the comparison 1664 // to be merged is a signed comparison. 1665 // In other cases of opcode mismatch, we cannot optimize this. 1666 1667 // We cannot change opcode when comparing against an immediate 1668 // if the most significant bit of the immediate is one 1669 // due to the difference in sign extension. 1670 auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { 1671 if (!I->getOperand(2).isImm()) 1672 return false; 1673 int16_t Imm = (int16_t)I->getOperand(2).getImm(); 1674 return Imm < 0; 1675 }; 1676 1677 if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) && 1678 CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) 1679 NewOpCode = CMPI1->getOpcode(); 1680 else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) && 1681 getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) 1682 NewOpCode = CMPI2->getOpcode(); 1683 else continue; 1684 } 1685 1686 if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { 1687 // In case of comparisons between two registers, these two registers 1688 // must be same to merge two comparisons. 1689 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), 1690 nullptr, nullptr, MRI); 1691 unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), 1692 nullptr, nullptr, MRI); 1693 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), 1694 MBB1, &MBB2, MRI); 1695 unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), 1696 MBB1, &MBB2, MRI); 1697 1698 if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { 1699 // Same pair of registers in the same order; ready to merge as is. 1700 } 1701 else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { 1702 // Same pair of registers in different order. 1703 // We reverse the predicate to merge compare instructions. 1704 PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); 1705 NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); 1706 // In case of partial redundancy, we need to swap operands 1707 // in another compare instruction. 1708 SwapOperands = true; 1709 } 1710 else continue; 1711 } 1712 else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { 1713 // In case of comparisons between a register and an immediate, 1714 // the operand register must be same for two compare instructions. 1715 unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), 1716 nullptr, nullptr, MRI); 1717 unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), 1718 MBB1, &MBB2, MRI); 1719 if (Cmp1Operand1 != Cmp2Operand1) 1720 continue; 1721 1722 NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); 1723 NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); 1724 1725 // If immediate are not same, we try to adjust by changing predicate; 1726 // e.g. GT imm means GE (imm+1). 1727 if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { 1728 int Diff = Imm1 - Imm2; 1729 if (Diff < -2 || Diff > 2) 1730 continue; 1731 1732 unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); 1733 unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); 1734 unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); 1735 unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); 1736 if (Diff == 2) { 1737 if (PredToInc2 && PredToDec1) { 1738 NewPredicate2 = PredToInc2; 1739 NewPredicate1 = PredToDec1; 1740 NewImm2++; 1741 NewImm1--; 1742 } 1743 } 1744 else if (Diff == 1) { 1745 if (PredToInc2) { 1746 NewImm2++; 1747 NewPredicate2 = PredToInc2; 1748 } 1749 else if (PredToDec1) { 1750 NewImm1--; 1751 NewPredicate1 = PredToDec1; 1752 } 1753 } 1754 else if (Diff == -1) { 1755 if (PredToDec2) { 1756 NewImm2--; 1757 NewPredicate2 = PredToDec2; 1758 } 1759 else if (PredToInc1) { 1760 NewImm1++; 1761 NewPredicate1 = PredToInc1; 1762 } 1763 } 1764 else if (Diff == -2) { 1765 if (PredToDec2 && PredToInc1) { 1766 NewPredicate2 = PredToDec2; 1767 NewPredicate1 = PredToInc1; 1768 NewImm2--; 1769 NewImm1++; 1770 } 1771 } 1772 } 1773 1774 // We cannot merge two compares if the immediates are not same. 1775 if (NewImm2 != NewImm1) 1776 continue; 1777 } 1778 1779 LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); 1780 LLVM_DEBUG(CMPI1->dump()); 1781 LLVM_DEBUG(BI1->dump()); 1782 LLVM_DEBUG(CMPI2->dump()); 1783 LLVM_DEBUG(BI2->dump()); 1784 for (const MachineOperand &MO : CMPI1->operands()) 1785 if (MO.isReg()) 1786 addRegToUpdate(MO.getReg()); 1787 for (const MachineOperand &MO : CMPI2->operands()) 1788 if (MO.isReg()) 1789 addRegToUpdate(MO.getReg()); 1790 1791 // We adjust opcode, predicates and immediate as we determined above. 1792 if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { 1793 CMPI1->setDesc(TII->get(NewOpCode)); 1794 } 1795 if (NewPredicate1) { 1796 BI1->getOperand(0).setImm(NewPredicate1); 1797 } 1798 if (NewPredicate2) { 1799 BI2->getOperand(0).setImm(NewPredicate2); 1800 } 1801 if (NewImm1 != Imm1) { 1802 CMPI1->getOperand(2).setImm(NewImm1); 1803 } 1804 1805 if (IsPartiallyRedundant) { 1806 // We touch up the compare instruction in MBB2 and move it to 1807 // a previous BB to handle partially redundant case. 1808 if (SwapOperands) { 1809 Register Op1 = CMPI2->getOperand(1).getReg(); 1810 Register Op2 = CMPI2->getOperand(2).getReg(); 1811 CMPI2->getOperand(1).setReg(Op2); 1812 CMPI2->getOperand(2).setReg(Op1); 1813 } 1814 if (NewImm2 != Imm2) 1815 CMPI2->getOperand(2).setImm(NewImm2); 1816 1817 for (int I = 1; I <= 2; I++) { 1818 if (CMPI2->getOperand(I).isReg()) { 1819 MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); 1820 if (Inst->getParent() != &MBB2) 1821 continue; 1822 1823 assert(Inst->getOpcode() == PPC::PHI && 1824 "We cannot support if an operand comes from this BB."); 1825 unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); 1826 CMPI2->getOperand(I).setReg(SrcReg); 1827 addRegToUpdate(SrcReg); 1828 } 1829 } 1830 auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); 1831 MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); 1832 1833 DebugLoc DL = CMPI2->getDebugLoc(); 1834 Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); 1835 BuildMI(MBB2, MBB2.begin(), DL, 1836 TII->get(PPC::PHI), NewVReg) 1837 .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) 1838 .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); 1839 BI2->getOperand(1).setReg(NewVReg); 1840 addRegToUpdate(NewVReg); 1841 } 1842 else { 1843 // We finally eliminate compare instruction in MBB2. 1844 // We do not need to treat CMPI2 specially here in terms of re-computing 1845 // live variables even though it is being deleted because: 1846 // - It defines a register that has a single use (already checked in 1847 // eligibleForCompareElimination()) 1848 // - The only user (BI2) is no longer using it so the register is dead (no 1849 // def, no uses) 1850 // - We do not attempt to recompute live variables for dead registers 1851 BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); 1852 CMPI2->eraseFromParent(); 1853 } 1854 1855 LLVM_DEBUG(dbgs() << "into a compare and two branches:\n"); 1856 LLVM_DEBUG(CMPI1->dump()); 1857 LLVM_DEBUG(BI1->dump()); 1858 LLVM_DEBUG(BI2->dump()); 1859 if (IsPartiallyRedundant) { 1860 LLVM_DEBUG(dbgs() << "The following compare is moved into " 1861 << printMBBReference(*MBBtoMoveCmp) 1862 << " to handle partial redundancy.\n"); 1863 LLVM_DEBUG(CMPI2->dump()); 1864 } 1865 Simplified = true; 1866 } 1867 1868 return Simplified; 1869 } 1870 1871 // We miss the opportunity to emit an RLDIC when lowering jump tables 1872 // since ISEL sees only a single basic block. When selecting, the clear 1873 // and shift left will be in different blocks. 1874 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI, 1875 MachineInstr *&ToErase) { 1876 if (MI.getOpcode() != PPC::RLDICR) 1877 return false; 1878 1879 Register SrcReg = MI.getOperand(1).getReg(); 1880 if (!SrcReg.isVirtual()) 1881 return false; 1882 1883 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1884 if (SrcMI->getOpcode() != PPC::RLDICL) 1885 return false; 1886 1887 MachineOperand MOpSHSrc = SrcMI->getOperand(2); 1888 MachineOperand MOpMBSrc = SrcMI->getOperand(3); 1889 MachineOperand MOpSHMI = MI.getOperand(2); 1890 MachineOperand MOpMEMI = MI.getOperand(3); 1891 if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() && 1892 MOpMEMI.isImm())) 1893 return false; 1894 1895 uint64_t SHSrc = MOpSHSrc.getImm(); 1896 uint64_t MBSrc = MOpMBSrc.getImm(); 1897 uint64_t SHMI = MOpSHMI.getImm(); 1898 uint64_t MEMI = MOpMEMI.getImm(); 1899 uint64_t NewSH = SHSrc + SHMI; 1900 uint64_t NewMB = MBSrc - SHMI; 1901 if (NewMB > 63 || NewSH > 63) 1902 return false; 1903 1904 // The bits cleared with RLDICL are [0, MBSrc). 1905 // The bits cleared with RLDICR are (MEMI, 63]. 1906 // After the sequence, the bits cleared are: 1907 // [0, MBSrc-SHMI) and (MEMI, 63). 1908 // 1909 // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63]. 1910 if ((63 - NewSH) != MEMI) 1911 return false; 1912 1913 LLVM_DEBUG(dbgs() << "Converting pair: "); 1914 LLVM_DEBUG(SrcMI->dump()); 1915 LLVM_DEBUG(MI.dump()); 1916 1917 MI.setDesc(TII->get(PPC::RLDIC)); 1918 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); 1919 MI.getOperand(2).setImm(NewSH); 1920 MI.getOperand(3).setImm(NewMB); 1921 addRegToUpdate(MI.getOperand(1).getReg()); 1922 addRegToUpdate(SrcMI->getOperand(0).getReg()); 1923 1924 LLVM_DEBUG(dbgs() << "To: "); 1925 LLVM_DEBUG(MI.dump()); 1926 NumRotatesCollapsed++; 1927 // If SrcReg has no non-debug use it's safe to delete its def SrcMI. 1928 if (MRI->use_nodbg_empty(SrcReg)) { 1929 assert(!SrcMI->hasImplicitDef() && 1930 "Not expecting an implicit def with this instr."); 1931 ToErase = SrcMI; 1932 } 1933 return true; 1934 } 1935 1936 // For case in LLVM IR 1937 // entry: 1938 // %iconv = sext i32 %index to i64 1939 // br i1 undef label %true, label %false 1940 // true: 1941 // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv 1942 // ... 1943 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in 1944 // different BBs when conducting instruction selection. We can do a peephole 1945 // optimization to combine these two instructions into extswsli after 1946 // instruction selection. 1947 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI, 1948 MachineInstr *&ToErase) { 1949 if (MI.getOpcode() != PPC::RLDICR) 1950 return false; 1951 1952 if (!MF->getSubtarget<PPCSubtarget>().isISA3_0()) 1953 return false; 1954 1955 assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands"); 1956 1957 MachineOperand MOpSHMI = MI.getOperand(2); 1958 MachineOperand MOpMEMI = MI.getOperand(3); 1959 if (!(MOpSHMI.isImm() && MOpMEMI.isImm())) 1960 return false; 1961 1962 uint64_t SHMI = MOpSHMI.getImm(); 1963 uint64_t MEMI = MOpMEMI.getImm(); 1964 if (SHMI + MEMI != 63) 1965 return false; 1966 1967 Register SrcReg = MI.getOperand(1).getReg(); 1968 if (!SrcReg.isVirtual()) 1969 return false; 1970 1971 MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); 1972 if (SrcMI->getOpcode() != PPC::EXTSW && 1973 SrcMI->getOpcode() != PPC::EXTSW_32_64) 1974 return false; 1975 1976 // If the register defined by extsw has more than one use, combination is not 1977 // needed. 1978 if (!MRI->hasOneNonDBGUse(SrcReg)) 1979 return false; 1980 1981 assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands"); 1982 assert(SrcMI->getOperand(1).isReg() && 1983 "EXTSW's second operand should be a register"); 1984 if (!SrcMI->getOperand(1).getReg().isVirtual()) 1985 return false; 1986 1987 LLVM_DEBUG(dbgs() << "Combining pair: "); 1988 LLVM_DEBUG(SrcMI->dump()); 1989 LLVM_DEBUG(MI.dump()); 1990 1991 MachineInstr *NewInstr = 1992 BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), 1993 SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI) 1994 : TII->get(PPC::EXTSWSLI_32_64), 1995 MI.getOperand(0).getReg()) 1996 .add(SrcMI->getOperand(1)) 1997 .add(MOpSHMI); 1998 (void)NewInstr; 1999 2000 LLVM_DEBUG(dbgs() << "TO: "); 2001 LLVM_DEBUG(NewInstr->dump()); 2002 ++NumEXTSWAndSLDICombined; 2003 ToErase = &MI; 2004 // SrcMI, which is extsw, is of no use now, but we don't erase it here so we 2005 // can recompute its kill flags. We run DCE immediately after this pass 2006 // to clean up dead instructions such as this. 2007 addRegToUpdate(NewInstr->getOperand(1).getReg()); 2008 addRegToUpdate(SrcMI->getOperand(0).getReg()); 2009 return true; 2010 } 2011 2012 } // end default namespace 2013 2014 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, 2015 "PowerPC MI Peephole Optimization", false, false) 2016 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 2017 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 2018 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 2019 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 2020 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, 2021 "PowerPC MI Peephole Optimization", false, false) 2022 2023 char PPCMIPeephole::ID = 0; 2024 FunctionPass* 2025 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } 2026