xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision f0ba1aec35d599353b6c5eca8286791b1c410b7c)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 
61 static cl::opt<bool>
62 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
63                    cl::desc("Iterate to a fixed point when attempting to "
64                             "convert reg-reg instructions to reg-imm"));
65 
66 static cl::opt<bool>
67 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
68               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
69 
70 static cl::opt<bool>
71     EnableSExtElimination("ppc-eliminate-signext",
72                           cl::desc("enable elimination of sign-extensions"),
73                           cl::init(false), cl::Hidden);
74 
75 static cl::opt<bool>
76     EnableZExtElimination("ppc-eliminate-zeroext",
77                           cl::desc("enable elimination of zero-extensions"),
78                           cl::init(false), cl::Hidden);
79 
80 namespace {
81 
82 struct PPCMIPeephole : public MachineFunctionPass {
83 
84   static char ID;
85   const PPCInstrInfo *TII;
86   MachineFunction *MF;
87   MachineRegisterInfo *MRI;
88 
89   PPCMIPeephole() : MachineFunctionPass(ID) {
90     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91   }
92 
93 private:
94   MachineDominatorTree *MDT;
95   MachinePostDominatorTree *MPDT;
96   MachineBlockFrequencyInfo *MBFI;
97   uint64_t EntryFreq;
98 
99   // Initialize class variables.
100   void initialize(MachineFunction &MFParm);
101 
102   // Perform peepholes.
103   bool simplifyCode(void);
104 
105   // Perform peepholes.
106   bool eliminateRedundantCompare(void);
107   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
108   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
109   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
110   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
111                       MachineInstr *MI);
112 
113 public:
114 
115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.addRequired<MachineDominatorTree>();
117     AU.addRequired<MachinePostDominatorTree>();
118     AU.addRequired<MachineBlockFrequencyInfo>();
119     AU.addPreserved<MachineDominatorTree>();
120     AU.addPreserved<MachinePostDominatorTree>();
121     AU.addPreserved<MachineBlockFrequencyInfo>();
122     MachineFunctionPass::getAnalysisUsage(AU);
123   }
124 
125   // Main entry point for this pass.
126   bool runOnMachineFunction(MachineFunction &MF) override {
127     if (skipFunction(MF.getFunction()))
128       return false;
129     initialize(MF);
130     return simplifyCode();
131   }
132 };
133 
134 // Initialize class variables.
135 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
136   MF = &MFParm;
137   MRI = &MF->getRegInfo();
138   MDT = &getAnalysis<MachineDominatorTree>();
139   MPDT = &getAnalysis<MachinePostDominatorTree>();
140   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
141   EntryFreq = MBFI->getEntryFreq();
142   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
143   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
144   LLVM_DEBUG(MF->dump());
145 }
146 
147 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
148                                       MachineRegisterInfo *MRI) {
149   assert(Op && "Invalid Operand!");
150   if (!Op->isReg())
151     return nullptr;
152 
153   Register Reg = Op->getReg();
154   if (!Register::isVirtualRegister(Reg))
155     return nullptr;
156 
157   return MRI->getVRegDef(Reg);
158 }
159 
160 // This function returns number of known zero bits in output of MI
161 // starting from the most significant bit.
162 static unsigned
163 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
164   unsigned Opcode = MI->getOpcode();
165   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
166       Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo)
167     return MI->getOperand(3).getImm();
168 
169   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
170        MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
171     return MI->getOperand(3).getImm();
172 
173   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
174        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
175        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
176        MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
177     return 32 + MI->getOperand(3).getImm();
178 
179   if (Opcode == PPC::ANDIo) {
180     uint16_t Imm = MI->getOperand(2).getImm();
181     return 48 + countLeadingZeros(Imm);
182   }
183 
184   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
185       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
186       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
187     // The result ranges from 0 to 32.
188     return 58;
189 
190   if (Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
191       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo)
192     // The result ranges from 0 to 64.
193     return 57;
194 
195   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
196       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
197       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
198       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
199     return 48;
200 
201   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
202       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
203       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
204       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
205     return 56;
206 
207   if (TII->isZeroExtended(*MI))
208     return 32;
209 
210   return 0;
211 }
212 
213 // This function maintains a map for the pairs <TOC Save Instr, Keep>
214 // Each time a new TOC save is encountered, it checks if any of the existing
215 // ones are dominated by the new one. If so, it marks the existing one as
216 // redundant by setting it's entry in the map as false. It then adds the new
217 // instruction to the map with either true or false depending on if any
218 // existing instructions dominated the new one.
219 void PPCMIPeephole::UpdateTOCSaves(
220   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
221   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
222   assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
223          "TOC-save removal only supported on ELFv2");
224   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
225 
226   MachineBasicBlock *Entry = &MF->front();
227   uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
228 
229   // If the block in which the TOC save resides is in a block that
230   // post-dominates Entry, or a block that is hotter than entry (keep in mind
231   // that early MachineLICM has already run so the TOC save won't be hoisted)
232   // we can just do the save in the prologue.
233   if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
234     FI->setMustSaveTOC(true);
235 
236   // If we are saving the TOC in the prologue, all the TOC saves can be removed
237   // from the code.
238   if (FI->mustSaveTOC()) {
239     for (auto &TOCSave : TOCSaves)
240       TOCSave.second = false;
241     // Add new instruction to map.
242     TOCSaves[MI] = false;
243     return;
244   }
245 
246   bool Keep = true;
247   for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
248     MachineInstr *CurrInst = It->first;
249     // If new instruction dominates an existing one, mark existing one as
250     // redundant.
251     if (It->second && MDT->dominates(MI, CurrInst))
252       It->second = false;
253     // Check if the new instruction is redundant.
254     if (MDT->dominates(CurrInst, MI)) {
255       Keep = false;
256       break;
257     }
258   }
259   // Add new instruction to map.
260   TOCSaves[MI] = Keep;
261 }
262 
263 // Perform peephole optimizations.
264 bool PPCMIPeephole::simplifyCode(void) {
265   bool Simplified = false;
266   MachineInstr* ToErase = nullptr;
267   std::map<MachineInstr *, bool> TOCSaves;
268   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
269   NumFunctionsEnteredInMIPeephole++;
270   if (ConvertRegReg) {
271     // Fixed-point conversion of reg/reg instructions fed by load-immediate
272     // into reg/imm instructions. FIXME: This is expensive, control it with
273     // an option.
274     bool SomethingChanged = false;
275     do {
276       NumFixedPointIterations++;
277       SomethingChanged = false;
278       for (MachineBasicBlock &MBB : *MF) {
279         for (MachineInstr &MI : MBB) {
280           if (MI.isDebugInstr())
281             continue;
282 
283           if (TII->convertToImmediateForm(MI)) {
284             // We don't erase anything in case the def has other uses. Let DCE
285             // remove it if it can be removed.
286             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
287             LLVM_DEBUG(MI.dump());
288             NumConvertedToImmediateForm++;
289             SomethingChanged = true;
290             Simplified = true;
291             continue;
292           }
293         }
294       }
295     } while (SomethingChanged && FixedPointRegToImm);
296   }
297 
298   for (MachineBasicBlock &MBB : *MF) {
299     for (MachineInstr &MI : MBB) {
300 
301       // If the previous instruction was marked for elimination,
302       // remove it now.
303       if (ToErase) {
304         ToErase->eraseFromParent();
305         ToErase = nullptr;
306       }
307 
308       // Ignore debug instructions.
309       if (MI.isDebugInstr())
310         continue;
311 
312       // Per-opcode peepholes.
313       switch (MI.getOpcode()) {
314 
315       default:
316         break;
317 
318       case PPC::STD: {
319         MachineFrameInfo &MFI = MF->getFrameInfo();
320         if (MFI.hasVarSizedObjects() ||
321             !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
322           break;
323         // When encountering a TOC save instruction, call UpdateTOCSaves
324         // to add it to the TOCSaves map and mark any existing TOC saves
325         // it dominates as redundant.
326         if (TII->isTOCSaveMI(MI))
327           UpdateTOCSaves(TOCSaves, &MI);
328         break;
329       }
330       case PPC::XXPERMDI: {
331         // Perform simplifications of 2x64 vector swaps and splats.
332         // A swap is identified by an immediate value of 2, and a splat
333         // is identified by an immediate value of 0 or 3.
334         int Immed = MI.getOperand(3).getImm();
335 
336         if (Immed != 1) {
337 
338           // For each of these simplifications, we need the two source
339           // regs to match.  Unfortunately, MachineCSE ignores COPY and
340           // SUBREG_TO_REG, so for example we can see
341           //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
342           // We have to look through chains of COPY and SUBREG_TO_REG
343           // to find the real source values for comparison.
344           unsigned TrueReg1 =
345             TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
346           unsigned TrueReg2 =
347             TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
348 
349           if (TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)) {
350             MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
351             unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
352 
353             // If this is a splat fed by a splatting load, the splat is
354             // redundant. Replace with a copy. This doesn't happen directly due
355             // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
356             // a load of a double to a vector of 64-bit integers.
357             auto isConversionOfLoadAndSplat = [=]() -> bool {
358               if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
359                 return false;
360               unsigned DefReg =
361                 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
362               if (Register::isVirtualRegister(DefReg)) {
363                 MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
364                 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
365                   return true;
366               }
367               return false;
368             };
369             if (DefMI && (Immed == 0 || Immed == 3)) {
370               if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
371                 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
372                                      "to load-and-splat/copy: ");
373                 LLVM_DEBUG(MI.dump());
374                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
375                         MI.getOperand(0).getReg())
376                     .add(MI.getOperand(1));
377                 ToErase = &MI;
378                 Simplified = true;
379               }
380             }
381 
382             // If this is a splat or a swap fed by another splat, we
383             // can replace it with a copy.
384             if (DefOpc == PPC::XXPERMDI) {
385               unsigned FeedImmed = DefMI->getOperand(3).getImm();
386               unsigned FeedReg1 =
387                 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
388               unsigned FeedReg2 =
389                 TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
390 
391               if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
392                 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
393                                      "to splat/copy: ");
394                 LLVM_DEBUG(MI.dump());
395                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
396                         MI.getOperand(0).getReg())
397                     .add(MI.getOperand(1));
398                 ToErase = &MI;
399                 Simplified = true;
400               }
401 
402               // If this is a splat fed by a swap, we can simplify modify
403               // the splat to splat the other value from the swap's input
404               // parameter.
405               else if ((Immed == 0 || Immed == 3)
406                        && FeedImmed == 2 && FeedReg1 == FeedReg2) {
407                 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
408                 LLVM_DEBUG(MI.dump());
409                 MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
410                 MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
411                 MI.getOperand(3).setImm(3 - Immed);
412                 Simplified = true;
413               }
414 
415               // If this is a swap fed by a swap, we can replace it
416               // with a copy from the first swap's input.
417               else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
418                 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
419                 LLVM_DEBUG(MI.dump());
420                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
421                         MI.getOperand(0).getReg())
422                     .add(DefMI->getOperand(1));
423                 ToErase = &MI;
424                 Simplified = true;
425               }
426             } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
427                        (DefMI->getOperand(2).getImm() == 0 ||
428                         DefMI->getOperand(2).getImm() == 3)) {
429               // Splat fed by another splat - switch the output of the first
430               // and remove the second.
431               DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
432               ToErase = &MI;
433               Simplified = true;
434               LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
435               LLVM_DEBUG(MI.dump());
436             }
437           }
438         }
439         break;
440       }
441       case PPC::VSPLTB:
442       case PPC::VSPLTH:
443       case PPC::XXSPLTW: {
444         unsigned MyOpcode = MI.getOpcode();
445         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
446         unsigned TrueReg =
447           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
448         if (!Register::isVirtualRegister(TrueReg))
449           break;
450         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
451         if (!DefMI)
452           break;
453         unsigned DefOpcode = DefMI->getOpcode();
454         auto isConvertOfSplat = [=]() -> bool {
455           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
456             return false;
457           Register ConvReg = DefMI->getOperand(1).getReg();
458           if (!Register::isVirtualRegister(ConvReg))
459             return false;
460           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
461           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
462             Splt->getOpcode() == PPC::XXSPLTW);
463         };
464         bool AlreadySplat = (MyOpcode == DefOpcode) ||
465           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
466           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
467           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
468           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
469           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
470           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
471         // If the instruction[s] that feed this splat have already splat
472         // the value, this splat is redundant.
473         if (AlreadySplat) {
474           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
475           LLVM_DEBUG(MI.dump());
476           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
477                   MI.getOperand(0).getReg())
478               .add(MI.getOperand(OpNo));
479           ToErase = &MI;
480           Simplified = true;
481         }
482         // Splat fed by a shift. Usually when we align value to splat into
483         // vector element zero.
484         if (DefOpcode == PPC::XXSLDWI) {
485           Register ShiftRes = DefMI->getOperand(0).getReg();
486           Register ShiftOp1 = DefMI->getOperand(1).getReg();
487           Register ShiftOp2 = DefMI->getOperand(2).getReg();
488           unsigned ShiftImm = DefMI->getOperand(3).getImm();
489           unsigned SplatImm = MI.getOperand(2).getImm();
490           if (ShiftOp1 == ShiftOp2) {
491             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
492             if (MRI->hasOneNonDBGUse(ShiftRes)) {
493               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
494               LLVM_DEBUG(DefMI->dump());
495               ToErase = DefMI;
496             }
497             Simplified = true;
498             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
499                               << " to " << NewElem << " in instruction: ");
500             LLVM_DEBUG(MI.dump());
501             MI.getOperand(1).setReg(ShiftOp1);
502             MI.getOperand(2).setImm(NewElem);
503           }
504         }
505         break;
506       }
507       case PPC::XVCVDPSP: {
508         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
509         unsigned TrueReg =
510           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
511         if (!Register::isVirtualRegister(TrueReg))
512           break;
513         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
514 
515         // This can occur when building a vector of single precision or integer
516         // values.
517         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
518           unsigned DefsReg1 =
519             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
520           unsigned DefsReg2 =
521             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
522           if (!Register::isVirtualRegister(DefsReg1) ||
523               !Register::isVirtualRegister(DefsReg2))
524             break;
525           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
526           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
527 
528           if (!P1 || !P2)
529             break;
530 
531           // Remove the passed FRSP instruction if it only feeds this MI and
532           // set any uses of that FRSP (in this MI) to the source of the FRSP.
533           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
534             if (RoundInstr->getOpcode() == PPC::FRSP &&
535                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
536               Simplified = true;
537               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
538               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
539               MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
540               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
541                 if (Use.getOperand(i).isReg() &&
542                     Use.getOperand(i).getReg() == FRSPDefines)
543                   Use.getOperand(i).setReg(ConvReg1);
544               LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
545               LLVM_DEBUG(RoundInstr->dump());
546               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
547               LLVM_DEBUG(MI.dump());
548               LLVM_DEBUG(dbgs() << "Through instruction:\n");
549               LLVM_DEBUG(DefMI->dump());
550               RoundInstr->eraseFromParent();
551             }
552           };
553 
554           // If the input to XVCVDPSP is a vector that was built (even
555           // partially) out of FRSP's, the FRSP(s) can safely be removed
556           // since this instruction performs the same operation.
557           if (P1 != P2) {
558             removeFRSPIfPossible(P1);
559             removeFRSPIfPossible(P2);
560             break;
561           }
562           removeFRSPIfPossible(P1);
563         }
564         break;
565       }
566       case PPC::EXTSH:
567       case PPC::EXTSH8:
568       case PPC::EXTSH8_32_64: {
569         if (!EnableSExtElimination) break;
570         Register NarrowReg = MI.getOperand(1).getReg();
571         if (!Register::isVirtualRegister(NarrowReg))
572           break;
573 
574         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
575         // If we've used a zero-extending load that we will sign-extend,
576         // just do a sign-extending load.
577         if (SrcMI->getOpcode() == PPC::LHZ ||
578             SrcMI->getOpcode() == PPC::LHZX) {
579           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
580             break;
581           auto is64Bit = [] (unsigned Opcode) {
582             return Opcode == PPC::EXTSH8;
583           };
584           auto isXForm = [] (unsigned Opcode) {
585             return Opcode == PPC::LHZX;
586           };
587           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
588             if (is64Bit)
589               if (isXForm) return PPC::LHAX8;
590               else         return PPC::LHA8;
591             else
592               if (isXForm) return PPC::LHAX;
593               else         return PPC::LHA;
594           };
595           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
596                                        isXForm(SrcMI->getOpcode()));
597           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
598           LLVM_DEBUG(SrcMI->dump());
599           LLVM_DEBUG(dbgs() << "and sign-extension\n");
600           LLVM_DEBUG(MI.dump());
601           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
602           SrcMI->setDesc(TII->get(Opc));
603           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
604           ToErase = &MI;
605           Simplified = true;
606           NumEliminatedSExt++;
607         }
608         break;
609       }
610       case PPC::EXTSW:
611       case PPC::EXTSW_32:
612       case PPC::EXTSW_32_64: {
613         if (!EnableSExtElimination) break;
614         Register NarrowReg = MI.getOperand(1).getReg();
615         if (!Register::isVirtualRegister(NarrowReg))
616           break;
617 
618         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
619         // If we've used a zero-extending load that we will sign-extend,
620         // just do a sign-extending load.
621         if (SrcMI->getOpcode() == PPC::LWZ ||
622             SrcMI->getOpcode() == PPC::LWZX) {
623           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
624             break;
625           auto is64Bit = [] (unsigned Opcode) {
626             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
627           };
628           auto isXForm = [] (unsigned Opcode) {
629             return Opcode == PPC::LWZX;
630           };
631           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
632             if (is64Bit)
633               if (isXForm) return PPC::LWAX;
634               else         return PPC::LWA;
635             else
636               if (isXForm) return PPC::LWAX_32;
637               else         return PPC::LWA_32;
638           };
639           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
640                                        isXForm(SrcMI->getOpcode()));
641           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
642           LLVM_DEBUG(SrcMI->dump());
643           LLVM_DEBUG(dbgs() << "and sign-extension\n");
644           LLVM_DEBUG(MI.dump());
645           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
646           SrcMI->setDesc(TII->get(Opc));
647           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
648           ToErase = &MI;
649           Simplified = true;
650           NumEliminatedSExt++;
651         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
652                    TII->isSignExtended(*SrcMI)) {
653           // We can eliminate EXTSW if the input is known to be already
654           // sign-extended.
655           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
656           Register TmpReg =
657               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
658           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
659                   TmpReg);
660           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
661                   MI.getOperand(0).getReg())
662               .addReg(TmpReg)
663               .addReg(NarrowReg)
664               .addImm(PPC::sub_32);
665           ToErase = &MI;
666           Simplified = true;
667           NumEliminatedSExt++;
668         }
669         break;
670       }
671       case PPC::RLDICL: {
672         // We can eliminate RLDICL (e.g. for zero-extension)
673         // if all bits to clear are already zero in the input.
674         // This code assume following code sequence for zero-extension.
675         //   %6 = COPY %5:sub_32; (optional)
676         //   %8 = IMPLICIT_DEF;
677         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
678         if (!EnableZExtElimination) break;
679 
680         if (MI.getOperand(2).getImm() != 0)
681           break;
682 
683         Register SrcReg = MI.getOperand(1).getReg();
684         if (!Register::isVirtualRegister(SrcReg))
685           break;
686 
687         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
688         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
689               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
690           break;
691 
692         MachineInstr *ImpDefMI, *SubRegMI;
693         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
694         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
695         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
696 
697         SrcMI = SubRegMI;
698         if (SubRegMI->getOpcode() == PPC::COPY) {
699           Register CopyReg = SubRegMI->getOperand(1).getReg();
700           if (Register::isVirtualRegister(CopyReg))
701             SrcMI = MRI->getVRegDef(CopyReg);
702         }
703 
704         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
705         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
706           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
707           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
708                   MI.getOperand(0).getReg())
709               .addReg(SrcReg);
710           ToErase = &MI;
711           Simplified = true;
712           NumEliminatedZExt++;
713         }
714         break;
715       }
716 
717       // TODO: Any instruction that has an immediate form fed only by a PHI
718       // whose operands are all load immediate can be folded away. We currently
719       // do this for ADD instructions, but should expand it to arithmetic and
720       // binary instructions with immediate forms in the future.
721       case PPC::ADD4:
722       case PPC::ADD8: {
723         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
724           assert(PhiOp && "Invalid Operand!");
725           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
726 
727           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
728                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
729         };
730 
731         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
732                                             MachineOperand *PhiOp) {
733           assert(PhiOp && "Invalid Operand!");
734           assert(DominatorOp && "Invalid Operand!");
735           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
736           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
737 
738           // Note: the vregs only show up at odd indices position of PHI Node,
739           // the even indices position save the BB info.
740           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
741             MachineInstr *LiMI =
742                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
743             if (!LiMI ||
744                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
745                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
746                 !MDT->dominates(DefDomMI, LiMI))
747               return false;
748           }
749 
750           return true;
751         };
752 
753         MachineOperand Op1 = MI.getOperand(1);
754         MachineOperand Op2 = MI.getOperand(2);
755         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
756           std::swap(Op1, Op2);
757         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
758           break; // We don't have an ADD fed by LI's that can be transformed
759 
760         // Now we know that Op1 is the PHI node and Op2 is the dominator
761         Register DominatorReg = Op2.getReg();
762 
763         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
764                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
765                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
766         MRI->setRegClass(DominatorReg, TRC);
767 
768         // replace LIs with ADDIs
769         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
770         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
771           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
772           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
773           LLVM_DEBUG(LiMI->dump());
774 
775           // There could be repeated registers in the PHI, e.g: %1 =
776           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
777           // already replaced the def instruction, skip.
778           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
779             continue;
780 
781           assert((LiMI->getOpcode() == PPC::LI ||
782                   LiMI->getOpcode() == PPC::LI8) &&
783                  "Invalid Opcode!");
784           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
785           LiMI->RemoveOperand(1);                    // remove the imm of LI
786           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
787                                                               : PPC::ADDI8));
788           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
789               .addReg(DominatorReg)
790               .addImm(LiImm); // restore the imm of LI
791           LLVM_DEBUG(LiMI->dump());
792         }
793 
794         // Replace ADD with COPY
795         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
796         LLVM_DEBUG(MI.dump());
797         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
798                 MI.getOperand(0).getReg())
799             .add(Op1);
800         ToErase = &MI;
801         Simplified = true;
802         NumOptADDLIs++;
803         break;
804       }
805       case PPC::RLDICR: {
806         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
807                       combineSEXTAndSHL(MI, ToErase);
808         break;
809       }
810       case PPC::RLWINM:
811       case PPC::RLWINMo:
812       case PPC::RLWINM8:
813       case PPC::RLWINM8o: {
814         unsigned FoldingReg = MI.getOperand(1).getReg();
815         if (!Register::isVirtualRegister(FoldingReg))
816           break;
817 
818         MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
819         if (SrcMI->getOpcode() != PPC::RLWINM &&
820             SrcMI->getOpcode() != PPC::RLWINMo &&
821             SrcMI->getOpcode() != PPC::RLWINM8 &&
822             SrcMI->getOpcode() != PPC::RLWINM8o)
823           break;
824         assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
825                 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
826                 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
827                "Invalid PPC::RLWINM Instruction!");
828         uint64_t SHSrc = SrcMI->getOperand(2).getImm();
829         uint64_t SHMI = MI.getOperand(2).getImm();
830         uint64_t MBSrc = SrcMI->getOperand(3).getImm();
831         uint64_t MBMI = MI.getOperand(3).getImm();
832         uint64_t MESrc = SrcMI->getOperand(4).getImm();
833         uint64_t MEMI = MI.getOperand(4).getImm();
834 
835         assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
836                "Invalid PPC::RLWINM Instruction!");
837 
838         // If MBMI is bigger than MEMI, we always can not get run of ones.
839         // RotatedSrcMask non-wrap:
840         //                 0........31|32........63
841         // RotatedSrcMask:   B---E        B---E
842         // MaskMI:         -----------|--E  B------
843         // Result:           -----          ---      (Bad candidate)
844         //
845         // RotatedSrcMask wrap:
846         //                 0........31|32........63
847         // RotatedSrcMask: --E   B----|--E    B----
848         // MaskMI:         -----------|--E  B------
849         // Result:         ---   -----|---    -----  (Bad candidate)
850         //
851         // One special case is RotatedSrcMask is a full set mask.
852         // RotatedSrcMask full:
853         //                 0........31|32........63
854         // RotatedSrcMask: ------EB---|-------EB---
855         // MaskMI:         -----------|--E  B------
856         // Result:         -----------|---  -------  (Good candidate)
857 
858         // Mark special case.
859         bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
860 
861         // For other MBMI > MEMI cases, just return.
862         if ((MBMI > MEMI) && !SrcMaskFull)
863           break;
864 
865         // Handle MBMI <= MEMI cases.
866         APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
867         // In MI, we only need low 32 bits of SrcMI, just consider about low 32
868         // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
869         // while in PowerPC ISA, lowerest bit is at index 63.
870         APInt MaskSrc =
871             APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
872         // Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
873         // equal to highBit.
874         // If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
875         if (SrcMaskFull && (MBSrc - MESrc == 1))
876           MaskSrc.setAllBits();
877 
878         APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
879         APInt FinalMask = RotatedSrcMask & MaskMI;
880         uint32_t NewMB, NewME;
881 
882         // If final mask is 0, MI result should be 0 too.
883         if (FinalMask.isNullValue()) {
884           bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
885                           MI.getOpcode() == PPC::RLWINM8o);
886 
887           LLVM_DEBUG(dbgs() << "Replace Instr: ");
888           LLVM_DEBUG(MI.dump());
889 
890           if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
891             // Replace MI with "LI 0"
892             MI.RemoveOperand(4);
893             MI.RemoveOperand(3);
894             MI.RemoveOperand(2);
895             MI.getOperand(1).ChangeToImmediate(0);
896             MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
897           } else {
898             // Replace MI with "ANDIo reg, 0"
899             MI.RemoveOperand(4);
900             MI.RemoveOperand(3);
901             MI.getOperand(2).setImm(0);
902             MI.setDesc(TII->get(Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
903           }
904           Simplified = true;
905           NumRotatesCollapsed++;
906 
907           LLVM_DEBUG(dbgs() << "With: ");
908           LLVM_DEBUG(MI.dump());
909         } else if (isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
910                                NewME) || SrcMaskFull) {
911           // If FoldingReg has only one use and it it not RLWINMo and
912           // RLWINM8o, safe to delete its def SrcMI. Otherwise keep it.
913           if (MRI->hasOneNonDBGUse(FoldingReg) &&
914               (SrcMI->getOpcode() == PPC::RLWINM ||
915                SrcMI->getOpcode() == PPC::RLWINM8)) {
916             ToErase = SrcMI;
917             LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
918             LLVM_DEBUG(SrcMI->dump());
919           }
920 
921           LLVM_DEBUG(dbgs() << "Converting Instr: ");
922           LLVM_DEBUG(MI.dump());
923 
924           uint16_t NewSH = (SHSrc + SHMI) % 32;
925           MI.getOperand(2).setImm(NewSH);
926           // If SrcMI mask is full, no need to update MBMI and MEMI.
927           if (!SrcMaskFull) {
928             MI.getOperand(3).setImm(NewMB);
929             MI.getOperand(4).setImm(NewME);
930           }
931           MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
932           if (SrcMI->getOperand(1).isKill()) {
933             MI.getOperand(1).setIsKill(true);
934             SrcMI->getOperand(1).setIsKill(false);
935           } else
936             // About to replace MI.getOperand(1), clear its kill flag.
937             MI.getOperand(1).setIsKill(false);
938 
939           Simplified = true;
940           NumRotatesCollapsed++;
941 
942           LLVM_DEBUG(dbgs() << "To: ");
943           LLVM_DEBUG(MI.dump());
944         }
945         break;
946       }
947       }
948     }
949 
950     // If the last instruction was marked for elimination,
951     // remove it now.
952     if (ToErase) {
953       ToErase->eraseFromParent();
954       ToErase = nullptr;
955     }
956   }
957 
958   // Eliminate all the TOC save instructions which are redundant.
959   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
960   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
961   if (FI->mustSaveTOC())
962     NumTOCSavesInPrologue++;
963 
964   // We try to eliminate redundant compare instruction.
965   Simplified |= eliminateRedundantCompare();
966 
967   return Simplified;
968 }
969 
970 // helper functions for eliminateRedundantCompare
971 static bool isEqOrNe(MachineInstr *BI) {
972   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
973   unsigned PredCond = PPC::getPredicateCondition(Pred);
974   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
975 }
976 
977 static bool isSupportedCmpOp(unsigned opCode) {
978   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
979           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
980           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
981           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
982 }
983 
984 static bool is64bitCmpOp(unsigned opCode) {
985   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
986           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
987 }
988 
989 static bool isSignedCmpOp(unsigned opCode) {
990   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
991           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
992 }
993 
994 static unsigned getSignedCmpOpCode(unsigned opCode) {
995   if (opCode == PPC::CMPLD)  return PPC::CMPD;
996   if (opCode == PPC::CMPLW)  return PPC::CMPW;
997   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
998   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
999   return opCode;
1000 }
1001 
1002 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1003 // (LT x) to (LE x-1)
1004 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1005   uint64_t Imm = CMPI->getOperand(2).getImm();
1006   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1007   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1008     return 0;
1009 
1010   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1011   unsigned PredCond = PPC::getPredicateCondition(Pred);
1012   unsigned PredHint = PPC::getPredicateHint(Pred);
1013   if (PredCond == PPC::PRED_GE)
1014     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1015   if (PredCond == PPC::PRED_LT)
1016     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1017 
1018   return 0;
1019 }
1020 
1021 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1022 // (LE x) to (LT x+1)
1023 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1024   uint64_t Imm = CMPI->getOperand(2).getImm();
1025   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1026   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1027     return 0;
1028 
1029   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1030   unsigned PredCond = PPC::getPredicateCondition(Pred);
1031   unsigned PredHint = PPC::getPredicateHint(Pred);
1032   if (PredCond == PPC::PRED_GT)
1033     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1034   if (PredCond == PPC::PRED_LE)
1035     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1036 
1037   return 0;
1038 }
1039 
1040 // This takes a Phi node and returns a register value for the specified BB.
1041 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1042                                        MachineBasicBlock *MBB) {
1043   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1044     MachineOperand &MO = Phi->getOperand(I);
1045     if (MO.getMBB() == MBB)
1046       return Phi->getOperand(I-1).getReg();
1047   }
1048   llvm_unreachable("invalid src basic block for this Phi node\n");
1049   return 0;
1050 }
1051 
1052 // This function tracks the source of the register through register copy.
1053 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1054 // assuming that the control comes from BB1 into BB2.
1055 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1056                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1057   unsigned SrcReg = Reg;
1058   while (1) {
1059     unsigned NextReg = SrcReg;
1060     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1061     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1062       NextReg = getIncomingRegForBlock(Inst, BB1);
1063       // We track through PHI only once to avoid infinite loop.
1064       BB1 = nullptr;
1065     }
1066     else if (Inst->isFullCopy())
1067       NextReg = Inst->getOperand(1).getReg();
1068     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1069       break;
1070     SrcReg = NextReg;
1071   }
1072   return SrcReg;
1073 }
1074 
1075 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1076                                           MachineBasicBlock *&PredMBB,
1077                                           MachineBasicBlock *&MBBtoMoveCmp,
1078                                           MachineRegisterInfo *MRI) {
1079 
1080   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1081     auto BII = BB.getFirstInstrTerminator();
1082     // We optimize BBs ending with a conditional branch.
1083     // We check only for BCC here, not BCCLR, because BCCLR
1084     // will be formed only later in the pipeline.
1085     if (BB.succ_size() == 2 &&
1086         BII != BB.instr_end() &&
1087         (*BII).getOpcode() == PPC::BCC &&
1088         (*BII).getOperand(1).isReg()) {
1089       // We optimize only if the condition code is used only by one BCC.
1090       Register CndReg = (*BII).getOperand(1).getReg();
1091       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1092         return false;
1093 
1094       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1095       // We assume compare and branch are in the same BB for ease of analysis.
1096       if (CMPI->getParent() != &BB)
1097         return false;
1098 
1099       // We skip this BB if a physical register is used in comparison.
1100       for (MachineOperand &MO : CMPI->operands())
1101         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1102           return false;
1103 
1104       return true;
1105     }
1106     return false;
1107   };
1108 
1109   // If this BB has more than one successor, we can create a new BB and
1110   // move the compare instruction in the new BB.
1111   // So far, we do not move compare instruction to a BB having multiple
1112   // successors to avoid potentially increasing code size.
1113   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1114     return BB.succ_size() == 1;
1115   };
1116 
1117   if (!isEligibleBB(MBB))
1118     return false;
1119 
1120   unsigned NumPredBBs = MBB.pred_size();
1121   if (NumPredBBs == 1) {
1122     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1123     if (isEligibleBB(*TmpMBB)) {
1124       PredMBB = TmpMBB;
1125       MBBtoMoveCmp = nullptr;
1126       return true;
1127     }
1128   }
1129   else if (NumPredBBs == 2) {
1130     // We check for partially redundant case.
1131     // So far, we support cases with only two predecessors
1132     // to avoid increasing the number of instructions.
1133     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1134     MachineBasicBlock *Pred1MBB = *PI;
1135     MachineBasicBlock *Pred2MBB = *(PI+1);
1136 
1137     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1138       // We assume Pred1MBB is the BB containing the compare to be merged and
1139       // Pred2MBB is the BB to which we will append a compare instruction.
1140       // Hence we can proceed as is.
1141     }
1142     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1143       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1144       std::swap(Pred1MBB, Pred2MBB);
1145     }
1146     else return false;
1147 
1148     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1149     // We cannot move the compare instruction if operands are not available
1150     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1151     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1152     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1153     for (int I = 1; I <= 2; I++)
1154       if (CMPI->getOperand(I).isReg()) {
1155         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1156         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1157           return false;
1158       }
1159 
1160     PredMBB = Pred1MBB;
1161     MBBtoMoveCmp = Pred2MBB;
1162     return true;
1163   }
1164 
1165   return false;
1166 }
1167 
1168 // This function will iterate over the input map containing a pair of TOC save
1169 // instruction and a flag. The flag will be set to false if the TOC save is
1170 // proven redundant. This function will erase from the basic block all the TOC
1171 // saves marked as redundant.
1172 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1173     std::map<MachineInstr *, bool> &TOCSaves) {
1174   bool Simplified = false;
1175   int NumKept = 0;
1176   for (auto TOCSave : TOCSaves) {
1177     if (!TOCSave.second) {
1178       TOCSave.first->eraseFromParent();
1179       RemoveTOCSave++;
1180       Simplified = true;
1181     } else {
1182       NumKept++;
1183     }
1184   }
1185 
1186   if (NumKept > 1)
1187     MultiTOCSaves++;
1188 
1189   return Simplified;
1190 }
1191 
1192 // If multiple conditional branches are executed based on the (essentially)
1193 // same comparison, we merge compare instructions into one and make multiple
1194 // conditional branches on this comparison.
1195 // For example,
1196 //   if (a == 0) { ... }
1197 //   else if (a < 0) { ... }
1198 // can be executed by one compare and two conditional branches instead of
1199 // two pairs of a compare and a conditional branch.
1200 //
1201 // This method merges two compare instructions in two MBBs and modifies the
1202 // compare and conditional branch instructions if needed.
1203 // For the above example, the input for this pass looks like:
1204 //   cmplwi r3, 0
1205 //   beq    0, .LBB0_3
1206 //   cmpwi  r3, -1
1207 //   bgt    0, .LBB0_4
1208 // So, before merging two compares, we need to modify these instructions as
1209 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1210 //   beq    0, .LBB0_3
1211 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1212 //   bge    0, .LBB0_4
1213 
1214 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1215   bool Simplified = false;
1216 
1217   for (MachineBasicBlock &MBB2 : *MF) {
1218     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1219 
1220     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1221     // as an optimization target if
1222     // - both MBBs end with a conditional branch,
1223     // - MBB1 is the only predecessor of MBB2, and
1224     // - compare does not take a physical register as a operand in both MBBs.
1225     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1226     //
1227     // As partially redundant case, we additionally handle if MBB2 has one
1228     // additional predecessor, which has only one successor (MBB2).
1229     // In this case, we move the compare instruction originally in MBB2 into
1230     // MBBtoMoveCmp. This partially redundant case is typically appear by
1231     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1232     //
1233     // Overview of CFG of related basic blocks
1234     // Fully redundant case        Partially redundant case
1235     //   --------                   ----------------  --------
1236     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1237     //   --------                   ----------------  --------
1238     //      |    \                     (w/ 1 succ) \     |    \
1239     //      |     \                                 \    |     \
1240     //      |                                        \   |
1241     //   --------                                     --------
1242     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1243     //   -------- and 2 succ)                         -------- and 2 succ)
1244     //      |    \                                       |    \
1245     //      |     \                                      |     \
1246     //
1247     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1248       continue;
1249 
1250     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1251     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1252 
1253     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1254     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1255     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1256 
1257     // We cannot optimize an unsupported compare opcode or
1258     // a mix of 32-bit and 64-bit comaprisons
1259     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1260         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1261         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1262       continue;
1263 
1264     unsigned NewOpCode = 0;
1265     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1266     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1267     bool SwapOperands = false;
1268 
1269     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1270       // Typically, unsigned comparison is used for equality check, but
1271       // we replace it with a signed comparison if the comparison
1272       // to be merged is a signed comparison.
1273       // In other cases of opcode mismatch, we cannot optimize this.
1274 
1275       // We cannot change opcode when comparing against an immediate
1276       // if the most significant bit of the immediate is one
1277       // due to the difference in sign extension.
1278       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1279         if (!I->getOperand(2).isImm())
1280           return false;
1281         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1282         return Imm < 0;
1283       };
1284 
1285       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1286           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1287         NewOpCode = CMPI1->getOpcode();
1288       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1289                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1290         NewOpCode = CMPI2->getOpcode();
1291       else continue;
1292     }
1293 
1294     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1295       // In case of comparisons between two registers, these two registers
1296       // must be same to merge two comparisons.
1297       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1298                                          nullptr, nullptr, MRI);
1299       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1300                                          nullptr, nullptr, MRI);
1301       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1302                                          MBB1, &MBB2, MRI);
1303       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1304                                          MBB1, &MBB2, MRI);
1305 
1306       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1307         // Same pair of registers in the same order; ready to merge as is.
1308       }
1309       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1310         // Same pair of registers in different order.
1311         // We reverse the predicate to merge compare instructions.
1312         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1313         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1314         // In case of partial redundancy, we need to swap operands
1315         // in another compare instruction.
1316         SwapOperands = true;
1317       }
1318       else continue;
1319     }
1320     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1321       // In case of comparisons between a register and an immediate,
1322       // the operand register must be same for two compare instructions.
1323       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1324                                          nullptr, nullptr, MRI);
1325       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1326                                          MBB1, &MBB2, MRI);
1327       if (Cmp1Operand1 != Cmp2Operand1)
1328         continue;
1329 
1330       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1331       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1332 
1333       // If immediate are not same, we try to adjust by changing predicate;
1334       // e.g. GT imm means GE (imm+1).
1335       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1336         int Diff = Imm1 - Imm2;
1337         if (Diff < -2 || Diff > 2)
1338           continue;
1339 
1340         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1341         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1342         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1343         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1344         if (Diff == 2) {
1345           if (PredToInc2 && PredToDec1) {
1346             NewPredicate2 = PredToInc2;
1347             NewPredicate1 = PredToDec1;
1348             NewImm2++;
1349             NewImm1--;
1350           }
1351         }
1352         else if (Diff == 1) {
1353           if (PredToInc2) {
1354             NewImm2++;
1355             NewPredicate2 = PredToInc2;
1356           }
1357           else if (PredToDec1) {
1358             NewImm1--;
1359             NewPredicate1 = PredToDec1;
1360           }
1361         }
1362         else if (Diff == -1) {
1363           if (PredToDec2) {
1364             NewImm2--;
1365             NewPredicate2 = PredToDec2;
1366           }
1367           else if (PredToInc1) {
1368             NewImm1++;
1369             NewPredicate1 = PredToInc1;
1370           }
1371         }
1372         else if (Diff == -2) {
1373           if (PredToDec2 && PredToInc1) {
1374             NewPredicate2 = PredToDec2;
1375             NewPredicate1 = PredToInc1;
1376             NewImm2--;
1377             NewImm1++;
1378           }
1379         }
1380       }
1381 
1382       // We cannot merge two compares if the immediates are not same.
1383       if (NewImm2 != NewImm1)
1384         continue;
1385     }
1386 
1387     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1388     LLVM_DEBUG(CMPI1->dump());
1389     LLVM_DEBUG(BI1->dump());
1390     LLVM_DEBUG(CMPI2->dump());
1391     LLVM_DEBUG(BI2->dump());
1392 
1393     // We adjust opcode, predicates and immediate as we determined above.
1394     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1395       CMPI1->setDesc(TII->get(NewOpCode));
1396     }
1397     if (NewPredicate1) {
1398       BI1->getOperand(0).setImm(NewPredicate1);
1399     }
1400     if (NewPredicate2) {
1401       BI2->getOperand(0).setImm(NewPredicate2);
1402     }
1403     if (NewImm1 != Imm1) {
1404       CMPI1->getOperand(2).setImm(NewImm1);
1405     }
1406 
1407     if (IsPartiallyRedundant) {
1408       // We touch up the compare instruction in MBB2 and move it to
1409       // a previous BB to handle partially redundant case.
1410       if (SwapOperands) {
1411         Register Op1 = CMPI2->getOperand(1).getReg();
1412         Register Op2 = CMPI2->getOperand(2).getReg();
1413         CMPI2->getOperand(1).setReg(Op2);
1414         CMPI2->getOperand(2).setReg(Op1);
1415       }
1416       if (NewImm2 != Imm2)
1417         CMPI2->getOperand(2).setImm(NewImm2);
1418 
1419       for (int I = 1; I <= 2; I++) {
1420         if (CMPI2->getOperand(I).isReg()) {
1421           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1422           if (Inst->getParent() != &MBB2)
1423             continue;
1424 
1425           assert(Inst->getOpcode() == PPC::PHI &&
1426                  "We cannot support if an operand comes from this BB.");
1427           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1428           CMPI2->getOperand(I).setReg(SrcReg);
1429         }
1430       }
1431       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1432       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1433 
1434       DebugLoc DL = CMPI2->getDebugLoc();
1435       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1436       BuildMI(MBB2, MBB2.begin(), DL,
1437               TII->get(PPC::PHI), NewVReg)
1438         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1439         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1440       BI2->getOperand(1).setReg(NewVReg);
1441     }
1442     else {
1443       // We finally eliminate compare instruction in MBB2.
1444       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1445       CMPI2->eraseFromParent();
1446     }
1447     BI2->getOperand(1).setIsKill(true);
1448     BI1->getOperand(1).setIsKill(false);
1449 
1450     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1451     LLVM_DEBUG(CMPI1->dump());
1452     LLVM_DEBUG(BI1->dump());
1453     LLVM_DEBUG(BI2->dump());
1454     if (IsPartiallyRedundant) {
1455       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1456                         << printMBBReference(*MBBtoMoveCmp)
1457                         << " to handle partial redundancy.\n");
1458       LLVM_DEBUG(CMPI2->dump());
1459     }
1460 
1461     Simplified = true;
1462   }
1463 
1464   return Simplified;
1465 }
1466 
1467 // We miss the opportunity to emit an RLDIC when lowering jump tables
1468 // since ISEL sees only a single basic block. When selecting, the clear
1469 // and shift left will be in different blocks.
1470 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1471   if (MI.getOpcode() != PPC::RLDICR)
1472     return false;
1473 
1474   Register SrcReg = MI.getOperand(1).getReg();
1475   if (!Register::isVirtualRegister(SrcReg))
1476     return false;
1477 
1478   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1479   if (SrcMI->getOpcode() != PPC::RLDICL)
1480     return false;
1481 
1482   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1483   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1484   MachineOperand MOpSHMI = MI.getOperand(2);
1485   MachineOperand MOpMEMI = MI.getOperand(3);
1486   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1487         MOpMEMI.isImm()))
1488     return false;
1489 
1490   uint64_t SHSrc = MOpSHSrc.getImm();
1491   uint64_t MBSrc = MOpMBSrc.getImm();
1492   uint64_t SHMI = MOpSHMI.getImm();
1493   uint64_t MEMI = MOpMEMI.getImm();
1494   uint64_t NewSH = SHSrc + SHMI;
1495   uint64_t NewMB = MBSrc - SHMI;
1496   if (NewMB > 63 || NewSH > 63)
1497     return false;
1498 
1499   // The bits cleared with RLDICL are [0, MBSrc).
1500   // The bits cleared with RLDICR are (MEMI, 63].
1501   // After the sequence, the bits cleared are:
1502   // [0, MBSrc-SHMI) and (MEMI, 63).
1503   //
1504   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1505   if ((63 - NewSH) != MEMI)
1506     return false;
1507 
1508   LLVM_DEBUG(dbgs() << "Converting pair: ");
1509   LLVM_DEBUG(SrcMI->dump());
1510   LLVM_DEBUG(MI.dump());
1511 
1512   MI.setDesc(TII->get(PPC::RLDIC));
1513   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1514   MI.getOperand(2).setImm(NewSH);
1515   MI.getOperand(3).setImm(NewMB);
1516 
1517   LLVM_DEBUG(dbgs() << "To: ");
1518   LLVM_DEBUG(MI.dump());
1519   NumRotatesCollapsed++;
1520   return true;
1521 }
1522 
1523 // For case in LLVM IR
1524 // entry:
1525 //   %iconv = sext i32 %index to i64
1526 //   br i1 undef label %true, label %false
1527 // true:
1528 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1529 // ...
1530 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1531 // different BBs when conducting instruction selection. We can do a peephole
1532 // optimization to combine these two instructions into extswsli after
1533 // instruction selection.
1534 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1535                                       MachineInstr *&ToErase) {
1536   if (MI.getOpcode() != PPC::RLDICR)
1537     return false;
1538 
1539   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1540     return false;
1541 
1542   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1543 
1544   MachineOperand MOpSHMI = MI.getOperand(2);
1545   MachineOperand MOpMEMI = MI.getOperand(3);
1546   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1547     return false;
1548 
1549   uint64_t SHMI = MOpSHMI.getImm();
1550   uint64_t MEMI = MOpMEMI.getImm();
1551   if (SHMI + MEMI != 63)
1552     return false;
1553 
1554   Register SrcReg = MI.getOperand(1).getReg();
1555   if (!Register::isVirtualRegister(SrcReg))
1556     return false;
1557 
1558   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1559   if (SrcMI->getOpcode() != PPC::EXTSW &&
1560       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1561     return false;
1562 
1563   // If the register defined by extsw has more than one use, combination is not
1564   // needed.
1565   if (!MRI->hasOneNonDBGUse(SrcReg))
1566     return false;
1567 
1568   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1569   assert(SrcMI->getOperand(1).isReg() &&
1570          "EXTSW's second operand should be a register");
1571   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1572     return false;
1573 
1574   LLVM_DEBUG(dbgs() << "Combining pair: ");
1575   LLVM_DEBUG(SrcMI->dump());
1576   LLVM_DEBUG(MI.dump());
1577 
1578   MachineInstr *NewInstr =
1579       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1580               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1581                                                : TII->get(PPC::EXTSWSLI_32_64),
1582               MI.getOperand(0).getReg())
1583           .add(SrcMI->getOperand(1))
1584           .add(MOpSHMI);
1585   (void)NewInstr;
1586 
1587   LLVM_DEBUG(dbgs() << "TO: ");
1588   LLVM_DEBUG(NewInstr->dump());
1589   ++NumEXTSWAndSLDICombined;
1590   ToErase = &MI;
1591   // SrcMI, which is extsw, is of no use now, erase it.
1592   SrcMI->eraseFromParent();
1593   return true;
1594 }
1595 
1596 } // end default namespace
1597 
1598 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1599                       "PowerPC MI Peephole Optimization", false, false)
1600 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1601 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1602 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1603 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1604                     "PowerPC MI Peephole Optimization", false, false)
1605 
1606 char PPCMIPeephole::ID = 0;
1607 FunctionPass*
1608 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1609 
1610