xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision e329788bf83c5a1f2492dbdf65440f313a3403dd)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "ppc-mi-peepholes"
42 
43 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
44 STATISTIC(MultiTOCSaves,
45           "Number of functions with multiple TOC saves that must be kept");
46 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
47 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
48 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
49 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
50 STATISTIC(NumConvertedToImmediateForm,
51           "Number of instructions converted to their immediate form");
52 STATISTIC(NumFunctionsEnteredInMIPeephole,
53           "Number of functions entered in PPC MI Peepholes");
54 STATISTIC(NumFixedPointIterations,
55           "Number of fixed-point iterations converting reg-reg instructions "
56           "to reg-imm ones");
57 STATISTIC(NumRotatesCollapsed,
58           "Number of pairs of rotate left, clear left/right collapsed");
59 STATISTIC(NumEXTSWAndSLDICombined,
60           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
61 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
62           "Number of LI(8) reg, 0 that are folded to r0 and removed");
63 
64 static cl::opt<bool>
65 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
66                    cl::desc("Iterate to a fixed point when attempting to "
67                             "convert reg-reg instructions to reg-imm"));
68 
69 static cl::opt<bool>
70 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
71               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
72 
73 static cl::opt<bool>
74     EnableSExtElimination("ppc-eliminate-signext",
75                           cl::desc("enable elimination of sign-extensions"),
76                           cl::init(true), cl::Hidden);
77 
78 static cl::opt<bool>
79     EnableZExtElimination("ppc-eliminate-zeroext",
80                           cl::desc("enable elimination of zero-extensions"),
81                           cl::init(true), cl::Hidden);
82 
83 static cl::opt<bool>
84     EnableTrapOptimization("ppc-opt-conditional-trap",
85                            cl::desc("enable optimization of conditional traps"),
86                            cl::init(false), cl::Hidden);
87 
88 namespace {
89 
90 struct PPCMIPeephole : public MachineFunctionPass {
91 
92   static char ID;
93   const PPCInstrInfo *TII;
94   MachineFunction *MF;
95   MachineRegisterInfo *MRI;
96 
97   PPCMIPeephole() : MachineFunctionPass(ID) {
98     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
99   }
100 
101 private:
102   MachineDominatorTree *MDT;
103   MachinePostDominatorTree *MPDT;
104   MachineBlockFrequencyInfo *MBFI;
105   uint64_t EntryFreq;
106 
107   // Initialize class variables.
108   void initialize(MachineFunction &MFParm);
109 
110   // Perform peepholes.
111   bool simplifyCode();
112 
113   // Perform peepholes.
114   bool eliminateRedundantCompare();
115   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
116   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
117   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
118   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
119                       MachineInstr *MI);
120 
121 public:
122 
123   void getAnalysisUsage(AnalysisUsage &AU) const override {
124     AU.addRequired<MachineDominatorTree>();
125     AU.addRequired<MachinePostDominatorTree>();
126     AU.addRequired<MachineBlockFrequencyInfo>();
127     AU.addPreserved<MachineDominatorTree>();
128     AU.addPreserved<MachinePostDominatorTree>();
129     AU.addPreserved<MachineBlockFrequencyInfo>();
130     MachineFunctionPass::getAnalysisUsage(AU);
131   }
132 
133   // Main entry point for this pass.
134   bool runOnMachineFunction(MachineFunction &MF) override {
135     initialize(MF);
136     // At this point, TOC pointer should not be used in a function that uses
137     // PC-Relative addressing.
138     assert((MF.getRegInfo().use_empty(PPC::X2) ||
139             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
140            "TOC pointer used in a function using PC-Relative addressing!");
141     if (skipFunction(MF.getFunction()))
142       return false;
143     return simplifyCode();
144   }
145 };
146 
147 // Initialize class variables.
148 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
149   MF = &MFParm;
150   MRI = &MF->getRegInfo();
151   MDT = &getAnalysis<MachineDominatorTree>();
152   MPDT = &getAnalysis<MachinePostDominatorTree>();
153   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
154   EntryFreq = MBFI->getEntryFreq();
155   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
156   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
157   LLVM_DEBUG(MF->dump());
158 }
159 
160 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
161                                       MachineRegisterInfo *MRI) {
162   assert(Op && "Invalid Operand!");
163   if (!Op->isReg())
164     return nullptr;
165 
166   Register Reg = Op->getReg();
167   if (!Register::isVirtualRegister(Reg))
168     return nullptr;
169 
170   return MRI->getVRegDef(Reg);
171 }
172 
173 // This function returns number of known zero bits in output of MI
174 // starting from the most significant bit.
175 static unsigned getKnownLeadingZeroCount(const unsigned Reg,
176                                          const PPCInstrInfo *TII,
177                                          const MachineRegisterInfo *MRI) {
178   MachineInstr *MI = MRI->getVRegDef(Reg);
179   unsigned Opcode = MI->getOpcode();
180   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
181       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
182     return MI->getOperand(3).getImm();
183 
184   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
185       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
186     return MI->getOperand(3).getImm();
187 
188   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
189        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
190        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
191       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
192     return 32 + MI->getOperand(3).getImm();
193 
194   if (Opcode == PPC::ANDI_rec) {
195     uint16_t Imm = MI->getOperand(2).getImm();
196     return 48 + countLeadingZeros(Imm);
197   }
198 
199   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
200       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
201       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
202     // The result ranges from 0 to 32.
203     return 58;
204 
205   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
206       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
207     // The result ranges from 0 to 64.
208     return 57;
209 
210   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
211       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
212       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
213       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
214     return 48;
215 
216   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
217       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
218       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
219       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
220     return 56;
221 
222   if (TII->isZeroExtended(Reg, MRI))
223     return 32;
224 
225   return 0;
226 }
227 
228 // This function maintains a map for the pairs <TOC Save Instr, Keep>
229 // Each time a new TOC save is encountered, it checks if any of the existing
230 // ones are dominated by the new one. If so, it marks the existing one as
231 // redundant by setting it's entry in the map as false. It then adds the new
232 // instruction to the map with either true or false depending on if any
233 // existing instructions dominated the new one.
234 void PPCMIPeephole::UpdateTOCSaves(
235   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
236   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
237   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
238   // here only support it under ELFv2.
239   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
240     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
241 
242     MachineBasicBlock *Entry = &MF->front();
243     uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
244 
245     // If the block in which the TOC save resides is in a block that
246     // post-dominates Entry, or a block that is hotter than entry (keep in mind
247     // that early MachineLICM has already run so the TOC save won't be hoisted)
248     // we can just do the save in the prologue.
249     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
250       FI->setMustSaveTOC(true);
251 
252     // If we are saving the TOC in the prologue, all the TOC saves can be
253     // removed from the code.
254     if (FI->mustSaveTOC()) {
255       for (auto &TOCSave : TOCSaves)
256         TOCSave.second = false;
257       // Add new instruction to map.
258       TOCSaves[MI] = false;
259       return;
260     }
261   }
262 
263   bool Keep = true;
264   for (auto &I : TOCSaves) {
265     MachineInstr *CurrInst = I.first;
266     // If new instruction dominates an existing one, mark existing one as
267     // redundant.
268     if (I.second && MDT->dominates(MI, CurrInst))
269       I.second = false;
270     // Check if the new instruction is redundant.
271     if (MDT->dominates(CurrInst, MI)) {
272       Keep = false;
273       break;
274     }
275   }
276   // Add new instruction to map.
277   TOCSaves[MI] = Keep;
278 }
279 
280 // This function returns a list of all PHI nodes in the tree starting from
281 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
282 // The list initially only contains the root PHI. When we visit a PHI node, we
283 // add it to the list. We continue to look for other PHI node operands while
284 // there are nodes to visit in the list. The function returns false if the
285 // optimization cannot be applied on this tree.
286 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
287                                    MachineInstr *RootPHI,
288                                    SmallVectorImpl<MachineInstr *> &PHIs) {
289   PHIs.push_back(RootPHI);
290   unsigned VisitedIndex = 0;
291   while (VisitedIndex < PHIs.size()) {
292     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
293     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
294          PHIOp != NumOps; PHIOp += 2) {
295       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
296       if (!Register::isVirtualRegister(RegOp))
297         return false;
298       MachineInstr *Instr = MRI->getVRegDef(RegOp);
299       // While collecting the PHI nodes, we check if they can be converted (i.e.
300       // all the operands are either copies, implicit defs or PHI nodes).
301       unsigned Opcode = Instr->getOpcode();
302       if (Opcode == PPC::COPY) {
303         Register Reg = Instr->getOperand(1).getReg();
304         if (!Register::isVirtualRegister(Reg) ||
305             MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
306           return false;
307       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
308         return false;
309       // If we detect a cycle in the PHI nodes, we exit. It would be
310       // possible to change cycles as well, but that would add a lot
311       // of complexity for a case that is unlikely to occur with MMA
312       // code.
313       if (Opcode != PPC::PHI)
314         continue;
315       if (llvm::is_contained(PHIs, Instr))
316         return false;
317       PHIs.push_back(Instr);
318     }
319     VisitedIndex++;
320   }
321   return true;
322 }
323 
324 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
325 // primed accumulator PHI nodes. The list is traversed in reverse order to
326 // change all the PHI operands of a PHI node before changing the node itself.
327 // We keep a map to associate each changed PHI node to its non-changed form.
328 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
329                                    MachineRegisterInfo *MRI,
330                                    SmallVectorImpl<MachineInstr *> &PHIs,
331                                    Register Dst) {
332   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
333   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
334     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
335     // We check if the current PHI node can be changed by looking at its
336     // operands. If all the operands are either copies from primed
337     // accumulators, implicit definitions or other unprimed accumulator
338     // PHI nodes, we change it.
339     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
340          PHIOp += 2) {
341       Register RegOp = PHI->getOperand(PHIOp).getReg();
342       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
343       unsigned Opcode = PHIInput->getOpcode();
344       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
345               Opcode == PPC::PHI) &&
346              "Unexpected instruction");
347       if (Opcode == PPC::COPY) {
348         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
349                    &PPC::ACCRCRegClass &&
350                "Unexpected register class");
351         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
352       } else if (Opcode == PPC::IMPLICIT_DEF) {
353         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
354         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
355                 TII->get(PPC::IMPLICIT_DEF), AccReg);
356         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
357                           PHI->getOperand(PHIOp + 1)});
358       } else if (Opcode == PPC::PHI) {
359         // We found a PHI operand. At this point we know this operand
360         // has already been changed so we get its associated changed form
361         // from the map.
362         assert(ChangedPHIMap.count(PHIInput) == 1 &&
363                "This PHI node should have already been changed.");
364         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
365         PHIOps.push_back({MachineOperand::CreateReg(
366                               PrimedAccPHI->getOperand(0).getReg(), false),
367                           PHI->getOperand(PHIOp + 1)});
368       }
369     }
370     Register AccReg = Dst;
371     // If the PHI node we are changing is the root node, the register it defines
372     // will be the destination register of the original copy (of the PHI def).
373     // For all other PHI's in the list, we need to create another primed
374     // accumulator virtual register as the PHI will no longer define the
375     // unprimed accumulator.
376     if (PHI != PHIs[0])
377       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
378     MachineInstrBuilder NewPHI = BuildMI(
379         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
380     for (auto RegMBB : PHIOps)
381       NewPHI.add(RegMBB.first).add(RegMBB.second);
382     ChangedPHIMap[PHI] = NewPHI.getInstr();
383   }
384 }
385 
386 // Perform peephole optimizations.
387 bool PPCMIPeephole::simplifyCode() {
388   bool Simplified = false;
389   bool TrapOpt = false;
390   MachineInstr* ToErase = nullptr;
391   std::map<MachineInstr *, bool> TOCSaves;
392   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
393   NumFunctionsEnteredInMIPeephole++;
394   if (ConvertRegReg) {
395     // Fixed-point conversion of reg/reg instructions fed by load-immediate
396     // into reg/imm instructions. FIXME: This is expensive, control it with
397     // an option.
398     bool SomethingChanged = false;
399     do {
400       NumFixedPointIterations++;
401       SomethingChanged = false;
402       for (MachineBasicBlock &MBB : *MF) {
403         for (MachineInstr &MI : MBB) {
404           if (MI.isDebugInstr())
405             continue;
406 
407           if (TII->convertToImmediateForm(MI)) {
408             // We don't erase anything in case the def has other uses. Let DCE
409             // remove it if it can be removed.
410             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
411             LLVM_DEBUG(MI.dump());
412             NumConvertedToImmediateForm++;
413             SomethingChanged = true;
414             Simplified = true;
415             continue;
416           }
417         }
418       }
419     } while (SomethingChanged && FixedPointRegToImm);
420   }
421 
422   for (MachineBasicBlock &MBB : *MF) {
423     for (MachineInstr &MI : MBB) {
424 
425       // If the previous instruction was marked for elimination,
426       // remove it now.
427       if (ToErase) {
428         ToErase->eraseFromParent();
429         ToErase = nullptr;
430       }
431       // If a conditional trap instruction got optimized to an
432       // unconditional trap, eliminate all the instructions after
433       // the trap.
434       if (EnableTrapOptimization && TrapOpt) {
435         ToErase = &MI;
436         continue;
437       }
438 
439       // Ignore debug instructions.
440       if (MI.isDebugInstr())
441         continue;
442 
443       // Per-opcode peepholes.
444       switch (MI.getOpcode()) {
445 
446       default:
447         break;
448       case PPC::COPY: {
449         Register Src = MI.getOperand(1).getReg();
450         Register Dst = MI.getOperand(0).getReg();
451         if (!Register::isVirtualRegister(Src) ||
452             !Register::isVirtualRegister(Dst))
453           break;
454         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
455             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
456           break;
457 
458         // We are copying an unprimed accumulator to a primed accumulator.
459         // If the input to the copy is a PHI that is fed only by (i) copies in
460         // the other direction (ii) implicitly defined unprimed accumulators or
461         // (iii) other PHI nodes satisfying (i) and (ii), we can change
462         // the PHI to a PHI on primed accumulators (as long as we also change
463         // its operands). To detect and change such copies, we first get a list
464         // of all the PHI nodes starting from the root PHI node in BFS order.
465         // We then visit all these PHI nodes to check if they can be changed to
466         // primed accumulator PHI nodes and if so, we change them.
467         MachineInstr *RootPHI = MRI->getVRegDef(Src);
468         if (RootPHI->getOpcode() != PPC::PHI)
469           break;
470 
471         SmallVector<MachineInstr *, 4> PHIs;
472         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
473           break;
474 
475         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
476 
477         ToErase = &MI;
478         break;
479       }
480       case PPC::LI:
481       case PPC::LI8: {
482         // If we are materializing a zero, look for any use operands for which
483         // zero means immediate zero. All such operands can be replaced with
484         // PPC::ZERO.
485         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
486           break;
487         Register MIDestReg = MI.getOperand(0).getReg();
488         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
489           Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
490         if (MRI->use_nodbg_empty(MIDestReg)) {
491           ++NumLoadImmZeroFoldedAndRemoved;
492           ToErase = &MI;
493         }
494         break;
495       }
496       case PPC::STW:
497       case PPC::STD: {
498         MachineFrameInfo &MFI = MF->getFrameInfo();
499         if (MFI.hasVarSizedObjects() ||
500             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
501              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
502           break;
503         // When encountering a TOC save instruction, call UpdateTOCSaves
504         // to add it to the TOCSaves map and mark any existing TOC saves
505         // it dominates as redundant.
506         if (TII->isTOCSaveMI(MI))
507           UpdateTOCSaves(TOCSaves, &MI);
508         break;
509       }
510       case PPC::XXPERMDI: {
511         // Perform simplifications of 2x64 vector swaps and splats.
512         // A swap is identified by an immediate value of 2, and a splat
513         // is identified by an immediate value of 0 or 3.
514         int Immed = MI.getOperand(3).getImm();
515 
516         if (Immed == 1)
517           break;
518 
519         // For each of these simplifications, we need the two source
520         // regs to match.  Unfortunately, MachineCSE ignores COPY and
521         // SUBREG_TO_REG, so for example we can see
522         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
523         // We have to look through chains of COPY and SUBREG_TO_REG
524         // to find the real source values for comparison.
525         Register TrueReg1 =
526           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
527         Register TrueReg2 =
528           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
529 
530         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
531           break;
532 
533         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
534 
535         if (!DefMI)
536           break;
537 
538         unsigned DefOpc = DefMI->getOpcode();
539 
540         // If this is a splat fed by a splatting load, the splat is
541         // redundant. Replace with a copy. This doesn't happen directly due
542         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
543         // a load of a double to a vector of 64-bit integers.
544         auto isConversionOfLoadAndSplat = [=]() -> bool {
545           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
546             return false;
547           Register FeedReg1 =
548             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
549           if (Register::isVirtualRegister(FeedReg1)) {
550             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
551             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
552               return true;
553           }
554           return false;
555         };
556         if ((Immed == 0 || Immed == 3) &&
557             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
558           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
559                                "to load-and-splat/copy: ");
560           LLVM_DEBUG(MI.dump());
561           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
562                   MI.getOperand(0).getReg())
563               .add(MI.getOperand(1));
564           ToErase = &MI;
565           Simplified = true;
566         }
567 
568         // If this is a splat or a swap fed by another splat, we
569         // can replace it with a copy.
570         if (DefOpc == PPC::XXPERMDI) {
571           Register DefReg1 = DefMI->getOperand(1).getReg();
572           Register DefReg2 = DefMI->getOperand(2).getReg();
573           unsigned DefImmed = DefMI->getOperand(3).getImm();
574 
575           // If the two inputs are not the same register, check to see if
576           // they originate from the same virtual register after only
577           // copy-like instructions.
578           if (DefReg1 != DefReg2) {
579             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
580             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
581 
582             if (!(FeedReg1 == FeedReg2 &&
583                   Register::isVirtualRegister(FeedReg1)))
584               break;
585           }
586 
587           if (DefImmed == 0 || DefImmed == 3) {
588             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
589                                  "to splat/copy: ");
590             LLVM_DEBUG(MI.dump());
591             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
592                     MI.getOperand(0).getReg())
593                 .add(MI.getOperand(1));
594             ToErase = &MI;
595             Simplified = true;
596           }
597 
598           // If this is a splat fed by a swap, we can simplify modify
599           // the splat to splat the other value from the swap's input
600           // parameter.
601           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
602             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
603             LLVM_DEBUG(MI.dump());
604             MI.getOperand(1).setReg(DefReg1);
605             MI.getOperand(2).setReg(DefReg2);
606             MI.getOperand(3).setImm(3 - Immed);
607             Simplified = true;
608           }
609 
610           // If this is a swap fed by a swap, we can replace it
611           // with a copy from the first swap's input.
612           else if (Immed == 2 && DefImmed == 2) {
613             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
614             LLVM_DEBUG(MI.dump());
615             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
616                     MI.getOperand(0).getReg())
617                 .add(DefMI->getOperand(1));
618             ToErase = &MI;
619             Simplified = true;
620           }
621         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
622                    DefOpc == PPC::XXPERMDIs &&
623                    (DefMI->getOperand(2).getImm() == 0 ||
624                     DefMI->getOperand(2).getImm() == 3)) {
625           ToErase = &MI;
626           Simplified = true;
627           // Swap of a splat, convert to copy.
628           if (Immed == 2) {
629             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
630             LLVM_DEBUG(MI.dump());
631             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
632                     MI.getOperand(0).getReg())
633                 .add(MI.getOperand(1));
634             break;
635           }
636           // Splat fed by another splat - switch the output of the first
637           // and remove the second.
638           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
639           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
640           LLVM_DEBUG(MI.dump());
641         }
642         break;
643       }
644       case PPC::VSPLTB:
645       case PPC::VSPLTH:
646       case PPC::XXSPLTW: {
647         unsigned MyOpcode = MI.getOpcode();
648         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
649         Register TrueReg =
650           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
651         if (!Register::isVirtualRegister(TrueReg))
652           break;
653         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
654         if (!DefMI)
655           break;
656         unsigned DefOpcode = DefMI->getOpcode();
657         auto isConvertOfSplat = [=]() -> bool {
658           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
659             return false;
660           Register ConvReg = DefMI->getOperand(1).getReg();
661           if (!Register::isVirtualRegister(ConvReg))
662             return false;
663           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
664           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
665             Splt->getOpcode() == PPC::XXSPLTW);
666         };
667         bool AlreadySplat = (MyOpcode == DefOpcode) ||
668           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
669           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
670           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
671           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
672           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
673           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
674         // If the instruction[s] that feed this splat have already splat
675         // the value, this splat is redundant.
676         if (AlreadySplat) {
677           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
678           LLVM_DEBUG(MI.dump());
679           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
680                   MI.getOperand(0).getReg())
681               .add(MI.getOperand(OpNo));
682           ToErase = &MI;
683           Simplified = true;
684         }
685         // Splat fed by a shift. Usually when we align value to splat into
686         // vector element zero.
687         if (DefOpcode == PPC::XXSLDWI) {
688           Register ShiftRes = DefMI->getOperand(0).getReg();
689           Register ShiftOp1 = DefMI->getOperand(1).getReg();
690           Register ShiftOp2 = DefMI->getOperand(2).getReg();
691           unsigned ShiftImm = DefMI->getOperand(3).getImm();
692           unsigned SplatImm =
693               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
694           if (ShiftOp1 == ShiftOp2) {
695             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
696             if (MRI->hasOneNonDBGUse(ShiftRes)) {
697               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
698               LLVM_DEBUG(DefMI->dump());
699               ToErase = DefMI;
700             }
701             Simplified = true;
702             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
703                               << " to " << NewElem << " in instruction: ");
704             LLVM_DEBUG(MI.dump());
705             MI.getOperand(1).setReg(ShiftOp1);
706             MI.getOperand(2).setImm(NewElem);
707           }
708         }
709         break;
710       }
711       case PPC::XVCVDPSP: {
712         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
713         Register TrueReg =
714           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
715         if (!Register::isVirtualRegister(TrueReg))
716           break;
717         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
718 
719         // This can occur when building a vector of single precision or integer
720         // values.
721         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
722           Register DefsReg1 =
723             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
724           Register DefsReg2 =
725             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
726           if (!Register::isVirtualRegister(DefsReg1) ||
727               !Register::isVirtualRegister(DefsReg2))
728             break;
729           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
730           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
731 
732           if (!P1 || !P2)
733             break;
734 
735           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
736           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
737           // the FRSP/XSRSP.
738           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
739             unsigned Opc = RoundInstr->getOpcode();
740             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
741                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
742               Simplified = true;
743               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
744               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
745               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
746               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
747                 if (Use.getOperand(i).isReg() &&
748                     Use.getOperand(i).getReg() == FRSPDefines)
749                   Use.getOperand(i).setReg(ConvReg1);
750               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
751               LLVM_DEBUG(RoundInstr->dump());
752               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
753               LLVM_DEBUG(MI.dump());
754               LLVM_DEBUG(dbgs() << "Through instruction:\n");
755               LLVM_DEBUG(DefMI->dump());
756               RoundInstr->eraseFromParent();
757             }
758           };
759 
760           // If the input to XVCVDPSP is a vector that was built (even
761           // partially) out of FRSP's, the FRSP(s) can safely be removed
762           // since this instruction performs the same operation.
763           if (P1 != P2) {
764             removeFRSPIfPossible(P1);
765             removeFRSPIfPossible(P2);
766             break;
767           }
768           removeFRSPIfPossible(P1);
769         }
770         break;
771       }
772       case PPC::EXTSH:
773       case PPC::EXTSH8:
774       case PPC::EXTSH8_32_64: {
775         if (!EnableSExtElimination) break;
776         Register NarrowReg = MI.getOperand(1).getReg();
777         if (!Register::isVirtualRegister(NarrowReg))
778           break;
779 
780         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
781         unsigned SrcOpcode = SrcMI->getOpcode();
782         // If we've used a zero-extending load that we will sign-extend,
783         // just do a sign-extending load.
784         if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
785           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
786             break;
787           // Determine the new opcode. We need to make sure that if the original
788           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
789           // Likewise if the source is X-Form the new opcode should also be
790           // X-Form.
791           unsigned Opc = PPC::LHA;
792           bool SourceIsXForm = SrcOpcode == PPC::LHZX;
793           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
794             MI.getOpcode() == PPC::EXTSH8_32_64;
795 
796           if (SourceIsXForm && MIIs64Bit)
797             Opc = PPC::LHAX8;
798           else if (SourceIsXForm && !MIIs64Bit)
799             Opc = PPC::LHAX;
800           else if (MIIs64Bit)
801             Opc = PPC::LHA8;
802 
803           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
804           LLVM_DEBUG(SrcMI->dump());
805           LLVM_DEBUG(dbgs() << "and sign-extension\n");
806           LLVM_DEBUG(MI.dump());
807           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
808           SrcMI->setDesc(TII->get(Opc));
809           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
810           ToErase = &MI;
811           Simplified = true;
812           NumEliminatedSExt++;
813         }
814         break;
815       }
816       case PPC::EXTSW:
817       case PPC::EXTSW_32:
818       case PPC::EXTSW_32_64: {
819         if (!EnableSExtElimination) break;
820         Register NarrowReg = MI.getOperand(1).getReg();
821         if (!Register::isVirtualRegister(NarrowReg))
822           break;
823 
824         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
825         unsigned SrcOpcode = SrcMI->getOpcode();
826         // If we've used a zero-extending load that we will sign-extend,
827         // just do a sign-extending load.
828         if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
829           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
830             break;
831 
832           // The transformation from a zero-extending load to a sign-extending
833           // load is only legal when the displacement is a multiple of 4.
834           // If the displacement is not at least 4 byte aligned, don't perform
835           // the transformation.
836           bool IsWordAligned = false;
837           if (SrcMI->getOperand(1).isGlobal()) {
838             const GlobalObject *GO =
839                 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal());
840             if (GO && GO->getAlignment() >= 4)
841               IsWordAligned = true;
842           } else if (SrcMI->getOperand(1).isImm()) {
843             int64_t Value = SrcMI->getOperand(1).getImm();
844             if (Value % 4 == 0)
845               IsWordAligned = true;
846           }
847 
848           // Determine the new opcode. We need to make sure that if the original
849           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
850           // Likewise if the source is X-Form the new opcode should also be
851           // X-Form.
852           unsigned Opc = PPC::LWA_32;
853           bool SourceIsXForm = SrcOpcode == PPC::LWZX;
854           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
855             MI.getOpcode() == PPC::EXTSW_32_64;
856 
857           if (SourceIsXForm && MIIs64Bit)
858             Opc = PPC::LWAX;
859           else if (SourceIsXForm && !MIIs64Bit)
860             Opc = PPC::LWAX_32;
861           else if (MIIs64Bit)
862             Opc = PPC::LWA;
863 
864           if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
865             break;
866 
867           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
868           LLVM_DEBUG(SrcMI->dump());
869           LLVM_DEBUG(dbgs() << "and sign-extension\n");
870           LLVM_DEBUG(MI.dump());
871           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
872           SrcMI->setDesc(TII->get(Opc));
873           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
874           ToErase = &MI;
875           Simplified = true;
876           NumEliminatedSExt++;
877         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
878                    TII->isSignExtended(NarrowReg, MRI)) {
879           // We can eliminate EXTSW if the input is known to be already
880           // sign-extended.
881           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
882           Register TmpReg =
883               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
884           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
885                   TmpReg);
886           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
887                   MI.getOperand(0).getReg())
888               .addReg(TmpReg)
889               .addReg(NarrowReg)
890               .addImm(PPC::sub_32);
891           ToErase = &MI;
892           Simplified = true;
893           NumEliminatedSExt++;
894         }
895         break;
896       }
897       case PPC::RLDICL: {
898         // We can eliminate RLDICL (e.g. for zero-extension)
899         // if all bits to clear are already zero in the input.
900         // This code assume following code sequence for zero-extension.
901         //   %6 = COPY %5:sub_32; (optional)
902         //   %8 = IMPLICIT_DEF;
903         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
904         if (!EnableZExtElimination) break;
905 
906         if (MI.getOperand(2).getImm() != 0)
907           break;
908 
909         Register SrcReg = MI.getOperand(1).getReg();
910         if (!Register::isVirtualRegister(SrcReg))
911           break;
912 
913         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
914         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
915               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
916           break;
917 
918         MachineInstr *ImpDefMI, *SubRegMI;
919         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
920         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
921         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
922 
923         SrcMI = SubRegMI;
924         if (SubRegMI->getOpcode() == PPC::COPY) {
925           Register CopyReg = SubRegMI->getOperand(1).getReg();
926           if (Register::isVirtualRegister(CopyReg))
927             SrcMI = MRI->getVRegDef(CopyReg);
928         }
929         if (!SrcMI->getOperand(0).isReg())
930           break;
931 
932         unsigned KnownZeroCount =
933             getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI);
934         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
935           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
936           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
937                   MI.getOperand(0).getReg())
938               .addReg(SrcReg);
939           ToErase = &MI;
940           Simplified = true;
941           NumEliminatedZExt++;
942         }
943         break;
944       }
945 
946       // TODO: Any instruction that has an immediate form fed only by a PHI
947       // whose operands are all load immediate can be folded away. We currently
948       // do this for ADD instructions, but should expand it to arithmetic and
949       // binary instructions with immediate forms in the future.
950       case PPC::ADD4:
951       case PPC::ADD8: {
952         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
953           assert(PhiOp && "Invalid Operand!");
954           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
955 
956           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
957                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
958         };
959 
960         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
961                                             MachineOperand *PhiOp) {
962           assert(PhiOp && "Invalid Operand!");
963           assert(DominatorOp && "Invalid Operand!");
964           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
965           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
966 
967           // Note: the vregs only show up at odd indices position of PHI Node,
968           // the even indices position save the BB info.
969           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
970             MachineInstr *LiMI =
971                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
972             if (!LiMI ||
973                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
974                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
975                 !MDT->dominates(DefDomMI, LiMI))
976               return false;
977           }
978 
979           return true;
980         };
981 
982         MachineOperand Op1 = MI.getOperand(1);
983         MachineOperand Op2 = MI.getOperand(2);
984         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
985           std::swap(Op1, Op2);
986         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
987           break; // We don't have an ADD fed by LI's that can be transformed
988 
989         // Now we know that Op1 is the PHI node and Op2 is the dominator
990         Register DominatorReg = Op2.getReg();
991 
992         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
993                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
994                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
995         MRI->setRegClass(DominatorReg, TRC);
996 
997         // replace LIs with ADDIs
998         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
999         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1000           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1001           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1002           LLVM_DEBUG(LiMI->dump());
1003 
1004           // There could be repeated registers in the PHI, e.g: %1 =
1005           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1006           // already replaced the def instruction, skip.
1007           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1008             continue;
1009 
1010           assert((LiMI->getOpcode() == PPC::LI ||
1011                   LiMI->getOpcode() == PPC::LI8) &&
1012                  "Invalid Opcode!");
1013           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
1014           LiMI->removeOperand(1);                    // remove the imm of LI
1015           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1016                                                               : PPC::ADDI8));
1017           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1018               .addReg(DominatorReg)
1019               .addImm(LiImm); // restore the imm of LI
1020           LLVM_DEBUG(LiMI->dump());
1021         }
1022 
1023         // Replace ADD with COPY
1024         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1025         LLVM_DEBUG(MI.dump());
1026         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1027                 MI.getOperand(0).getReg())
1028             .add(Op1);
1029         ToErase = &MI;
1030         Simplified = true;
1031         NumOptADDLIs++;
1032         break;
1033       }
1034       case PPC::RLDICR: {
1035         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
1036                       combineSEXTAndSHL(MI, ToErase);
1037         break;
1038       }
1039       case PPC::RLWINM:
1040       case PPC::RLWINM_rec:
1041       case PPC::RLWINM8:
1042       case PPC::RLWINM8_rec: {
1043         Simplified = TII->combineRLWINM(MI, &ToErase);
1044         if (Simplified)
1045           ++NumRotatesCollapsed;
1046         break;
1047       }
1048       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1049       // always trap, we will delete the node if it will never trap.
1050       case PPC::TDI:
1051       case PPC::TWI:
1052       case PPC::TD:
1053       case PPC::TW: {
1054         if (!EnableTrapOptimization) break;
1055         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1056         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1057         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1058         // We can only do the optimization if we can get immediates
1059         // from both operands
1060         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1061                         LiMI1->getOpcode() == PPC::LI8)))
1062           break;
1063         if (!IsOperand2Immediate &&
1064             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1065                         LiMI2->getOpcode() == PPC::LI8)))
1066           break;
1067 
1068         auto ImmOperand0 = MI.getOperand(0).getImm();
1069         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1070         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1071                                                : LiMI2->getOperand(1).getImm();
1072 
1073         // We will replace the MI with an unconditional trap if it will always
1074         // trap.
1075         if ((ImmOperand0 == 31) ||
1076             ((ImmOperand0 & 0x10) &&
1077              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1078             ((ImmOperand0 & 0x8) &&
1079              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1080             ((ImmOperand0 & 0x2) &&
1081              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1082             ((ImmOperand0 & 0x1) &&
1083              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1084             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1085           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1086           TrapOpt = true;
1087         }
1088         // We will delete the MI if it will never trap.
1089         ToErase = &MI;
1090         Simplified = true;
1091         break;
1092       }
1093       }
1094     }
1095 
1096     // If the last instruction was marked for elimination,
1097     // remove it now.
1098     if (ToErase) {
1099       ToErase->eraseFromParent();
1100       ToErase = nullptr;
1101     }
1102     // Reset TrapOpt to false at the end of the basic block.
1103     if (EnableTrapOptimization)
1104       TrapOpt = false;
1105   }
1106 
1107   // Eliminate all the TOC save instructions which are redundant.
1108   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1109   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1110   if (FI->mustSaveTOC())
1111     NumTOCSavesInPrologue++;
1112 
1113   // We try to eliminate redundant compare instruction.
1114   Simplified |= eliminateRedundantCompare();
1115 
1116   return Simplified;
1117 }
1118 
1119 // helper functions for eliminateRedundantCompare
1120 static bool isEqOrNe(MachineInstr *BI) {
1121   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1122   unsigned PredCond = PPC::getPredicateCondition(Pred);
1123   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1124 }
1125 
1126 static bool isSupportedCmpOp(unsigned opCode) {
1127   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1128           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1129           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1130           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1131 }
1132 
1133 static bool is64bitCmpOp(unsigned opCode) {
1134   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1135           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1136 }
1137 
1138 static bool isSignedCmpOp(unsigned opCode) {
1139   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1140           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1141 }
1142 
1143 static unsigned getSignedCmpOpCode(unsigned opCode) {
1144   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1145   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1146   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1147   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1148   return opCode;
1149 }
1150 
1151 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1152 // (LT x) to (LE x-1)
1153 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1154   uint64_t Imm = CMPI->getOperand(2).getImm();
1155   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1156   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1157     return 0;
1158 
1159   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1160   unsigned PredCond = PPC::getPredicateCondition(Pred);
1161   unsigned PredHint = PPC::getPredicateHint(Pred);
1162   if (PredCond == PPC::PRED_GE)
1163     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1164   if (PredCond == PPC::PRED_LT)
1165     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1166 
1167   return 0;
1168 }
1169 
1170 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1171 // (LE x) to (LT x+1)
1172 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1173   uint64_t Imm = CMPI->getOperand(2).getImm();
1174   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1175   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1176     return 0;
1177 
1178   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1179   unsigned PredCond = PPC::getPredicateCondition(Pred);
1180   unsigned PredHint = PPC::getPredicateHint(Pred);
1181   if (PredCond == PPC::PRED_GT)
1182     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1183   if (PredCond == PPC::PRED_LE)
1184     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1185 
1186   return 0;
1187 }
1188 
1189 // This takes a Phi node and returns a register value for the specified BB.
1190 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1191                                        MachineBasicBlock *MBB) {
1192   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1193     MachineOperand &MO = Phi->getOperand(I);
1194     if (MO.getMBB() == MBB)
1195       return Phi->getOperand(I-1).getReg();
1196   }
1197   llvm_unreachable("invalid src basic block for this Phi node\n");
1198   return 0;
1199 }
1200 
1201 // This function tracks the source of the register through register copy.
1202 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1203 // assuming that the control comes from BB1 into BB2.
1204 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1205                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1206   unsigned SrcReg = Reg;
1207   while (true) {
1208     unsigned NextReg = SrcReg;
1209     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1210     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1211       NextReg = getIncomingRegForBlock(Inst, BB1);
1212       // We track through PHI only once to avoid infinite loop.
1213       BB1 = nullptr;
1214     }
1215     else if (Inst->isFullCopy())
1216       NextReg = Inst->getOperand(1).getReg();
1217     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1218       break;
1219     SrcReg = NextReg;
1220   }
1221   return SrcReg;
1222 }
1223 
1224 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1225                                           MachineBasicBlock *&PredMBB,
1226                                           MachineBasicBlock *&MBBtoMoveCmp,
1227                                           MachineRegisterInfo *MRI) {
1228 
1229   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1230     auto BII = BB.getFirstInstrTerminator();
1231     // We optimize BBs ending with a conditional branch.
1232     // We check only for BCC here, not BCCLR, because BCCLR
1233     // will be formed only later in the pipeline.
1234     if (BB.succ_size() == 2 &&
1235         BII != BB.instr_end() &&
1236         (*BII).getOpcode() == PPC::BCC &&
1237         (*BII).getOperand(1).isReg()) {
1238       // We optimize only if the condition code is used only by one BCC.
1239       Register CndReg = (*BII).getOperand(1).getReg();
1240       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1241         return false;
1242 
1243       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1244       // We assume compare and branch are in the same BB for ease of analysis.
1245       if (CMPI->getParent() != &BB)
1246         return false;
1247 
1248       // We skip this BB if a physical register is used in comparison.
1249       for (MachineOperand &MO : CMPI->operands())
1250         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1251           return false;
1252 
1253       return true;
1254     }
1255     return false;
1256   };
1257 
1258   // If this BB has more than one successor, we can create a new BB and
1259   // move the compare instruction in the new BB.
1260   // So far, we do not move compare instruction to a BB having multiple
1261   // successors to avoid potentially increasing code size.
1262   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1263     return BB.succ_size() == 1;
1264   };
1265 
1266   if (!isEligibleBB(MBB))
1267     return false;
1268 
1269   unsigned NumPredBBs = MBB.pred_size();
1270   if (NumPredBBs == 1) {
1271     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1272     if (isEligibleBB(*TmpMBB)) {
1273       PredMBB = TmpMBB;
1274       MBBtoMoveCmp = nullptr;
1275       return true;
1276     }
1277   }
1278   else if (NumPredBBs == 2) {
1279     // We check for partially redundant case.
1280     // So far, we support cases with only two predecessors
1281     // to avoid increasing the number of instructions.
1282     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1283     MachineBasicBlock *Pred1MBB = *PI;
1284     MachineBasicBlock *Pred2MBB = *(PI+1);
1285 
1286     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1287       // We assume Pred1MBB is the BB containing the compare to be merged and
1288       // Pred2MBB is the BB to which we will append a compare instruction.
1289       // Hence we can proceed as is.
1290     }
1291     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1292       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1293       std::swap(Pred1MBB, Pred2MBB);
1294     }
1295     else return false;
1296 
1297     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1298     // We cannot move the compare instruction if operands are not available
1299     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1300     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1301     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1302     for (int I = 1; I <= 2; I++)
1303       if (CMPI->getOperand(I).isReg()) {
1304         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1305         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1306           return false;
1307       }
1308 
1309     PredMBB = Pred1MBB;
1310     MBBtoMoveCmp = Pred2MBB;
1311     return true;
1312   }
1313 
1314   return false;
1315 }
1316 
1317 // This function will iterate over the input map containing a pair of TOC save
1318 // instruction and a flag. The flag will be set to false if the TOC save is
1319 // proven redundant. This function will erase from the basic block all the TOC
1320 // saves marked as redundant.
1321 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1322     std::map<MachineInstr *, bool> &TOCSaves) {
1323   bool Simplified = false;
1324   int NumKept = 0;
1325   for (auto TOCSave : TOCSaves) {
1326     if (!TOCSave.second) {
1327       TOCSave.first->eraseFromParent();
1328       RemoveTOCSave++;
1329       Simplified = true;
1330     } else {
1331       NumKept++;
1332     }
1333   }
1334 
1335   if (NumKept > 1)
1336     MultiTOCSaves++;
1337 
1338   return Simplified;
1339 }
1340 
1341 // If multiple conditional branches are executed based on the (essentially)
1342 // same comparison, we merge compare instructions into one and make multiple
1343 // conditional branches on this comparison.
1344 // For example,
1345 //   if (a == 0) { ... }
1346 //   else if (a < 0) { ... }
1347 // can be executed by one compare and two conditional branches instead of
1348 // two pairs of a compare and a conditional branch.
1349 //
1350 // This method merges two compare instructions in two MBBs and modifies the
1351 // compare and conditional branch instructions if needed.
1352 // For the above example, the input for this pass looks like:
1353 //   cmplwi r3, 0
1354 //   beq    0, .LBB0_3
1355 //   cmpwi  r3, -1
1356 //   bgt    0, .LBB0_4
1357 // So, before merging two compares, we need to modify these instructions as
1358 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1359 //   beq    0, .LBB0_3
1360 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1361 //   bge    0, .LBB0_4
1362 
1363 bool PPCMIPeephole::eliminateRedundantCompare() {
1364   bool Simplified = false;
1365 
1366   for (MachineBasicBlock &MBB2 : *MF) {
1367     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1368 
1369     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1370     // as an optimization target if
1371     // - both MBBs end with a conditional branch,
1372     // - MBB1 is the only predecessor of MBB2, and
1373     // - compare does not take a physical register as a operand in both MBBs.
1374     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1375     //
1376     // As partially redundant case, we additionally handle if MBB2 has one
1377     // additional predecessor, which has only one successor (MBB2).
1378     // In this case, we move the compare instruction originally in MBB2 into
1379     // MBBtoMoveCmp. This partially redundant case is typically appear by
1380     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1381     //
1382     // Overview of CFG of related basic blocks
1383     // Fully redundant case        Partially redundant case
1384     //   --------                   ----------------  --------
1385     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1386     //   --------                   ----------------  --------
1387     //      |    \                     (w/ 1 succ) \     |    \
1388     //      |     \                                 \    |     \
1389     //      |                                        \   |
1390     //   --------                                     --------
1391     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1392     //   -------- and 2 succ)                         -------- and 2 succ)
1393     //      |    \                                       |    \
1394     //      |     \                                      |     \
1395     //
1396     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1397       continue;
1398 
1399     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1400     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1401 
1402     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1403     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1404     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1405 
1406     // We cannot optimize an unsupported compare opcode or
1407     // a mix of 32-bit and 64-bit comparisons
1408     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1409         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1410         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1411       continue;
1412 
1413     unsigned NewOpCode = 0;
1414     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1415     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1416     bool SwapOperands = false;
1417 
1418     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1419       // Typically, unsigned comparison is used for equality check, but
1420       // we replace it with a signed comparison if the comparison
1421       // to be merged is a signed comparison.
1422       // In other cases of opcode mismatch, we cannot optimize this.
1423 
1424       // We cannot change opcode when comparing against an immediate
1425       // if the most significant bit of the immediate is one
1426       // due to the difference in sign extension.
1427       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1428         if (!I->getOperand(2).isImm())
1429           return false;
1430         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1431         return Imm < 0;
1432       };
1433 
1434       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1435           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1436         NewOpCode = CMPI1->getOpcode();
1437       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1438                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1439         NewOpCode = CMPI2->getOpcode();
1440       else continue;
1441     }
1442 
1443     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1444       // In case of comparisons between two registers, these two registers
1445       // must be same to merge two comparisons.
1446       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1447                                          nullptr, nullptr, MRI);
1448       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1449                                          nullptr, nullptr, MRI);
1450       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1451                                          MBB1, &MBB2, MRI);
1452       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1453                                          MBB1, &MBB2, MRI);
1454 
1455       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1456         // Same pair of registers in the same order; ready to merge as is.
1457       }
1458       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1459         // Same pair of registers in different order.
1460         // We reverse the predicate to merge compare instructions.
1461         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1462         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1463         // In case of partial redundancy, we need to swap operands
1464         // in another compare instruction.
1465         SwapOperands = true;
1466       }
1467       else continue;
1468     }
1469     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1470       // In case of comparisons between a register and an immediate,
1471       // the operand register must be same for two compare instructions.
1472       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1473                                          nullptr, nullptr, MRI);
1474       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1475                                          MBB1, &MBB2, MRI);
1476       if (Cmp1Operand1 != Cmp2Operand1)
1477         continue;
1478 
1479       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1480       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1481 
1482       // If immediate are not same, we try to adjust by changing predicate;
1483       // e.g. GT imm means GE (imm+1).
1484       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1485         int Diff = Imm1 - Imm2;
1486         if (Diff < -2 || Diff > 2)
1487           continue;
1488 
1489         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1490         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1491         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1492         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1493         if (Diff == 2) {
1494           if (PredToInc2 && PredToDec1) {
1495             NewPredicate2 = PredToInc2;
1496             NewPredicate1 = PredToDec1;
1497             NewImm2++;
1498             NewImm1--;
1499           }
1500         }
1501         else if (Diff == 1) {
1502           if (PredToInc2) {
1503             NewImm2++;
1504             NewPredicate2 = PredToInc2;
1505           }
1506           else if (PredToDec1) {
1507             NewImm1--;
1508             NewPredicate1 = PredToDec1;
1509           }
1510         }
1511         else if (Diff == -1) {
1512           if (PredToDec2) {
1513             NewImm2--;
1514             NewPredicate2 = PredToDec2;
1515           }
1516           else if (PredToInc1) {
1517             NewImm1++;
1518             NewPredicate1 = PredToInc1;
1519           }
1520         }
1521         else if (Diff == -2) {
1522           if (PredToDec2 && PredToInc1) {
1523             NewPredicate2 = PredToDec2;
1524             NewPredicate1 = PredToInc1;
1525             NewImm2--;
1526             NewImm1++;
1527           }
1528         }
1529       }
1530 
1531       // We cannot merge two compares if the immediates are not same.
1532       if (NewImm2 != NewImm1)
1533         continue;
1534     }
1535 
1536     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1537     LLVM_DEBUG(CMPI1->dump());
1538     LLVM_DEBUG(BI1->dump());
1539     LLVM_DEBUG(CMPI2->dump());
1540     LLVM_DEBUG(BI2->dump());
1541 
1542     // We adjust opcode, predicates and immediate as we determined above.
1543     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1544       CMPI1->setDesc(TII->get(NewOpCode));
1545     }
1546     if (NewPredicate1) {
1547       BI1->getOperand(0).setImm(NewPredicate1);
1548     }
1549     if (NewPredicate2) {
1550       BI2->getOperand(0).setImm(NewPredicate2);
1551     }
1552     if (NewImm1 != Imm1) {
1553       CMPI1->getOperand(2).setImm(NewImm1);
1554     }
1555 
1556     if (IsPartiallyRedundant) {
1557       // We touch up the compare instruction in MBB2 and move it to
1558       // a previous BB to handle partially redundant case.
1559       if (SwapOperands) {
1560         Register Op1 = CMPI2->getOperand(1).getReg();
1561         Register Op2 = CMPI2->getOperand(2).getReg();
1562         CMPI2->getOperand(1).setReg(Op2);
1563         CMPI2->getOperand(2).setReg(Op1);
1564       }
1565       if (NewImm2 != Imm2)
1566         CMPI2->getOperand(2).setImm(NewImm2);
1567 
1568       for (int I = 1; I <= 2; I++) {
1569         if (CMPI2->getOperand(I).isReg()) {
1570           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1571           if (Inst->getParent() != &MBB2)
1572             continue;
1573 
1574           assert(Inst->getOpcode() == PPC::PHI &&
1575                  "We cannot support if an operand comes from this BB.");
1576           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1577           CMPI2->getOperand(I).setReg(SrcReg);
1578         }
1579       }
1580       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1581       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1582 
1583       DebugLoc DL = CMPI2->getDebugLoc();
1584       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1585       BuildMI(MBB2, MBB2.begin(), DL,
1586               TII->get(PPC::PHI), NewVReg)
1587         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1588         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1589       BI2->getOperand(1).setReg(NewVReg);
1590     }
1591     else {
1592       // We finally eliminate compare instruction in MBB2.
1593       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1594       CMPI2->eraseFromParent();
1595     }
1596     BI2->getOperand(1).setIsKill(true);
1597     BI1->getOperand(1).setIsKill(false);
1598 
1599     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1600     LLVM_DEBUG(CMPI1->dump());
1601     LLVM_DEBUG(BI1->dump());
1602     LLVM_DEBUG(BI2->dump());
1603     if (IsPartiallyRedundant) {
1604       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1605                         << printMBBReference(*MBBtoMoveCmp)
1606                         << " to handle partial redundancy.\n");
1607       LLVM_DEBUG(CMPI2->dump());
1608     }
1609 
1610     Simplified = true;
1611   }
1612 
1613   return Simplified;
1614 }
1615 
1616 // We miss the opportunity to emit an RLDIC when lowering jump tables
1617 // since ISEL sees only a single basic block. When selecting, the clear
1618 // and shift left will be in different blocks.
1619 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1620   if (MI.getOpcode() != PPC::RLDICR)
1621     return false;
1622 
1623   Register SrcReg = MI.getOperand(1).getReg();
1624   if (!Register::isVirtualRegister(SrcReg))
1625     return false;
1626 
1627   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1628   if (SrcMI->getOpcode() != PPC::RLDICL)
1629     return false;
1630 
1631   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1632   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1633   MachineOperand MOpSHMI = MI.getOperand(2);
1634   MachineOperand MOpMEMI = MI.getOperand(3);
1635   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1636         MOpMEMI.isImm()))
1637     return false;
1638 
1639   uint64_t SHSrc = MOpSHSrc.getImm();
1640   uint64_t MBSrc = MOpMBSrc.getImm();
1641   uint64_t SHMI = MOpSHMI.getImm();
1642   uint64_t MEMI = MOpMEMI.getImm();
1643   uint64_t NewSH = SHSrc + SHMI;
1644   uint64_t NewMB = MBSrc - SHMI;
1645   if (NewMB > 63 || NewSH > 63)
1646     return false;
1647 
1648   // The bits cleared with RLDICL are [0, MBSrc).
1649   // The bits cleared with RLDICR are (MEMI, 63].
1650   // After the sequence, the bits cleared are:
1651   // [0, MBSrc-SHMI) and (MEMI, 63).
1652   //
1653   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1654   if ((63 - NewSH) != MEMI)
1655     return false;
1656 
1657   LLVM_DEBUG(dbgs() << "Converting pair: ");
1658   LLVM_DEBUG(SrcMI->dump());
1659   LLVM_DEBUG(MI.dump());
1660 
1661   MI.setDesc(TII->get(PPC::RLDIC));
1662   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1663   MI.getOperand(2).setImm(NewSH);
1664   MI.getOperand(3).setImm(NewMB);
1665   MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1666   SrcMI->getOperand(1).setIsKill(false);
1667 
1668   LLVM_DEBUG(dbgs() << "To: ");
1669   LLVM_DEBUG(MI.dump());
1670   NumRotatesCollapsed++;
1671   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1672   if (MRI->use_nodbg_empty(SrcReg)) {
1673     assert(!SrcMI->hasImplicitDef() &&
1674            "Not expecting an implicit def with this instr.");
1675     SrcMI->eraseFromParent();
1676   }
1677   return true;
1678 }
1679 
1680 // For case in LLVM IR
1681 // entry:
1682 //   %iconv = sext i32 %index to i64
1683 //   br i1 undef label %true, label %false
1684 // true:
1685 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1686 // ...
1687 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1688 // different BBs when conducting instruction selection. We can do a peephole
1689 // optimization to combine these two instructions into extswsli after
1690 // instruction selection.
1691 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1692                                       MachineInstr *&ToErase) {
1693   if (MI.getOpcode() != PPC::RLDICR)
1694     return false;
1695 
1696   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1697     return false;
1698 
1699   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1700 
1701   MachineOperand MOpSHMI = MI.getOperand(2);
1702   MachineOperand MOpMEMI = MI.getOperand(3);
1703   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1704     return false;
1705 
1706   uint64_t SHMI = MOpSHMI.getImm();
1707   uint64_t MEMI = MOpMEMI.getImm();
1708   if (SHMI + MEMI != 63)
1709     return false;
1710 
1711   Register SrcReg = MI.getOperand(1).getReg();
1712   if (!Register::isVirtualRegister(SrcReg))
1713     return false;
1714 
1715   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1716   if (SrcMI->getOpcode() != PPC::EXTSW &&
1717       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1718     return false;
1719 
1720   // If the register defined by extsw has more than one use, combination is not
1721   // needed.
1722   if (!MRI->hasOneNonDBGUse(SrcReg))
1723     return false;
1724 
1725   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1726   assert(SrcMI->getOperand(1).isReg() &&
1727          "EXTSW's second operand should be a register");
1728   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1729     return false;
1730 
1731   LLVM_DEBUG(dbgs() << "Combining pair: ");
1732   LLVM_DEBUG(SrcMI->dump());
1733   LLVM_DEBUG(MI.dump());
1734 
1735   MachineInstr *NewInstr =
1736       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1737               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1738                                                : TII->get(PPC::EXTSWSLI_32_64),
1739               MI.getOperand(0).getReg())
1740           .add(SrcMI->getOperand(1))
1741           .add(MOpSHMI);
1742   (void)NewInstr;
1743 
1744   LLVM_DEBUG(dbgs() << "TO: ");
1745   LLVM_DEBUG(NewInstr->dump());
1746   ++NumEXTSWAndSLDICombined;
1747   ToErase = &MI;
1748   // SrcMI, which is extsw, is of no use now, erase it.
1749   SrcMI->eraseFromParent();
1750   return true;
1751 }
1752 
1753 } // end default namespace
1754 
1755 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1756                       "PowerPC MI Peephole Optimization", false, false)
1757 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1758 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1759 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1760 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1761                     "PowerPC MI Peephole Optimization", false, false)
1762 
1763 char PPCMIPeephole::ID = 0;
1764 FunctionPass*
1765 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1766