xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision d7195c57d823f9bff3e485ba1c4047376ee620f3)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 // NOTE: We run the verifier after this pass in Asserts/Debug builds so it
20 //       is important to keep the code valid after transformations.
21 //       Common causes of errors stem from violating the contract specified
22 //       by kill flags. Whenever a transformation changes the live range of
23 //       a register, that register should be added to the work list using
24 //       addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation
25 //       is changing the definition of a register (i.e. removing the single
26 //       definition of the original vreg), it needs to provide a dummy
27 //       definition of that register using addDummyDef(<MBB>, <Reg>).
28 //===---------------------------------------------------------------------===//
29 
30 #include "MCTargetDesc/PPCMCTargetDesc.h"
31 #include "MCTargetDesc/PPCPredicates.h"
32 #include "PPC.h"
33 #include "PPCInstrBuilder.h"
34 #include "PPCInstrInfo.h"
35 #include "PPCMachineFunctionInfo.h"
36 #include "PPCTargetMachine.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Support/Debug.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "ppc-mi-peepholes"
52 
53 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
54 STATISTIC(MultiTOCSaves,
55           "Number of functions with multiple TOC saves that must be kept");
56 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
57 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
58 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
59 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
60 STATISTIC(NumConvertedToImmediateForm,
61           "Number of instructions converted to their immediate form");
62 STATISTIC(NumFunctionsEnteredInMIPeephole,
63           "Number of functions entered in PPC MI Peepholes");
64 STATISTIC(NumFixedPointIterations,
65           "Number of fixed-point iterations converting reg-reg instructions "
66           "to reg-imm ones");
67 STATISTIC(NumRotatesCollapsed,
68           "Number of pairs of rotate left, clear left/right collapsed");
69 STATISTIC(NumEXTSWAndSLDICombined,
70           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
71 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
72           "Number of LI(8) reg, 0 that are folded to r0 and removed");
73 
74 static cl::opt<bool>
75 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
76                    cl::desc("Iterate to a fixed point when attempting to "
77                             "convert reg-reg instructions to reg-imm"));
78 
79 static cl::opt<bool>
80 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
81               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
82 
83 static cl::opt<bool>
84     EnableSExtElimination("ppc-eliminate-signext",
85                           cl::desc("enable elimination of sign-extensions"),
86                           cl::init(true), cl::Hidden);
87 
88 static cl::opt<bool>
89     EnableZExtElimination("ppc-eliminate-zeroext",
90                           cl::desc("enable elimination of zero-extensions"),
91                           cl::init(true), cl::Hidden);
92 
93 static cl::opt<bool>
94     EnableTrapOptimization("ppc-opt-conditional-trap",
95                            cl::desc("enable optimization of conditional traps"),
96                            cl::init(false), cl::Hidden);
97 
98 namespace {
99 
100 struct PPCMIPeephole : public MachineFunctionPass {
101 
102   static char ID;
103   const PPCInstrInfo *TII;
104   MachineFunction *MF;
105   MachineRegisterInfo *MRI;
106   LiveVariables *LV;
107 
108   PPCMIPeephole() : MachineFunctionPass(ID) {
109     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
110   }
111 
112 private:
113   MachineDominatorTree *MDT;
114   MachinePostDominatorTree *MPDT;
115   MachineBlockFrequencyInfo *MBFI;
116   uint64_t EntryFreq;
117   SmallSet<Register, 16> RegsToUpdate;
118 
119   // Initialize class variables.
120   void initialize(MachineFunction &MFParm);
121 
122   // Perform peepholes.
123   bool simplifyCode();
124 
125   // Perform peepholes.
126   bool eliminateRedundantCompare();
127   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
128   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
129   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
130                                        MachineInstr *&ToErase);
131   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
132                       MachineInstr *MI);
133 
134   // A number of transformations will eliminate the definition of a register
135   // as all of its uses will be removed. However, this leaves a register
136   // without a definition for LiveVariables. Such transformations should
137   // use this function to provide a dummy definition of the register that
138   // will simply be removed by DCE.
139   void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) {
140     BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg);
141   }
142   void addRegToUpdateWithLine(Register Reg, int Line);
143   void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
144                               SmallVectorImpl<MachineInstr *> &PHIs,
145                               Register Dst);
146 
147 public:
148 
149   void getAnalysisUsage(AnalysisUsage &AU) const override {
150     AU.addRequired<LiveVariables>();
151     AU.addRequired<MachineDominatorTree>();
152     AU.addRequired<MachinePostDominatorTree>();
153     AU.addRequired<MachineBlockFrequencyInfo>();
154     AU.addPreserved<LiveVariables>();
155     AU.addPreserved<MachineDominatorTree>();
156     AU.addPreserved<MachinePostDominatorTree>();
157     AU.addPreserved<MachineBlockFrequencyInfo>();
158     MachineFunctionPass::getAnalysisUsage(AU);
159   }
160 
161   // Main entry point for this pass.
162   bool runOnMachineFunction(MachineFunction &MF) override {
163     initialize(MF);
164     // At this point, TOC pointer should not be used in a function that uses
165     // PC-Relative addressing.
166     assert((MF.getRegInfo().use_empty(PPC::X2) ||
167             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
168            "TOC pointer used in a function using PC-Relative addressing!");
169     if (skipFunction(MF.getFunction()))
170       return false;
171     bool Changed = simplifyCode();
172 #ifndef NDEBUG
173     if (Changed)
174       MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with "
175                       "-mllvm -disable-ppc-peephole");
176 #endif
177     return Changed;
178   }
179 };
180 
181 #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__)
182 void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) {
183   if (!Register::isVirtualRegister(Reg))
184     return;
185   if (RegsToUpdate.insert(Reg).second)
186     LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg)
187                       << " on line " << Line
188                       << " for re-computation of kill flags\n");
189 }
190 
191 // Initialize class variables.
192 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
193   MF = &MFParm;
194   MRI = &MF->getRegInfo();
195   MDT = &getAnalysis<MachineDominatorTree>();
196   MPDT = &getAnalysis<MachinePostDominatorTree>();
197   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
198   LV = &getAnalysis<LiveVariables>();
199   EntryFreq = MBFI->getEntryFreq();
200   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
201   RegsToUpdate.clear();
202   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
203   LLVM_DEBUG(MF->dump());
204 }
205 
206 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
207                                       MachineRegisterInfo *MRI) {
208   assert(Op && "Invalid Operand!");
209   if (!Op->isReg())
210     return nullptr;
211 
212   Register Reg = Op->getReg();
213   if (!Reg.isVirtual())
214     return nullptr;
215 
216   return MRI->getVRegDef(Reg);
217 }
218 
219 // This function returns number of known zero bits in output of MI
220 // starting from the most significant bit.
221 static unsigned getKnownLeadingZeroCount(const unsigned Reg,
222                                          const PPCInstrInfo *TII,
223                                          const MachineRegisterInfo *MRI) {
224   MachineInstr *MI = MRI->getVRegDef(Reg);
225   unsigned Opcode = MI->getOpcode();
226   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
227       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
228     return MI->getOperand(3).getImm();
229 
230   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
231       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
232     return MI->getOperand(3).getImm();
233 
234   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
235        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
236        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
237       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
238     return 32 + MI->getOperand(3).getImm();
239 
240   if (Opcode == PPC::ANDI_rec) {
241     uint16_t Imm = MI->getOperand(2).getImm();
242     return 48 + llvm::countl_zero(Imm);
243   }
244 
245   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
246       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
247       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
248     // The result ranges from 0 to 32.
249     return 58;
250 
251   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
252       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
253     // The result ranges from 0 to 64.
254     return 57;
255 
256   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
257       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
258       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
259       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
260     return 48;
261 
262   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
263       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
264       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
265       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
266     return 56;
267 
268   if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec ||
269       Opcode == PPC::AND8_rec)
270     return std::max(
271         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
272         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
273 
274   if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR ||
275       Opcode == PPC::XOR8 || Opcode == PPC::OR_rec ||
276       Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec ||
277       Opcode == PPC::XOR8_rec)
278     return std::min(
279         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
280         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
281 
282   if (TII->isZeroExtended(Reg, MRI))
283     return 32;
284 
285   return 0;
286 }
287 
288 // This function maintains a map for the pairs <TOC Save Instr, Keep>
289 // Each time a new TOC save is encountered, it checks if any of the existing
290 // ones are dominated by the new one. If so, it marks the existing one as
291 // redundant by setting it's entry in the map as false. It then adds the new
292 // instruction to the map with either true or false depending on if any
293 // existing instructions dominated the new one.
294 void PPCMIPeephole::UpdateTOCSaves(
295   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
296   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
297   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
298   // here only support it under ELFv2.
299   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
300     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
301 
302     MachineBasicBlock *Entry = &MF->front();
303     uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
304 
305     // If the block in which the TOC save resides is in a block that
306     // post-dominates Entry, or a block that is hotter than entry (keep in mind
307     // that early MachineLICM has already run so the TOC save won't be hoisted)
308     // we can just do the save in the prologue.
309     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
310       FI->setMustSaveTOC(true);
311 
312     // If we are saving the TOC in the prologue, all the TOC saves can be
313     // removed from the code.
314     if (FI->mustSaveTOC()) {
315       for (auto &TOCSave : TOCSaves)
316         TOCSave.second = false;
317       // Add new instruction to map.
318       TOCSaves[MI] = false;
319       return;
320     }
321   }
322 
323   bool Keep = true;
324   for (auto &I : TOCSaves) {
325     MachineInstr *CurrInst = I.first;
326     // If new instruction dominates an existing one, mark existing one as
327     // redundant.
328     if (I.second && MDT->dominates(MI, CurrInst))
329       I.second = false;
330     // Check if the new instruction is redundant.
331     if (MDT->dominates(CurrInst, MI)) {
332       Keep = false;
333       break;
334     }
335   }
336   // Add new instruction to map.
337   TOCSaves[MI] = Keep;
338 }
339 
340 // This function returns a list of all PHI nodes in the tree starting from
341 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
342 // The list initially only contains the root PHI. When we visit a PHI node, we
343 // add it to the list. We continue to look for other PHI node operands while
344 // there are nodes to visit in the list. The function returns false if the
345 // optimization cannot be applied on this tree.
346 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
347                                    MachineInstr *RootPHI,
348                                    SmallVectorImpl<MachineInstr *> &PHIs) {
349   PHIs.push_back(RootPHI);
350   unsigned VisitedIndex = 0;
351   while (VisitedIndex < PHIs.size()) {
352     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
353     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
354          PHIOp != NumOps; PHIOp += 2) {
355       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
356       if (!RegOp.isVirtual())
357         return false;
358       MachineInstr *Instr = MRI->getVRegDef(RegOp);
359       // While collecting the PHI nodes, we check if they can be converted (i.e.
360       // all the operands are either copies, implicit defs or PHI nodes).
361       unsigned Opcode = Instr->getOpcode();
362       if (Opcode == PPC::COPY) {
363         Register Reg = Instr->getOperand(1).getReg();
364         if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
365           return false;
366       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
367         return false;
368       // If we detect a cycle in the PHI nodes, we exit. It would be
369       // possible to change cycles as well, but that would add a lot
370       // of complexity for a case that is unlikely to occur with MMA
371       // code.
372       if (Opcode != PPC::PHI)
373         continue;
374       if (llvm::is_contained(PHIs, Instr))
375         return false;
376       PHIs.push_back(Instr);
377     }
378     VisitedIndex++;
379   }
380   return true;
381 }
382 
383 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
384 // primed accumulator PHI nodes. The list is traversed in reverse order to
385 // change all the PHI operands of a PHI node before changing the node itself.
386 // We keep a map to associate each changed PHI node to its non-changed form.
387 void PPCMIPeephole::convertUnprimedAccPHIs(
388     const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
389     SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) {
390   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
391   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
392     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
393     // We check if the current PHI node can be changed by looking at its
394     // operands. If all the operands are either copies from primed
395     // accumulators, implicit definitions or other unprimed accumulator
396     // PHI nodes, we change it.
397     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
398          PHIOp += 2) {
399       Register RegOp = PHI->getOperand(PHIOp).getReg();
400       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
401       unsigned Opcode = PHIInput->getOpcode();
402       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
403               Opcode == PPC::PHI) &&
404              "Unexpected instruction");
405       if (Opcode == PPC::COPY) {
406         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
407                    &PPC::ACCRCRegClass &&
408                "Unexpected register class");
409         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
410       } else if (Opcode == PPC::IMPLICIT_DEF) {
411         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
412         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
413                 TII->get(PPC::IMPLICIT_DEF), AccReg);
414         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
415                           PHI->getOperand(PHIOp + 1)});
416       } else if (Opcode == PPC::PHI) {
417         // We found a PHI operand. At this point we know this operand
418         // has already been changed so we get its associated changed form
419         // from the map.
420         assert(ChangedPHIMap.count(PHIInput) == 1 &&
421                "This PHI node should have already been changed.");
422         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
423         PHIOps.push_back({MachineOperand::CreateReg(
424                               PrimedAccPHI->getOperand(0).getReg(), false),
425                           PHI->getOperand(PHIOp + 1)});
426       }
427     }
428     Register AccReg = Dst;
429     // If the PHI node we are changing is the root node, the register it defines
430     // will be the destination register of the original copy (of the PHI def).
431     // For all other PHI's in the list, we need to create another primed
432     // accumulator virtual register as the PHI will no longer define the
433     // unprimed accumulator.
434     if (PHI != PHIs[0])
435       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
436     MachineInstrBuilder NewPHI = BuildMI(
437         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
438     for (auto RegMBB : PHIOps) {
439       NewPHI.add(RegMBB.first).add(RegMBB.second);
440       if (MRI->isSSA())
441         addRegToUpdate(RegMBB.first.getReg());
442     }
443     ChangedPHIMap[PHI] = NewPHI.getInstr();
444     LLVM_DEBUG(dbgs() << "Converting PHI: ");
445     LLVM_DEBUG(PHI->dump());
446     LLVM_DEBUG(dbgs() << "To: ");
447     LLVM_DEBUG(NewPHI.getInstr()->dump());
448   }
449 }
450 
451 // Perform peephole optimizations.
452 bool PPCMIPeephole::simplifyCode() {
453   bool Simplified = false;
454   bool TrapOpt = false;
455   MachineInstr* ToErase = nullptr;
456   std::map<MachineInstr *, bool> TOCSaves;
457   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
458   NumFunctionsEnteredInMIPeephole++;
459   if (ConvertRegReg) {
460     // Fixed-point conversion of reg/reg instructions fed by load-immediate
461     // into reg/imm instructions. FIXME: This is expensive, control it with
462     // an option.
463     bool SomethingChanged = false;
464     do {
465       NumFixedPointIterations++;
466       SomethingChanged = false;
467       for (MachineBasicBlock &MBB : *MF) {
468         for (MachineInstr &MI : MBB) {
469           if (MI.isDebugInstr())
470             continue;
471 
472           SmallSet<Register, 4> RRToRIRegsToUpdate;
473           if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate))
474             continue;
475           for (Register R : RRToRIRegsToUpdate)
476             addRegToUpdate(R);
477           // The updated instruction may now have new register operands.
478           // Conservatively add them to recompute the flags as well.
479           for (const MachineOperand &MO : MI.operands())
480             if (MO.isReg())
481               addRegToUpdate(MO.getReg());
482           // We don't erase anything in case the def has other uses. Let DCE
483           // remove it if it can be removed.
484           LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
485           LLVM_DEBUG(MI.dump());
486           NumConvertedToImmediateForm++;
487           SomethingChanged = true;
488           Simplified = true;
489           continue;
490         }
491       }
492     } while (SomethingChanged && FixedPointRegToImm);
493   }
494 
495   // Since we are deleting this instruction, we need to run LiveVariables
496   // on any of its definitions that are marked as needing an update since
497   // we can't run LiveVariables on a deleted register. This only needs
498   // to be done for defs since uses will have their own defining
499   // instructions so we won't be running LiveVariables on a deleted reg.
500   auto recomputeLVForDyingInstr = [&]() {
501     if (RegsToUpdate.empty())
502       return;
503     for (MachineOperand &MO : ToErase->operands()) {
504       if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg()))
505         continue;
506       Register RegToUpdate = MO.getReg();
507       RegsToUpdate.erase(RegToUpdate);
508       // If some transformation has introduced an additional definition of
509       // this register (breaking SSA), we can safely convert this def to
510       // a def of an invalid register as the instruction is going away.
511       if (!MRI->getUniqueVRegDef(RegToUpdate))
512         MO.setReg(PPC::NoRegister);
513       LV->recomputeForSingleDefVirtReg(RegToUpdate);
514     }
515   };
516 
517   for (MachineBasicBlock &MBB : *MF) {
518     for (MachineInstr &MI : MBB) {
519 
520       // If the previous instruction was marked for elimination,
521       // remove it now.
522       if (ToErase) {
523         LLVM_DEBUG(dbgs() << "Deleting instruction: ");
524         LLVM_DEBUG(ToErase->dump());
525         recomputeLVForDyingInstr();
526         ToErase->eraseFromParent();
527         ToErase = nullptr;
528       }
529       // If a conditional trap instruction got optimized to an
530       // unconditional trap, eliminate all the instructions after
531       // the trap.
532       if (EnableTrapOptimization && TrapOpt) {
533         ToErase = &MI;
534         continue;
535       }
536 
537       // Ignore debug instructions.
538       if (MI.isDebugInstr())
539         continue;
540 
541       // Per-opcode peepholes.
542       switch (MI.getOpcode()) {
543 
544       default:
545         break;
546       case PPC::COPY: {
547         Register Src = MI.getOperand(1).getReg();
548         Register Dst = MI.getOperand(0).getReg();
549         if (!Src.isVirtual() || !Dst.isVirtual())
550           break;
551         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
552             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
553           break;
554 
555         // We are copying an unprimed accumulator to a primed accumulator.
556         // If the input to the copy is a PHI that is fed only by (i) copies in
557         // the other direction (ii) implicitly defined unprimed accumulators or
558         // (iii) other PHI nodes satisfying (i) and (ii), we can change
559         // the PHI to a PHI on primed accumulators (as long as we also change
560         // its operands). To detect and change such copies, we first get a list
561         // of all the PHI nodes starting from the root PHI node in BFS order.
562         // We then visit all these PHI nodes to check if they can be changed to
563         // primed accumulator PHI nodes and if so, we change them.
564         MachineInstr *RootPHI = MRI->getVRegDef(Src);
565         if (RootPHI->getOpcode() != PPC::PHI)
566           break;
567 
568         SmallVector<MachineInstr *, 4> PHIs;
569         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
570           break;
571 
572         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
573 
574         ToErase = &MI;
575         break;
576       }
577       case PPC::LI:
578       case PPC::LI8: {
579         // If we are materializing a zero, look for any use operands for which
580         // zero means immediate zero. All such operands can be replaced with
581         // PPC::ZERO.
582         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
583           break;
584         Register MIDestReg = MI.getOperand(0).getReg();
585         bool Folded = false;
586         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
587           Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
588         if (MRI->use_nodbg_empty(MIDestReg)) {
589           ++NumLoadImmZeroFoldedAndRemoved;
590           ToErase = &MI;
591         }
592         if (Folded)
593           addRegToUpdate(MIDestReg);
594         Simplified |= Folded;
595         break;
596       }
597       case PPC::STW:
598       case PPC::STD: {
599         MachineFrameInfo &MFI = MF->getFrameInfo();
600         if (MFI.hasVarSizedObjects() ||
601             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
602              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
603           break;
604         // When encountering a TOC save instruction, call UpdateTOCSaves
605         // to add it to the TOCSaves map and mark any existing TOC saves
606         // it dominates as redundant.
607         if (TII->isTOCSaveMI(MI))
608           UpdateTOCSaves(TOCSaves, &MI);
609         break;
610       }
611       case PPC::XXPERMDI: {
612         // Perform simplifications of 2x64 vector swaps and splats.
613         // A swap is identified by an immediate value of 2, and a splat
614         // is identified by an immediate value of 0 or 3.
615         int Immed = MI.getOperand(3).getImm();
616 
617         if (Immed == 1)
618           break;
619 
620         // For each of these simplifications, we need the two source
621         // regs to match.  Unfortunately, MachineCSE ignores COPY and
622         // SUBREG_TO_REG, so for example we can see
623         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
624         // We have to look through chains of COPY and SUBREG_TO_REG
625         // to find the real source values for comparison.
626         Register TrueReg1 =
627           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
628         Register TrueReg2 =
629           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
630 
631         if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual()))
632           break;
633 
634         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
635 
636         if (!DefMI)
637           break;
638 
639         unsigned DefOpc = DefMI->getOpcode();
640 
641         // If this is a splat fed by a splatting load, the splat is
642         // redundant. Replace with a copy. This doesn't happen directly due
643         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
644         // a load of a double to a vector of 64-bit integers.
645         auto isConversionOfLoadAndSplat = [=]() -> bool {
646           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
647             return false;
648           Register FeedReg1 =
649             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
650           if (FeedReg1.isVirtual()) {
651             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
652             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
653               return true;
654           }
655           return false;
656         };
657         if ((Immed == 0 || Immed == 3) &&
658             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
659           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
660                                "to load-and-splat/copy: ");
661           LLVM_DEBUG(MI.dump());
662           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
663                   MI.getOperand(0).getReg())
664               .add(MI.getOperand(1));
665           addRegToUpdate(MI.getOperand(1).getReg());
666           ToErase = &MI;
667           Simplified = true;
668         }
669 
670         // If this is a splat or a swap fed by another splat, we
671         // can replace it with a copy.
672         if (DefOpc == PPC::XXPERMDI) {
673           Register DefReg1 = DefMI->getOperand(1).getReg();
674           Register DefReg2 = DefMI->getOperand(2).getReg();
675           unsigned DefImmed = DefMI->getOperand(3).getImm();
676 
677           // If the two inputs are not the same register, check to see if
678           // they originate from the same virtual register after only
679           // copy-like instructions.
680           if (DefReg1 != DefReg2) {
681             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
682             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
683 
684             if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual()))
685               break;
686           }
687 
688           if (DefImmed == 0 || DefImmed == 3) {
689             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
690                                  "to splat/copy: ");
691             LLVM_DEBUG(MI.dump());
692             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
693                     MI.getOperand(0).getReg())
694                 .add(MI.getOperand(1));
695             addRegToUpdate(MI.getOperand(1).getReg());
696             ToErase = &MI;
697             Simplified = true;
698           }
699 
700           // If this is a splat fed by a swap, we can simplify modify
701           // the splat to splat the other value from the swap's input
702           // parameter.
703           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
704             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
705             LLVM_DEBUG(MI.dump());
706             addRegToUpdate(MI.getOperand(1).getReg());
707             addRegToUpdate(MI.getOperand(2).getReg());
708             MI.getOperand(1).setReg(DefReg1);
709             MI.getOperand(2).setReg(DefReg2);
710             MI.getOperand(3).setImm(3 - Immed);
711             addRegToUpdate(DefReg1);
712             addRegToUpdate(DefReg2);
713             Simplified = true;
714           }
715 
716           // If this is a swap fed by a swap, we can replace it
717           // with a copy from the first swap's input.
718           else if (Immed == 2 && DefImmed == 2) {
719             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
720             LLVM_DEBUG(MI.dump());
721             addRegToUpdate(MI.getOperand(1).getReg());
722             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
723                     MI.getOperand(0).getReg())
724                 .add(DefMI->getOperand(1));
725             addRegToUpdate(DefMI->getOperand(0).getReg());
726             addRegToUpdate(DefMI->getOperand(1).getReg());
727             ToErase = &MI;
728             Simplified = true;
729           }
730         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
731                    DefOpc == PPC::XXPERMDIs &&
732                    (DefMI->getOperand(2).getImm() == 0 ||
733                     DefMI->getOperand(2).getImm() == 3)) {
734           ToErase = &MI;
735           Simplified = true;
736           // Swap of a splat, convert to copy.
737           if (Immed == 2) {
738             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
739             LLVM_DEBUG(MI.dump());
740             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
741                     MI.getOperand(0).getReg())
742                 .add(MI.getOperand(1));
743             addRegToUpdate(MI.getOperand(1).getReg());
744             break;
745           }
746           // Splat fed by another splat - switch the output of the first
747           // and remove the second.
748           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
749           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
750           LLVM_DEBUG(MI.dump());
751         } else if (Immed == 2 &&
752                    (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH ||
753                     DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW ||
754                     DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH ||
755                     DefOpc == PPC::VSPLTISW)) {
756           // Swap of various vector splats, convert to copy.
757           ToErase = &MI;
758           Simplified = true;
759           LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => "
760                                "copy(vsplt(is)?[b|h|w]|xxspltw): ");
761           LLVM_DEBUG(MI.dump());
762           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
763                   MI.getOperand(0).getReg())
764               .add(MI.getOperand(1));
765           addRegToUpdate(MI.getOperand(1).getReg());
766         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
767                    TII->isLoadFromConstantPool(DefMI)) {
768           const Constant *C = TII->getConstantFromConstantPool(DefMI);
769           if (C && C->getType()->isVectorTy() && C->getSplatValue()) {
770             ToErase = &MI;
771             Simplified = true;
772             LLVM_DEBUG(dbgs()
773                        << "Optimizing swap(splat pattern from constant-pool) "
774                           "=> copy(splat pattern from constant-pool): ");
775             LLVM_DEBUG(MI.dump());
776             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
777                     MI.getOperand(0).getReg())
778                 .add(MI.getOperand(1));
779             addRegToUpdate(MI.getOperand(1).getReg());
780           }
781         }
782         break;
783       }
784       case PPC::VSPLTB:
785       case PPC::VSPLTH:
786       case PPC::XXSPLTW: {
787         unsigned MyOpcode = MI.getOpcode();
788         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
789         Register TrueReg =
790           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
791         if (!TrueReg.isVirtual())
792           break;
793         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
794         if (!DefMI)
795           break;
796         unsigned DefOpcode = DefMI->getOpcode();
797         auto isConvertOfSplat = [=]() -> bool {
798           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
799             return false;
800           Register ConvReg = DefMI->getOperand(1).getReg();
801           if (!ConvReg.isVirtual())
802             return false;
803           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
804           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
805             Splt->getOpcode() == PPC::XXSPLTW);
806         };
807         bool AlreadySplat = (MyOpcode == DefOpcode) ||
808           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
809           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
810           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
811           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
812           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
813           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
814         // If the instruction[s] that feed this splat have already splat
815         // the value, this splat is redundant.
816         if (AlreadySplat) {
817           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
818           LLVM_DEBUG(MI.dump());
819           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
820                   MI.getOperand(0).getReg())
821               .add(MI.getOperand(OpNo));
822           addRegToUpdate(MI.getOperand(OpNo).getReg());
823           ToErase = &MI;
824           Simplified = true;
825         }
826         // Splat fed by a shift. Usually when we align value to splat into
827         // vector element zero.
828         if (DefOpcode == PPC::XXSLDWI) {
829           Register ShiftRes = DefMI->getOperand(0).getReg();
830           Register ShiftOp1 = DefMI->getOperand(1).getReg();
831           Register ShiftOp2 = DefMI->getOperand(2).getReg();
832           unsigned ShiftImm = DefMI->getOperand(3).getImm();
833           unsigned SplatImm =
834               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
835           if (ShiftOp1 == ShiftOp2) {
836             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
837             if (MRI->hasOneNonDBGUse(ShiftRes)) {
838               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
839               LLVM_DEBUG(DefMI->dump());
840               ToErase = DefMI;
841             }
842             Simplified = true;
843             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
844                               << " to " << NewElem << " in instruction: ");
845             LLVM_DEBUG(MI.dump());
846             addRegToUpdate(MI.getOperand(OpNo).getReg());
847             addRegToUpdate(ShiftOp1);
848             MI.getOperand(OpNo).setReg(ShiftOp1);
849             MI.getOperand(2).setImm(NewElem);
850           }
851         }
852         break;
853       }
854       case PPC::XVCVDPSP: {
855         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
856         Register TrueReg =
857           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
858         if (!TrueReg.isVirtual())
859           break;
860         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
861 
862         // This can occur when building a vector of single precision or integer
863         // values.
864         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
865           Register DefsReg1 =
866             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
867           Register DefsReg2 =
868             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
869           if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual())
870             break;
871           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
872           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
873 
874           if (!P1 || !P2)
875             break;
876 
877           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
878           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
879           // the FRSP/XSRSP.
880           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
881             unsigned Opc = RoundInstr->getOpcode();
882             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
883                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
884               Simplified = true;
885               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
886               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
887               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
888               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
889                 if (Use.getOperand(i).isReg() &&
890                     Use.getOperand(i).getReg() == FRSPDefines)
891                   Use.getOperand(i).setReg(ConvReg1);
892               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
893               LLVM_DEBUG(RoundInstr->dump());
894               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
895               LLVM_DEBUG(MI.dump());
896               LLVM_DEBUG(dbgs() << "Through instruction:\n");
897               LLVM_DEBUG(DefMI->dump());
898               RoundInstr->eraseFromParent();
899               addRegToUpdate(ConvReg1);
900             }
901           };
902 
903           // If the input to XVCVDPSP is a vector that was built (even
904           // partially) out of FRSP's, the FRSP(s) can safely be removed
905           // since this instruction performs the same operation.
906           if (P1 != P2) {
907             removeFRSPIfPossible(P1);
908             removeFRSPIfPossible(P2);
909             break;
910           }
911           removeFRSPIfPossible(P1);
912         }
913         break;
914       }
915       case PPC::EXTSH:
916       case PPC::EXTSH8:
917       case PPC::EXTSH8_32_64: {
918         if (!EnableSExtElimination) break;
919         Register NarrowReg = MI.getOperand(1).getReg();
920         if (!NarrowReg.isVirtual())
921           break;
922 
923         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
924         unsigned SrcOpcode = SrcMI->getOpcode();
925         // If we've used a zero-extending load that we will sign-extend,
926         // just do a sign-extending load.
927         if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
928           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
929             break;
930           // Determine the new opcode. We need to make sure that if the original
931           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
932           // Likewise if the source is X-Form the new opcode should also be
933           // X-Form.
934           unsigned Opc = PPC::LHA;
935           bool SourceIsXForm = SrcOpcode == PPC::LHZX;
936           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
937             MI.getOpcode() == PPC::EXTSH8_32_64;
938 
939           if (SourceIsXForm && MIIs64Bit)
940             Opc = PPC::LHAX8;
941           else if (SourceIsXForm && !MIIs64Bit)
942             Opc = PPC::LHAX;
943           else if (MIIs64Bit)
944             Opc = PPC::LHA8;
945 
946           addRegToUpdate(NarrowReg);
947           addRegToUpdate(MI.getOperand(0).getReg());
948 
949           // We are removing a definition of NarrowReg which will cause
950           // problems in AliveBlocks. Add an implicit def that will be
951           // removed so that AliveBlocks are updated correctly.
952           addDummyDef(MBB, &MI, NarrowReg);
953           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
954           LLVM_DEBUG(SrcMI->dump());
955           LLVM_DEBUG(dbgs() << "and sign-extension\n");
956           LLVM_DEBUG(MI.dump());
957           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
958           SrcMI->setDesc(TII->get(Opc));
959           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
960           ToErase = &MI;
961           Simplified = true;
962           NumEliminatedSExt++;
963         }
964         break;
965       }
966       case PPC::EXTSW:
967       case PPC::EXTSW_32:
968       case PPC::EXTSW_32_64: {
969         if (!EnableSExtElimination) break;
970         Register NarrowReg = MI.getOperand(1).getReg();
971         if (!NarrowReg.isVirtual())
972           break;
973 
974         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
975         unsigned SrcOpcode = SrcMI->getOpcode();
976         // If we've used a zero-extending load that we will sign-extend,
977         // just do a sign-extending load.
978         if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
979           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
980             break;
981 
982           // The transformation from a zero-extending load to a sign-extending
983           // load is only legal when the displacement is a multiple of 4.
984           // If the displacement is not at least 4 byte aligned, don't perform
985           // the transformation.
986           bool IsWordAligned = false;
987           if (SrcMI->getOperand(1).isGlobal()) {
988             const GlobalObject *GO =
989                 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal());
990             if (GO && GO->getAlign() && *GO->getAlign() >= 4 &&
991                 (SrcMI->getOperand(1).getOffset() % 4 == 0))
992               IsWordAligned = true;
993           } else if (SrcMI->getOperand(1).isImm()) {
994             int64_t Value = SrcMI->getOperand(1).getImm();
995             if (Value % 4 == 0)
996               IsWordAligned = true;
997           }
998 
999           // Determine the new opcode. We need to make sure that if the original
1000           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
1001           // Likewise if the source is X-Form the new opcode should also be
1002           // X-Form.
1003           unsigned Opc = PPC::LWA_32;
1004           bool SourceIsXForm = SrcOpcode == PPC::LWZX;
1005           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
1006             MI.getOpcode() == PPC::EXTSW_32_64;
1007 
1008           if (SourceIsXForm && MIIs64Bit)
1009             Opc = PPC::LWAX;
1010           else if (SourceIsXForm && !MIIs64Bit)
1011             Opc = PPC::LWAX_32;
1012           else if (MIIs64Bit)
1013             Opc = PPC::LWA;
1014 
1015           if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
1016             break;
1017 
1018           addRegToUpdate(NarrowReg);
1019           addRegToUpdate(MI.getOperand(0).getReg());
1020 
1021           // We are removing a definition of NarrowReg which will cause
1022           // problems in AliveBlocks. Add an implicit def that will be
1023           // removed so that AliveBlocks are updated correctly.
1024           addDummyDef(MBB, &MI, NarrowReg);
1025           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
1026           LLVM_DEBUG(SrcMI->dump());
1027           LLVM_DEBUG(dbgs() << "and sign-extension\n");
1028           LLVM_DEBUG(MI.dump());
1029           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
1030           SrcMI->setDesc(TII->get(Opc));
1031           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
1032           ToErase = &MI;
1033           Simplified = true;
1034           NumEliminatedSExt++;
1035         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
1036                    TII->isSignExtended(NarrowReg, MRI)) {
1037           // We can eliminate EXTSW if the input is known to be already
1038           // sign-extended.
1039           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
1040           Register TmpReg =
1041               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1042           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
1043                   TmpReg);
1044           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
1045                   MI.getOperand(0).getReg())
1046               .addReg(TmpReg)
1047               .addReg(NarrowReg)
1048               .addImm(PPC::sub_32);
1049           ToErase = &MI;
1050           Simplified = true;
1051           NumEliminatedSExt++;
1052         }
1053         break;
1054       }
1055       case PPC::RLDICL: {
1056         // We can eliminate RLDICL (e.g. for zero-extension)
1057         // if all bits to clear are already zero in the input.
1058         // This code assume following code sequence for zero-extension.
1059         //   %6 = COPY %5:sub_32; (optional)
1060         //   %8 = IMPLICIT_DEF;
1061         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
1062         if (!EnableZExtElimination) break;
1063 
1064         if (MI.getOperand(2).getImm() != 0)
1065           break;
1066 
1067         Register SrcReg = MI.getOperand(1).getReg();
1068         if (!SrcReg.isVirtual())
1069           break;
1070 
1071         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1072         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
1073               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
1074           break;
1075 
1076         MachineInstr *ImpDefMI, *SubRegMI;
1077         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
1078         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
1079         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
1080 
1081         SrcMI = SubRegMI;
1082         if (SubRegMI->getOpcode() == PPC::COPY) {
1083           Register CopyReg = SubRegMI->getOperand(1).getReg();
1084           if (CopyReg.isVirtual())
1085             SrcMI = MRI->getVRegDef(CopyReg);
1086         }
1087         if (!SrcMI->getOperand(0).isReg())
1088           break;
1089 
1090         unsigned KnownZeroCount =
1091             getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI);
1092         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
1093           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
1094           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1095                   MI.getOperand(0).getReg())
1096               .addReg(SrcReg);
1097           addRegToUpdate(SrcReg);
1098           ToErase = &MI;
1099           Simplified = true;
1100           NumEliminatedZExt++;
1101         }
1102         break;
1103       }
1104 
1105       // TODO: Any instruction that has an immediate form fed only by a PHI
1106       // whose operands are all load immediate can be folded away. We currently
1107       // do this for ADD instructions, but should expand it to arithmetic and
1108       // binary instructions with immediate forms in the future.
1109       case PPC::ADD4:
1110       case PPC::ADD8: {
1111         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
1112           assert(PhiOp && "Invalid Operand!");
1113           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1114 
1115           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
1116                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
1117         };
1118 
1119         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
1120                                             MachineOperand *PhiOp) {
1121           assert(PhiOp && "Invalid Operand!");
1122           assert(DominatorOp && "Invalid Operand!");
1123           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1124           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
1125 
1126           // Note: the vregs only show up at odd indices position of PHI Node,
1127           // the even indices position save the BB info.
1128           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1129             MachineInstr *LiMI =
1130                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1131             if (!LiMI ||
1132                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
1133                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
1134                 !MDT->dominates(DefDomMI, LiMI))
1135               return false;
1136           }
1137 
1138           return true;
1139         };
1140 
1141         MachineOperand Op1 = MI.getOperand(1);
1142         MachineOperand Op2 = MI.getOperand(2);
1143         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
1144           std::swap(Op1, Op2);
1145         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
1146           break; // We don't have an ADD fed by LI's that can be transformed
1147 
1148         // Now we know that Op1 is the PHI node and Op2 is the dominator
1149         Register DominatorReg = Op2.getReg();
1150 
1151         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
1152                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
1153                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
1154         MRI->setRegClass(DominatorReg, TRC);
1155 
1156         // replace LIs with ADDIs
1157         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
1158         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1159           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1160           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1161           LLVM_DEBUG(LiMI->dump());
1162 
1163           // There could be repeated registers in the PHI, e.g: %1 =
1164           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1165           // already replaced the def instruction, skip.
1166           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1167             continue;
1168 
1169           assert((LiMI->getOpcode() == PPC::LI ||
1170                   LiMI->getOpcode() == PPC::LI8) &&
1171                  "Invalid Opcode!");
1172           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
1173           LiMI->removeOperand(1);                    // remove the imm of LI
1174           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1175                                                               : PPC::ADDI8));
1176           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1177               .addReg(DominatorReg)
1178               .addImm(LiImm); // restore the imm of LI
1179           LLVM_DEBUG(LiMI->dump());
1180         }
1181 
1182         // Replace ADD with COPY
1183         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1184         LLVM_DEBUG(MI.dump());
1185         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1186                 MI.getOperand(0).getReg())
1187             .add(Op1);
1188         addRegToUpdate(Op1.getReg());
1189         addRegToUpdate(Op2.getReg());
1190         ToErase = &MI;
1191         Simplified = true;
1192         NumOptADDLIs++;
1193         break;
1194       }
1195       case PPC::RLDICR: {
1196         Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) ||
1197                       combineSEXTAndSHL(MI, ToErase);
1198         break;
1199       }
1200       case PPC::ANDI_rec:
1201       case PPC::ANDI8_rec:
1202       case PPC::ANDIS_rec:
1203       case PPC::ANDIS8_rec: {
1204         Register TrueReg =
1205             TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
1206         if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg))
1207           break;
1208 
1209         MachineInstr *SrcMI = MRI->getVRegDef(TrueReg);
1210         if (!SrcMI)
1211           break;
1212 
1213         unsigned SrcOpCode = SrcMI->getOpcode();
1214         if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR)
1215           break;
1216 
1217         uint64_t AndImm = MI.getOperand(2).getImm();
1218         if (MI.getOpcode() == PPC::ANDIS_rec ||
1219             MI.getOpcode() == PPC::ANDIS8_rec)
1220           AndImm <<= 16;
1221         uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm);
1222         uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm);
1223         uint64_t ImmSrc = SrcMI->getOperand(3).getImm();
1224 
1225         // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0`
1226         // if all bits to AND are already zero in the input.
1227         bool PatternResultZero =
1228             (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) ||
1229             (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc);
1230 
1231         // We can eliminate RLDICL/RLDICR if it's used to clear bits and all
1232         // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec.
1233         bool PatternRemoveRotate =
1234             SrcMI->getOperand(2).getImm() == 0 &&
1235             ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) ||
1236              (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63)));
1237 
1238         if (!PatternResultZero && !PatternRemoveRotate)
1239           break;
1240 
1241         LLVM_DEBUG(dbgs() << "Combining pair: ");
1242         LLVM_DEBUG(SrcMI->dump());
1243         LLVM_DEBUG(MI.dump());
1244         if (PatternResultZero)
1245           MI.getOperand(2).setImm(0);
1246         MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1247         LLVM_DEBUG(dbgs() << "To: ");
1248         LLVM_DEBUG(MI.dump());
1249         addRegToUpdate(MI.getOperand(1).getReg());
1250         addRegToUpdate(SrcMI->getOperand(0).getReg());
1251         Simplified = true;
1252         break;
1253       }
1254       case PPC::RLWINM:
1255       case PPC::RLWINM_rec:
1256       case PPC::RLWINM8:
1257       case PPC::RLWINM8_rec: {
1258         // We might replace operand 1 of the instruction which will
1259         // require we recompute kill flags for it.
1260         Register OrigOp1Reg = MI.getOperand(1).isReg()
1261                                   ? MI.getOperand(1).getReg()
1262                                   : PPC::NoRegister;
1263         Simplified = TII->combineRLWINM(MI, &ToErase);
1264         if (Simplified) {
1265           addRegToUpdate(OrigOp1Reg);
1266           if (MI.getOperand(1).isReg())
1267             addRegToUpdate(MI.getOperand(1).getReg());
1268           ++NumRotatesCollapsed;
1269         }
1270         break;
1271       }
1272       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1273       // always trap, we will delete the node if it will never trap.
1274       case PPC::TDI:
1275       case PPC::TWI:
1276       case PPC::TD:
1277       case PPC::TW: {
1278         if (!EnableTrapOptimization) break;
1279         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1280         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1281         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1282         // We can only do the optimization if we can get immediates
1283         // from both operands
1284         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1285                         LiMI1->getOpcode() == PPC::LI8)))
1286           break;
1287         if (!IsOperand2Immediate &&
1288             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1289                         LiMI2->getOpcode() == PPC::LI8)))
1290           break;
1291 
1292         auto ImmOperand0 = MI.getOperand(0).getImm();
1293         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1294         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1295                                                : LiMI2->getOperand(1).getImm();
1296 
1297         // We will replace the MI with an unconditional trap if it will always
1298         // trap.
1299         if ((ImmOperand0 == 31) ||
1300             ((ImmOperand0 & 0x10) &&
1301              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1302             ((ImmOperand0 & 0x8) &&
1303              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1304             ((ImmOperand0 & 0x2) &&
1305              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1306             ((ImmOperand0 & 0x1) &&
1307              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1308             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1309           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1310           TrapOpt = true;
1311         }
1312         // We will delete the MI if it will never trap.
1313         ToErase = &MI;
1314         Simplified = true;
1315         break;
1316       }
1317       }
1318     }
1319 
1320     // If the last instruction was marked for elimination,
1321     // remove it now.
1322     if (ToErase) {
1323       recomputeLVForDyingInstr();
1324       ToErase->eraseFromParent();
1325       ToErase = nullptr;
1326     }
1327     // Reset TrapOpt to false at the end of the basic block.
1328     if (EnableTrapOptimization)
1329       TrapOpt = false;
1330   }
1331 
1332   // Eliminate all the TOC save instructions which are redundant.
1333   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1334   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1335   if (FI->mustSaveTOC())
1336     NumTOCSavesInPrologue++;
1337 
1338   // We try to eliminate redundant compare instruction.
1339   Simplified |= eliminateRedundantCompare();
1340 
1341   // If we have made any modifications and added any registers to the set of
1342   // registers for which we need to update the kill flags, do so by recomputing
1343   // LiveVariables for those registers.
1344   for (Register Reg : RegsToUpdate) {
1345     if (!MRI->reg_empty(Reg))
1346       LV->recomputeForSingleDefVirtReg(Reg);
1347   }
1348   return Simplified;
1349 }
1350 
1351 // helper functions for eliminateRedundantCompare
1352 static bool isEqOrNe(MachineInstr *BI) {
1353   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1354   unsigned PredCond = PPC::getPredicateCondition(Pred);
1355   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1356 }
1357 
1358 static bool isSupportedCmpOp(unsigned opCode) {
1359   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1360           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1361           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1362           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1363 }
1364 
1365 static bool is64bitCmpOp(unsigned opCode) {
1366   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1367           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1368 }
1369 
1370 static bool isSignedCmpOp(unsigned opCode) {
1371   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1372           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1373 }
1374 
1375 static unsigned getSignedCmpOpCode(unsigned opCode) {
1376   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1377   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1378   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1379   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1380   return opCode;
1381 }
1382 
1383 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1384 // (LT x) to (LE x-1)
1385 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1386   uint64_t Imm = CMPI->getOperand(2).getImm();
1387   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1388   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1389     return 0;
1390 
1391   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1392   unsigned PredCond = PPC::getPredicateCondition(Pred);
1393   unsigned PredHint = PPC::getPredicateHint(Pred);
1394   if (PredCond == PPC::PRED_GE)
1395     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1396   if (PredCond == PPC::PRED_LT)
1397     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1398 
1399   return 0;
1400 }
1401 
1402 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1403 // (LE x) to (LT x+1)
1404 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1405   uint64_t Imm = CMPI->getOperand(2).getImm();
1406   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1407   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1408     return 0;
1409 
1410   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1411   unsigned PredCond = PPC::getPredicateCondition(Pred);
1412   unsigned PredHint = PPC::getPredicateHint(Pred);
1413   if (PredCond == PPC::PRED_GT)
1414     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1415   if (PredCond == PPC::PRED_LE)
1416     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1417 
1418   return 0;
1419 }
1420 
1421 // This takes a Phi node and returns a register value for the specified BB.
1422 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1423                                        MachineBasicBlock *MBB) {
1424   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1425     MachineOperand &MO = Phi->getOperand(I);
1426     if (MO.getMBB() == MBB)
1427       return Phi->getOperand(I-1).getReg();
1428   }
1429   llvm_unreachable("invalid src basic block for this Phi node\n");
1430   return 0;
1431 }
1432 
1433 // This function tracks the source of the register through register copy.
1434 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1435 // assuming that the control comes from BB1 into BB2.
1436 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1437                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1438   unsigned SrcReg = Reg;
1439   while (true) {
1440     unsigned NextReg = SrcReg;
1441     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1442     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1443       NextReg = getIncomingRegForBlock(Inst, BB1);
1444       // We track through PHI only once to avoid infinite loop.
1445       BB1 = nullptr;
1446     }
1447     else if (Inst->isFullCopy())
1448       NextReg = Inst->getOperand(1).getReg();
1449     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1450       break;
1451     SrcReg = NextReg;
1452   }
1453   return SrcReg;
1454 }
1455 
1456 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1457                                           MachineBasicBlock *&PredMBB,
1458                                           MachineBasicBlock *&MBBtoMoveCmp,
1459                                           MachineRegisterInfo *MRI) {
1460 
1461   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1462     auto BII = BB.getFirstInstrTerminator();
1463     // We optimize BBs ending with a conditional branch.
1464     // We check only for BCC here, not BCCLR, because BCCLR
1465     // will be formed only later in the pipeline.
1466     if (BB.succ_size() == 2 &&
1467         BII != BB.instr_end() &&
1468         (*BII).getOpcode() == PPC::BCC &&
1469         (*BII).getOperand(1).isReg()) {
1470       // We optimize only if the condition code is used only by one BCC.
1471       Register CndReg = (*BII).getOperand(1).getReg();
1472       if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg))
1473         return false;
1474 
1475       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1476       // We assume compare and branch are in the same BB for ease of analysis.
1477       if (CMPI->getParent() != &BB)
1478         return false;
1479 
1480       // We skip this BB if a physical register is used in comparison.
1481       for (MachineOperand &MO : CMPI->operands())
1482         if (MO.isReg() && !MO.getReg().isVirtual())
1483           return false;
1484 
1485       return true;
1486     }
1487     return false;
1488   };
1489 
1490   // If this BB has more than one successor, we can create a new BB and
1491   // move the compare instruction in the new BB.
1492   // So far, we do not move compare instruction to a BB having multiple
1493   // successors to avoid potentially increasing code size.
1494   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1495     return BB.succ_size() == 1;
1496   };
1497 
1498   if (!isEligibleBB(MBB))
1499     return false;
1500 
1501   unsigned NumPredBBs = MBB.pred_size();
1502   if (NumPredBBs == 1) {
1503     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1504     if (isEligibleBB(*TmpMBB)) {
1505       PredMBB = TmpMBB;
1506       MBBtoMoveCmp = nullptr;
1507       return true;
1508     }
1509   }
1510   else if (NumPredBBs == 2) {
1511     // We check for partially redundant case.
1512     // So far, we support cases with only two predecessors
1513     // to avoid increasing the number of instructions.
1514     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1515     MachineBasicBlock *Pred1MBB = *PI;
1516     MachineBasicBlock *Pred2MBB = *(PI+1);
1517 
1518     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1519       // We assume Pred1MBB is the BB containing the compare to be merged and
1520       // Pred2MBB is the BB to which we will append a compare instruction.
1521       // Proceed as is if Pred1MBB is different from MBB.
1522     }
1523     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1524       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1525       std::swap(Pred1MBB, Pred2MBB);
1526     }
1527     else return false;
1528 
1529     if (Pred1MBB == &MBB)
1530       return false;
1531 
1532     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1533     // We cannot move the compare instruction if operands are not available
1534     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1535     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1536     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1537     for (int I = 1; I <= 2; I++)
1538       if (CMPI->getOperand(I).isReg()) {
1539         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1540         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1541           return false;
1542       }
1543 
1544     PredMBB = Pred1MBB;
1545     MBBtoMoveCmp = Pred2MBB;
1546     return true;
1547   }
1548 
1549   return false;
1550 }
1551 
1552 // This function will iterate over the input map containing a pair of TOC save
1553 // instruction and a flag. The flag will be set to false if the TOC save is
1554 // proven redundant. This function will erase from the basic block all the TOC
1555 // saves marked as redundant.
1556 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1557     std::map<MachineInstr *, bool> &TOCSaves) {
1558   bool Simplified = false;
1559   int NumKept = 0;
1560   for (auto TOCSave : TOCSaves) {
1561     if (!TOCSave.second) {
1562       TOCSave.first->eraseFromParent();
1563       RemoveTOCSave++;
1564       Simplified = true;
1565     } else {
1566       NumKept++;
1567     }
1568   }
1569 
1570   if (NumKept > 1)
1571     MultiTOCSaves++;
1572 
1573   return Simplified;
1574 }
1575 
1576 // If multiple conditional branches are executed based on the (essentially)
1577 // same comparison, we merge compare instructions into one and make multiple
1578 // conditional branches on this comparison.
1579 // For example,
1580 //   if (a == 0) { ... }
1581 //   else if (a < 0) { ... }
1582 // can be executed by one compare and two conditional branches instead of
1583 // two pairs of a compare and a conditional branch.
1584 //
1585 // This method merges two compare instructions in two MBBs and modifies the
1586 // compare and conditional branch instructions if needed.
1587 // For the above example, the input for this pass looks like:
1588 //   cmplwi r3, 0
1589 //   beq    0, .LBB0_3
1590 //   cmpwi  r3, -1
1591 //   bgt    0, .LBB0_4
1592 // So, before merging two compares, we need to modify these instructions as
1593 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1594 //   beq    0, .LBB0_3
1595 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1596 //   bge    0, .LBB0_4
1597 
1598 bool PPCMIPeephole::eliminateRedundantCompare() {
1599   bool Simplified = false;
1600 
1601   for (MachineBasicBlock &MBB2 : *MF) {
1602     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1603 
1604     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1605     // as an optimization target if
1606     // - both MBBs end with a conditional branch,
1607     // - MBB1 is the only predecessor of MBB2, and
1608     // - compare does not take a physical register as a operand in both MBBs.
1609     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1610     //
1611     // As partially redundant case, we additionally handle if MBB2 has one
1612     // additional predecessor, which has only one successor (MBB2).
1613     // In this case, we move the compare instruction originally in MBB2 into
1614     // MBBtoMoveCmp. This partially redundant case is typically appear by
1615     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1616     //
1617     // Overview of CFG of related basic blocks
1618     // Fully redundant case        Partially redundant case
1619     //   --------                   ----------------  --------
1620     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1621     //   --------                   ----------------  --------
1622     //      |    \                     (w/ 1 succ) \     |    \
1623     //      |     \                                 \    |     \
1624     //      |                                        \   |
1625     //   --------                                     --------
1626     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1627     //   -------- and 2 succ)                         -------- and 2 succ)
1628     //      |    \                                       |    \
1629     //      |     \                                      |     \
1630     //
1631     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1632       continue;
1633 
1634     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1635     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1636 
1637     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1638     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1639     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1640 
1641     // We cannot optimize an unsupported compare opcode or
1642     // a mix of 32-bit and 64-bit comparisons
1643     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1644         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1645         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1646       continue;
1647 
1648     unsigned NewOpCode = 0;
1649     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1650     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1651     bool SwapOperands = false;
1652 
1653     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1654       // Typically, unsigned comparison is used for equality check, but
1655       // we replace it with a signed comparison if the comparison
1656       // to be merged is a signed comparison.
1657       // In other cases of opcode mismatch, we cannot optimize this.
1658 
1659       // We cannot change opcode when comparing against an immediate
1660       // if the most significant bit of the immediate is one
1661       // due to the difference in sign extension.
1662       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1663         if (!I->getOperand(2).isImm())
1664           return false;
1665         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1666         return Imm < 0;
1667       };
1668 
1669       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1670           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1671         NewOpCode = CMPI1->getOpcode();
1672       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1673                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1674         NewOpCode = CMPI2->getOpcode();
1675       else continue;
1676     }
1677 
1678     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1679       // In case of comparisons between two registers, these two registers
1680       // must be same to merge two comparisons.
1681       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1682                                          nullptr, nullptr, MRI);
1683       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1684                                          nullptr, nullptr, MRI);
1685       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1686                                          MBB1, &MBB2, MRI);
1687       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1688                                          MBB1, &MBB2, MRI);
1689 
1690       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1691         // Same pair of registers in the same order; ready to merge as is.
1692       }
1693       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1694         // Same pair of registers in different order.
1695         // We reverse the predicate to merge compare instructions.
1696         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1697         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1698         // In case of partial redundancy, we need to swap operands
1699         // in another compare instruction.
1700         SwapOperands = true;
1701       }
1702       else continue;
1703     }
1704     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1705       // In case of comparisons between a register and an immediate,
1706       // the operand register must be same for two compare instructions.
1707       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1708                                          nullptr, nullptr, MRI);
1709       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1710                                          MBB1, &MBB2, MRI);
1711       if (Cmp1Operand1 != Cmp2Operand1)
1712         continue;
1713 
1714       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1715       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1716 
1717       // If immediate are not same, we try to adjust by changing predicate;
1718       // e.g. GT imm means GE (imm+1).
1719       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1720         int Diff = Imm1 - Imm2;
1721         if (Diff < -2 || Diff > 2)
1722           continue;
1723 
1724         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1725         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1726         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1727         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1728         if (Diff == 2) {
1729           if (PredToInc2 && PredToDec1) {
1730             NewPredicate2 = PredToInc2;
1731             NewPredicate1 = PredToDec1;
1732             NewImm2++;
1733             NewImm1--;
1734           }
1735         }
1736         else if (Diff == 1) {
1737           if (PredToInc2) {
1738             NewImm2++;
1739             NewPredicate2 = PredToInc2;
1740           }
1741           else if (PredToDec1) {
1742             NewImm1--;
1743             NewPredicate1 = PredToDec1;
1744           }
1745         }
1746         else if (Diff == -1) {
1747           if (PredToDec2) {
1748             NewImm2--;
1749             NewPredicate2 = PredToDec2;
1750           }
1751           else if (PredToInc1) {
1752             NewImm1++;
1753             NewPredicate1 = PredToInc1;
1754           }
1755         }
1756         else if (Diff == -2) {
1757           if (PredToDec2 && PredToInc1) {
1758             NewPredicate2 = PredToDec2;
1759             NewPredicate1 = PredToInc1;
1760             NewImm2--;
1761             NewImm1++;
1762           }
1763         }
1764       }
1765 
1766       // We cannot merge two compares if the immediates are not same.
1767       if (NewImm2 != NewImm1)
1768         continue;
1769     }
1770 
1771     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1772     LLVM_DEBUG(CMPI1->dump());
1773     LLVM_DEBUG(BI1->dump());
1774     LLVM_DEBUG(CMPI2->dump());
1775     LLVM_DEBUG(BI2->dump());
1776     for (const MachineOperand &MO : CMPI1->operands())
1777       if (MO.isReg())
1778         addRegToUpdate(MO.getReg());
1779     for (const MachineOperand &MO : CMPI2->operands())
1780       if (MO.isReg())
1781         addRegToUpdate(MO.getReg());
1782 
1783     // We adjust opcode, predicates and immediate as we determined above.
1784     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1785       CMPI1->setDesc(TII->get(NewOpCode));
1786     }
1787     if (NewPredicate1) {
1788       BI1->getOperand(0).setImm(NewPredicate1);
1789     }
1790     if (NewPredicate2) {
1791       BI2->getOperand(0).setImm(NewPredicate2);
1792     }
1793     if (NewImm1 != Imm1) {
1794       CMPI1->getOperand(2).setImm(NewImm1);
1795     }
1796 
1797     if (IsPartiallyRedundant) {
1798       // We touch up the compare instruction in MBB2 and move it to
1799       // a previous BB to handle partially redundant case.
1800       if (SwapOperands) {
1801         Register Op1 = CMPI2->getOperand(1).getReg();
1802         Register Op2 = CMPI2->getOperand(2).getReg();
1803         CMPI2->getOperand(1).setReg(Op2);
1804         CMPI2->getOperand(2).setReg(Op1);
1805       }
1806       if (NewImm2 != Imm2)
1807         CMPI2->getOperand(2).setImm(NewImm2);
1808 
1809       for (int I = 1; I <= 2; I++) {
1810         if (CMPI2->getOperand(I).isReg()) {
1811           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1812           if (Inst->getParent() != &MBB2)
1813             continue;
1814 
1815           assert(Inst->getOpcode() == PPC::PHI &&
1816                  "We cannot support if an operand comes from this BB.");
1817           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1818           CMPI2->getOperand(I).setReg(SrcReg);
1819           addRegToUpdate(SrcReg);
1820         }
1821       }
1822       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1823       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1824 
1825       DebugLoc DL = CMPI2->getDebugLoc();
1826       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1827       BuildMI(MBB2, MBB2.begin(), DL,
1828               TII->get(PPC::PHI), NewVReg)
1829         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1830         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1831       BI2->getOperand(1).setReg(NewVReg);
1832       addRegToUpdate(NewVReg);
1833     }
1834     else {
1835       // We finally eliminate compare instruction in MBB2.
1836       // We do not need to treat CMPI2 specially here in terms of re-computing
1837       // live variables even though it is being deleted because:
1838       // - It defines a register that has a single use (already checked in
1839       // eligibleForCompareElimination())
1840       // - The only user (BI2) is no longer using it so the register is dead (no
1841       // def, no uses)
1842       // - We do not attempt to recompute live variables for dead registers
1843       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1844       CMPI2->eraseFromParent();
1845     }
1846 
1847     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1848     LLVM_DEBUG(CMPI1->dump());
1849     LLVM_DEBUG(BI1->dump());
1850     LLVM_DEBUG(BI2->dump());
1851     if (IsPartiallyRedundant) {
1852       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1853                         << printMBBReference(*MBBtoMoveCmp)
1854                         << " to handle partial redundancy.\n");
1855       LLVM_DEBUG(CMPI2->dump());
1856     }
1857     Simplified = true;
1858   }
1859 
1860   return Simplified;
1861 }
1862 
1863 // We miss the opportunity to emit an RLDIC when lowering jump tables
1864 // since ISEL sees only a single basic block. When selecting, the clear
1865 // and shift left will be in different blocks.
1866 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
1867                                                     MachineInstr *&ToErase) {
1868   if (MI.getOpcode() != PPC::RLDICR)
1869     return false;
1870 
1871   Register SrcReg = MI.getOperand(1).getReg();
1872   if (!SrcReg.isVirtual())
1873     return false;
1874 
1875   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1876   if (SrcMI->getOpcode() != PPC::RLDICL)
1877     return false;
1878 
1879   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1880   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1881   MachineOperand MOpSHMI = MI.getOperand(2);
1882   MachineOperand MOpMEMI = MI.getOperand(3);
1883   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1884         MOpMEMI.isImm()))
1885     return false;
1886 
1887   uint64_t SHSrc = MOpSHSrc.getImm();
1888   uint64_t MBSrc = MOpMBSrc.getImm();
1889   uint64_t SHMI = MOpSHMI.getImm();
1890   uint64_t MEMI = MOpMEMI.getImm();
1891   uint64_t NewSH = SHSrc + SHMI;
1892   uint64_t NewMB = MBSrc - SHMI;
1893   if (NewMB > 63 || NewSH > 63)
1894     return false;
1895 
1896   // The bits cleared with RLDICL are [0, MBSrc).
1897   // The bits cleared with RLDICR are (MEMI, 63].
1898   // After the sequence, the bits cleared are:
1899   // [0, MBSrc-SHMI) and (MEMI, 63).
1900   //
1901   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1902   if ((63 - NewSH) != MEMI)
1903     return false;
1904 
1905   LLVM_DEBUG(dbgs() << "Converting pair: ");
1906   LLVM_DEBUG(SrcMI->dump());
1907   LLVM_DEBUG(MI.dump());
1908 
1909   MI.setDesc(TII->get(PPC::RLDIC));
1910   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1911   MI.getOperand(2).setImm(NewSH);
1912   MI.getOperand(3).setImm(NewMB);
1913   addRegToUpdate(MI.getOperand(1).getReg());
1914   addRegToUpdate(SrcMI->getOperand(0).getReg());
1915 
1916   LLVM_DEBUG(dbgs() << "To: ");
1917   LLVM_DEBUG(MI.dump());
1918   NumRotatesCollapsed++;
1919   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1920   if (MRI->use_nodbg_empty(SrcReg)) {
1921     assert(!SrcMI->hasImplicitDef() &&
1922            "Not expecting an implicit def with this instr.");
1923     ToErase = SrcMI;
1924   }
1925   return true;
1926 }
1927 
1928 // For case in LLVM IR
1929 // entry:
1930 //   %iconv = sext i32 %index to i64
1931 //   br i1 undef label %true, label %false
1932 // true:
1933 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1934 // ...
1935 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1936 // different BBs when conducting instruction selection. We can do a peephole
1937 // optimization to combine these two instructions into extswsli after
1938 // instruction selection.
1939 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1940                                       MachineInstr *&ToErase) {
1941   if (MI.getOpcode() != PPC::RLDICR)
1942     return false;
1943 
1944   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1945     return false;
1946 
1947   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1948 
1949   MachineOperand MOpSHMI = MI.getOperand(2);
1950   MachineOperand MOpMEMI = MI.getOperand(3);
1951   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1952     return false;
1953 
1954   uint64_t SHMI = MOpSHMI.getImm();
1955   uint64_t MEMI = MOpMEMI.getImm();
1956   if (SHMI + MEMI != 63)
1957     return false;
1958 
1959   Register SrcReg = MI.getOperand(1).getReg();
1960   if (!SrcReg.isVirtual())
1961     return false;
1962 
1963   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1964   if (SrcMI->getOpcode() != PPC::EXTSW &&
1965       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1966     return false;
1967 
1968   // If the register defined by extsw has more than one use, combination is not
1969   // needed.
1970   if (!MRI->hasOneNonDBGUse(SrcReg))
1971     return false;
1972 
1973   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1974   assert(SrcMI->getOperand(1).isReg() &&
1975          "EXTSW's second operand should be a register");
1976   if (!SrcMI->getOperand(1).getReg().isVirtual())
1977     return false;
1978 
1979   LLVM_DEBUG(dbgs() << "Combining pair: ");
1980   LLVM_DEBUG(SrcMI->dump());
1981   LLVM_DEBUG(MI.dump());
1982 
1983   MachineInstr *NewInstr =
1984       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1985               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1986                                                : TII->get(PPC::EXTSWSLI_32_64),
1987               MI.getOperand(0).getReg())
1988           .add(SrcMI->getOperand(1))
1989           .add(MOpSHMI);
1990   (void)NewInstr;
1991 
1992   LLVM_DEBUG(dbgs() << "TO: ");
1993   LLVM_DEBUG(NewInstr->dump());
1994   ++NumEXTSWAndSLDICombined;
1995   ToErase = &MI;
1996   // SrcMI, which is extsw, is of no use now, but we don't erase it here so we
1997   // can recompute its kill flags. We run DCE immediately after this pass
1998   // to clean up dead instructions such as this.
1999   addRegToUpdate(NewInstr->getOperand(1).getReg());
2000   addRegToUpdate(SrcMI->getOperand(0).getReg());
2001   return true;
2002 }
2003 
2004 } // end default namespace
2005 
2006 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
2007                       "PowerPC MI Peephole Optimization", false, false)
2008 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
2009 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
2010 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
2011 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
2012 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
2013                     "PowerPC MI Peephole Optimization", false, false)
2014 
2015 char PPCMIPeephole::ID = 0;
2016 FunctionPass*
2017 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
2018