xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision 884351547da27e76e14bef5fe20c3e3cb0e89acd)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 
61 static cl::opt<bool>
62 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
63                    cl::desc("Iterate to a fixed point when attempting to "
64                             "convert reg-reg instructions to reg-imm"));
65 
66 static cl::opt<bool>
67 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
68               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
69 
70 static cl::opt<bool>
71     EnableSExtElimination("ppc-eliminate-signext",
72                           cl::desc("enable elimination of sign-extensions"),
73                           cl::init(false), cl::Hidden);
74 
75 static cl::opt<bool>
76     EnableZExtElimination("ppc-eliminate-zeroext",
77                           cl::desc("enable elimination of zero-extensions"),
78                           cl::init(false), cl::Hidden);
79 
80 namespace {
81 
82 struct PPCMIPeephole : public MachineFunctionPass {
83 
84   static char ID;
85   const PPCInstrInfo *TII;
86   MachineFunction *MF;
87   MachineRegisterInfo *MRI;
88 
89   PPCMIPeephole() : MachineFunctionPass(ID) {
90     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
91   }
92 
93 private:
94   MachineDominatorTree *MDT;
95   MachinePostDominatorTree *MPDT;
96   MachineBlockFrequencyInfo *MBFI;
97   uint64_t EntryFreq;
98 
99   // Initialize class variables.
100   void initialize(MachineFunction &MFParm);
101 
102   // Perform peepholes.
103   bool simplifyCode(void);
104 
105   // Perform peepholes.
106   bool eliminateRedundantCompare(void);
107   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
108   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
109   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
110   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
111                       MachineInstr *MI);
112 
113 public:
114 
115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.addRequired<MachineDominatorTree>();
117     AU.addRequired<MachinePostDominatorTree>();
118     AU.addRequired<MachineBlockFrequencyInfo>();
119     AU.addPreserved<MachineDominatorTree>();
120     AU.addPreserved<MachinePostDominatorTree>();
121     AU.addPreserved<MachineBlockFrequencyInfo>();
122     MachineFunctionPass::getAnalysisUsage(AU);
123   }
124 
125   // Main entry point for this pass.
126   bool runOnMachineFunction(MachineFunction &MF) override {
127     if (skipFunction(MF.getFunction()))
128       return false;
129     initialize(MF);
130     return simplifyCode();
131   }
132 };
133 
134 // Initialize class variables.
135 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
136   MF = &MFParm;
137   MRI = &MF->getRegInfo();
138   MDT = &getAnalysis<MachineDominatorTree>();
139   MPDT = &getAnalysis<MachinePostDominatorTree>();
140   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
141   EntryFreq = MBFI->getEntryFreq();
142   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
143   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
144   LLVM_DEBUG(MF->dump());
145 }
146 
147 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
148                                       MachineRegisterInfo *MRI) {
149   assert(Op && "Invalid Operand!");
150   if (!Op->isReg())
151     return nullptr;
152 
153   Register Reg = Op->getReg();
154   if (!Register::isVirtualRegister(Reg))
155     return nullptr;
156 
157   return MRI->getVRegDef(Reg);
158 }
159 
160 // This function returns number of known zero bits in output of MI
161 // starting from the most significant bit.
162 static unsigned
163 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
164   unsigned Opcode = MI->getOpcode();
165   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
166       Opcode == PPC::RLDCL  || Opcode == PPC::RLDCLo)
167     return MI->getOperand(3).getImm();
168 
169   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
170        MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
171     return MI->getOperand(3).getImm();
172 
173   if ((Opcode == PPC::RLWINM  || Opcode == PPC::RLWINMo ||
174        Opcode == PPC::RLWNM   || Opcode == PPC::RLWNMo  ||
175        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
176        MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
177     return 32 + MI->getOperand(3).getImm();
178 
179   if (Opcode == PPC::ANDIo) {
180     uint16_t Imm = MI->getOperand(2).getImm();
181     return 48 + countLeadingZeros(Imm);
182   }
183 
184   if (Opcode == PPC::CNTLZW  || Opcode == PPC::CNTLZWo ||
185       Opcode == PPC::CNTTZW  || Opcode == PPC::CNTTZWo ||
186       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
187     // The result ranges from 0 to 32.
188     return 58;
189 
190   if (Opcode == PPC::CNTLZD  || Opcode == PPC::CNTLZDo ||
191       Opcode == PPC::CNTTZD  || Opcode == PPC::CNTTZDo)
192     // The result ranges from 0 to 64.
193     return 57;
194 
195   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
196       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
197       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
198       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
199     return 48;
200 
201   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
202       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
203       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
204       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
205     return 56;
206 
207   if (TII->isZeroExtended(*MI))
208     return 32;
209 
210   return 0;
211 }
212 
213 // This function maintains a map for the pairs <TOC Save Instr, Keep>
214 // Each time a new TOC save is encountered, it checks if any of the existing
215 // ones are dominated by the new one. If so, it marks the existing one as
216 // redundant by setting it's entry in the map as false. It then adds the new
217 // instruction to the map with either true or false depending on if any
218 // existing instructions dominated the new one.
219 void PPCMIPeephole::UpdateTOCSaves(
220   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
221   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
222   assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
223          "TOC-save removal only supported on ELFv2");
224   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
225 
226   MachineBasicBlock *Entry = &MF->front();
227   uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
228 
229   // If the block in which the TOC save resides is in a block that
230   // post-dominates Entry, or a block that is hotter than entry (keep in mind
231   // that early MachineLICM has already run so the TOC save won't be hoisted)
232   // we can just do the save in the prologue.
233   if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
234     FI->setMustSaveTOC(true);
235 
236   // If we are saving the TOC in the prologue, all the TOC saves can be removed
237   // from the code.
238   if (FI->mustSaveTOC()) {
239     for (auto &TOCSave : TOCSaves)
240       TOCSave.second = false;
241     // Add new instruction to map.
242     TOCSaves[MI] = false;
243     return;
244   }
245 
246   bool Keep = true;
247   for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
248     MachineInstr *CurrInst = It->first;
249     // If new instruction dominates an existing one, mark existing one as
250     // redundant.
251     if (It->second && MDT->dominates(MI, CurrInst))
252       It->second = false;
253     // Check if the new instruction is redundant.
254     if (MDT->dominates(CurrInst, MI)) {
255       Keep = false;
256       break;
257     }
258   }
259   // Add new instruction to map.
260   TOCSaves[MI] = Keep;
261 }
262 
263 // Perform peephole optimizations.
264 bool PPCMIPeephole::simplifyCode(void) {
265   bool Simplified = false;
266   MachineInstr* ToErase = nullptr;
267   std::map<MachineInstr *, bool> TOCSaves;
268   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
269   NumFunctionsEnteredInMIPeephole++;
270   if (ConvertRegReg) {
271     // Fixed-point conversion of reg/reg instructions fed by load-immediate
272     // into reg/imm instructions. FIXME: This is expensive, control it with
273     // an option.
274     bool SomethingChanged = false;
275     do {
276       NumFixedPointIterations++;
277       SomethingChanged = false;
278       for (MachineBasicBlock &MBB : *MF) {
279         for (MachineInstr &MI : MBB) {
280           if (MI.isDebugInstr())
281             continue;
282 
283           if (TII->convertToImmediateForm(MI)) {
284             // We don't erase anything in case the def has other uses. Let DCE
285             // remove it if it can be removed.
286             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
287             LLVM_DEBUG(MI.dump());
288             NumConvertedToImmediateForm++;
289             SomethingChanged = true;
290             Simplified = true;
291             continue;
292           }
293         }
294       }
295     } while (SomethingChanged && FixedPointRegToImm);
296   }
297 
298   for (MachineBasicBlock &MBB : *MF) {
299     for (MachineInstr &MI : MBB) {
300 
301       // If the previous instruction was marked for elimination,
302       // remove it now.
303       if (ToErase) {
304         ToErase->eraseFromParent();
305         ToErase = nullptr;
306       }
307 
308       // Ignore debug instructions.
309       if (MI.isDebugInstr())
310         continue;
311 
312       // Per-opcode peepholes.
313       switch (MI.getOpcode()) {
314 
315       default:
316         break;
317 
318       case PPC::STD: {
319         MachineFrameInfo &MFI = MF->getFrameInfo();
320         if (MFI.hasVarSizedObjects() ||
321             !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
322           break;
323         // When encountering a TOC save instruction, call UpdateTOCSaves
324         // to add it to the TOCSaves map and mark any existing TOC saves
325         // it dominates as redundant.
326         if (TII->isTOCSaveMI(MI))
327           UpdateTOCSaves(TOCSaves, &MI);
328         break;
329       }
330       case PPC::XXPERMDI: {
331         // Perform simplifications of 2x64 vector swaps and splats.
332         // A swap is identified by an immediate value of 2, and a splat
333         // is identified by an immediate value of 0 or 3.
334         int Immed = MI.getOperand(3).getImm();
335 
336         if (Immed != 1) {
337 
338           // For each of these simplifications, we need the two source
339           // regs to match.  Unfortunately, MachineCSE ignores COPY and
340           // SUBREG_TO_REG, so for example we can see
341           //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
342           // We have to look through chains of COPY and SUBREG_TO_REG
343           // to find the real source values for comparison.
344           unsigned TrueReg1 =
345             TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
346           unsigned TrueReg2 =
347             TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
348 
349           if (TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)) {
350             MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
351             unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
352 
353             // If this is a splat fed by a splatting load, the splat is
354             // redundant. Replace with a copy. This doesn't happen directly due
355             // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
356             // a load of a double to a vector of 64-bit integers.
357             auto isConversionOfLoadAndSplat = [=]() -> bool {
358               if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
359                 return false;
360               unsigned DefReg =
361                 TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
362               if (Register::isVirtualRegister(DefReg)) {
363                 MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
364                 if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
365                   return true;
366               }
367               return false;
368             };
369             if (DefMI && (Immed == 0 || Immed == 3)) {
370               if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
371                 LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
372                                      "to load-and-splat/copy: ");
373                 LLVM_DEBUG(MI.dump());
374                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
375                         MI.getOperand(0).getReg())
376                     .add(MI.getOperand(1));
377                 ToErase = &MI;
378                 Simplified = true;
379               }
380             }
381 
382             // If this is a splat or a swap fed by another splat, we
383             // can replace it with a copy.
384             if (DefOpc == PPC::XXPERMDI) {
385               unsigned DefReg1 = DefMI->getOperand(1).getReg();
386               unsigned DefReg2 = DefMI->getOperand(2).getReg();
387               unsigned DefImmed = DefMI->getOperand(3).getImm();
388 
389               // If the two inputs are not the same register, check to see if
390               // they originate from the same virtual register after only
391               // copy-like instructions.
392               if (DefReg1 != DefReg2) {
393                 unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
394                 unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
395 
396                 if (FeedReg1 != FeedReg2 ||
397                     Register::isPhysicalRegister(FeedReg1))
398                   break;
399               }
400 
401               if (DefImmed == 0 || DefImmed == 3) {
402                 LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
403                                      "to splat/copy: ");
404                 LLVM_DEBUG(MI.dump());
405                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
406                         MI.getOperand(0).getReg())
407                     .add(MI.getOperand(1));
408                 ToErase = &MI;
409                 Simplified = true;
410               }
411 
412               // If this is a splat fed by a swap, we can simplify modify
413               // the splat to splat the other value from the swap's input
414               // parameter.
415               else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
416                 LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
417                 LLVM_DEBUG(MI.dump());
418                 MI.getOperand(1).setReg(DefReg1);
419                 MI.getOperand(2).setReg(DefReg2);
420                 MI.getOperand(3).setImm(3 - Immed);
421                 Simplified = true;
422               }
423 
424               // If this is a swap fed by a swap, we can replace it
425               // with a copy from the first swap's input.
426               else if (Immed == 2 && DefImmed == 2) {
427                 LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
428                 LLVM_DEBUG(MI.dump());
429                 BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
430                         MI.getOperand(0).getReg())
431                     .add(DefMI->getOperand(1));
432                 ToErase = &MI;
433                 Simplified = true;
434               }
435             } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
436                        (DefMI->getOperand(2).getImm() == 0 ||
437                         DefMI->getOperand(2).getImm() == 3)) {
438               // Splat fed by another splat - switch the output of the first
439               // and remove the second.
440               DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
441               ToErase = &MI;
442               Simplified = true;
443               LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
444               LLVM_DEBUG(MI.dump());
445             }
446           }
447         }
448         break;
449       }
450       case PPC::VSPLTB:
451       case PPC::VSPLTH:
452       case PPC::XXSPLTW: {
453         unsigned MyOpcode = MI.getOpcode();
454         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
455         unsigned TrueReg =
456           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
457         if (!Register::isVirtualRegister(TrueReg))
458           break;
459         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
460         if (!DefMI)
461           break;
462         unsigned DefOpcode = DefMI->getOpcode();
463         auto isConvertOfSplat = [=]() -> bool {
464           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
465             return false;
466           Register ConvReg = DefMI->getOperand(1).getReg();
467           if (!Register::isVirtualRegister(ConvReg))
468             return false;
469           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
470           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
471             Splt->getOpcode() == PPC::XXSPLTW);
472         };
473         bool AlreadySplat = (MyOpcode == DefOpcode) ||
474           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
475           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
476           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
477           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
478           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
479           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
480         // If the instruction[s] that feed this splat have already splat
481         // the value, this splat is redundant.
482         if (AlreadySplat) {
483           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
484           LLVM_DEBUG(MI.dump());
485           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
486                   MI.getOperand(0).getReg())
487               .add(MI.getOperand(OpNo));
488           ToErase = &MI;
489           Simplified = true;
490         }
491         // Splat fed by a shift. Usually when we align value to splat into
492         // vector element zero.
493         if (DefOpcode == PPC::XXSLDWI) {
494           Register ShiftRes = DefMI->getOperand(0).getReg();
495           Register ShiftOp1 = DefMI->getOperand(1).getReg();
496           Register ShiftOp2 = DefMI->getOperand(2).getReg();
497           unsigned ShiftImm = DefMI->getOperand(3).getImm();
498           unsigned SplatImm = MI.getOperand(2).getImm();
499           if (ShiftOp1 == ShiftOp2) {
500             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
501             if (MRI->hasOneNonDBGUse(ShiftRes)) {
502               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
503               LLVM_DEBUG(DefMI->dump());
504               ToErase = DefMI;
505             }
506             Simplified = true;
507             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
508                               << " to " << NewElem << " in instruction: ");
509             LLVM_DEBUG(MI.dump());
510             MI.getOperand(1).setReg(ShiftOp1);
511             MI.getOperand(2).setImm(NewElem);
512           }
513         }
514         break;
515       }
516       case PPC::XVCVDPSP: {
517         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
518         unsigned TrueReg =
519           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
520         if (!Register::isVirtualRegister(TrueReg))
521           break;
522         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
523 
524         // This can occur when building a vector of single precision or integer
525         // values.
526         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
527           unsigned DefsReg1 =
528             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
529           unsigned DefsReg2 =
530             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
531           if (!Register::isVirtualRegister(DefsReg1) ||
532               !Register::isVirtualRegister(DefsReg2))
533             break;
534           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
535           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
536 
537           if (!P1 || !P2)
538             break;
539 
540           // Remove the passed FRSP instruction if it only feeds this MI and
541           // set any uses of that FRSP (in this MI) to the source of the FRSP.
542           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
543             if (RoundInstr->getOpcode() == PPC::FRSP &&
544                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
545               Simplified = true;
546               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
547               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
548               MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
549               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
550                 if (Use.getOperand(i).isReg() &&
551                     Use.getOperand(i).getReg() == FRSPDefines)
552                   Use.getOperand(i).setReg(ConvReg1);
553               LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
554               LLVM_DEBUG(RoundInstr->dump());
555               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
556               LLVM_DEBUG(MI.dump());
557               LLVM_DEBUG(dbgs() << "Through instruction:\n");
558               LLVM_DEBUG(DefMI->dump());
559               RoundInstr->eraseFromParent();
560             }
561           };
562 
563           // If the input to XVCVDPSP is a vector that was built (even
564           // partially) out of FRSP's, the FRSP(s) can safely be removed
565           // since this instruction performs the same operation.
566           if (P1 != P2) {
567             removeFRSPIfPossible(P1);
568             removeFRSPIfPossible(P2);
569             break;
570           }
571           removeFRSPIfPossible(P1);
572         }
573         break;
574       }
575       case PPC::EXTSH:
576       case PPC::EXTSH8:
577       case PPC::EXTSH8_32_64: {
578         if (!EnableSExtElimination) break;
579         Register NarrowReg = MI.getOperand(1).getReg();
580         if (!Register::isVirtualRegister(NarrowReg))
581           break;
582 
583         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
584         // If we've used a zero-extending load that we will sign-extend,
585         // just do a sign-extending load.
586         if (SrcMI->getOpcode() == PPC::LHZ ||
587             SrcMI->getOpcode() == PPC::LHZX) {
588           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
589             break;
590           auto is64Bit = [] (unsigned Opcode) {
591             return Opcode == PPC::EXTSH8;
592           };
593           auto isXForm = [] (unsigned Opcode) {
594             return Opcode == PPC::LHZX;
595           };
596           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
597             if (is64Bit)
598               if (isXForm) return PPC::LHAX8;
599               else         return PPC::LHA8;
600             else
601               if (isXForm) return PPC::LHAX;
602               else         return PPC::LHA;
603           };
604           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
605                                        isXForm(SrcMI->getOpcode()));
606           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
607           LLVM_DEBUG(SrcMI->dump());
608           LLVM_DEBUG(dbgs() << "and sign-extension\n");
609           LLVM_DEBUG(MI.dump());
610           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
611           SrcMI->setDesc(TII->get(Opc));
612           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
613           ToErase = &MI;
614           Simplified = true;
615           NumEliminatedSExt++;
616         }
617         break;
618       }
619       case PPC::EXTSW:
620       case PPC::EXTSW_32:
621       case PPC::EXTSW_32_64: {
622         if (!EnableSExtElimination) break;
623         Register NarrowReg = MI.getOperand(1).getReg();
624         if (!Register::isVirtualRegister(NarrowReg))
625           break;
626 
627         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
628         // If we've used a zero-extending load that we will sign-extend,
629         // just do a sign-extending load.
630         if (SrcMI->getOpcode() == PPC::LWZ ||
631             SrcMI->getOpcode() == PPC::LWZX) {
632           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
633             break;
634           auto is64Bit = [] (unsigned Opcode) {
635             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
636           };
637           auto isXForm = [] (unsigned Opcode) {
638             return Opcode == PPC::LWZX;
639           };
640           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
641             if (is64Bit)
642               if (isXForm) return PPC::LWAX;
643               else         return PPC::LWA;
644             else
645               if (isXForm) return PPC::LWAX_32;
646               else         return PPC::LWA_32;
647           };
648           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
649                                        isXForm(SrcMI->getOpcode()));
650           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
651           LLVM_DEBUG(SrcMI->dump());
652           LLVM_DEBUG(dbgs() << "and sign-extension\n");
653           LLVM_DEBUG(MI.dump());
654           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
655           SrcMI->setDesc(TII->get(Opc));
656           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
657           ToErase = &MI;
658           Simplified = true;
659           NumEliminatedSExt++;
660         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
661                    TII->isSignExtended(*SrcMI)) {
662           // We can eliminate EXTSW if the input is known to be already
663           // sign-extended.
664           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
665           Register TmpReg =
666               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
667           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
668                   TmpReg);
669           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
670                   MI.getOperand(0).getReg())
671               .addReg(TmpReg)
672               .addReg(NarrowReg)
673               .addImm(PPC::sub_32);
674           ToErase = &MI;
675           Simplified = true;
676           NumEliminatedSExt++;
677         }
678         break;
679       }
680       case PPC::RLDICL: {
681         // We can eliminate RLDICL (e.g. for zero-extension)
682         // if all bits to clear are already zero in the input.
683         // This code assume following code sequence for zero-extension.
684         //   %6 = COPY %5:sub_32; (optional)
685         //   %8 = IMPLICIT_DEF;
686         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
687         if (!EnableZExtElimination) break;
688 
689         if (MI.getOperand(2).getImm() != 0)
690           break;
691 
692         Register SrcReg = MI.getOperand(1).getReg();
693         if (!Register::isVirtualRegister(SrcReg))
694           break;
695 
696         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
697         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
698               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
699           break;
700 
701         MachineInstr *ImpDefMI, *SubRegMI;
702         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
703         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
704         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
705 
706         SrcMI = SubRegMI;
707         if (SubRegMI->getOpcode() == PPC::COPY) {
708           Register CopyReg = SubRegMI->getOperand(1).getReg();
709           if (Register::isVirtualRegister(CopyReg))
710             SrcMI = MRI->getVRegDef(CopyReg);
711         }
712 
713         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
714         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
715           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
716           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
717                   MI.getOperand(0).getReg())
718               .addReg(SrcReg);
719           ToErase = &MI;
720           Simplified = true;
721           NumEliminatedZExt++;
722         }
723         break;
724       }
725 
726       // TODO: Any instruction that has an immediate form fed only by a PHI
727       // whose operands are all load immediate can be folded away. We currently
728       // do this for ADD instructions, but should expand it to arithmetic and
729       // binary instructions with immediate forms in the future.
730       case PPC::ADD4:
731       case PPC::ADD8: {
732         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
733           assert(PhiOp && "Invalid Operand!");
734           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
735 
736           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
737                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
738         };
739 
740         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
741                                             MachineOperand *PhiOp) {
742           assert(PhiOp && "Invalid Operand!");
743           assert(DominatorOp && "Invalid Operand!");
744           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
745           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
746 
747           // Note: the vregs only show up at odd indices position of PHI Node,
748           // the even indices position save the BB info.
749           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
750             MachineInstr *LiMI =
751                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
752             if (!LiMI ||
753                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
754                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
755                 !MDT->dominates(DefDomMI, LiMI))
756               return false;
757           }
758 
759           return true;
760         };
761 
762         MachineOperand Op1 = MI.getOperand(1);
763         MachineOperand Op2 = MI.getOperand(2);
764         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
765           std::swap(Op1, Op2);
766         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
767           break; // We don't have an ADD fed by LI's that can be transformed
768 
769         // Now we know that Op1 is the PHI node and Op2 is the dominator
770         Register DominatorReg = Op2.getReg();
771 
772         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
773                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
774                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
775         MRI->setRegClass(DominatorReg, TRC);
776 
777         // replace LIs with ADDIs
778         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
779         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
780           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
781           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
782           LLVM_DEBUG(LiMI->dump());
783 
784           // There could be repeated registers in the PHI, e.g: %1 =
785           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
786           // already replaced the def instruction, skip.
787           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
788             continue;
789 
790           assert((LiMI->getOpcode() == PPC::LI ||
791                   LiMI->getOpcode() == PPC::LI8) &&
792                  "Invalid Opcode!");
793           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
794           LiMI->RemoveOperand(1);                    // remove the imm of LI
795           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
796                                                               : PPC::ADDI8));
797           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
798               .addReg(DominatorReg)
799               .addImm(LiImm); // restore the imm of LI
800           LLVM_DEBUG(LiMI->dump());
801         }
802 
803         // Replace ADD with COPY
804         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
805         LLVM_DEBUG(MI.dump());
806         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
807                 MI.getOperand(0).getReg())
808             .add(Op1);
809         ToErase = &MI;
810         Simplified = true;
811         NumOptADDLIs++;
812         break;
813       }
814       case PPC::RLDICR: {
815         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
816                       combineSEXTAndSHL(MI, ToErase);
817         break;
818       }
819       case PPC::RLWINM:
820       case PPC::RLWINMo:
821       case PPC::RLWINM8:
822       case PPC::RLWINM8o: {
823         unsigned FoldingReg = MI.getOperand(1).getReg();
824         if (!Register::isVirtualRegister(FoldingReg))
825           break;
826 
827         MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
828         if (SrcMI->getOpcode() != PPC::RLWINM &&
829             SrcMI->getOpcode() != PPC::RLWINMo &&
830             SrcMI->getOpcode() != PPC::RLWINM8 &&
831             SrcMI->getOpcode() != PPC::RLWINM8o)
832           break;
833         assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
834                 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
835                 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
836                "Invalid PPC::RLWINM Instruction!");
837         uint64_t SHSrc = SrcMI->getOperand(2).getImm();
838         uint64_t SHMI = MI.getOperand(2).getImm();
839         uint64_t MBSrc = SrcMI->getOperand(3).getImm();
840         uint64_t MBMI = MI.getOperand(3).getImm();
841         uint64_t MESrc = SrcMI->getOperand(4).getImm();
842         uint64_t MEMI = MI.getOperand(4).getImm();
843 
844         assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
845                "Invalid PPC::RLWINM Instruction!");
846 
847         // If MBMI is bigger than MEMI, we always can not get run of ones.
848         // RotatedSrcMask non-wrap:
849         //                 0........31|32........63
850         // RotatedSrcMask:   B---E        B---E
851         // MaskMI:         -----------|--E  B------
852         // Result:           -----          ---      (Bad candidate)
853         //
854         // RotatedSrcMask wrap:
855         //                 0........31|32........63
856         // RotatedSrcMask: --E   B----|--E    B----
857         // MaskMI:         -----------|--E  B------
858         // Result:         ---   -----|---    -----  (Bad candidate)
859         //
860         // One special case is RotatedSrcMask is a full set mask.
861         // RotatedSrcMask full:
862         //                 0........31|32........63
863         // RotatedSrcMask: ------EB---|-------EB---
864         // MaskMI:         -----------|--E  B------
865         // Result:         -----------|---  -------  (Good candidate)
866 
867         // Mark special case.
868         bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
869 
870         // For other MBMI > MEMI cases, just return.
871         if ((MBMI > MEMI) && !SrcMaskFull)
872           break;
873 
874         // Handle MBMI <= MEMI cases.
875         APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
876         // In MI, we only need low 32 bits of SrcMI, just consider about low 32
877         // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
878         // while in PowerPC ISA, lowerest bit is at index 63.
879         APInt MaskSrc =
880             APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
881         // Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
882         // equal to highBit.
883         // If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
884         if (SrcMaskFull && (MBSrc - MESrc == 1))
885           MaskSrc.setAllBits();
886 
887         APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
888         APInt FinalMask = RotatedSrcMask & MaskMI;
889         uint32_t NewMB, NewME;
890 
891         // If final mask is 0, MI result should be 0 too.
892         if (FinalMask.isNullValue()) {
893           bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
894                           MI.getOpcode() == PPC::RLWINM8o);
895 
896           LLVM_DEBUG(dbgs() << "Replace Instr: ");
897           LLVM_DEBUG(MI.dump());
898 
899           if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
900             // Replace MI with "LI 0"
901             MI.RemoveOperand(4);
902             MI.RemoveOperand(3);
903             MI.RemoveOperand(2);
904             MI.getOperand(1).ChangeToImmediate(0);
905             MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
906           } else {
907             // Replace MI with "ANDIo reg, 0"
908             MI.RemoveOperand(4);
909             MI.RemoveOperand(3);
910             MI.getOperand(2).setImm(0);
911             MI.setDesc(TII->get(Is64Bit ? PPC::ANDIo8 : PPC::ANDIo));
912           }
913           Simplified = true;
914           NumRotatesCollapsed++;
915 
916           LLVM_DEBUG(dbgs() << "With: ");
917           LLVM_DEBUG(MI.dump());
918         } else if (isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
919                                NewME) || SrcMaskFull) {
920           // If FoldingReg has only one use and it it not RLWINMo and
921           // RLWINM8o, safe to delete its def SrcMI. Otherwise keep it.
922           if (MRI->hasOneNonDBGUse(FoldingReg) &&
923               (SrcMI->getOpcode() == PPC::RLWINM ||
924                SrcMI->getOpcode() == PPC::RLWINM8)) {
925             ToErase = SrcMI;
926             LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
927             LLVM_DEBUG(SrcMI->dump());
928           }
929 
930           LLVM_DEBUG(dbgs() << "Converting Instr: ");
931           LLVM_DEBUG(MI.dump());
932 
933           uint16_t NewSH = (SHSrc + SHMI) % 32;
934           MI.getOperand(2).setImm(NewSH);
935           // If SrcMI mask is full, no need to update MBMI and MEMI.
936           if (!SrcMaskFull) {
937             MI.getOperand(3).setImm(NewMB);
938             MI.getOperand(4).setImm(NewME);
939           }
940           MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
941           if (SrcMI->getOperand(1).isKill()) {
942             MI.getOperand(1).setIsKill(true);
943             SrcMI->getOperand(1).setIsKill(false);
944           } else
945             // About to replace MI.getOperand(1), clear its kill flag.
946             MI.getOperand(1).setIsKill(false);
947 
948           Simplified = true;
949           NumRotatesCollapsed++;
950 
951           LLVM_DEBUG(dbgs() << "To: ");
952           LLVM_DEBUG(MI.dump());
953         }
954         break;
955       }
956       }
957     }
958 
959     // If the last instruction was marked for elimination,
960     // remove it now.
961     if (ToErase) {
962       ToErase->eraseFromParent();
963       ToErase = nullptr;
964     }
965   }
966 
967   // Eliminate all the TOC save instructions which are redundant.
968   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
969   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
970   if (FI->mustSaveTOC())
971     NumTOCSavesInPrologue++;
972 
973   // We try to eliminate redundant compare instruction.
974   Simplified |= eliminateRedundantCompare();
975 
976   return Simplified;
977 }
978 
979 // helper functions for eliminateRedundantCompare
980 static bool isEqOrNe(MachineInstr *BI) {
981   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
982   unsigned PredCond = PPC::getPredicateCondition(Pred);
983   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
984 }
985 
986 static bool isSupportedCmpOp(unsigned opCode) {
987   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
988           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
989           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
990           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
991 }
992 
993 static bool is64bitCmpOp(unsigned opCode) {
994   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
995           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
996 }
997 
998 static bool isSignedCmpOp(unsigned opCode) {
999   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1000           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1001 }
1002 
1003 static unsigned getSignedCmpOpCode(unsigned opCode) {
1004   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1005   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1006   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1007   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1008   return opCode;
1009 }
1010 
1011 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1012 // (LT x) to (LE x-1)
1013 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1014   uint64_t Imm = CMPI->getOperand(2).getImm();
1015   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1016   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1017     return 0;
1018 
1019   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1020   unsigned PredCond = PPC::getPredicateCondition(Pred);
1021   unsigned PredHint = PPC::getPredicateHint(Pred);
1022   if (PredCond == PPC::PRED_GE)
1023     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1024   if (PredCond == PPC::PRED_LT)
1025     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1026 
1027   return 0;
1028 }
1029 
1030 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1031 // (LE x) to (LT x+1)
1032 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1033   uint64_t Imm = CMPI->getOperand(2).getImm();
1034   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1035   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1036     return 0;
1037 
1038   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1039   unsigned PredCond = PPC::getPredicateCondition(Pred);
1040   unsigned PredHint = PPC::getPredicateHint(Pred);
1041   if (PredCond == PPC::PRED_GT)
1042     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1043   if (PredCond == PPC::PRED_LE)
1044     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1045 
1046   return 0;
1047 }
1048 
1049 // This takes a Phi node and returns a register value for the specified BB.
1050 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1051                                        MachineBasicBlock *MBB) {
1052   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1053     MachineOperand &MO = Phi->getOperand(I);
1054     if (MO.getMBB() == MBB)
1055       return Phi->getOperand(I-1).getReg();
1056   }
1057   llvm_unreachable("invalid src basic block for this Phi node\n");
1058   return 0;
1059 }
1060 
1061 // This function tracks the source of the register through register copy.
1062 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1063 // assuming that the control comes from BB1 into BB2.
1064 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1065                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1066   unsigned SrcReg = Reg;
1067   while (1) {
1068     unsigned NextReg = SrcReg;
1069     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1070     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1071       NextReg = getIncomingRegForBlock(Inst, BB1);
1072       // We track through PHI only once to avoid infinite loop.
1073       BB1 = nullptr;
1074     }
1075     else if (Inst->isFullCopy())
1076       NextReg = Inst->getOperand(1).getReg();
1077     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1078       break;
1079     SrcReg = NextReg;
1080   }
1081   return SrcReg;
1082 }
1083 
1084 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1085                                           MachineBasicBlock *&PredMBB,
1086                                           MachineBasicBlock *&MBBtoMoveCmp,
1087                                           MachineRegisterInfo *MRI) {
1088 
1089   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1090     auto BII = BB.getFirstInstrTerminator();
1091     // We optimize BBs ending with a conditional branch.
1092     // We check only for BCC here, not BCCLR, because BCCLR
1093     // will be formed only later in the pipeline.
1094     if (BB.succ_size() == 2 &&
1095         BII != BB.instr_end() &&
1096         (*BII).getOpcode() == PPC::BCC &&
1097         (*BII).getOperand(1).isReg()) {
1098       // We optimize only if the condition code is used only by one BCC.
1099       Register CndReg = (*BII).getOperand(1).getReg();
1100       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1101         return false;
1102 
1103       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1104       // We assume compare and branch are in the same BB for ease of analysis.
1105       if (CMPI->getParent() != &BB)
1106         return false;
1107 
1108       // We skip this BB if a physical register is used in comparison.
1109       for (MachineOperand &MO : CMPI->operands())
1110         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1111           return false;
1112 
1113       return true;
1114     }
1115     return false;
1116   };
1117 
1118   // If this BB has more than one successor, we can create a new BB and
1119   // move the compare instruction in the new BB.
1120   // So far, we do not move compare instruction to a BB having multiple
1121   // successors to avoid potentially increasing code size.
1122   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1123     return BB.succ_size() == 1;
1124   };
1125 
1126   if (!isEligibleBB(MBB))
1127     return false;
1128 
1129   unsigned NumPredBBs = MBB.pred_size();
1130   if (NumPredBBs == 1) {
1131     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1132     if (isEligibleBB(*TmpMBB)) {
1133       PredMBB = TmpMBB;
1134       MBBtoMoveCmp = nullptr;
1135       return true;
1136     }
1137   }
1138   else if (NumPredBBs == 2) {
1139     // We check for partially redundant case.
1140     // So far, we support cases with only two predecessors
1141     // to avoid increasing the number of instructions.
1142     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1143     MachineBasicBlock *Pred1MBB = *PI;
1144     MachineBasicBlock *Pred2MBB = *(PI+1);
1145 
1146     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1147       // We assume Pred1MBB is the BB containing the compare to be merged and
1148       // Pred2MBB is the BB to which we will append a compare instruction.
1149       // Hence we can proceed as is.
1150     }
1151     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1152       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1153       std::swap(Pred1MBB, Pred2MBB);
1154     }
1155     else return false;
1156 
1157     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1158     // We cannot move the compare instruction if operands are not available
1159     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1160     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1161     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1162     for (int I = 1; I <= 2; I++)
1163       if (CMPI->getOperand(I).isReg()) {
1164         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1165         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1166           return false;
1167       }
1168 
1169     PredMBB = Pred1MBB;
1170     MBBtoMoveCmp = Pred2MBB;
1171     return true;
1172   }
1173 
1174   return false;
1175 }
1176 
1177 // This function will iterate over the input map containing a pair of TOC save
1178 // instruction and a flag. The flag will be set to false if the TOC save is
1179 // proven redundant. This function will erase from the basic block all the TOC
1180 // saves marked as redundant.
1181 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1182     std::map<MachineInstr *, bool> &TOCSaves) {
1183   bool Simplified = false;
1184   int NumKept = 0;
1185   for (auto TOCSave : TOCSaves) {
1186     if (!TOCSave.second) {
1187       TOCSave.first->eraseFromParent();
1188       RemoveTOCSave++;
1189       Simplified = true;
1190     } else {
1191       NumKept++;
1192     }
1193   }
1194 
1195   if (NumKept > 1)
1196     MultiTOCSaves++;
1197 
1198   return Simplified;
1199 }
1200 
1201 // If multiple conditional branches are executed based on the (essentially)
1202 // same comparison, we merge compare instructions into one and make multiple
1203 // conditional branches on this comparison.
1204 // For example,
1205 //   if (a == 0) { ... }
1206 //   else if (a < 0) { ... }
1207 // can be executed by one compare and two conditional branches instead of
1208 // two pairs of a compare and a conditional branch.
1209 //
1210 // This method merges two compare instructions in two MBBs and modifies the
1211 // compare and conditional branch instructions if needed.
1212 // For the above example, the input for this pass looks like:
1213 //   cmplwi r3, 0
1214 //   beq    0, .LBB0_3
1215 //   cmpwi  r3, -1
1216 //   bgt    0, .LBB0_4
1217 // So, before merging two compares, we need to modify these instructions as
1218 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1219 //   beq    0, .LBB0_3
1220 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1221 //   bge    0, .LBB0_4
1222 
1223 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1224   bool Simplified = false;
1225 
1226   for (MachineBasicBlock &MBB2 : *MF) {
1227     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1228 
1229     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1230     // as an optimization target if
1231     // - both MBBs end with a conditional branch,
1232     // - MBB1 is the only predecessor of MBB2, and
1233     // - compare does not take a physical register as a operand in both MBBs.
1234     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1235     //
1236     // As partially redundant case, we additionally handle if MBB2 has one
1237     // additional predecessor, which has only one successor (MBB2).
1238     // In this case, we move the compare instruction originally in MBB2 into
1239     // MBBtoMoveCmp. This partially redundant case is typically appear by
1240     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1241     //
1242     // Overview of CFG of related basic blocks
1243     // Fully redundant case        Partially redundant case
1244     //   --------                   ----------------  --------
1245     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1246     //   --------                   ----------------  --------
1247     //      |    \                     (w/ 1 succ) \     |    \
1248     //      |     \                                 \    |     \
1249     //      |                                        \   |
1250     //   --------                                     --------
1251     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1252     //   -------- and 2 succ)                         -------- and 2 succ)
1253     //      |    \                                       |    \
1254     //      |     \                                      |     \
1255     //
1256     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1257       continue;
1258 
1259     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1260     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1261 
1262     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1263     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1264     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1265 
1266     // We cannot optimize an unsupported compare opcode or
1267     // a mix of 32-bit and 64-bit comaprisons
1268     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1269         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1270         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1271       continue;
1272 
1273     unsigned NewOpCode = 0;
1274     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1275     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1276     bool SwapOperands = false;
1277 
1278     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1279       // Typically, unsigned comparison is used for equality check, but
1280       // we replace it with a signed comparison if the comparison
1281       // to be merged is a signed comparison.
1282       // In other cases of opcode mismatch, we cannot optimize this.
1283 
1284       // We cannot change opcode when comparing against an immediate
1285       // if the most significant bit of the immediate is one
1286       // due to the difference in sign extension.
1287       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1288         if (!I->getOperand(2).isImm())
1289           return false;
1290         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1291         return Imm < 0;
1292       };
1293 
1294       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1295           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1296         NewOpCode = CMPI1->getOpcode();
1297       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1298                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1299         NewOpCode = CMPI2->getOpcode();
1300       else continue;
1301     }
1302 
1303     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1304       // In case of comparisons between two registers, these two registers
1305       // must be same to merge two comparisons.
1306       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1307                                          nullptr, nullptr, MRI);
1308       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1309                                          nullptr, nullptr, MRI);
1310       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1311                                          MBB1, &MBB2, MRI);
1312       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1313                                          MBB1, &MBB2, MRI);
1314 
1315       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1316         // Same pair of registers in the same order; ready to merge as is.
1317       }
1318       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1319         // Same pair of registers in different order.
1320         // We reverse the predicate to merge compare instructions.
1321         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1322         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1323         // In case of partial redundancy, we need to swap operands
1324         // in another compare instruction.
1325         SwapOperands = true;
1326       }
1327       else continue;
1328     }
1329     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1330       // In case of comparisons between a register and an immediate,
1331       // the operand register must be same for two compare instructions.
1332       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1333                                          nullptr, nullptr, MRI);
1334       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1335                                          MBB1, &MBB2, MRI);
1336       if (Cmp1Operand1 != Cmp2Operand1)
1337         continue;
1338 
1339       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1340       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1341 
1342       // If immediate are not same, we try to adjust by changing predicate;
1343       // e.g. GT imm means GE (imm+1).
1344       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1345         int Diff = Imm1 - Imm2;
1346         if (Diff < -2 || Diff > 2)
1347           continue;
1348 
1349         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1350         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1351         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1352         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1353         if (Diff == 2) {
1354           if (PredToInc2 && PredToDec1) {
1355             NewPredicate2 = PredToInc2;
1356             NewPredicate1 = PredToDec1;
1357             NewImm2++;
1358             NewImm1--;
1359           }
1360         }
1361         else if (Diff == 1) {
1362           if (PredToInc2) {
1363             NewImm2++;
1364             NewPredicate2 = PredToInc2;
1365           }
1366           else if (PredToDec1) {
1367             NewImm1--;
1368             NewPredicate1 = PredToDec1;
1369           }
1370         }
1371         else if (Diff == -1) {
1372           if (PredToDec2) {
1373             NewImm2--;
1374             NewPredicate2 = PredToDec2;
1375           }
1376           else if (PredToInc1) {
1377             NewImm1++;
1378             NewPredicate1 = PredToInc1;
1379           }
1380         }
1381         else if (Diff == -2) {
1382           if (PredToDec2 && PredToInc1) {
1383             NewPredicate2 = PredToDec2;
1384             NewPredicate1 = PredToInc1;
1385             NewImm2--;
1386             NewImm1++;
1387           }
1388         }
1389       }
1390 
1391       // We cannot merge two compares if the immediates are not same.
1392       if (NewImm2 != NewImm1)
1393         continue;
1394     }
1395 
1396     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1397     LLVM_DEBUG(CMPI1->dump());
1398     LLVM_DEBUG(BI1->dump());
1399     LLVM_DEBUG(CMPI2->dump());
1400     LLVM_DEBUG(BI2->dump());
1401 
1402     // We adjust opcode, predicates and immediate as we determined above.
1403     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1404       CMPI1->setDesc(TII->get(NewOpCode));
1405     }
1406     if (NewPredicate1) {
1407       BI1->getOperand(0).setImm(NewPredicate1);
1408     }
1409     if (NewPredicate2) {
1410       BI2->getOperand(0).setImm(NewPredicate2);
1411     }
1412     if (NewImm1 != Imm1) {
1413       CMPI1->getOperand(2).setImm(NewImm1);
1414     }
1415 
1416     if (IsPartiallyRedundant) {
1417       // We touch up the compare instruction in MBB2 and move it to
1418       // a previous BB to handle partially redundant case.
1419       if (SwapOperands) {
1420         Register Op1 = CMPI2->getOperand(1).getReg();
1421         Register Op2 = CMPI2->getOperand(2).getReg();
1422         CMPI2->getOperand(1).setReg(Op2);
1423         CMPI2->getOperand(2).setReg(Op1);
1424       }
1425       if (NewImm2 != Imm2)
1426         CMPI2->getOperand(2).setImm(NewImm2);
1427 
1428       for (int I = 1; I <= 2; I++) {
1429         if (CMPI2->getOperand(I).isReg()) {
1430           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1431           if (Inst->getParent() != &MBB2)
1432             continue;
1433 
1434           assert(Inst->getOpcode() == PPC::PHI &&
1435                  "We cannot support if an operand comes from this BB.");
1436           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1437           CMPI2->getOperand(I).setReg(SrcReg);
1438         }
1439       }
1440       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1441       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1442 
1443       DebugLoc DL = CMPI2->getDebugLoc();
1444       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1445       BuildMI(MBB2, MBB2.begin(), DL,
1446               TII->get(PPC::PHI), NewVReg)
1447         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1448         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1449       BI2->getOperand(1).setReg(NewVReg);
1450     }
1451     else {
1452       // We finally eliminate compare instruction in MBB2.
1453       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1454       CMPI2->eraseFromParent();
1455     }
1456     BI2->getOperand(1).setIsKill(true);
1457     BI1->getOperand(1).setIsKill(false);
1458 
1459     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1460     LLVM_DEBUG(CMPI1->dump());
1461     LLVM_DEBUG(BI1->dump());
1462     LLVM_DEBUG(BI2->dump());
1463     if (IsPartiallyRedundant) {
1464       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1465                         << printMBBReference(*MBBtoMoveCmp)
1466                         << " to handle partial redundancy.\n");
1467       LLVM_DEBUG(CMPI2->dump());
1468     }
1469 
1470     Simplified = true;
1471   }
1472 
1473   return Simplified;
1474 }
1475 
1476 // We miss the opportunity to emit an RLDIC when lowering jump tables
1477 // since ISEL sees only a single basic block. When selecting, the clear
1478 // and shift left will be in different blocks.
1479 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1480   if (MI.getOpcode() != PPC::RLDICR)
1481     return false;
1482 
1483   Register SrcReg = MI.getOperand(1).getReg();
1484   if (!Register::isVirtualRegister(SrcReg))
1485     return false;
1486 
1487   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1488   if (SrcMI->getOpcode() != PPC::RLDICL)
1489     return false;
1490 
1491   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1492   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1493   MachineOperand MOpSHMI = MI.getOperand(2);
1494   MachineOperand MOpMEMI = MI.getOperand(3);
1495   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1496         MOpMEMI.isImm()))
1497     return false;
1498 
1499   uint64_t SHSrc = MOpSHSrc.getImm();
1500   uint64_t MBSrc = MOpMBSrc.getImm();
1501   uint64_t SHMI = MOpSHMI.getImm();
1502   uint64_t MEMI = MOpMEMI.getImm();
1503   uint64_t NewSH = SHSrc + SHMI;
1504   uint64_t NewMB = MBSrc - SHMI;
1505   if (NewMB > 63 || NewSH > 63)
1506     return false;
1507 
1508   // The bits cleared with RLDICL are [0, MBSrc).
1509   // The bits cleared with RLDICR are (MEMI, 63].
1510   // After the sequence, the bits cleared are:
1511   // [0, MBSrc-SHMI) and (MEMI, 63).
1512   //
1513   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1514   if ((63 - NewSH) != MEMI)
1515     return false;
1516 
1517   LLVM_DEBUG(dbgs() << "Converting pair: ");
1518   LLVM_DEBUG(SrcMI->dump());
1519   LLVM_DEBUG(MI.dump());
1520 
1521   MI.setDesc(TII->get(PPC::RLDIC));
1522   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1523   MI.getOperand(2).setImm(NewSH);
1524   MI.getOperand(3).setImm(NewMB);
1525 
1526   LLVM_DEBUG(dbgs() << "To: ");
1527   LLVM_DEBUG(MI.dump());
1528   NumRotatesCollapsed++;
1529   return true;
1530 }
1531 
1532 // For case in LLVM IR
1533 // entry:
1534 //   %iconv = sext i32 %index to i64
1535 //   br i1 undef label %true, label %false
1536 // true:
1537 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1538 // ...
1539 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1540 // different BBs when conducting instruction selection. We can do a peephole
1541 // optimization to combine these two instructions into extswsli after
1542 // instruction selection.
1543 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1544                                       MachineInstr *&ToErase) {
1545   if (MI.getOpcode() != PPC::RLDICR)
1546     return false;
1547 
1548   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1549     return false;
1550 
1551   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1552 
1553   MachineOperand MOpSHMI = MI.getOperand(2);
1554   MachineOperand MOpMEMI = MI.getOperand(3);
1555   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1556     return false;
1557 
1558   uint64_t SHMI = MOpSHMI.getImm();
1559   uint64_t MEMI = MOpMEMI.getImm();
1560   if (SHMI + MEMI != 63)
1561     return false;
1562 
1563   Register SrcReg = MI.getOperand(1).getReg();
1564   if (!Register::isVirtualRegister(SrcReg))
1565     return false;
1566 
1567   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1568   if (SrcMI->getOpcode() != PPC::EXTSW &&
1569       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1570     return false;
1571 
1572   // If the register defined by extsw has more than one use, combination is not
1573   // needed.
1574   if (!MRI->hasOneNonDBGUse(SrcReg))
1575     return false;
1576 
1577   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1578   assert(SrcMI->getOperand(1).isReg() &&
1579          "EXTSW's second operand should be a register");
1580   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1581     return false;
1582 
1583   LLVM_DEBUG(dbgs() << "Combining pair: ");
1584   LLVM_DEBUG(SrcMI->dump());
1585   LLVM_DEBUG(MI.dump());
1586 
1587   MachineInstr *NewInstr =
1588       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1589               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1590                                                : TII->get(PPC::EXTSWSLI_32_64),
1591               MI.getOperand(0).getReg())
1592           .add(SrcMI->getOperand(1))
1593           .add(MOpSHMI);
1594   (void)NewInstr;
1595 
1596   LLVM_DEBUG(dbgs() << "TO: ");
1597   LLVM_DEBUG(NewInstr->dump());
1598   ++NumEXTSWAndSLDICombined;
1599   ToErase = &MI;
1600   // SrcMI, which is extsw, is of no use now, erase it.
1601   SrcMI->eraseFromParent();
1602   return true;
1603 }
1604 
1605 } // end default namespace
1606 
1607 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1608                       "PowerPC MI Peephole Optimization", false, false)
1609 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1610 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1611 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1612 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1613                     "PowerPC MI Peephole Optimization", false, false)
1614 
1615 char PPCMIPeephole::ID = 0;
1616 FunctionPass*
1617 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1618 
1619