xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision 6c4b40def77622a5cf62a219ef4af63dc876e144)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 STATISTIC(NumX2FoundForPCRel, "Number of times the X2 TOC pointer has been "
61                               "found when PC relative NOTOC is being used.");
62 
63 static cl::opt<bool>
64 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
65                    cl::desc("Iterate to a fixed point when attempting to "
66                             "convert reg-reg instructions to reg-imm"));
67 
68 static cl::opt<bool>
69 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
70               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
71 
72 static cl::opt<bool>
73     EnableSExtElimination("ppc-eliminate-signext",
74                           cl::desc("enable elimination of sign-extensions"),
75                           cl::init(false), cl::Hidden);
76 
77 static cl::opt<bool>
78     EnableZExtElimination("ppc-eliminate-zeroext",
79                           cl::desc("enable elimination of zero-extensions"),
80                           cl::init(false), cl::Hidden);
81 
82 namespace {
83 
84 struct PPCMIPeephole : public MachineFunctionPass {
85 
86   static char ID;
87   const PPCInstrInfo *TII;
88   MachineFunction *MF;
89   MachineRegisterInfo *MRI;
90 
91   PPCMIPeephole() : MachineFunctionPass(ID) {
92     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
93   }
94 
95 private:
96   MachineDominatorTree *MDT;
97   MachinePostDominatorTree *MPDT;
98   MachineBlockFrequencyInfo *MBFI;
99   uint64_t EntryFreq;
100 
101   // Initialize class variables.
102   void initialize(MachineFunction &MFParm);
103 
104   // Perform peepholes that cannot be skipped.
105   // Some peephole simplifications are required for correctness and will not
106   // be skipped even if skipFunction(MF.getFunction()) returns true.
107   void unskipableSimplifyCode(void);
108 
109   // Perform peepholes.
110   bool simplifyCode(void);
111 
112   // Perform peepholes.
113   bool eliminateRedundantCompare(void);
114   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
115   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
116   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
117   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
118                       MachineInstr *MI);
119 
120 public:
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override {
123     AU.addRequired<MachineDominatorTree>();
124     AU.addRequired<MachinePostDominatorTree>();
125     AU.addRequired<MachineBlockFrequencyInfo>();
126     AU.addPreserved<MachineDominatorTree>();
127     AU.addPreserved<MachinePostDominatorTree>();
128     AU.addPreserved<MachineBlockFrequencyInfo>();
129     MachineFunctionPass::getAnalysisUsage(AU);
130   }
131 
132   // Main entry point for this pass.
133   bool runOnMachineFunction(MachineFunction &MF) override {
134     initialize(MF);
135     // FIXME: This introduces another complete traversal of the instructions
136     // in the function in the common case (function is not skipped). Although
137     // this is less than ideal for compile time, this code will go away once
138     // our PC-Rel implementation is complete.
139     unskipableSimplifyCode();
140     if (skipFunction(MF.getFunction()))
141       return false;
142     return simplifyCode();
143   }
144 };
145 
146 // Initialize class variables.
147 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
148   MF = &MFParm;
149   MRI = &MF->getRegInfo();
150   MDT = &getAnalysis<MachineDominatorTree>();
151   MPDT = &getAnalysis<MachinePostDominatorTree>();
152   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
153   EntryFreq = MBFI->getEntryFreq();
154   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
155   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
156   LLVM_DEBUG(MF->dump());
157 }
158 
159 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
160                                       MachineRegisterInfo *MRI) {
161   assert(Op && "Invalid Operand!");
162   if (!Op->isReg())
163     return nullptr;
164 
165   Register Reg = Op->getReg();
166   if (!Register::isVirtualRegister(Reg))
167     return nullptr;
168 
169   return MRI->getVRegDef(Reg);
170 }
171 
172 // This function returns number of known zero bits in output of MI
173 // starting from the most significant bit.
174 static unsigned
175 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
176   unsigned Opcode = MI->getOpcode();
177   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
178       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
179     return MI->getOperand(3).getImm();
180 
181   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
182       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
183     return MI->getOperand(3).getImm();
184 
185   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
186        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
187        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
188       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
189     return 32 + MI->getOperand(3).getImm();
190 
191   if (Opcode == PPC::ANDI_rec) {
192     uint16_t Imm = MI->getOperand(2).getImm();
193     return 48 + countLeadingZeros(Imm);
194   }
195 
196   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
197       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
198       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
199     // The result ranges from 0 to 32.
200     return 58;
201 
202   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
203       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
204     // The result ranges from 0 to 64.
205     return 57;
206 
207   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
208       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
209       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
210       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
211     return 48;
212 
213   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
214       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
215       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
216       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
217     return 56;
218 
219   if (TII->isZeroExtended(*MI))
220     return 32;
221 
222   return 0;
223 }
224 
225 // This function maintains a map for the pairs <TOC Save Instr, Keep>
226 // Each time a new TOC save is encountered, it checks if any of the existing
227 // ones are dominated by the new one. If so, it marks the existing one as
228 // redundant by setting it's entry in the map as false. It then adds the new
229 // instruction to the map with either true or false depending on if any
230 // existing instructions dominated the new one.
231 void PPCMIPeephole::UpdateTOCSaves(
232   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
233   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
234   assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
235          "TOC-save removal only supported on ELFv2");
236   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
237 
238   MachineBasicBlock *Entry = &MF->front();
239   uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
240 
241   // If the block in which the TOC save resides is in a block that
242   // post-dominates Entry, or a block that is hotter than entry (keep in mind
243   // that early MachineLICM has already run so the TOC save won't be hoisted)
244   // we can just do the save in the prologue.
245   if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
246     FI->setMustSaveTOC(true);
247 
248   // If we are saving the TOC in the prologue, all the TOC saves can be removed
249   // from the code.
250   if (FI->mustSaveTOC()) {
251     for (auto &TOCSave : TOCSaves)
252       TOCSave.second = false;
253     // Add new instruction to map.
254     TOCSaves[MI] = false;
255     return;
256   }
257 
258   bool Keep = true;
259   for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
260     MachineInstr *CurrInst = It->first;
261     // If new instruction dominates an existing one, mark existing one as
262     // redundant.
263     if (It->second && MDT->dominates(MI, CurrInst))
264       It->second = false;
265     // Check if the new instruction is redundant.
266     if (MDT->dominates(CurrInst, MI)) {
267       Keep = false;
268       break;
269     }
270   }
271   // Add new instruction to map.
272   TOCSaves[MI] = Keep;
273 }
274 
275 void PPCMIPeephole::unskipableSimplifyCode(void) {
276   // If this function has no uses of R2 there is nothing to do here.
277   if(MF->getRegInfo().use_empty(PPC::X2))
278     return;
279 
280   // This is only for PCRelative calls.
281   if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) {
282     return;
283   }
284 
285   // This function has R2 so we need to mark an implicit def for it.
286   PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
287   FuncInfo->setUsesTOCBasePtr();
288   for (MachineBasicBlock &MBB : *MF) {
289     for (MachineInstr &MI : MBB) {
290       if (MI.getOpcode() == PPC::BL8_NOTOC) {
291         // At this point the BL8_NOTOC instruction is not really safe because it
292         // assumes that the caller does not need the TOC. It will be safe
293         // later once the full PC relative implementation is complete but it is
294         // not now.
295         // Here we are looking for X2. Since this is Pre-RA the only uses of X2
296         // would indicate the use of the TOC. We want to detect all uses of the
297         // TOC. Once the work is done we should not see any uses of the TOC.
298         // TODO: Once the implementation is complete this should be turned into
299         // an assert
300         Register Reg = MF->getSubtarget<PPCSubtarget>().getTOCPointerRegister();
301         MachineOperand MO = MachineOperand::CreateReg(Reg, false, true);
302         MI.addOperand(*MF, MO);
303         MI.setDesc(TII->get(PPC::BL8_NOP));
304         ++NumX2FoundForPCRel;
305       }
306     }
307   }
308 }
309 
310 // Perform peephole optimizations.
311 bool PPCMIPeephole::simplifyCode(void) {
312   bool Simplified = false;
313   MachineInstr* ToErase = nullptr;
314   std::map<MachineInstr *, bool> TOCSaves;
315   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
316   NumFunctionsEnteredInMIPeephole++;
317   if (ConvertRegReg) {
318     // Fixed-point conversion of reg/reg instructions fed by load-immediate
319     // into reg/imm instructions. FIXME: This is expensive, control it with
320     // an option.
321     bool SomethingChanged = false;
322     do {
323       NumFixedPointIterations++;
324       SomethingChanged = false;
325       for (MachineBasicBlock &MBB : *MF) {
326         for (MachineInstr &MI : MBB) {
327           if (MI.isDebugInstr())
328             continue;
329 
330           if (TII->convertToImmediateForm(MI)) {
331             // We don't erase anything in case the def has other uses. Let DCE
332             // remove it if it can be removed.
333             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
334             LLVM_DEBUG(MI.dump());
335             NumConvertedToImmediateForm++;
336             SomethingChanged = true;
337             Simplified = true;
338             continue;
339           }
340         }
341       }
342     } while (SomethingChanged && FixedPointRegToImm);
343   }
344 
345   for (MachineBasicBlock &MBB : *MF) {
346     for (MachineInstr &MI : MBB) {
347 
348       // If the previous instruction was marked for elimination,
349       // remove it now.
350       if (ToErase) {
351         ToErase->eraseFromParent();
352         ToErase = nullptr;
353       }
354 
355       // Ignore debug instructions.
356       if (MI.isDebugInstr())
357         continue;
358 
359       // Per-opcode peepholes.
360       switch (MI.getOpcode()) {
361 
362       default:
363         break;
364 
365       case PPC::STD: {
366         MachineFrameInfo &MFI = MF->getFrameInfo();
367         if (MFI.hasVarSizedObjects() ||
368             !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
369           break;
370         // When encountering a TOC save instruction, call UpdateTOCSaves
371         // to add it to the TOCSaves map and mark any existing TOC saves
372         // it dominates as redundant.
373         if (TII->isTOCSaveMI(MI))
374           UpdateTOCSaves(TOCSaves, &MI);
375         break;
376       }
377       case PPC::XXPERMDI: {
378         // Perform simplifications of 2x64 vector swaps and splats.
379         // A swap is identified by an immediate value of 2, and a splat
380         // is identified by an immediate value of 0 or 3.
381         int Immed = MI.getOperand(3).getImm();
382 
383         if (Immed == 1)
384           break;
385 
386         // For each of these simplifications, we need the two source
387         // regs to match.  Unfortunately, MachineCSE ignores COPY and
388         // SUBREG_TO_REG, so for example we can see
389         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
390         // We have to look through chains of COPY and SUBREG_TO_REG
391         // to find the real source values for comparison.
392         unsigned TrueReg1 =
393           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
394         unsigned TrueReg2 =
395           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
396 
397         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
398           break;
399 
400         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
401 
402         if (!DefMI)
403           break;
404 
405         unsigned DefOpc = DefMI->getOpcode();
406 
407         // If this is a splat fed by a splatting load, the splat is
408         // redundant. Replace with a copy. This doesn't happen directly due
409         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
410         // a load of a double to a vector of 64-bit integers.
411         auto isConversionOfLoadAndSplat = [=]() -> bool {
412           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
413             return false;
414           unsigned FeedReg1 =
415             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
416           if (Register::isVirtualRegister(FeedReg1)) {
417             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
418             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
419               return true;
420           }
421           return false;
422         };
423         if ((Immed == 0 || Immed == 3) &&
424             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
425           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
426                                "to load-and-splat/copy: ");
427           LLVM_DEBUG(MI.dump());
428           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
429                   MI.getOperand(0).getReg())
430               .add(MI.getOperand(1));
431           ToErase = &MI;
432           Simplified = true;
433         }
434 
435         // If this is a splat or a swap fed by another splat, we
436         // can replace it with a copy.
437         if (DefOpc == PPC::XXPERMDI) {
438           unsigned DefReg1 = DefMI->getOperand(1).getReg();
439           unsigned DefReg2 = DefMI->getOperand(2).getReg();
440           unsigned DefImmed = DefMI->getOperand(3).getImm();
441 
442           // If the two inputs are not the same register, check to see if
443           // they originate from the same virtual register after only
444           // copy-like instructions.
445           if (DefReg1 != DefReg2) {
446             unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
447             unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
448 
449             if (!(FeedReg1 == FeedReg2 &&
450                   Register::isVirtualRegister(FeedReg1)))
451               break;
452           }
453 
454           if (DefImmed == 0 || DefImmed == 3) {
455             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
456                                  "to splat/copy: ");
457             LLVM_DEBUG(MI.dump());
458             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
459                     MI.getOperand(0).getReg())
460                 .add(MI.getOperand(1));
461             ToErase = &MI;
462             Simplified = true;
463           }
464 
465           // If this is a splat fed by a swap, we can simplify modify
466           // the splat to splat the other value from the swap's input
467           // parameter.
468           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
469             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
470             LLVM_DEBUG(MI.dump());
471             MI.getOperand(1).setReg(DefReg1);
472             MI.getOperand(2).setReg(DefReg2);
473             MI.getOperand(3).setImm(3 - Immed);
474             Simplified = true;
475           }
476 
477           // If this is a swap fed by a swap, we can replace it
478           // with a copy from the first swap's input.
479           else if (Immed == 2 && DefImmed == 2) {
480             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
481             LLVM_DEBUG(MI.dump());
482             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
483                     MI.getOperand(0).getReg())
484                 .add(DefMI->getOperand(1));
485             ToErase = &MI;
486             Simplified = true;
487           }
488         } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
489                    (DefMI->getOperand(2).getImm() == 0 ||
490                     DefMI->getOperand(2).getImm() == 3)) {
491           // Splat fed by another splat - switch the output of the first
492           // and remove the second.
493           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
494           ToErase = &MI;
495           Simplified = true;
496           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
497           LLVM_DEBUG(MI.dump());
498         }
499         break;
500       }
501       case PPC::VSPLTB:
502       case PPC::VSPLTH:
503       case PPC::XXSPLTW: {
504         unsigned MyOpcode = MI.getOpcode();
505         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
506         unsigned TrueReg =
507           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
508         if (!Register::isVirtualRegister(TrueReg))
509           break;
510         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
511         if (!DefMI)
512           break;
513         unsigned DefOpcode = DefMI->getOpcode();
514         auto isConvertOfSplat = [=]() -> bool {
515           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
516             return false;
517           Register ConvReg = DefMI->getOperand(1).getReg();
518           if (!Register::isVirtualRegister(ConvReg))
519             return false;
520           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
521           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
522             Splt->getOpcode() == PPC::XXSPLTW);
523         };
524         bool AlreadySplat = (MyOpcode == DefOpcode) ||
525           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
526           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
527           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
528           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
529           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
530           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
531         // If the instruction[s] that feed this splat have already splat
532         // the value, this splat is redundant.
533         if (AlreadySplat) {
534           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
535           LLVM_DEBUG(MI.dump());
536           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
537                   MI.getOperand(0).getReg())
538               .add(MI.getOperand(OpNo));
539           ToErase = &MI;
540           Simplified = true;
541         }
542         // Splat fed by a shift. Usually when we align value to splat into
543         // vector element zero.
544         if (DefOpcode == PPC::XXSLDWI) {
545           Register ShiftRes = DefMI->getOperand(0).getReg();
546           Register ShiftOp1 = DefMI->getOperand(1).getReg();
547           Register ShiftOp2 = DefMI->getOperand(2).getReg();
548           unsigned ShiftImm = DefMI->getOperand(3).getImm();
549           unsigned SplatImm = MI.getOperand(2).getImm();
550           if (ShiftOp1 == ShiftOp2) {
551             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
552             if (MRI->hasOneNonDBGUse(ShiftRes)) {
553               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
554               LLVM_DEBUG(DefMI->dump());
555               ToErase = DefMI;
556             }
557             Simplified = true;
558             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
559                               << " to " << NewElem << " in instruction: ");
560             LLVM_DEBUG(MI.dump());
561             MI.getOperand(1).setReg(ShiftOp1);
562             MI.getOperand(2).setImm(NewElem);
563           }
564         }
565         break;
566       }
567       case PPC::XVCVDPSP: {
568         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
569         unsigned TrueReg =
570           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
571         if (!Register::isVirtualRegister(TrueReg))
572           break;
573         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
574 
575         // This can occur when building a vector of single precision or integer
576         // values.
577         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
578           unsigned DefsReg1 =
579             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
580           unsigned DefsReg2 =
581             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
582           if (!Register::isVirtualRegister(DefsReg1) ||
583               !Register::isVirtualRegister(DefsReg2))
584             break;
585           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
586           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
587 
588           if (!P1 || !P2)
589             break;
590 
591           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
592           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
593           // the FRSP/XSRSP.
594           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
595             unsigned Opc = RoundInstr->getOpcode();
596             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
597                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
598               Simplified = true;
599               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
600               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
601               MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
602               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
603                 if (Use.getOperand(i).isReg() &&
604                     Use.getOperand(i).getReg() == FRSPDefines)
605                   Use.getOperand(i).setReg(ConvReg1);
606               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
607               LLVM_DEBUG(RoundInstr->dump());
608               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
609               LLVM_DEBUG(MI.dump());
610               LLVM_DEBUG(dbgs() << "Through instruction:\n");
611               LLVM_DEBUG(DefMI->dump());
612               RoundInstr->eraseFromParent();
613             }
614           };
615 
616           // If the input to XVCVDPSP is a vector that was built (even
617           // partially) out of FRSP's, the FRSP(s) can safely be removed
618           // since this instruction performs the same operation.
619           if (P1 != P2) {
620             removeFRSPIfPossible(P1);
621             removeFRSPIfPossible(P2);
622             break;
623           }
624           removeFRSPIfPossible(P1);
625         }
626         break;
627       }
628       case PPC::EXTSH:
629       case PPC::EXTSH8:
630       case PPC::EXTSH8_32_64: {
631         if (!EnableSExtElimination) break;
632         Register NarrowReg = MI.getOperand(1).getReg();
633         if (!Register::isVirtualRegister(NarrowReg))
634           break;
635 
636         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
637         // If we've used a zero-extending load that we will sign-extend,
638         // just do a sign-extending load.
639         if (SrcMI->getOpcode() == PPC::LHZ ||
640             SrcMI->getOpcode() == PPC::LHZX) {
641           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
642             break;
643           auto is64Bit = [] (unsigned Opcode) {
644             return Opcode == PPC::EXTSH8;
645           };
646           auto isXForm = [] (unsigned Opcode) {
647             return Opcode == PPC::LHZX;
648           };
649           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
650             if (is64Bit)
651               if (isXForm) return PPC::LHAX8;
652               else         return PPC::LHA8;
653             else
654               if (isXForm) return PPC::LHAX;
655               else         return PPC::LHA;
656           };
657           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
658                                        isXForm(SrcMI->getOpcode()));
659           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
660           LLVM_DEBUG(SrcMI->dump());
661           LLVM_DEBUG(dbgs() << "and sign-extension\n");
662           LLVM_DEBUG(MI.dump());
663           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
664           SrcMI->setDesc(TII->get(Opc));
665           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
666           ToErase = &MI;
667           Simplified = true;
668           NumEliminatedSExt++;
669         }
670         break;
671       }
672       case PPC::EXTSW:
673       case PPC::EXTSW_32:
674       case PPC::EXTSW_32_64: {
675         if (!EnableSExtElimination) break;
676         Register NarrowReg = MI.getOperand(1).getReg();
677         if (!Register::isVirtualRegister(NarrowReg))
678           break;
679 
680         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
681         // If we've used a zero-extending load that we will sign-extend,
682         // just do a sign-extending load.
683         if (SrcMI->getOpcode() == PPC::LWZ ||
684             SrcMI->getOpcode() == PPC::LWZX) {
685           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
686             break;
687           auto is64Bit = [] (unsigned Opcode) {
688             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
689           };
690           auto isXForm = [] (unsigned Opcode) {
691             return Opcode == PPC::LWZX;
692           };
693           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
694             if (is64Bit)
695               if (isXForm) return PPC::LWAX;
696               else         return PPC::LWA;
697             else
698               if (isXForm) return PPC::LWAX_32;
699               else         return PPC::LWA_32;
700           };
701           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
702                                        isXForm(SrcMI->getOpcode()));
703           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
704           LLVM_DEBUG(SrcMI->dump());
705           LLVM_DEBUG(dbgs() << "and sign-extension\n");
706           LLVM_DEBUG(MI.dump());
707           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
708           SrcMI->setDesc(TII->get(Opc));
709           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
710           ToErase = &MI;
711           Simplified = true;
712           NumEliminatedSExt++;
713         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
714                    TII->isSignExtended(*SrcMI)) {
715           // We can eliminate EXTSW if the input is known to be already
716           // sign-extended.
717           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
718           Register TmpReg =
719               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
720           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
721                   TmpReg);
722           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
723                   MI.getOperand(0).getReg())
724               .addReg(TmpReg)
725               .addReg(NarrowReg)
726               .addImm(PPC::sub_32);
727           ToErase = &MI;
728           Simplified = true;
729           NumEliminatedSExt++;
730         }
731         break;
732       }
733       case PPC::RLDICL: {
734         // We can eliminate RLDICL (e.g. for zero-extension)
735         // if all bits to clear are already zero in the input.
736         // This code assume following code sequence for zero-extension.
737         //   %6 = COPY %5:sub_32; (optional)
738         //   %8 = IMPLICIT_DEF;
739         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
740         if (!EnableZExtElimination) break;
741 
742         if (MI.getOperand(2).getImm() != 0)
743           break;
744 
745         Register SrcReg = MI.getOperand(1).getReg();
746         if (!Register::isVirtualRegister(SrcReg))
747           break;
748 
749         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
750         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
751               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
752           break;
753 
754         MachineInstr *ImpDefMI, *SubRegMI;
755         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
756         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
757         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
758 
759         SrcMI = SubRegMI;
760         if (SubRegMI->getOpcode() == PPC::COPY) {
761           Register CopyReg = SubRegMI->getOperand(1).getReg();
762           if (Register::isVirtualRegister(CopyReg))
763             SrcMI = MRI->getVRegDef(CopyReg);
764         }
765 
766         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
767         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
768           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
769           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
770                   MI.getOperand(0).getReg())
771               .addReg(SrcReg);
772           ToErase = &MI;
773           Simplified = true;
774           NumEliminatedZExt++;
775         }
776         break;
777       }
778 
779       // TODO: Any instruction that has an immediate form fed only by a PHI
780       // whose operands are all load immediate can be folded away. We currently
781       // do this for ADD instructions, but should expand it to arithmetic and
782       // binary instructions with immediate forms in the future.
783       case PPC::ADD4:
784       case PPC::ADD8: {
785         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
786           assert(PhiOp && "Invalid Operand!");
787           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
788 
789           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
790                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
791         };
792 
793         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
794                                             MachineOperand *PhiOp) {
795           assert(PhiOp && "Invalid Operand!");
796           assert(DominatorOp && "Invalid Operand!");
797           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
798           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
799 
800           // Note: the vregs only show up at odd indices position of PHI Node,
801           // the even indices position save the BB info.
802           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
803             MachineInstr *LiMI =
804                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
805             if (!LiMI ||
806                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
807                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
808                 !MDT->dominates(DefDomMI, LiMI))
809               return false;
810           }
811 
812           return true;
813         };
814 
815         MachineOperand Op1 = MI.getOperand(1);
816         MachineOperand Op2 = MI.getOperand(2);
817         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
818           std::swap(Op1, Op2);
819         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
820           break; // We don't have an ADD fed by LI's that can be transformed
821 
822         // Now we know that Op1 is the PHI node and Op2 is the dominator
823         Register DominatorReg = Op2.getReg();
824 
825         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
826                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
827                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
828         MRI->setRegClass(DominatorReg, TRC);
829 
830         // replace LIs with ADDIs
831         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
832         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
833           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
834           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
835           LLVM_DEBUG(LiMI->dump());
836 
837           // There could be repeated registers in the PHI, e.g: %1 =
838           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
839           // already replaced the def instruction, skip.
840           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
841             continue;
842 
843           assert((LiMI->getOpcode() == PPC::LI ||
844                   LiMI->getOpcode() == PPC::LI8) &&
845                  "Invalid Opcode!");
846           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
847           LiMI->RemoveOperand(1);                    // remove the imm of LI
848           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
849                                                               : PPC::ADDI8));
850           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
851               .addReg(DominatorReg)
852               .addImm(LiImm); // restore the imm of LI
853           LLVM_DEBUG(LiMI->dump());
854         }
855 
856         // Replace ADD with COPY
857         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
858         LLVM_DEBUG(MI.dump());
859         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
860                 MI.getOperand(0).getReg())
861             .add(Op1);
862         ToErase = &MI;
863         Simplified = true;
864         NumOptADDLIs++;
865         break;
866       }
867       case PPC::RLDICR: {
868         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
869                       combineSEXTAndSHL(MI, ToErase);
870         break;
871       }
872       case PPC::RLWINM:
873       case PPC::RLWINM_rec:
874       case PPC::RLWINM8:
875       case PPC::RLWINM8_rec: {
876         unsigned FoldingReg = MI.getOperand(1).getReg();
877         if (!Register::isVirtualRegister(FoldingReg))
878           break;
879 
880         MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
881         if (SrcMI->getOpcode() != PPC::RLWINM &&
882             SrcMI->getOpcode() != PPC::RLWINM_rec &&
883             SrcMI->getOpcode() != PPC::RLWINM8 &&
884             SrcMI->getOpcode() != PPC::RLWINM8_rec)
885           break;
886         assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
887                 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
888                 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
889                "Invalid PPC::RLWINM Instruction!");
890         uint64_t SHSrc = SrcMI->getOperand(2).getImm();
891         uint64_t SHMI = MI.getOperand(2).getImm();
892         uint64_t MBSrc = SrcMI->getOperand(3).getImm();
893         uint64_t MBMI = MI.getOperand(3).getImm();
894         uint64_t MESrc = SrcMI->getOperand(4).getImm();
895         uint64_t MEMI = MI.getOperand(4).getImm();
896 
897         assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
898                "Invalid PPC::RLWINM Instruction!");
899 
900         // If MBMI is bigger than MEMI, we always can not get run of ones.
901         // RotatedSrcMask non-wrap:
902         //                 0........31|32........63
903         // RotatedSrcMask:   B---E        B---E
904         // MaskMI:         -----------|--E  B------
905         // Result:           -----          ---      (Bad candidate)
906         //
907         // RotatedSrcMask wrap:
908         //                 0........31|32........63
909         // RotatedSrcMask: --E   B----|--E    B----
910         // MaskMI:         -----------|--E  B------
911         // Result:         ---   -----|---    -----  (Bad candidate)
912         //
913         // One special case is RotatedSrcMask is a full set mask.
914         // RotatedSrcMask full:
915         //                 0........31|32........63
916         // RotatedSrcMask: ------EB---|-------EB---
917         // MaskMI:         -----------|--E  B------
918         // Result:         -----------|---  -------  (Good candidate)
919 
920         // Mark special case.
921         bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
922 
923         // For other MBMI > MEMI cases, just return.
924         if ((MBMI > MEMI) && !SrcMaskFull)
925           break;
926 
927         // Handle MBMI <= MEMI cases.
928         APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
929         // In MI, we only need low 32 bits of SrcMI, just consider about low 32
930         // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
931         // while in PowerPC ISA, lowerest bit is at index 63.
932         APInt MaskSrc =
933             APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
934         // Current APInt::getBitsSetWithWrap sets all bits to 0 if loBit is
935         // equal to highBit.
936         // If MBSrc - MESrc == 1, we expect a full set mask instead of Null.
937         if (SrcMaskFull && (MBSrc - MESrc == 1))
938           MaskSrc.setAllBits();
939 
940         APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
941         APInt FinalMask = RotatedSrcMask & MaskMI;
942         uint32_t NewMB, NewME;
943 
944         // If final mask is 0, MI result should be 0 too.
945         if (FinalMask.isNullValue()) {
946           bool Is64Bit = (MI.getOpcode() == PPC::RLWINM8 ||
947                           MI.getOpcode() == PPC::RLWINM8_rec);
948 
949           Simplified = true;
950 
951           LLVM_DEBUG(dbgs() << "Replace Instr: ");
952           LLVM_DEBUG(MI.dump());
953 
954           if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
955             // Replace MI with "LI 0"
956             MI.RemoveOperand(4);
957             MI.RemoveOperand(3);
958             MI.RemoveOperand(2);
959             MI.getOperand(1).ChangeToImmediate(0);
960             MI.setDesc(TII->get(Is64Bit ? PPC::LI8 : PPC::LI));
961           } else {
962             // Replace MI with "ANDI_rec reg, 0"
963             MI.RemoveOperand(4);
964             MI.RemoveOperand(3);
965             MI.getOperand(2).setImm(0);
966             MI.setDesc(TII->get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
967             MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
968             if (SrcMI->getOperand(1).isKill()) {
969               MI.getOperand(1).setIsKill(true);
970               SrcMI->getOperand(1).setIsKill(false);
971             } else
972               // About to replace MI.getOperand(1), clear its kill flag.
973               MI.getOperand(1).setIsKill(false);
974           }
975 
976           LLVM_DEBUG(dbgs() << "With: ");
977           LLVM_DEBUG(MI.dump());
978         } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB,
979                                NewME) && NewMB <= NewME)|| SrcMaskFull) {
980           // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
981           // than NewME. Otherwise we get a 64 bit value after folding, but MI
982           // return a 32 bit value.
983 
984           Simplified = true;
985           LLVM_DEBUG(dbgs() << "Converting Instr: ");
986           LLVM_DEBUG(MI.dump());
987 
988           uint16_t NewSH = (SHSrc + SHMI) % 32;
989           MI.getOperand(2).setImm(NewSH);
990           // If SrcMI mask is full, no need to update MBMI and MEMI.
991           if (!SrcMaskFull) {
992             MI.getOperand(3).setImm(NewMB);
993             MI.getOperand(4).setImm(NewME);
994           }
995           MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
996           if (SrcMI->getOperand(1).isKill()) {
997             MI.getOperand(1).setIsKill(true);
998             SrcMI->getOperand(1).setIsKill(false);
999           } else
1000             // About to replace MI.getOperand(1), clear its kill flag.
1001             MI.getOperand(1).setIsKill(false);
1002 
1003           LLVM_DEBUG(dbgs() << "To: ");
1004           LLVM_DEBUG(MI.dump());
1005         }
1006         if (Simplified) {
1007           // If FoldingReg has no non-debug use and it has no implicit def (it
1008           // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
1009           // Otherwise keep it.
1010           ++NumRotatesCollapsed;
1011           if (MRI->use_nodbg_empty(FoldingReg) && !SrcMI->hasImplicitDef()) {
1012             ToErase = SrcMI;
1013             LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
1014             LLVM_DEBUG(SrcMI->dump());
1015           }
1016         }
1017         break;
1018       }
1019       }
1020     }
1021 
1022     // If the last instruction was marked for elimination,
1023     // remove it now.
1024     if (ToErase) {
1025       ToErase->eraseFromParent();
1026       ToErase = nullptr;
1027     }
1028   }
1029 
1030   // Eliminate all the TOC save instructions which are redundant.
1031   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1032   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1033   if (FI->mustSaveTOC())
1034     NumTOCSavesInPrologue++;
1035 
1036   // We try to eliminate redundant compare instruction.
1037   Simplified |= eliminateRedundantCompare();
1038 
1039   return Simplified;
1040 }
1041 
1042 // helper functions for eliminateRedundantCompare
1043 static bool isEqOrNe(MachineInstr *BI) {
1044   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1045   unsigned PredCond = PPC::getPredicateCondition(Pred);
1046   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1047 }
1048 
1049 static bool isSupportedCmpOp(unsigned opCode) {
1050   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1051           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1052           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1053           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1054 }
1055 
1056 static bool is64bitCmpOp(unsigned opCode) {
1057   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1058           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1059 }
1060 
1061 static bool isSignedCmpOp(unsigned opCode) {
1062   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1063           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1064 }
1065 
1066 static unsigned getSignedCmpOpCode(unsigned opCode) {
1067   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1068   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1069   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1070   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1071   return opCode;
1072 }
1073 
1074 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1075 // (LT x) to (LE x-1)
1076 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1077   uint64_t Imm = CMPI->getOperand(2).getImm();
1078   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1079   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1080     return 0;
1081 
1082   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1083   unsigned PredCond = PPC::getPredicateCondition(Pred);
1084   unsigned PredHint = PPC::getPredicateHint(Pred);
1085   if (PredCond == PPC::PRED_GE)
1086     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1087   if (PredCond == PPC::PRED_LT)
1088     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1089 
1090   return 0;
1091 }
1092 
1093 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1094 // (LE x) to (LT x+1)
1095 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1096   uint64_t Imm = CMPI->getOperand(2).getImm();
1097   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1098   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1099     return 0;
1100 
1101   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1102   unsigned PredCond = PPC::getPredicateCondition(Pred);
1103   unsigned PredHint = PPC::getPredicateHint(Pred);
1104   if (PredCond == PPC::PRED_GT)
1105     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1106   if (PredCond == PPC::PRED_LE)
1107     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1108 
1109   return 0;
1110 }
1111 
1112 // This takes a Phi node and returns a register value for the specified BB.
1113 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1114                                        MachineBasicBlock *MBB) {
1115   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1116     MachineOperand &MO = Phi->getOperand(I);
1117     if (MO.getMBB() == MBB)
1118       return Phi->getOperand(I-1).getReg();
1119   }
1120   llvm_unreachable("invalid src basic block for this Phi node\n");
1121   return 0;
1122 }
1123 
1124 // This function tracks the source of the register through register copy.
1125 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1126 // assuming that the control comes from BB1 into BB2.
1127 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1128                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1129   unsigned SrcReg = Reg;
1130   while (1) {
1131     unsigned NextReg = SrcReg;
1132     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1133     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1134       NextReg = getIncomingRegForBlock(Inst, BB1);
1135       // We track through PHI only once to avoid infinite loop.
1136       BB1 = nullptr;
1137     }
1138     else if (Inst->isFullCopy())
1139       NextReg = Inst->getOperand(1).getReg();
1140     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1141       break;
1142     SrcReg = NextReg;
1143   }
1144   return SrcReg;
1145 }
1146 
1147 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1148                                           MachineBasicBlock *&PredMBB,
1149                                           MachineBasicBlock *&MBBtoMoveCmp,
1150                                           MachineRegisterInfo *MRI) {
1151 
1152   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1153     auto BII = BB.getFirstInstrTerminator();
1154     // We optimize BBs ending with a conditional branch.
1155     // We check only for BCC here, not BCCLR, because BCCLR
1156     // will be formed only later in the pipeline.
1157     if (BB.succ_size() == 2 &&
1158         BII != BB.instr_end() &&
1159         (*BII).getOpcode() == PPC::BCC &&
1160         (*BII).getOperand(1).isReg()) {
1161       // We optimize only if the condition code is used only by one BCC.
1162       Register CndReg = (*BII).getOperand(1).getReg();
1163       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1164         return false;
1165 
1166       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1167       // We assume compare and branch are in the same BB for ease of analysis.
1168       if (CMPI->getParent() != &BB)
1169         return false;
1170 
1171       // We skip this BB if a physical register is used in comparison.
1172       for (MachineOperand &MO : CMPI->operands())
1173         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1174           return false;
1175 
1176       return true;
1177     }
1178     return false;
1179   };
1180 
1181   // If this BB has more than one successor, we can create a new BB and
1182   // move the compare instruction in the new BB.
1183   // So far, we do not move compare instruction to a BB having multiple
1184   // successors to avoid potentially increasing code size.
1185   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1186     return BB.succ_size() == 1;
1187   };
1188 
1189   if (!isEligibleBB(MBB))
1190     return false;
1191 
1192   unsigned NumPredBBs = MBB.pred_size();
1193   if (NumPredBBs == 1) {
1194     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1195     if (isEligibleBB(*TmpMBB)) {
1196       PredMBB = TmpMBB;
1197       MBBtoMoveCmp = nullptr;
1198       return true;
1199     }
1200   }
1201   else if (NumPredBBs == 2) {
1202     // We check for partially redundant case.
1203     // So far, we support cases with only two predecessors
1204     // to avoid increasing the number of instructions.
1205     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1206     MachineBasicBlock *Pred1MBB = *PI;
1207     MachineBasicBlock *Pred2MBB = *(PI+1);
1208 
1209     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1210       // We assume Pred1MBB is the BB containing the compare to be merged and
1211       // Pred2MBB is the BB to which we will append a compare instruction.
1212       // Hence we can proceed as is.
1213     }
1214     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1215       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1216       std::swap(Pred1MBB, Pred2MBB);
1217     }
1218     else return false;
1219 
1220     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1221     // We cannot move the compare instruction if operands are not available
1222     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1223     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1224     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1225     for (int I = 1; I <= 2; I++)
1226       if (CMPI->getOperand(I).isReg()) {
1227         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1228         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1229           return false;
1230       }
1231 
1232     PredMBB = Pred1MBB;
1233     MBBtoMoveCmp = Pred2MBB;
1234     return true;
1235   }
1236 
1237   return false;
1238 }
1239 
1240 // This function will iterate over the input map containing a pair of TOC save
1241 // instruction and a flag. The flag will be set to false if the TOC save is
1242 // proven redundant. This function will erase from the basic block all the TOC
1243 // saves marked as redundant.
1244 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1245     std::map<MachineInstr *, bool> &TOCSaves) {
1246   bool Simplified = false;
1247   int NumKept = 0;
1248   for (auto TOCSave : TOCSaves) {
1249     if (!TOCSave.second) {
1250       TOCSave.first->eraseFromParent();
1251       RemoveTOCSave++;
1252       Simplified = true;
1253     } else {
1254       NumKept++;
1255     }
1256   }
1257 
1258   if (NumKept > 1)
1259     MultiTOCSaves++;
1260 
1261   return Simplified;
1262 }
1263 
1264 // If multiple conditional branches are executed based on the (essentially)
1265 // same comparison, we merge compare instructions into one and make multiple
1266 // conditional branches on this comparison.
1267 // For example,
1268 //   if (a == 0) { ... }
1269 //   else if (a < 0) { ... }
1270 // can be executed by one compare and two conditional branches instead of
1271 // two pairs of a compare and a conditional branch.
1272 //
1273 // This method merges two compare instructions in two MBBs and modifies the
1274 // compare and conditional branch instructions if needed.
1275 // For the above example, the input for this pass looks like:
1276 //   cmplwi r3, 0
1277 //   beq    0, .LBB0_3
1278 //   cmpwi  r3, -1
1279 //   bgt    0, .LBB0_4
1280 // So, before merging two compares, we need to modify these instructions as
1281 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1282 //   beq    0, .LBB0_3
1283 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1284 //   bge    0, .LBB0_4
1285 
1286 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1287   bool Simplified = false;
1288 
1289   for (MachineBasicBlock &MBB2 : *MF) {
1290     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1291 
1292     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1293     // as an optimization target if
1294     // - both MBBs end with a conditional branch,
1295     // - MBB1 is the only predecessor of MBB2, and
1296     // - compare does not take a physical register as a operand in both MBBs.
1297     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1298     //
1299     // As partially redundant case, we additionally handle if MBB2 has one
1300     // additional predecessor, which has only one successor (MBB2).
1301     // In this case, we move the compare instruction originally in MBB2 into
1302     // MBBtoMoveCmp. This partially redundant case is typically appear by
1303     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1304     //
1305     // Overview of CFG of related basic blocks
1306     // Fully redundant case        Partially redundant case
1307     //   --------                   ----------------  --------
1308     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1309     //   --------                   ----------------  --------
1310     //      |    \                     (w/ 1 succ) \     |    \
1311     //      |     \                                 \    |     \
1312     //      |                                        \   |
1313     //   --------                                     --------
1314     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1315     //   -------- and 2 succ)                         -------- and 2 succ)
1316     //      |    \                                       |    \
1317     //      |     \                                      |     \
1318     //
1319     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1320       continue;
1321 
1322     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1323     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1324 
1325     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1326     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1327     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1328 
1329     // We cannot optimize an unsupported compare opcode or
1330     // a mix of 32-bit and 64-bit comaprisons
1331     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1332         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1333         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1334       continue;
1335 
1336     unsigned NewOpCode = 0;
1337     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1338     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1339     bool SwapOperands = false;
1340 
1341     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1342       // Typically, unsigned comparison is used for equality check, but
1343       // we replace it with a signed comparison if the comparison
1344       // to be merged is a signed comparison.
1345       // In other cases of opcode mismatch, we cannot optimize this.
1346 
1347       // We cannot change opcode when comparing against an immediate
1348       // if the most significant bit of the immediate is one
1349       // due to the difference in sign extension.
1350       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1351         if (!I->getOperand(2).isImm())
1352           return false;
1353         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1354         return Imm < 0;
1355       };
1356 
1357       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1358           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1359         NewOpCode = CMPI1->getOpcode();
1360       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1361                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1362         NewOpCode = CMPI2->getOpcode();
1363       else continue;
1364     }
1365 
1366     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1367       // In case of comparisons between two registers, these two registers
1368       // must be same to merge two comparisons.
1369       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1370                                          nullptr, nullptr, MRI);
1371       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1372                                          nullptr, nullptr, MRI);
1373       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1374                                          MBB1, &MBB2, MRI);
1375       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1376                                          MBB1, &MBB2, MRI);
1377 
1378       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1379         // Same pair of registers in the same order; ready to merge as is.
1380       }
1381       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1382         // Same pair of registers in different order.
1383         // We reverse the predicate to merge compare instructions.
1384         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1385         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1386         // In case of partial redundancy, we need to swap operands
1387         // in another compare instruction.
1388         SwapOperands = true;
1389       }
1390       else continue;
1391     }
1392     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1393       // In case of comparisons between a register and an immediate,
1394       // the operand register must be same for two compare instructions.
1395       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1396                                          nullptr, nullptr, MRI);
1397       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1398                                          MBB1, &MBB2, MRI);
1399       if (Cmp1Operand1 != Cmp2Operand1)
1400         continue;
1401 
1402       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1403       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1404 
1405       // If immediate are not same, we try to adjust by changing predicate;
1406       // e.g. GT imm means GE (imm+1).
1407       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1408         int Diff = Imm1 - Imm2;
1409         if (Diff < -2 || Diff > 2)
1410           continue;
1411 
1412         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1413         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1414         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1415         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1416         if (Diff == 2) {
1417           if (PredToInc2 && PredToDec1) {
1418             NewPredicate2 = PredToInc2;
1419             NewPredicate1 = PredToDec1;
1420             NewImm2++;
1421             NewImm1--;
1422           }
1423         }
1424         else if (Diff == 1) {
1425           if (PredToInc2) {
1426             NewImm2++;
1427             NewPredicate2 = PredToInc2;
1428           }
1429           else if (PredToDec1) {
1430             NewImm1--;
1431             NewPredicate1 = PredToDec1;
1432           }
1433         }
1434         else if (Diff == -1) {
1435           if (PredToDec2) {
1436             NewImm2--;
1437             NewPredicate2 = PredToDec2;
1438           }
1439           else if (PredToInc1) {
1440             NewImm1++;
1441             NewPredicate1 = PredToInc1;
1442           }
1443         }
1444         else if (Diff == -2) {
1445           if (PredToDec2 && PredToInc1) {
1446             NewPredicate2 = PredToDec2;
1447             NewPredicate1 = PredToInc1;
1448             NewImm2--;
1449             NewImm1++;
1450           }
1451         }
1452       }
1453 
1454       // We cannot merge two compares if the immediates are not same.
1455       if (NewImm2 != NewImm1)
1456         continue;
1457     }
1458 
1459     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1460     LLVM_DEBUG(CMPI1->dump());
1461     LLVM_DEBUG(BI1->dump());
1462     LLVM_DEBUG(CMPI2->dump());
1463     LLVM_DEBUG(BI2->dump());
1464 
1465     // We adjust opcode, predicates and immediate as we determined above.
1466     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1467       CMPI1->setDesc(TII->get(NewOpCode));
1468     }
1469     if (NewPredicate1) {
1470       BI1->getOperand(0).setImm(NewPredicate1);
1471     }
1472     if (NewPredicate2) {
1473       BI2->getOperand(0).setImm(NewPredicate2);
1474     }
1475     if (NewImm1 != Imm1) {
1476       CMPI1->getOperand(2).setImm(NewImm1);
1477     }
1478 
1479     if (IsPartiallyRedundant) {
1480       // We touch up the compare instruction in MBB2 and move it to
1481       // a previous BB to handle partially redundant case.
1482       if (SwapOperands) {
1483         Register Op1 = CMPI2->getOperand(1).getReg();
1484         Register Op2 = CMPI2->getOperand(2).getReg();
1485         CMPI2->getOperand(1).setReg(Op2);
1486         CMPI2->getOperand(2).setReg(Op1);
1487       }
1488       if (NewImm2 != Imm2)
1489         CMPI2->getOperand(2).setImm(NewImm2);
1490 
1491       for (int I = 1; I <= 2; I++) {
1492         if (CMPI2->getOperand(I).isReg()) {
1493           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1494           if (Inst->getParent() != &MBB2)
1495             continue;
1496 
1497           assert(Inst->getOpcode() == PPC::PHI &&
1498                  "We cannot support if an operand comes from this BB.");
1499           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1500           CMPI2->getOperand(I).setReg(SrcReg);
1501         }
1502       }
1503       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1504       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1505 
1506       DebugLoc DL = CMPI2->getDebugLoc();
1507       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1508       BuildMI(MBB2, MBB2.begin(), DL,
1509               TII->get(PPC::PHI), NewVReg)
1510         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1511         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1512       BI2->getOperand(1).setReg(NewVReg);
1513     }
1514     else {
1515       // We finally eliminate compare instruction in MBB2.
1516       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1517       CMPI2->eraseFromParent();
1518     }
1519     BI2->getOperand(1).setIsKill(true);
1520     BI1->getOperand(1).setIsKill(false);
1521 
1522     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1523     LLVM_DEBUG(CMPI1->dump());
1524     LLVM_DEBUG(BI1->dump());
1525     LLVM_DEBUG(BI2->dump());
1526     if (IsPartiallyRedundant) {
1527       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1528                         << printMBBReference(*MBBtoMoveCmp)
1529                         << " to handle partial redundancy.\n");
1530       LLVM_DEBUG(CMPI2->dump());
1531     }
1532 
1533     Simplified = true;
1534   }
1535 
1536   return Simplified;
1537 }
1538 
1539 // We miss the opportunity to emit an RLDIC when lowering jump tables
1540 // since ISEL sees only a single basic block. When selecting, the clear
1541 // and shift left will be in different blocks.
1542 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1543   if (MI.getOpcode() != PPC::RLDICR)
1544     return false;
1545 
1546   Register SrcReg = MI.getOperand(1).getReg();
1547   if (!Register::isVirtualRegister(SrcReg))
1548     return false;
1549 
1550   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1551   if (SrcMI->getOpcode() != PPC::RLDICL)
1552     return false;
1553 
1554   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1555   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1556   MachineOperand MOpSHMI = MI.getOperand(2);
1557   MachineOperand MOpMEMI = MI.getOperand(3);
1558   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1559         MOpMEMI.isImm()))
1560     return false;
1561 
1562   uint64_t SHSrc = MOpSHSrc.getImm();
1563   uint64_t MBSrc = MOpMBSrc.getImm();
1564   uint64_t SHMI = MOpSHMI.getImm();
1565   uint64_t MEMI = MOpMEMI.getImm();
1566   uint64_t NewSH = SHSrc + SHMI;
1567   uint64_t NewMB = MBSrc - SHMI;
1568   if (NewMB > 63 || NewSH > 63)
1569     return false;
1570 
1571   // The bits cleared with RLDICL are [0, MBSrc).
1572   // The bits cleared with RLDICR are (MEMI, 63].
1573   // After the sequence, the bits cleared are:
1574   // [0, MBSrc-SHMI) and (MEMI, 63).
1575   //
1576   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1577   if ((63 - NewSH) != MEMI)
1578     return false;
1579 
1580   LLVM_DEBUG(dbgs() << "Converting pair: ");
1581   LLVM_DEBUG(SrcMI->dump());
1582   LLVM_DEBUG(MI.dump());
1583 
1584   MI.setDesc(TII->get(PPC::RLDIC));
1585   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1586   MI.getOperand(2).setImm(NewSH);
1587   MI.getOperand(3).setImm(NewMB);
1588 
1589   LLVM_DEBUG(dbgs() << "To: ");
1590   LLVM_DEBUG(MI.dump());
1591   NumRotatesCollapsed++;
1592   return true;
1593 }
1594 
1595 // For case in LLVM IR
1596 // entry:
1597 //   %iconv = sext i32 %index to i64
1598 //   br i1 undef label %true, label %false
1599 // true:
1600 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1601 // ...
1602 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1603 // different BBs when conducting instruction selection. We can do a peephole
1604 // optimization to combine these two instructions into extswsli after
1605 // instruction selection.
1606 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1607                                       MachineInstr *&ToErase) {
1608   if (MI.getOpcode() != PPC::RLDICR)
1609     return false;
1610 
1611   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1612     return false;
1613 
1614   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1615 
1616   MachineOperand MOpSHMI = MI.getOperand(2);
1617   MachineOperand MOpMEMI = MI.getOperand(3);
1618   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1619     return false;
1620 
1621   uint64_t SHMI = MOpSHMI.getImm();
1622   uint64_t MEMI = MOpMEMI.getImm();
1623   if (SHMI + MEMI != 63)
1624     return false;
1625 
1626   Register SrcReg = MI.getOperand(1).getReg();
1627   if (!Register::isVirtualRegister(SrcReg))
1628     return false;
1629 
1630   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1631   if (SrcMI->getOpcode() != PPC::EXTSW &&
1632       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1633     return false;
1634 
1635   // If the register defined by extsw has more than one use, combination is not
1636   // needed.
1637   if (!MRI->hasOneNonDBGUse(SrcReg))
1638     return false;
1639 
1640   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1641   assert(SrcMI->getOperand(1).isReg() &&
1642          "EXTSW's second operand should be a register");
1643   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1644     return false;
1645 
1646   LLVM_DEBUG(dbgs() << "Combining pair: ");
1647   LLVM_DEBUG(SrcMI->dump());
1648   LLVM_DEBUG(MI.dump());
1649 
1650   MachineInstr *NewInstr =
1651       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1652               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1653                                                : TII->get(PPC::EXTSWSLI_32_64),
1654               MI.getOperand(0).getReg())
1655           .add(SrcMI->getOperand(1))
1656           .add(MOpSHMI);
1657   (void)NewInstr;
1658 
1659   LLVM_DEBUG(dbgs() << "TO: ");
1660   LLVM_DEBUG(NewInstr->dump());
1661   ++NumEXTSWAndSLDICombined;
1662   ToErase = &MI;
1663   // SrcMI, which is extsw, is of no use now, erase it.
1664   SrcMI->eraseFromParent();
1665   return true;
1666 }
1667 
1668 } // end default namespace
1669 
1670 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1671                       "PowerPC MI Peephole Optimization", false, false)
1672 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1673 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1674 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1675 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1676                     "PowerPC MI Peephole Optimization", false, false)
1677 
1678 char PPCMIPeephole::ID = 0;
1679 FunctionPass*
1680 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1681 
1682