xref: /llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp (revision 099899961c1e89a1789f534579d35a74a2ef1dda)
1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 // NOTE: We run the verifier after this pass in Asserts/Debug builds so it
20 //       is important to keep the code valid after transformations.
21 //       Common causes of errors stem from violating the contract specified
22 //       by kill flags. Whenever a transformation changes the live range of
23 //       a register, that register should be added to the work list using
24 //       addRegToUpdate(RegsToUpdate, <Reg>). Furthermore, if a transformation
25 //       is changing the definition of a register (i.e. removing the single
26 //       definition of the original vreg), it needs to provide a dummy
27 //       definition of that register using addDummyDef(<MBB>, <Reg>).
28 //===---------------------------------------------------------------------===//
29 
30 #include "MCTargetDesc/PPCMCTargetDesc.h"
31 #include "MCTargetDesc/PPCPredicates.h"
32 #include "PPC.h"
33 #include "PPCInstrBuilder.h"
34 #include "PPCInstrInfo.h"
35 #include "PPCMachineFunctionInfo.h"
36 #include "PPCTargetMachine.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/DebugCounter.h"
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "ppc-mi-peepholes"
53 
54 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
55 STATISTIC(MultiTOCSaves,
56           "Number of functions with multiple TOC saves that must be kept");
57 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
58 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
59 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
60 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
61 STATISTIC(NumConvertedToImmediateForm,
62           "Number of instructions converted to their immediate form");
63 STATISTIC(NumFunctionsEnteredInMIPeephole,
64           "Number of functions entered in PPC MI Peepholes");
65 STATISTIC(NumFixedPointIterations,
66           "Number of fixed-point iterations converting reg-reg instructions "
67           "to reg-imm ones");
68 STATISTIC(NumRotatesCollapsed,
69           "Number of pairs of rotate left, clear left/right collapsed");
70 STATISTIC(NumEXTSWAndSLDICombined,
71           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
72 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
73           "Number of LI(8) reg, 0 that are folded to r0 and removed");
74 
75 static cl::opt<bool>
76 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
77                    cl::desc("Iterate to a fixed point when attempting to "
78                             "convert reg-reg instructions to reg-imm"));
79 
80 static cl::opt<bool>
81 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
82               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
83 
84 static cl::opt<bool>
85     EnableSExtElimination("ppc-eliminate-signext",
86                           cl::desc("enable elimination of sign-extensions"),
87                           cl::init(true), cl::Hidden);
88 
89 static cl::opt<bool>
90     EnableZExtElimination("ppc-eliminate-zeroext",
91                           cl::desc("enable elimination of zero-extensions"),
92                           cl::init(true), cl::Hidden);
93 
94 static cl::opt<bool>
95     EnableTrapOptimization("ppc-opt-conditional-trap",
96                            cl::desc("enable optimization of conditional traps"),
97                            cl::init(false), cl::Hidden);
98 
99 DEBUG_COUNTER(
100     PeepholeXToICounter, "ppc-xtoi-peephole",
101     "Controls whether PPC reg+reg to reg+imm peephole is performed on a MI");
102 
103 DEBUG_COUNTER(PeepholePerOpCounter, "ppc-per-op-peephole",
104               "Controls whether PPC per opcode peephole is performed on a MI");
105 
106 namespace {
107 
108 struct PPCMIPeephole : public MachineFunctionPass {
109 
110   static char ID;
111   const PPCInstrInfo *TII;
112   MachineFunction *MF;
113   MachineRegisterInfo *MRI;
114   LiveVariables *LV;
115 
116   PPCMIPeephole() : MachineFunctionPass(ID) {
117     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
118   }
119 
120 private:
121   MachineDominatorTree *MDT;
122   MachinePostDominatorTree *MPDT;
123   MachineBlockFrequencyInfo *MBFI;
124   BlockFrequency EntryFreq;
125   SmallSet<Register, 16> RegsToUpdate;
126 
127   // Initialize class variables.
128   void initialize(MachineFunction &MFParm);
129 
130   // Perform peepholes.
131   bool simplifyCode();
132 
133   // Perform peepholes.
134   bool eliminateRedundantCompare();
135   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
136   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
137   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
138                                        MachineInstr *&ToErase);
139   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
140                       MachineInstr *MI);
141 
142   // A number of transformations will eliminate the definition of a register
143   // as all of its uses will be removed. However, this leaves a register
144   // without a definition for LiveVariables. Such transformations should
145   // use this function to provide a dummy definition of the register that
146   // will simply be removed by DCE.
147   void addDummyDef(MachineBasicBlock &MBB, MachineInstr *At, Register Reg) {
148     BuildMI(MBB, At, At->getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), Reg);
149   }
150   void addRegToUpdateWithLine(Register Reg, int Line);
151   void convertUnprimedAccPHIs(const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
152                               SmallVectorImpl<MachineInstr *> &PHIs,
153                               Register Dst);
154 
155 public:
156 
157   void getAnalysisUsage(AnalysisUsage &AU) const override {
158     AU.addRequired<LiveVariablesWrapperPass>();
159     AU.addRequired<MachineDominatorTreeWrapperPass>();
160     AU.addRequired<MachinePostDominatorTreeWrapperPass>();
161     AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
162     AU.addPreserved<LiveVariablesWrapperPass>();
163     AU.addPreserved<MachineDominatorTreeWrapperPass>();
164     AU.addPreserved<MachinePostDominatorTreeWrapperPass>();
165     AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
166     MachineFunctionPass::getAnalysisUsage(AU);
167   }
168 
169   // Main entry point for this pass.
170   bool runOnMachineFunction(MachineFunction &MF) override {
171     initialize(MF);
172     // At this point, TOC pointer should not be used in a function that uses
173     // PC-Relative addressing.
174     assert((MF.getRegInfo().use_empty(PPC::X2) ||
175             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
176            "TOC pointer used in a function using PC-Relative addressing!");
177     if (skipFunction(MF.getFunction()))
178       return false;
179     bool Changed = simplifyCode();
180 #ifndef NDEBUG
181     if (Changed)
182       MF.verify(this, "Error in PowerPC MI Peephole optimization, compile with "
183                       "-mllvm -disable-ppc-peephole");
184 #endif
185     return Changed;
186   }
187 };
188 
189 #define addRegToUpdate(R) addRegToUpdateWithLine(R, __LINE__)
190 void PPCMIPeephole::addRegToUpdateWithLine(Register Reg, int Line) {
191   if (!Register::isVirtualRegister(Reg))
192     return;
193   if (RegsToUpdate.insert(Reg).second)
194     LLVM_DEBUG(dbgs() << "Adding register: " << Register::virtReg2Index(Reg)
195                       << " on line " << Line
196                       << " for re-computation of kill flags\n");
197 }
198 
199 // Initialize class variables.
200 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
201   MF = &MFParm;
202   MRI = &MF->getRegInfo();
203   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
204   MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
205   MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
206   LV = &getAnalysis<LiveVariablesWrapperPass>().getLV();
207   EntryFreq = MBFI->getEntryFreq();
208   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
209   RegsToUpdate.clear();
210   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
211   LLVM_DEBUG(MF->dump());
212 }
213 
214 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
215                                       MachineRegisterInfo *MRI) {
216   assert(Op && "Invalid Operand!");
217   if (!Op->isReg())
218     return nullptr;
219 
220   Register Reg = Op->getReg();
221   if (!Reg.isVirtual())
222     return nullptr;
223 
224   return MRI->getVRegDef(Reg);
225 }
226 
227 // This function returns number of known zero bits in output of MI
228 // starting from the most significant bit.
229 static unsigned getKnownLeadingZeroCount(const unsigned Reg,
230                                          const PPCInstrInfo *TII,
231                                          const MachineRegisterInfo *MRI) {
232   MachineInstr *MI = MRI->getVRegDef(Reg);
233   unsigned Opcode = MI->getOpcode();
234   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
235       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
236     return MI->getOperand(3).getImm();
237 
238   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
239       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
240     return MI->getOperand(3).getImm();
241 
242   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
243        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
244        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
245       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
246     return 32 + MI->getOperand(3).getImm();
247 
248   if (Opcode == PPC::ANDI_rec) {
249     uint16_t Imm = MI->getOperand(2).getImm();
250     return 48 + llvm::countl_zero(Imm);
251   }
252 
253   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
254       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
255       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
256     // The result ranges from 0 to 32.
257     return 58;
258 
259   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
260       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
261     // The result ranges from 0 to 64.
262     return 57;
263 
264   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
265       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
266       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
267       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
268     return 48;
269 
270   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
271       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
272       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
273       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
274     return 56;
275 
276   if (Opcode == PPC::AND || Opcode == PPC::AND8 || Opcode == PPC::AND_rec ||
277       Opcode == PPC::AND8_rec)
278     return std::max(
279         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
280         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
281 
282   if (Opcode == PPC::OR || Opcode == PPC::OR8 || Opcode == PPC::XOR ||
283       Opcode == PPC::XOR8 || Opcode == PPC::OR_rec ||
284       Opcode == PPC::OR8_rec || Opcode == PPC::XOR_rec ||
285       Opcode == PPC::XOR8_rec)
286     return std::min(
287         getKnownLeadingZeroCount(MI->getOperand(1).getReg(), TII, MRI),
288         getKnownLeadingZeroCount(MI->getOperand(2).getReg(), TII, MRI));
289 
290   if (TII->isZeroExtended(Reg, MRI))
291     return 32;
292 
293   return 0;
294 }
295 
296 // This function maintains a map for the pairs <TOC Save Instr, Keep>
297 // Each time a new TOC save is encountered, it checks if any of the existing
298 // ones are dominated by the new one. If so, it marks the existing one as
299 // redundant by setting it's entry in the map as false. It then adds the new
300 // instruction to the map with either true or false depending on if any
301 // existing instructions dominated the new one.
302 void PPCMIPeephole::UpdateTOCSaves(
303   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
304   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
305   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
306   // here only support it under ELFv2.
307   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
308     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
309 
310     MachineBasicBlock *Entry = &MF->front();
311     BlockFrequency CurrBlockFreq = MBFI->getBlockFreq(MI->getParent());
312 
313     // If the block in which the TOC save resides is in a block that
314     // post-dominates Entry, or a block that is hotter than entry (keep in mind
315     // that early MachineLICM has already run so the TOC save won't be hoisted)
316     // we can just do the save in the prologue.
317     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
318       FI->setMustSaveTOC(true);
319 
320     // If we are saving the TOC in the prologue, all the TOC saves can be
321     // removed from the code.
322     if (FI->mustSaveTOC()) {
323       for (auto &TOCSave : TOCSaves)
324         TOCSave.second = false;
325       // Add new instruction to map.
326       TOCSaves[MI] = false;
327       return;
328     }
329   }
330 
331   bool Keep = true;
332   for (auto &I : TOCSaves) {
333     MachineInstr *CurrInst = I.first;
334     // If new instruction dominates an existing one, mark existing one as
335     // redundant.
336     if (I.second && MDT->dominates(MI, CurrInst))
337       I.second = false;
338     // Check if the new instruction is redundant.
339     if (MDT->dominates(CurrInst, MI)) {
340       Keep = false;
341       break;
342     }
343   }
344   // Add new instruction to map.
345   TOCSaves[MI] = Keep;
346 }
347 
348 // This function returns a list of all PHI nodes in the tree starting from
349 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
350 // The list initially only contains the root PHI. When we visit a PHI node, we
351 // add it to the list. We continue to look for other PHI node operands while
352 // there are nodes to visit in the list. The function returns false if the
353 // optimization cannot be applied on this tree.
354 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
355                                    MachineInstr *RootPHI,
356                                    SmallVectorImpl<MachineInstr *> &PHIs) {
357   PHIs.push_back(RootPHI);
358   unsigned VisitedIndex = 0;
359   while (VisitedIndex < PHIs.size()) {
360     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
361     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
362          PHIOp != NumOps; PHIOp += 2) {
363       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
364       if (!RegOp.isVirtual())
365         return false;
366       MachineInstr *Instr = MRI->getVRegDef(RegOp);
367       // While collecting the PHI nodes, we check if they can be converted (i.e.
368       // all the operands are either copies, implicit defs or PHI nodes).
369       unsigned Opcode = Instr->getOpcode();
370       if (Opcode == PPC::COPY) {
371         Register Reg = Instr->getOperand(1).getReg();
372         if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
373           return false;
374       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
375         return false;
376       // If we detect a cycle in the PHI nodes, we exit. It would be
377       // possible to change cycles as well, but that would add a lot
378       // of complexity for a case that is unlikely to occur with MMA
379       // code.
380       if (Opcode != PPC::PHI)
381         continue;
382       if (llvm::is_contained(PHIs, Instr))
383         return false;
384       PHIs.push_back(Instr);
385     }
386     VisitedIndex++;
387   }
388   return true;
389 }
390 
391 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
392 // primed accumulator PHI nodes. The list is traversed in reverse order to
393 // change all the PHI operands of a PHI node before changing the node itself.
394 // We keep a map to associate each changed PHI node to its non-changed form.
395 void PPCMIPeephole::convertUnprimedAccPHIs(
396     const PPCInstrInfo *TII, MachineRegisterInfo *MRI,
397     SmallVectorImpl<MachineInstr *> &PHIs, Register Dst) {
398   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
399   for (MachineInstr *PHI : llvm::reverse(PHIs)) {
400     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
401     // We check if the current PHI node can be changed by looking at its
402     // operands. If all the operands are either copies from primed
403     // accumulators, implicit definitions or other unprimed accumulator
404     // PHI nodes, we change it.
405     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
406          PHIOp += 2) {
407       Register RegOp = PHI->getOperand(PHIOp).getReg();
408       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
409       unsigned Opcode = PHIInput->getOpcode();
410       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
411               Opcode == PPC::PHI) &&
412              "Unexpected instruction");
413       if (Opcode == PPC::COPY) {
414         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
415                    &PPC::ACCRCRegClass &&
416                "Unexpected register class");
417         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
418       } else if (Opcode == PPC::IMPLICIT_DEF) {
419         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
420         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
421                 TII->get(PPC::IMPLICIT_DEF), AccReg);
422         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
423                           PHI->getOperand(PHIOp + 1)});
424       } else if (Opcode == PPC::PHI) {
425         // We found a PHI operand. At this point we know this operand
426         // has already been changed so we get its associated changed form
427         // from the map.
428         assert(ChangedPHIMap.count(PHIInput) == 1 &&
429                "This PHI node should have already been changed.");
430         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
431         PHIOps.push_back({MachineOperand::CreateReg(
432                               PrimedAccPHI->getOperand(0).getReg(), false),
433                           PHI->getOperand(PHIOp + 1)});
434       }
435     }
436     Register AccReg = Dst;
437     // If the PHI node we are changing is the root node, the register it defines
438     // will be the destination register of the original copy (of the PHI def).
439     // For all other PHI's in the list, we need to create another primed
440     // accumulator virtual register as the PHI will no longer define the
441     // unprimed accumulator.
442     if (PHI != PHIs[0])
443       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
444     MachineInstrBuilder NewPHI = BuildMI(
445         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
446     for (auto RegMBB : PHIOps) {
447       NewPHI.add(RegMBB.first).add(RegMBB.second);
448       if (MRI->isSSA())
449         addRegToUpdate(RegMBB.first.getReg());
450     }
451     // The liveness of old PHI and new PHI have to be updated.
452     addRegToUpdate(PHI->getOperand(0).getReg());
453     addRegToUpdate(AccReg);
454     ChangedPHIMap[PHI] = NewPHI.getInstr();
455     LLVM_DEBUG(dbgs() << "Converting PHI: ");
456     LLVM_DEBUG(PHI->dump());
457     LLVM_DEBUG(dbgs() << "To: ");
458     LLVM_DEBUG(NewPHI.getInstr()->dump());
459   }
460 }
461 
462 // Perform peephole optimizations.
463 bool PPCMIPeephole::simplifyCode() {
464   bool Simplified = false;
465   bool TrapOpt = false;
466   MachineInstr* ToErase = nullptr;
467   std::map<MachineInstr *, bool> TOCSaves;
468   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
469   NumFunctionsEnteredInMIPeephole++;
470   if (ConvertRegReg) {
471     // Fixed-point conversion of reg/reg instructions fed by load-immediate
472     // into reg/imm instructions. FIXME: This is expensive, control it with
473     // an option.
474     bool SomethingChanged = false;
475     do {
476       NumFixedPointIterations++;
477       SomethingChanged = false;
478       for (MachineBasicBlock &MBB : *MF) {
479         for (MachineInstr &MI : MBB) {
480           if (MI.isDebugInstr())
481             continue;
482 
483           if (!DebugCounter::shouldExecute(PeepholeXToICounter))
484             continue;
485 
486           SmallSet<Register, 4> RRToRIRegsToUpdate;
487           if (!TII->convertToImmediateForm(MI, RRToRIRegsToUpdate))
488             continue;
489           for (Register R : RRToRIRegsToUpdate)
490             addRegToUpdate(R);
491           // The updated instruction may now have new register operands.
492           // Conservatively add them to recompute the flags as well.
493           for (const MachineOperand &MO : MI.operands())
494             if (MO.isReg())
495               addRegToUpdate(MO.getReg());
496           // We don't erase anything in case the def has other uses. Let DCE
497           // remove it if it can be removed.
498           LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
499           LLVM_DEBUG(MI.dump());
500           NumConvertedToImmediateForm++;
501           SomethingChanged = true;
502           Simplified = true;
503           continue;
504         }
505       }
506     } while (SomethingChanged && FixedPointRegToImm);
507   }
508 
509   // Since we are deleting this instruction, we need to run LiveVariables
510   // on any of its definitions that are marked as needing an update since
511   // we can't run LiveVariables on a deleted register. This only needs
512   // to be done for defs since uses will have their own defining
513   // instructions so we won't be running LiveVariables on a deleted reg.
514   auto recomputeLVForDyingInstr = [&]() {
515     if (RegsToUpdate.empty())
516       return;
517     for (MachineOperand &MO : ToErase->operands()) {
518       if (!MO.isReg() || !MO.isDef() || !RegsToUpdate.count(MO.getReg()))
519         continue;
520       Register RegToUpdate = MO.getReg();
521       RegsToUpdate.erase(RegToUpdate);
522       // If some transformation has introduced an additional definition of
523       // this register (breaking SSA), we can safely convert this def to
524       // a def of an invalid register as the instruction is going away.
525       if (!MRI->getUniqueVRegDef(RegToUpdate))
526         MO.setReg(PPC::NoRegister);
527       LV->recomputeForSingleDefVirtReg(RegToUpdate);
528     }
529   };
530 
531   for (MachineBasicBlock &MBB : *MF) {
532     for (MachineInstr &MI : MBB) {
533 
534       // If the previous instruction was marked for elimination,
535       // remove it now.
536       if (ToErase) {
537         LLVM_DEBUG(dbgs() << "Deleting instruction: ");
538         LLVM_DEBUG(ToErase->dump());
539         recomputeLVForDyingInstr();
540         ToErase->eraseFromParent();
541         ToErase = nullptr;
542       }
543       // If a conditional trap instruction got optimized to an
544       // unconditional trap, eliminate all the instructions after
545       // the trap.
546       if (EnableTrapOptimization && TrapOpt) {
547         ToErase = &MI;
548         continue;
549       }
550 
551       // Ignore debug instructions.
552       if (MI.isDebugInstr())
553         continue;
554 
555       if (!DebugCounter::shouldExecute(PeepholePerOpCounter))
556         continue;
557 
558       // Per-opcode peepholes.
559       switch (MI.getOpcode()) {
560 
561       default:
562         break;
563       case PPC::COPY: {
564         Register Src = MI.getOperand(1).getReg();
565         Register Dst = MI.getOperand(0).getReg();
566         if (!Src.isVirtual() || !Dst.isVirtual())
567           break;
568         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
569             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
570           break;
571 
572         // We are copying an unprimed accumulator to a primed accumulator.
573         // If the input to the copy is a PHI that is fed only by (i) copies in
574         // the other direction (ii) implicitly defined unprimed accumulators or
575         // (iii) other PHI nodes satisfying (i) and (ii), we can change
576         // the PHI to a PHI on primed accumulators (as long as we also change
577         // its operands). To detect and change such copies, we first get a list
578         // of all the PHI nodes starting from the root PHI node in BFS order.
579         // We then visit all these PHI nodes to check if they can be changed to
580         // primed accumulator PHI nodes and if so, we change them.
581         MachineInstr *RootPHI = MRI->getVRegDef(Src);
582         if (RootPHI->getOpcode() != PPC::PHI)
583           break;
584 
585         SmallVector<MachineInstr *, 4> PHIs;
586         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
587           break;
588 
589         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
590 
591         ToErase = &MI;
592         break;
593       }
594       case PPC::LI:
595       case PPC::LI8: {
596         // If we are materializing a zero, look for any use operands for which
597         // zero means immediate zero. All such operands can be replaced with
598         // PPC::ZERO.
599         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
600           break;
601         Register MIDestReg = MI.getOperand(0).getReg();
602         bool Folded = false;
603         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
604           Folded |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
605         if (MRI->use_nodbg_empty(MIDestReg)) {
606           ++NumLoadImmZeroFoldedAndRemoved;
607           ToErase = &MI;
608         }
609         if (Folded)
610           addRegToUpdate(MIDestReg);
611         Simplified |= Folded;
612         break;
613       }
614       case PPC::STW:
615       case PPC::STD: {
616         MachineFrameInfo &MFI = MF->getFrameInfo();
617         if (MFI.hasVarSizedObjects() ||
618             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
619              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
620           break;
621         // When encountering a TOC save instruction, call UpdateTOCSaves
622         // to add it to the TOCSaves map and mark any existing TOC saves
623         // it dominates as redundant.
624         if (TII->isTOCSaveMI(MI))
625           UpdateTOCSaves(TOCSaves, &MI);
626         break;
627       }
628       case PPC::XXPERMDI: {
629         // Perform simplifications of 2x64 vector swaps and splats.
630         // A swap is identified by an immediate value of 2, and a splat
631         // is identified by an immediate value of 0 or 3.
632         int Immed = MI.getOperand(3).getImm();
633 
634         if (Immed == 1)
635           break;
636 
637         // For each of these simplifications, we need the two source
638         // regs to match.  Unfortunately, MachineCSE ignores COPY and
639         // SUBREG_TO_REG, so for example we can see
640         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
641         // We have to look through chains of COPY and SUBREG_TO_REG
642         // to find the real source values for comparison.
643         Register TrueReg1 =
644           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
645         Register TrueReg2 =
646           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
647 
648         if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual()))
649           break;
650 
651         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
652 
653         if (!DefMI)
654           break;
655 
656         unsigned DefOpc = DefMI->getOpcode();
657 
658         // If this is a splat fed by a splatting load, the splat is
659         // redundant. Replace with a copy. This doesn't happen directly due
660         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
661         // a load of a double to a vector of 64-bit integers.
662         auto isConversionOfLoadAndSplat = [=]() -> bool {
663           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
664             return false;
665           Register FeedReg1 =
666             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
667           if (FeedReg1.isVirtual()) {
668             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
669             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
670               return true;
671           }
672           return false;
673         };
674         if ((Immed == 0 || Immed == 3) &&
675             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
676           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
677                                "to load-and-splat/copy: ");
678           LLVM_DEBUG(MI.dump());
679           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
680                   MI.getOperand(0).getReg())
681               .add(MI.getOperand(1));
682           addRegToUpdate(MI.getOperand(1).getReg());
683           ToErase = &MI;
684           Simplified = true;
685         }
686 
687         // If this is a splat or a swap fed by another splat, we
688         // can replace it with a copy.
689         if (DefOpc == PPC::XXPERMDI) {
690           Register DefReg1 = DefMI->getOperand(1).getReg();
691           Register DefReg2 = DefMI->getOperand(2).getReg();
692           unsigned DefImmed = DefMI->getOperand(3).getImm();
693 
694           // If the two inputs are not the same register, check to see if
695           // they originate from the same virtual register after only
696           // copy-like instructions.
697           if (DefReg1 != DefReg2) {
698             Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
699             Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
700 
701             if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual()))
702               break;
703           }
704 
705           if (DefImmed == 0 || DefImmed == 3) {
706             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
707                                  "to splat/copy: ");
708             LLVM_DEBUG(MI.dump());
709             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
710                     MI.getOperand(0).getReg())
711                 .add(MI.getOperand(1));
712             addRegToUpdate(MI.getOperand(1).getReg());
713             ToErase = &MI;
714             Simplified = true;
715           }
716 
717           // If this is a splat fed by a swap, we can simplify modify
718           // the splat to splat the other value from the swap's input
719           // parameter.
720           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
721             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
722             LLVM_DEBUG(MI.dump());
723             addRegToUpdate(MI.getOperand(1).getReg());
724             addRegToUpdate(MI.getOperand(2).getReg());
725             MI.getOperand(1).setReg(DefReg1);
726             MI.getOperand(2).setReg(DefReg2);
727             MI.getOperand(3).setImm(3 - Immed);
728             addRegToUpdate(DefReg1);
729             addRegToUpdate(DefReg2);
730             Simplified = true;
731           }
732 
733           // If this is a swap fed by a swap, we can replace it
734           // with a copy from the first swap's input.
735           else if (Immed == 2 && DefImmed == 2) {
736             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
737             LLVM_DEBUG(MI.dump());
738             addRegToUpdate(MI.getOperand(1).getReg());
739             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
740                     MI.getOperand(0).getReg())
741                 .add(DefMI->getOperand(1));
742             addRegToUpdate(DefMI->getOperand(0).getReg());
743             addRegToUpdate(DefMI->getOperand(1).getReg());
744             ToErase = &MI;
745             Simplified = true;
746           }
747         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
748                    DefOpc == PPC::XXPERMDIs &&
749                    (DefMI->getOperand(2).getImm() == 0 ||
750                     DefMI->getOperand(2).getImm() == 3)) {
751           ToErase = &MI;
752           Simplified = true;
753           // Swap of a splat, convert to copy.
754           if (Immed == 2) {
755             LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): ");
756             LLVM_DEBUG(MI.dump());
757             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
758                     MI.getOperand(0).getReg())
759                 .add(MI.getOperand(1));
760             addRegToUpdate(MI.getOperand(1).getReg());
761             break;
762           }
763           // Splat fed by another splat - switch the output of the first
764           // and remove the second.
765           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
766           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
767           LLVM_DEBUG(MI.dump());
768         } else if (Immed == 2 &&
769                    (DefOpc == PPC::VSPLTB || DefOpc == PPC::VSPLTH ||
770                     DefOpc == PPC::VSPLTW || DefOpc == PPC::XXSPLTW ||
771                     DefOpc == PPC::VSPLTISB || DefOpc == PPC::VSPLTISH ||
772                     DefOpc == PPC::VSPLTISW)) {
773           // Swap of various vector splats, convert to copy.
774           ToErase = &MI;
775           Simplified = true;
776           LLVM_DEBUG(dbgs() << "Optimizing swap(vsplt(is)?[b|h|w]|xxspltw) => "
777                                "copy(vsplt(is)?[b|h|w]|xxspltw): ");
778           LLVM_DEBUG(MI.dump());
779           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
780                   MI.getOperand(0).getReg())
781               .add(MI.getOperand(1));
782           addRegToUpdate(MI.getOperand(1).getReg());
783         } else if ((Immed == 0 || Immed == 3 || Immed == 2) &&
784                    TII->isLoadFromConstantPool(DefMI)) {
785           const Constant *C = TII->getConstantFromConstantPool(DefMI);
786           if (C && C->getType()->isVectorTy() && C->getSplatValue()) {
787             ToErase = &MI;
788             Simplified = true;
789             LLVM_DEBUG(dbgs()
790                        << "Optimizing swap(splat pattern from constant-pool) "
791                           "=> copy(splat pattern from constant-pool): ");
792             LLVM_DEBUG(MI.dump());
793             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
794                     MI.getOperand(0).getReg())
795                 .add(MI.getOperand(1));
796             addRegToUpdate(MI.getOperand(1).getReg());
797           }
798         }
799         break;
800       }
801       case PPC::VSPLTB:
802       case PPC::VSPLTH:
803       case PPC::XXSPLTW: {
804         unsigned MyOpcode = MI.getOpcode();
805         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
806         Register TrueReg =
807           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
808         if (!TrueReg.isVirtual())
809           break;
810         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
811         if (!DefMI)
812           break;
813         unsigned DefOpcode = DefMI->getOpcode();
814         auto isConvertOfSplat = [=]() -> bool {
815           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
816             return false;
817           Register ConvReg = DefMI->getOperand(1).getReg();
818           if (!ConvReg.isVirtual())
819             return false;
820           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
821           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
822             Splt->getOpcode() == PPC::XXSPLTW);
823         };
824         bool AlreadySplat = (MyOpcode == DefOpcode) ||
825           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
826           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
827           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
828           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
829           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
830           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
831         // If the instruction[s] that feed this splat have already splat
832         // the value, this splat is redundant.
833         if (AlreadySplat) {
834           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
835           LLVM_DEBUG(MI.dump());
836           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
837                   MI.getOperand(0).getReg())
838               .add(MI.getOperand(OpNo));
839           addRegToUpdate(MI.getOperand(OpNo).getReg());
840           ToErase = &MI;
841           Simplified = true;
842         }
843         // Splat fed by a shift. Usually when we align value to splat into
844         // vector element zero.
845         if (DefOpcode == PPC::XXSLDWI) {
846           Register ShiftRes = DefMI->getOperand(0).getReg();
847           Register ShiftOp1 = DefMI->getOperand(1).getReg();
848           Register ShiftOp2 = DefMI->getOperand(2).getReg();
849           unsigned ShiftImm = DefMI->getOperand(3).getImm();
850           unsigned SplatImm =
851               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
852           if (ShiftOp1 == ShiftOp2) {
853             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
854             if (MRI->hasOneNonDBGUse(ShiftRes)) {
855               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
856               LLVM_DEBUG(DefMI->dump());
857               ToErase = DefMI;
858             }
859             Simplified = true;
860             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
861                               << " to " << NewElem << " in instruction: ");
862             LLVM_DEBUG(MI.dump());
863             addRegToUpdate(MI.getOperand(OpNo).getReg());
864             addRegToUpdate(ShiftOp1);
865             MI.getOperand(OpNo).setReg(ShiftOp1);
866             MI.getOperand(2).setImm(NewElem);
867           }
868         }
869         break;
870       }
871       case PPC::XVCVDPSP: {
872         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
873         Register TrueReg =
874           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
875         if (!TrueReg.isVirtual())
876           break;
877         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
878 
879         // This can occur when building a vector of single precision or integer
880         // values.
881         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
882           Register DefsReg1 =
883             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
884           Register DefsReg2 =
885             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
886           if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual())
887             break;
888           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
889           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
890 
891           if (!P1 || !P2)
892             break;
893 
894           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
895           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
896           // the FRSP/XSRSP.
897           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
898             unsigned Opc = RoundInstr->getOpcode();
899             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
900                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
901               Simplified = true;
902               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
903               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
904               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
905               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
906                 if (Use.getOperand(i).isReg() &&
907                     Use.getOperand(i).getReg() == FRSPDefines)
908                   Use.getOperand(i).setReg(ConvReg1);
909               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
910               LLVM_DEBUG(RoundInstr->dump());
911               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
912               LLVM_DEBUG(MI.dump());
913               LLVM_DEBUG(dbgs() << "Through instruction:\n");
914               LLVM_DEBUG(DefMI->dump());
915               addRegToUpdate(ConvReg1);
916               addRegToUpdate(FRSPDefines);
917               ToErase = RoundInstr;
918             }
919           };
920 
921           // If the input to XVCVDPSP is a vector that was built (even
922           // partially) out of FRSP's, the FRSP(s) can safely be removed
923           // since this instruction performs the same operation.
924           if (P1 != P2) {
925             removeFRSPIfPossible(P1);
926             removeFRSPIfPossible(P2);
927             break;
928           }
929           removeFRSPIfPossible(P1);
930         }
931         break;
932       }
933       case PPC::EXTSH:
934       case PPC::EXTSH8:
935       case PPC::EXTSH8_32_64: {
936         if (!EnableSExtElimination) break;
937         Register NarrowReg = MI.getOperand(1).getReg();
938         if (!NarrowReg.isVirtual())
939           break;
940 
941         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
942         unsigned SrcOpcode = SrcMI->getOpcode();
943         // If we've used a zero-extending load that we will sign-extend,
944         // just do a sign-extending load.
945         if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) {
946           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
947             break;
948           // Determine the new opcode. We need to make sure that if the original
949           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
950           // Likewise if the source is X-Form the new opcode should also be
951           // X-Form.
952           unsigned Opc = PPC::LHA;
953           bool SourceIsXForm = SrcOpcode == PPC::LHZX;
954           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 ||
955             MI.getOpcode() == PPC::EXTSH8_32_64;
956 
957           if (SourceIsXForm && MIIs64Bit)
958             Opc = PPC::LHAX8;
959           else if (SourceIsXForm && !MIIs64Bit)
960             Opc = PPC::LHAX;
961           else if (MIIs64Bit)
962             Opc = PPC::LHA8;
963 
964           addRegToUpdate(NarrowReg);
965           addRegToUpdate(MI.getOperand(0).getReg());
966 
967           // We are removing a definition of NarrowReg which will cause
968           // problems in AliveBlocks. Add an implicit def that will be
969           // removed so that AliveBlocks are updated correctly.
970           addDummyDef(MBB, &MI, NarrowReg);
971           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
972           LLVM_DEBUG(SrcMI->dump());
973           LLVM_DEBUG(dbgs() << "and sign-extension\n");
974           LLVM_DEBUG(MI.dump());
975           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
976           SrcMI->setDesc(TII->get(Opc));
977           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
978           ToErase = &MI;
979           Simplified = true;
980           NumEliminatedSExt++;
981         }
982         break;
983       }
984       case PPC::EXTSW:
985       case PPC::EXTSW_32:
986       case PPC::EXTSW_32_64: {
987         if (!EnableSExtElimination) break;
988         Register NarrowReg = MI.getOperand(1).getReg();
989         if (!NarrowReg.isVirtual())
990           break;
991 
992         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
993         unsigned SrcOpcode = SrcMI->getOpcode();
994         // If we've used a zero-extending load that we will sign-extend,
995         // just do a sign-extending load.
996         if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) {
997           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
998             break;
999 
1000           // The transformation from a zero-extending load to a sign-extending
1001           // load is only legal when the displacement is a multiple of 4.
1002           // If the displacement is not at least 4 byte aligned, don't perform
1003           // the transformation.
1004           bool IsWordAligned = false;
1005           if (SrcMI->getOperand(1).isGlobal()) {
1006             const GlobalObject *GO =
1007                 dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal());
1008             if (GO && GO->getAlign() && *GO->getAlign() >= 4 &&
1009                 (SrcMI->getOperand(1).getOffset() % 4 == 0))
1010               IsWordAligned = true;
1011           } else if (SrcMI->getOperand(1).isImm()) {
1012             int64_t Value = SrcMI->getOperand(1).getImm();
1013             if (Value % 4 == 0)
1014               IsWordAligned = true;
1015           }
1016 
1017           // Determine the new opcode. We need to make sure that if the original
1018           // instruction has a 64 bit opcode we keep using a 64 bit opcode.
1019           // Likewise if the source is X-Form the new opcode should also be
1020           // X-Form.
1021           unsigned Opc = PPC::LWA_32;
1022           bool SourceIsXForm = SrcOpcode == PPC::LWZX;
1023           bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW ||
1024             MI.getOpcode() == PPC::EXTSW_32_64;
1025 
1026           if (SourceIsXForm && MIIs64Bit)
1027             Opc = PPC::LWAX;
1028           else if (SourceIsXForm && !MIIs64Bit)
1029             Opc = PPC::LWAX_32;
1030           else if (MIIs64Bit)
1031             Opc = PPC::LWA;
1032 
1033           if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32))
1034             break;
1035 
1036           addRegToUpdate(NarrowReg);
1037           addRegToUpdate(MI.getOperand(0).getReg());
1038 
1039           // We are removing a definition of NarrowReg which will cause
1040           // problems in AliveBlocks. Add an implicit def that will be
1041           // removed so that AliveBlocks are updated correctly.
1042           addDummyDef(MBB, &MI, NarrowReg);
1043           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
1044           LLVM_DEBUG(SrcMI->dump());
1045           LLVM_DEBUG(dbgs() << "and sign-extension\n");
1046           LLVM_DEBUG(MI.dump());
1047           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
1048           SrcMI->setDesc(TII->get(Opc));
1049           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
1050           ToErase = &MI;
1051           Simplified = true;
1052           NumEliminatedSExt++;
1053         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
1054                    TII->isSignExtended(NarrowReg, MRI)) {
1055           // We can eliminate EXTSW if the input is known to be already
1056           // sign-extended.
1057           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
1058           Register TmpReg =
1059               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1060           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
1061                   TmpReg);
1062           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
1063                   MI.getOperand(0).getReg())
1064               .addReg(TmpReg)
1065               .addReg(NarrowReg)
1066               .addImm(PPC::sub_32);
1067           ToErase = &MI;
1068           Simplified = true;
1069           NumEliminatedSExt++;
1070         }
1071         break;
1072       }
1073       case PPC::RLDICL: {
1074         // We can eliminate RLDICL (e.g. for zero-extension)
1075         // if all bits to clear are already zero in the input.
1076         // This code assume following code sequence for zero-extension.
1077         //   %6 = COPY %5:sub_32; (optional)
1078         //   %8 = IMPLICIT_DEF;
1079         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
1080         if (!EnableZExtElimination) break;
1081 
1082         if (MI.getOperand(2).getImm() != 0)
1083           break;
1084 
1085         Register SrcReg = MI.getOperand(1).getReg();
1086         if (!SrcReg.isVirtual())
1087           break;
1088 
1089         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1090         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
1091               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
1092           break;
1093 
1094         MachineInstr *ImpDefMI, *SubRegMI;
1095         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
1096         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
1097         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
1098 
1099         SrcMI = SubRegMI;
1100         if (SubRegMI->getOpcode() == PPC::COPY) {
1101           Register CopyReg = SubRegMI->getOperand(1).getReg();
1102           if (CopyReg.isVirtual())
1103             SrcMI = MRI->getVRegDef(CopyReg);
1104         }
1105         if (!SrcMI->getOperand(0).isReg())
1106           break;
1107 
1108         unsigned KnownZeroCount =
1109             getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI);
1110         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
1111           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
1112           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1113                   MI.getOperand(0).getReg())
1114               .addReg(SrcReg);
1115           addRegToUpdate(SrcReg);
1116           ToErase = &MI;
1117           Simplified = true;
1118           NumEliminatedZExt++;
1119         }
1120         break;
1121       }
1122 
1123       // TODO: Any instruction that has an immediate form fed only by a PHI
1124       // whose operands are all load immediate can be folded away. We currently
1125       // do this for ADD instructions, but should expand it to arithmetic and
1126       // binary instructions with immediate forms in the future.
1127       case PPC::ADD4:
1128       case PPC::ADD8: {
1129         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
1130           assert(PhiOp && "Invalid Operand!");
1131           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1132 
1133           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
1134                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
1135         };
1136 
1137         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
1138                                             MachineOperand *PhiOp) {
1139           assert(PhiOp && "Invalid Operand!");
1140           assert(DominatorOp && "Invalid Operand!");
1141           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
1142           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
1143 
1144           // Note: the vregs only show up at odd indices position of PHI Node,
1145           // the even indices position save the BB info.
1146           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1147             MachineInstr *LiMI =
1148                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1149             if (!LiMI ||
1150                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
1151                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
1152                 !MDT->dominates(DefDomMI, LiMI))
1153               return false;
1154           }
1155 
1156           return true;
1157         };
1158 
1159         MachineOperand Op1 = MI.getOperand(1);
1160         MachineOperand Op2 = MI.getOperand(2);
1161         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
1162           std::swap(Op1, Op2);
1163         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
1164           break; // We don't have an ADD fed by LI's that can be transformed
1165 
1166         // Now we know that Op1 is the PHI node and Op2 is the dominator
1167         Register DominatorReg = Op2.getReg();
1168 
1169         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
1170                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
1171                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
1172         MRI->setRegClass(DominatorReg, TRC);
1173 
1174         // replace LIs with ADDIs
1175         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
1176         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
1177           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
1178           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
1179           LLVM_DEBUG(LiMI->dump());
1180 
1181           // There could be repeated registers in the PHI, e.g: %1 =
1182           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
1183           // already replaced the def instruction, skip.
1184           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
1185             continue;
1186 
1187           assert((LiMI->getOpcode() == PPC::LI ||
1188                   LiMI->getOpcode() == PPC::LI8) &&
1189                  "Invalid Opcode!");
1190           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
1191           LiMI->removeOperand(1);                    // remove the imm of LI
1192           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
1193                                                               : PPC::ADDI8));
1194           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
1195               .addReg(DominatorReg)
1196               .addImm(LiImm); // restore the imm of LI
1197           LLVM_DEBUG(LiMI->dump());
1198         }
1199 
1200         // Replace ADD with COPY
1201         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
1202         LLVM_DEBUG(MI.dump());
1203         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
1204                 MI.getOperand(0).getReg())
1205             .add(Op1);
1206         addRegToUpdate(Op1.getReg());
1207         addRegToUpdate(Op2.getReg());
1208         ToErase = &MI;
1209         Simplified = true;
1210         NumOptADDLIs++;
1211         break;
1212       }
1213       case PPC::RLDICR: {
1214         Simplified |= emitRLDICWhenLoweringJumpTables(MI, ToErase) ||
1215                       combineSEXTAndSHL(MI, ToErase);
1216         break;
1217       }
1218       case PPC::ANDI_rec:
1219       case PPC::ANDI8_rec:
1220       case PPC::ANDIS_rec:
1221       case PPC::ANDIS8_rec: {
1222         Register TrueReg =
1223             TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
1224         if (!TrueReg.isVirtual() || !MRI->hasOneNonDBGUse(TrueReg))
1225           break;
1226 
1227         MachineInstr *SrcMI = MRI->getVRegDef(TrueReg);
1228         if (!SrcMI)
1229           break;
1230 
1231         unsigned SrcOpCode = SrcMI->getOpcode();
1232         if (SrcOpCode != PPC::RLDICL && SrcOpCode != PPC::RLDICR)
1233           break;
1234 
1235         Register SrcReg, DstReg;
1236         SrcReg = SrcMI->getOperand(1).getReg();
1237         DstReg = MI.getOperand(1).getReg();
1238         const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
1239         const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DstReg);
1240         if (DstRC != SrcRC)
1241           break;
1242 
1243         uint64_t AndImm = MI.getOperand(2).getImm();
1244         if (MI.getOpcode() == PPC::ANDIS_rec ||
1245             MI.getOpcode() == PPC::ANDIS8_rec)
1246           AndImm <<= 16;
1247         uint64_t LZeroAndImm = llvm::countl_zero<uint64_t>(AndImm);
1248         uint64_t RZeroAndImm = llvm::countr_zero<uint64_t>(AndImm);
1249         uint64_t ImmSrc = SrcMI->getOperand(3).getImm();
1250 
1251         // We can transfer `RLDICL/RLDICR + ANDI_rec/ANDIS_rec` to `ANDI_rec 0`
1252         // if all bits to AND are already zero in the input.
1253         bool PatternResultZero =
1254             (SrcOpCode == PPC::RLDICL && (RZeroAndImm + ImmSrc > 63)) ||
1255             (SrcOpCode == PPC::RLDICR && LZeroAndImm > ImmSrc);
1256 
1257         // We can eliminate RLDICL/RLDICR if it's used to clear bits and all
1258         // bits cleared will be ANDed with 0 by ANDI_rec/ANDIS_rec.
1259         bool PatternRemoveRotate =
1260             SrcMI->getOperand(2).getImm() == 0 &&
1261             ((SrcOpCode == PPC::RLDICL && LZeroAndImm >= ImmSrc) ||
1262              (SrcOpCode == PPC::RLDICR && (RZeroAndImm + ImmSrc > 63)));
1263 
1264         if (!PatternResultZero && !PatternRemoveRotate)
1265           break;
1266 
1267         LLVM_DEBUG(dbgs() << "Combining pair: ");
1268         LLVM_DEBUG(SrcMI->dump());
1269         LLVM_DEBUG(MI.dump());
1270         if (PatternResultZero)
1271           MI.getOperand(2).setImm(0);
1272         MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1273         LLVM_DEBUG(dbgs() << "To: ");
1274         LLVM_DEBUG(MI.dump());
1275         addRegToUpdate(MI.getOperand(1).getReg());
1276         addRegToUpdate(SrcMI->getOperand(0).getReg());
1277         Simplified = true;
1278         break;
1279       }
1280       case PPC::RLWINM:
1281       case PPC::RLWINM_rec:
1282       case PPC::RLWINM8:
1283       case PPC::RLWINM8_rec: {
1284         // We might replace operand 1 of the instruction which will
1285         // require we recompute kill flags for it.
1286         Register OrigOp1Reg = MI.getOperand(1).isReg()
1287                                   ? MI.getOperand(1).getReg()
1288                                   : PPC::NoRegister;
1289         Simplified = TII->combineRLWINM(MI, &ToErase);
1290         if (Simplified) {
1291           addRegToUpdate(OrigOp1Reg);
1292           if (MI.getOperand(1).isReg())
1293             addRegToUpdate(MI.getOperand(1).getReg());
1294           ++NumRotatesCollapsed;
1295         }
1296         break;
1297       }
1298       // We will replace TD/TW/TDI/TWI with an unconditional trap if it will
1299       // always trap, we will delete the node if it will never trap.
1300       case PPC::TDI:
1301       case PPC::TWI:
1302       case PPC::TD:
1303       case PPC::TW: {
1304         if (!EnableTrapOptimization) break;
1305         MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI);
1306         MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI);
1307         bool IsOperand2Immediate = MI.getOperand(2).isImm();
1308         // We can only do the optimization if we can get immediates
1309         // from both operands
1310         if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI ||
1311                         LiMI1->getOpcode() == PPC::LI8)))
1312           break;
1313         if (!IsOperand2Immediate &&
1314             !(LiMI2 && (LiMI2->getOpcode() == PPC::LI ||
1315                         LiMI2->getOpcode() == PPC::LI8)))
1316           break;
1317 
1318         auto ImmOperand0 = MI.getOperand(0).getImm();
1319         auto ImmOperand1 = LiMI1->getOperand(1).getImm();
1320         auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm()
1321                                                : LiMI2->getOperand(1).getImm();
1322 
1323         // We will replace the MI with an unconditional trap if it will always
1324         // trap.
1325         if ((ImmOperand0 == 31) ||
1326             ((ImmOperand0 & 0x10) &&
1327              ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) ||
1328             ((ImmOperand0 & 0x8) &&
1329              ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) ||
1330             ((ImmOperand0 & 0x2) &&
1331              ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) ||
1332             ((ImmOperand0 & 0x1) &&
1333              ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) ||
1334             ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) {
1335           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP));
1336           TrapOpt = true;
1337         }
1338         // We will delete the MI if it will never trap.
1339         ToErase = &MI;
1340         Simplified = true;
1341         break;
1342       }
1343       }
1344     }
1345 
1346     // If the last instruction was marked for elimination,
1347     // remove it now.
1348     if (ToErase) {
1349       recomputeLVForDyingInstr();
1350       ToErase->eraseFromParent();
1351       ToErase = nullptr;
1352     }
1353     // Reset TrapOpt to false at the end of the basic block.
1354     if (EnableTrapOptimization)
1355       TrapOpt = false;
1356   }
1357 
1358   // Eliminate all the TOC save instructions which are redundant.
1359   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1360   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1361   if (FI->mustSaveTOC())
1362     NumTOCSavesInPrologue++;
1363 
1364   // We try to eliminate redundant compare instruction.
1365   Simplified |= eliminateRedundantCompare();
1366 
1367   // If we have made any modifications and added any registers to the set of
1368   // registers for which we need to update the kill flags, do so by recomputing
1369   // LiveVariables for those registers.
1370   for (Register Reg : RegsToUpdate) {
1371     if (!MRI->reg_empty(Reg))
1372       LV->recomputeForSingleDefVirtReg(Reg);
1373   }
1374   return Simplified;
1375 }
1376 
1377 // helper functions for eliminateRedundantCompare
1378 static bool isEqOrNe(MachineInstr *BI) {
1379   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1380   unsigned PredCond = PPC::getPredicateCondition(Pred);
1381   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1382 }
1383 
1384 static bool isSupportedCmpOp(unsigned opCode) {
1385   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1386           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1387           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1388           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1389 }
1390 
1391 static bool is64bitCmpOp(unsigned opCode) {
1392   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1393           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1394 }
1395 
1396 static bool isSignedCmpOp(unsigned opCode) {
1397   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1398           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1399 }
1400 
1401 static unsigned getSignedCmpOpCode(unsigned opCode) {
1402   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1403   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1404   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1405   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1406   return opCode;
1407 }
1408 
1409 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1410 // (LT x) to (LE x-1)
1411 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1412   uint64_t Imm = CMPI->getOperand(2).getImm();
1413   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1414   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1415     return 0;
1416 
1417   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1418   unsigned PredCond = PPC::getPredicateCondition(Pred);
1419   unsigned PredHint = PPC::getPredicateHint(Pred);
1420   if (PredCond == PPC::PRED_GE)
1421     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1422   if (PredCond == PPC::PRED_LT)
1423     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1424 
1425   return 0;
1426 }
1427 
1428 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1429 // (LE x) to (LT x+1)
1430 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1431   uint64_t Imm = CMPI->getOperand(2).getImm();
1432   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1433   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1434     return 0;
1435 
1436   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1437   unsigned PredCond = PPC::getPredicateCondition(Pred);
1438   unsigned PredHint = PPC::getPredicateHint(Pred);
1439   if (PredCond == PPC::PRED_GT)
1440     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1441   if (PredCond == PPC::PRED_LE)
1442     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1443 
1444   return 0;
1445 }
1446 
1447 // This takes a Phi node and returns a register value for the specified BB.
1448 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1449                                        MachineBasicBlock *MBB) {
1450   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1451     MachineOperand &MO = Phi->getOperand(I);
1452     if (MO.getMBB() == MBB)
1453       return Phi->getOperand(I-1).getReg();
1454   }
1455   llvm_unreachable("invalid src basic block for this Phi node\n");
1456   return 0;
1457 }
1458 
1459 // This function tracks the source of the register through register copy.
1460 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1461 // assuming that the control comes from BB1 into BB2.
1462 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1463                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1464   unsigned SrcReg = Reg;
1465   while (true) {
1466     unsigned NextReg = SrcReg;
1467     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1468     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1469       NextReg = getIncomingRegForBlock(Inst, BB1);
1470       // We track through PHI only once to avoid infinite loop.
1471       BB1 = nullptr;
1472     }
1473     else if (Inst->isFullCopy())
1474       NextReg = Inst->getOperand(1).getReg();
1475     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1476       break;
1477     SrcReg = NextReg;
1478   }
1479   return SrcReg;
1480 }
1481 
1482 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1483                                           MachineBasicBlock *&PredMBB,
1484                                           MachineBasicBlock *&MBBtoMoveCmp,
1485                                           MachineRegisterInfo *MRI) {
1486 
1487   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1488     auto BII = BB.getFirstInstrTerminator();
1489     // We optimize BBs ending with a conditional branch.
1490     // We check only for BCC here, not BCCLR, because BCCLR
1491     // will be formed only later in the pipeline.
1492     if (BB.succ_size() == 2 &&
1493         BII != BB.instr_end() &&
1494         (*BII).getOpcode() == PPC::BCC &&
1495         (*BII).getOperand(1).isReg()) {
1496       // We optimize only if the condition code is used only by one BCC.
1497       Register CndReg = (*BII).getOperand(1).getReg();
1498       if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg))
1499         return false;
1500 
1501       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1502       // We assume compare and branch are in the same BB for ease of analysis.
1503       if (CMPI->getParent() != &BB)
1504         return false;
1505 
1506       // We skip this BB if a physical register is used in comparison.
1507       for (MachineOperand &MO : CMPI->operands())
1508         if (MO.isReg() && !MO.getReg().isVirtual())
1509           return false;
1510 
1511       return true;
1512     }
1513     return false;
1514   };
1515 
1516   // If this BB has more than one successor, we can create a new BB and
1517   // move the compare instruction in the new BB.
1518   // So far, we do not move compare instruction to a BB having multiple
1519   // successors to avoid potentially increasing code size.
1520   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1521     return BB.succ_size() == 1;
1522   };
1523 
1524   if (!isEligibleBB(MBB))
1525     return false;
1526 
1527   unsigned NumPredBBs = MBB.pred_size();
1528   if (NumPredBBs == 1) {
1529     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1530     if (isEligibleBB(*TmpMBB)) {
1531       PredMBB = TmpMBB;
1532       MBBtoMoveCmp = nullptr;
1533       return true;
1534     }
1535   }
1536   else if (NumPredBBs == 2) {
1537     // We check for partially redundant case.
1538     // So far, we support cases with only two predecessors
1539     // to avoid increasing the number of instructions.
1540     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1541     MachineBasicBlock *Pred1MBB = *PI;
1542     MachineBasicBlock *Pred2MBB = *(PI+1);
1543 
1544     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1545       // We assume Pred1MBB is the BB containing the compare to be merged and
1546       // Pred2MBB is the BB to which we will append a compare instruction.
1547       // Proceed as is if Pred1MBB is different from MBB.
1548     }
1549     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1550       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1551       std::swap(Pred1MBB, Pred2MBB);
1552     }
1553     else return false;
1554 
1555     if (Pred1MBB == &MBB)
1556       return false;
1557 
1558     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1559     // We cannot move the compare instruction if operands are not available
1560     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1561     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1562     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1563     for (int I = 1; I <= 2; I++)
1564       if (CMPI->getOperand(I).isReg()) {
1565         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1566         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1567           return false;
1568       }
1569 
1570     PredMBB = Pred1MBB;
1571     MBBtoMoveCmp = Pred2MBB;
1572     return true;
1573   }
1574 
1575   return false;
1576 }
1577 
1578 // This function will iterate over the input map containing a pair of TOC save
1579 // instruction and a flag. The flag will be set to false if the TOC save is
1580 // proven redundant. This function will erase from the basic block all the TOC
1581 // saves marked as redundant.
1582 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1583     std::map<MachineInstr *, bool> &TOCSaves) {
1584   bool Simplified = false;
1585   int NumKept = 0;
1586   for (auto TOCSave : TOCSaves) {
1587     if (!TOCSave.second) {
1588       TOCSave.first->eraseFromParent();
1589       RemoveTOCSave++;
1590       Simplified = true;
1591     } else {
1592       NumKept++;
1593     }
1594   }
1595 
1596   if (NumKept > 1)
1597     MultiTOCSaves++;
1598 
1599   return Simplified;
1600 }
1601 
1602 // If multiple conditional branches are executed based on the (essentially)
1603 // same comparison, we merge compare instructions into one and make multiple
1604 // conditional branches on this comparison.
1605 // For example,
1606 //   if (a == 0) { ... }
1607 //   else if (a < 0) { ... }
1608 // can be executed by one compare and two conditional branches instead of
1609 // two pairs of a compare and a conditional branch.
1610 //
1611 // This method merges two compare instructions in two MBBs and modifies the
1612 // compare and conditional branch instructions if needed.
1613 // For the above example, the input for this pass looks like:
1614 //   cmplwi r3, 0
1615 //   beq    0, .LBB0_3
1616 //   cmpwi  r3, -1
1617 //   bgt    0, .LBB0_4
1618 // So, before merging two compares, we need to modify these instructions as
1619 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1620 //   beq    0, .LBB0_3
1621 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1622 //   bge    0, .LBB0_4
1623 
1624 bool PPCMIPeephole::eliminateRedundantCompare() {
1625   bool Simplified = false;
1626 
1627   for (MachineBasicBlock &MBB2 : *MF) {
1628     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1629 
1630     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1631     // as an optimization target if
1632     // - both MBBs end with a conditional branch,
1633     // - MBB1 is the only predecessor of MBB2, and
1634     // - compare does not take a physical register as a operand in both MBBs.
1635     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1636     //
1637     // As partially redundant case, we additionally handle if MBB2 has one
1638     // additional predecessor, which has only one successor (MBB2).
1639     // In this case, we move the compare instruction originally in MBB2 into
1640     // MBBtoMoveCmp. This partially redundant case is typically appear by
1641     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1642     //
1643     // Overview of CFG of related basic blocks
1644     // Fully redundant case        Partially redundant case
1645     //   --------                   ----------------  --------
1646     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1647     //   --------                   ----------------  --------
1648     //      |    \                     (w/ 1 succ) \     |    \
1649     //      |     \                                 \    |     \
1650     //      |                                        \   |
1651     //   --------                                     --------
1652     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1653     //   -------- and 2 succ)                         -------- and 2 succ)
1654     //      |    \                                       |    \
1655     //      |     \                                      |     \
1656     //
1657     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1658       continue;
1659 
1660     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1661     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1662 
1663     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1664     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1665     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1666 
1667     // We cannot optimize an unsupported compare opcode or
1668     // a mix of 32-bit and 64-bit comparisons
1669     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1670         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1671         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1672       continue;
1673 
1674     unsigned NewOpCode = 0;
1675     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1676     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1677     bool SwapOperands = false;
1678 
1679     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1680       // Typically, unsigned comparison is used for equality check, but
1681       // we replace it with a signed comparison if the comparison
1682       // to be merged is a signed comparison.
1683       // In other cases of opcode mismatch, we cannot optimize this.
1684 
1685       // We cannot change opcode when comparing against an immediate
1686       // if the most significant bit of the immediate is one
1687       // due to the difference in sign extension.
1688       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1689         if (!I->getOperand(2).isImm())
1690           return false;
1691         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1692         return Imm < 0;
1693       };
1694 
1695       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1696           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1697         NewOpCode = CMPI1->getOpcode();
1698       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1699                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1700         NewOpCode = CMPI2->getOpcode();
1701       else continue;
1702     }
1703 
1704     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1705       // In case of comparisons between two registers, these two registers
1706       // must be same to merge two comparisons.
1707       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1708                                          nullptr, nullptr, MRI);
1709       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1710                                          nullptr, nullptr, MRI);
1711       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1712                                          MBB1, &MBB2, MRI);
1713       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1714                                          MBB1, &MBB2, MRI);
1715 
1716       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1717         // Same pair of registers in the same order; ready to merge as is.
1718       }
1719       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1720         // Same pair of registers in different order.
1721         // We reverse the predicate to merge compare instructions.
1722         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1723         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1724         // In case of partial redundancy, we need to swap operands
1725         // in another compare instruction.
1726         SwapOperands = true;
1727       }
1728       else continue;
1729     }
1730     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1731       // In case of comparisons between a register and an immediate,
1732       // the operand register must be same for two compare instructions.
1733       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1734                                          nullptr, nullptr, MRI);
1735       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1736                                          MBB1, &MBB2, MRI);
1737       if (Cmp1Operand1 != Cmp2Operand1)
1738         continue;
1739 
1740       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1741       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1742 
1743       // If immediate are not same, we try to adjust by changing predicate;
1744       // e.g. GT imm means GE (imm+1).
1745       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1746         int Diff = Imm1 - Imm2;
1747         if (Diff < -2 || Diff > 2)
1748           continue;
1749 
1750         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1751         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1752         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1753         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1754         if (Diff == 2) {
1755           if (PredToInc2 && PredToDec1) {
1756             NewPredicate2 = PredToInc2;
1757             NewPredicate1 = PredToDec1;
1758             NewImm2++;
1759             NewImm1--;
1760           }
1761         }
1762         else if (Diff == 1) {
1763           if (PredToInc2) {
1764             NewImm2++;
1765             NewPredicate2 = PredToInc2;
1766           }
1767           else if (PredToDec1) {
1768             NewImm1--;
1769             NewPredicate1 = PredToDec1;
1770           }
1771         }
1772         else if (Diff == -1) {
1773           if (PredToDec2) {
1774             NewImm2--;
1775             NewPredicate2 = PredToDec2;
1776           }
1777           else if (PredToInc1) {
1778             NewImm1++;
1779             NewPredicate1 = PredToInc1;
1780           }
1781         }
1782         else if (Diff == -2) {
1783           if (PredToDec2 && PredToInc1) {
1784             NewPredicate2 = PredToDec2;
1785             NewPredicate1 = PredToInc1;
1786             NewImm2--;
1787             NewImm1++;
1788           }
1789         }
1790       }
1791 
1792       // We cannot merge two compares if the immediates are not same.
1793       if (NewImm2 != NewImm1)
1794         continue;
1795     }
1796 
1797     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1798     LLVM_DEBUG(CMPI1->dump());
1799     LLVM_DEBUG(BI1->dump());
1800     LLVM_DEBUG(CMPI2->dump());
1801     LLVM_DEBUG(BI2->dump());
1802     for (const MachineOperand &MO : CMPI1->operands())
1803       if (MO.isReg())
1804         addRegToUpdate(MO.getReg());
1805     for (const MachineOperand &MO : CMPI2->operands())
1806       if (MO.isReg())
1807         addRegToUpdate(MO.getReg());
1808 
1809     // We adjust opcode, predicates and immediate as we determined above.
1810     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1811       CMPI1->setDesc(TII->get(NewOpCode));
1812     }
1813     if (NewPredicate1) {
1814       BI1->getOperand(0).setImm(NewPredicate1);
1815     }
1816     if (NewPredicate2) {
1817       BI2->getOperand(0).setImm(NewPredicate2);
1818     }
1819     if (NewImm1 != Imm1) {
1820       CMPI1->getOperand(2).setImm(NewImm1);
1821     }
1822 
1823     if (IsPartiallyRedundant) {
1824       // We touch up the compare instruction in MBB2 and move it to
1825       // a previous BB to handle partially redundant case.
1826       if (SwapOperands) {
1827         Register Op1 = CMPI2->getOperand(1).getReg();
1828         Register Op2 = CMPI2->getOperand(2).getReg();
1829         CMPI2->getOperand(1).setReg(Op2);
1830         CMPI2->getOperand(2).setReg(Op1);
1831       }
1832       if (NewImm2 != Imm2)
1833         CMPI2->getOperand(2).setImm(NewImm2);
1834 
1835       for (int I = 1; I <= 2; I++) {
1836         if (CMPI2->getOperand(I).isReg()) {
1837           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1838           if (Inst->getParent() != &MBB2)
1839             continue;
1840 
1841           assert(Inst->getOpcode() == PPC::PHI &&
1842                  "We cannot support if an operand comes from this BB.");
1843           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1844           CMPI2->getOperand(I).setReg(SrcReg);
1845           addRegToUpdate(SrcReg);
1846         }
1847       }
1848       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1849       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1850 
1851       DebugLoc DL = CMPI2->getDebugLoc();
1852       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1853       BuildMI(MBB2, MBB2.begin(), DL,
1854               TII->get(PPC::PHI), NewVReg)
1855         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1856         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1857       BI2->getOperand(1).setReg(NewVReg);
1858       addRegToUpdate(NewVReg);
1859     }
1860     else {
1861       // We finally eliminate compare instruction in MBB2.
1862       // We do not need to treat CMPI2 specially here in terms of re-computing
1863       // live variables even though it is being deleted because:
1864       // - It defines a register that has a single use (already checked in
1865       // eligibleForCompareElimination())
1866       // - The only user (BI2) is no longer using it so the register is dead (no
1867       // def, no uses)
1868       // - We do not attempt to recompute live variables for dead registers
1869       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1870       CMPI2->eraseFromParent();
1871     }
1872 
1873     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1874     LLVM_DEBUG(CMPI1->dump());
1875     LLVM_DEBUG(BI1->dump());
1876     LLVM_DEBUG(BI2->dump());
1877     if (IsPartiallyRedundant) {
1878       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1879                         << printMBBReference(*MBBtoMoveCmp)
1880                         << " to handle partial redundancy.\n");
1881       LLVM_DEBUG(CMPI2->dump());
1882     }
1883     Simplified = true;
1884   }
1885 
1886   return Simplified;
1887 }
1888 
1889 // We miss the opportunity to emit an RLDIC when lowering jump tables
1890 // since ISEL sees only a single basic block. When selecting, the clear
1891 // and shift left will be in different blocks.
1892 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI,
1893                                                     MachineInstr *&ToErase) {
1894   if (MI.getOpcode() != PPC::RLDICR)
1895     return false;
1896 
1897   Register SrcReg = MI.getOperand(1).getReg();
1898   if (!SrcReg.isVirtual())
1899     return false;
1900 
1901   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1902   if (SrcMI->getOpcode() != PPC::RLDICL)
1903     return false;
1904 
1905   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1906   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1907   MachineOperand MOpSHMI = MI.getOperand(2);
1908   MachineOperand MOpMEMI = MI.getOperand(3);
1909   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1910         MOpMEMI.isImm()))
1911     return false;
1912 
1913   uint64_t SHSrc = MOpSHSrc.getImm();
1914   uint64_t MBSrc = MOpMBSrc.getImm();
1915   uint64_t SHMI = MOpSHMI.getImm();
1916   uint64_t MEMI = MOpMEMI.getImm();
1917   uint64_t NewSH = SHSrc + SHMI;
1918   uint64_t NewMB = MBSrc - SHMI;
1919   if (NewMB > 63 || NewSH > 63)
1920     return false;
1921 
1922   // The bits cleared with RLDICL are [0, MBSrc).
1923   // The bits cleared with RLDICR are (MEMI, 63].
1924   // After the sequence, the bits cleared are:
1925   // [0, MBSrc-SHMI) and (MEMI, 63).
1926   //
1927   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1928   if ((63 - NewSH) != MEMI)
1929     return false;
1930 
1931   LLVM_DEBUG(dbgs() << "Converting pair: ");
1932   LLVM_DEBUG(SrcMI->dump());
1933   LLVM_DEBUG(MI.dump());
1934 
1935   MI.setDesc(TII->get(PPC::RLDIC));
1936   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1937   MI.getOperand(2).setImm(NewSH);
1938   MI.getOperand(3).setImm(NewMB);
1939   addRegToUpdate(MI.getOperand(1).getReg());
1940   addRegToUpdate(SrcMI->getOperand(0).getReg());
1941 
1942   LLVM_DEBUG(dbgs() << "To: ");
1943   LLVM_DEBUG(MI.dump());
1944   NumRotatesCollapsed++;
1945   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1946   if (MRI->use_nodbg_empty(SrcReg)) {
1947     assert(!SrcMI->hasImplicitDef() &&
1948            "Not expecting an implicit def with this instr.");
1949     ToErase = SrcMI;
1950   }
1951   return true;
1952 }
1953 
1954 // For case in LLVM IR
1955 // entry:
1956 //   %iconv = sext i32 %index to i64
1957 //   br i1 undef label %true, label %false
1958 // true:
1959 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1960 // ...
1961 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1962 // different BBs when conducting instruction selection. We can do a peephole
1963 // optimization to combine these two instructions into extswsli after
1964 // instruction selection.
1965 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1966                                       MachineInstr *&ToErase) {
1967   if (MI.getOpcode() != PPC::RLDICR)
1968     return false;
1969 
1970   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1971     return false;
1972 
1973   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1974 
1975   MachineOperand MOpSHMI = MI.getOperand(2);
1976   MachineOperand MOpMEMI = MI.getOperand(3);
1977   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1978     return false;
1979 
1980   uint64_t SHMI = MOpSHMI.getImm();
1981   uint64_t MEMI = MOpMEMI.getImm();
1982   if (SHMI + MEMI != 63)
1983     return false;
1984 
1985   Register SrcReg = MI.getOperand(1).getReg();
1986   if (!SrcReg.isVirtual())
1987     return false;
1988 
1989   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1990   if (SrcMI->getOpcode() != PPC::EXTSW &&
1991       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1992     return false;
1993 
1994   // If the register defined by extsw has more than one use, combination is not
1995   // needed.
1996   if (!MRI->hasOneNonDBGUse(SrcReg))
1997     return false;
1998 
1999   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
2000   assert(SrcMI->getOperand(1).isReg() &&
2001          "EXTSW's second operand should be a register");
2002   if (!SrcMI->getOperand(1).getReg().isVirtual())
2003     return false;
2004 
2005   LLVM_DEBUG(dbgs() << "Combining pair: ");
2006   LLVM_DEBUG(SrcMI->dump());
2007   LLVM_DEBUG(MI.dump());
2008 
2009   MachineInstr *NewInstr =
2010       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
2011               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
2012                                                : TII->get(PPC::EXTSWSLI_32_64),
2013               MI.getOperand(0).getReg())
2014           .add(SrcMI->getOperand(1))
2015           .add(MOpSHMI);
2016   (void)NewInstr;
2017 
2018   LLVM_DEBUG(dbgs() << "TO: ");
2019   LLVM_DEBUG(NewInstr->dump());
2020   ++NumEXTSWAndSLDICombined;
2021   ToErase = &MI;
2022   // SrcMI, which is extsw, is of no use now, but we don't erase it here so we
2023   // can recompute its kill flags. We run DCE immediately after this pass
2024   // to clean up dead instructions such as this.
2025   addRegToUpdate(NewInstr->getOperand(1).getReg());
2026   addRegToUpdate(SrcMI->getOperand(0).getReg());
2027   return true;
2028 }
2029 
2030 } // end default namespace
2031 
2032 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
2033                       "PowerPC MI Peephole Optimization", false, false)
2034 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
2035 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
2036 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
2037 INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass)
2038 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
2039                     "PowerPC MI Peephole Optimization", false, false)
2040 
2041 char PPCMIPeephole::ID = 0;
2042 FunctionPass*
2043 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
2044