1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the PPC branch instructions 11 // that decrement and test the count register (CTR) (bdnz and friends). 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // 18 // Criteria for CTR loops: 19 // - Countable loops (w/ ind. var for a trip count) 20 // - Try inner-most loops first 21 // - No nested CTR loops. 22 // - No function calls in loops. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "PPC.h" 27 #include "PPCSubtarget.h" 28 #include "PPCTargetMachine.h" 29 #include "PPCTargetTransformInfo.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/CFG.h" 34 #include "llvm/Analysis/CodeMetrics.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/LoopIterator.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/TargetLibraryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/Analysis/Utils/Local.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/CodeGen/TargetSchedule.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/ValueHandle.h" 51 #include "llvm/PassSupport.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 58 #include "llvm/Transforms/Utils/LoopUtils.h" 59 60 #ifndef NDEBUG 61 #include "llvm/CodeGen/MachineDominators.h" 62 #include "llvm/CodeGen/MachineFunction.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #endif 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "ctrloops" 70 71 #ifndef NDEBUG 72 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); 73 #endif 74 75 // The latency of mtctr is only justified if there are more than 4 76 // comparisons that will be removed as a result. 77 static cl::opt<unsigned> 78 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, 79 cl::desc("Loops with a constant trip count smaller than " 80 "this value will not use the count register.")); 81 82 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); 83 84 namespace llvm { 85 void initializePPCCTRLoopsPass(PassRegistry&); 86 #ifndef NDEBUG 87 void initializePPCCTRLoopsVerifyPass(PassRegistry&); 88 #endif 89 } 90 91 namespace { 92 struct PPCCTRLoops : public FunctionPass { 93 94 #ifndef NDEBUG 95 static int Counter; 96 #endif 97 98 public: 99 static char ID; 100 101 PPCCTRLoops() : FunctionPass(ID) { 102 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnFunction(Function &F) override; 106 107 void getAnalysisUsage(AnalysisUsage &AU) const override { 108 AU.addRequired<LoopInfoWrapperPass>(); 109 AU.addPreserved<LoopInfoWrapperPass>(); 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addPreserved<DominatorTreeWrapperPass>(); 112 AU.addRequired<ScalarEvolutionWrapperPass>(); 113 AU.addRequired<AssumptionCacheTracker>(); 114 AU.addRequired<TargetTransformInfoWrapperPass>(); 115 } 116 117 private: 118 bool mightUseCTR(BasicBlock *BB); 119 bool convertToCTRLoop(Loop *L); 120 121 private: 122 const PPCTargetMachine *TM; 123 const PPCSubtarget *STI; 124 const PPCTargetLowering *TLI; 125 const DataLayout *DL; 126 const TargetLibraryInfo *LibInfo; 127 const TargetTransformInfo *TTI; 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 bool PreserveLCSSA; 132 TargetSchedModel SchedModel; 133 }; 134 135 char PPCCTRLoops::ID = 0; 136 #ifndef NDEBUG 137 int PPCCTRLoops::Counter = 0; 138 #endif 139 140 #ifndef NDEBUG 141 struct PPCCTRLoopsVerify : public MachineFunctionPass { 142 public: 143 static char ID; 144 145 PPCCTRLoopsVerify() : MachineFunctionPass(ID) { 146 initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); 147 } 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<MachineDominatorTree>(); 151 MachineFunctionPass::getAnalysisUsage(AU); 152 } 153 154 bool runOnMachineFunction(MachineFunction &MF) override; 155 156 private: 157 MachineDominatorTree *MDT; 158 }; 159 160 char PPCCTRLoopsVerify::ID = 0; 161 #endif // NDEBUG 162 } // end anonymous namespace 163 164 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 165 false, false) 166 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 167 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 169 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 170 false, false) 171 172 FunctionPass *llvm::createPPCCTRLoops() { return new PPCCTRLoops(); } 173 174 #ifndef NDEBUG 175 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 176 "PowerPC CTR Loops Verify", false, false) 177 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 178 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 179 "PowerPC CTR Loops Verify", false, false) 180 181 FunctionPass *llvm::createPPCCTRLoopsVerify() { 182 return new PPCCTRLoopsVerify(); 183 } 184 #endif // NDEBUG 185 186 bool PPCCTRLoops::runOnFunction(Function &F) { 187 if (skipFunction(F)) 188 return false; 189 190 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 191 if (!TPC) 192 return false; 193 194 TM = &TPC->getTM<PPCTargetMachine>(); 195 STI = TM->getSubtargetImpl(F); 196 TLI = STI->getTargetLowering(); 197 198 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 199 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 200 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 201 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 202 DL = &F.getParent()->getDataLayout(); 203 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 204 LibInfo = TLIP ? &TLIP->getTLI() : nullptr; 205 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 206 207 bool MadeChange = false; 208 209 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); 210 I != E; ++I) { 211 Loop *L = *I; 212 if (!L->getParentLoop()) 213 MadeChange |= convertToCTRLoop(L); 214 } 215 216 return MadeChange; 217 } 218 219 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { 220 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 221 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 222 223 return false; 224 } 225 226 // Determining the address of a TLS variable results in a function call in 227 // certain TLS models. 228 static bool memAddrUsesCTR(const PPCTargetMachine &TM, const Value *MemAddr) { 229 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 230 if (!GV) { 231 // Recurse to check for constants that refer to TLS global variables. 232 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 233 for (const auto &CO : CV->operands()) 234 if (memAddrUsesCTR(TM, CO)) 235 return true; 236 237 return false; 238 } 239 240 if (!GV->isThreadLocal()) 241 return false; 242 TLSModel::Model Model = TM.getTLSModel(GV); 243 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 244 } 245 246 // Loop through the inline asm constraints and look for something that clobbers 247 // ctr. 248 static bool asmClobbersCTR(InlineAsm *IA) { 249 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 250 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 251 InlineAsm::ConstraintInfo &C = CIV[i]; 252 if (C.Type != InlineAsm::isInput) 253 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 254 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 255 return true; 256 } 257 return false; 258 } 259 260 bool PPCCTRLoops::mightUseCTR(BasicBlock *BB) { 261 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 262 J != JE; ++J) { 263 if (CallInst *CI = dyn_cast<CallInst>(J)) { 264 // Inline ASM is okay, unless it clobbers the ctr register. 265 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { 266 if (asmClobbersCTR(IA)) 267 return true; 268 continue; 269 } 270 271 if (Function *F = CI->getCalledFunction()) { 272 // Most intrinsics don't become function calls, but some might. 273 // sin, cos, exp and log are always calls. 274 unsigned Opcode = 0; 275 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 276 switch (F->getIntrinsicID()) { 277 default: continue; 278 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr 279 // we're definitely using CTR. 280 case Intrinsic::ppc_is_decremented_ctr_nonzero: 281 case Intrinsic::ppc_mtctr: 282 return true; 283 284 // VisualStudio defines setjmp as _setjmp 285 #if defined(_MSC_VER) && defined(setjmp) && \ 286 !defined(setjmp_undefined_for_msvc) 287 # pragma push_macro("setjmp") 288 # undef setjmp 289 # define setjmp_undefined_for_msvc 290 #endif 291 292 case Intrinsic::setjmp: 293 294 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 295 // let's return it to _setjmp state 296 # pragma pop_macro("setjmp") 297 # undef setjmp_undefined_for_msvc 298 #endif 299 300 case Intrinsic::longjmp: 301 302 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 303 // because, although it does clobber the counter register, the 304 // control can't then return to inside the loop unless there is also 305 // an eh_sjlj_setjmp. 306 case Intrinsic::eh_sjlj_setjmp: 307 308 case Intrinsic::memcpy: 309 case Intrinsic::memmove: 310 case Intrinsic::memset: 311 case Intrinsic::powi: 312 case Intrinsic::log: 313 case Intrinsic::log2: 314 case Intrinsic::log10: 315 case Intrinsic::exp: 316 case Intrinsic::exp2: 317 case Intrinsic::pow: 318 case Intrinsic::sin: 319 case Intrinsic::cos: 320 return true; 321 case Intrinsic::copysign: 322 if (CI->getArgOperand(0)->getType()->getScalarType()-> 323 isPPC_FP128Ty()) 324 return true; 325 else 326 continue; // ISD::FCOPYSIGN is never a library call. 327 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 328 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 329 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 330 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 331 case Intrinsic::rint: Opcode = ISD::FRINT; break; 332 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 333 case Intrinsic::round: Opcode = ISD::FROUND; break; 334 case Intrinsic::minnum: Opcode = ISD::FMINNUM; break; 335 case Intrinsic::maxnum: Opcode = ISD::FMAXNUM; break; 336 case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO; break; 337 case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO; break; 338 } 339 } 340 341 // PowerPC does not use [US]DIVREM or other library calls for 342 // operations on regular types which are not otherwise library calls 343 // (i.e. soft float or atomics). If adapting for targets that do, 344 // additional care is required here. 345 346 LibFunc Func; 347 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 348 LibInfo->getLibFunc(F->getName(), Func) && 349 LibInfo->hasOptimizedCodeGen(Func)) { 350 // Non-read-only functions are never treated as intrinsics. 351 if (!CI->onlyReadsMemory()) 352 return true; 353 354 // Conversion happens only for FP calls. 355 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 356 return true; 357 358 switch (Func) { 359 default: return true; 360 case LibFunc_copysign: 361 case LibFunc_copysignf: 362 continue; // ISD::FCOPYSIGN is never a library call. 363 case LibFunc_copysignl: 364 return true; 365 case LibFunc_fabs: 366 case LibFunc_fabsf: 367 case LibFunc_fabsl: 368 continue; // ISD::FABS is never a library call. 369 case LibFunc_sqrt: 370 case LibFunc_sqrtf: 371 case LibFunc_sqrtl: 372 Opcode = ISD::FSQRT; break; 373 case LibFunc_floor: 374 case LibFunc_floorf: 375 case LibFunc_floorl: 376 Opcode = ISD::FFLOOR; break; 377 case LibFunc_nearbyint: 378 case LibFunc_nearbyintf: 379 case LibFunc_nearbyintl: 380 Opcode = ISD::FNEARBYINT; break; 381 case LibFunc_ceil: 382 case LibFunc_ceilf: 383 case LibFunc_ceill: 384 Opcode = ISD::FCEIL; break; 385 case LibFunc_rint: 386 case LibFunc_rintf: 387 case LibFunc_rintl: 388 Opcode = ISD::FRINT; break; 389 case LibFunc_round: 390 case LibFunc_roundf: 391 case LibFunc_roundl: 392 Opcode = ISD::FROUND; break; 393 case LibFunc_trunc: 394 case LibFunc_truncf: 395 case LibFunc_truncl: 396 Opcode = ISD::FTRUNC; break; 397 case LibFunc_fmin: 398 case LibFunc_fminf: 399 case LibFunc_fminl: 400 Opcode = ISD::FMINNUM; break; 401 case LibFunc_fmax: 402 case LibFunc_fmaxf: 403 case LibFunc_fmaxl: 404 Opcode = ISD::FMAXNUM; break; 405 } 406 } 407 408 if (Opcode) { 409 EVT EVTy = 410 TLI->getValueType(*DL, CI->getArgOperand(0)->getType(), true); 411 412 if (EVTy == MVT::Other) 413 return true; 414 415 if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) 416 continue; 417 else if (EVTy.isVector() && 418 TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) 419 continue; 420 421 return true; 422 } 423 } 424 425 return true; 426 } else if (isa<BinaryOperator>(J) && 427 J->getType()->getScalarType()->isPPC_FP128Ty()) { 428 // Most operations on ppc_f128 values become calls. 429 return true; 430 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 431 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 432 CastInst *CI = cast<CastInst>(J); 433 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 434 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 435 isLargeIntegerTy(!TM->isPPC64(), CI->getSrcTy()->getScalarType()) || 436 isLargeIntegerTy(!TM->isPPC64(), CI->getDestTy()->getScalarType())) 437 return true; 438 } else if (isLargeIntegerTy(!TM->isPPC64(), 439 J->getType()->getScalarType()) && 440 (J->getOpcode() == Instruction::UDiv || 441 J->getOpcode() == Instruction::SDiv || 442 J->getOpcode() == Instruction::URem || 443 J->getOpcode() == Instruction::SRem)) { 444 return true; 445 } else if (!TM->isPPC64() && 446 isLargeIntegerTy(false, J->getType()->getScalarType()) && 447 (J->getOpcode() == Instruction::Shl || 448 J->getOpcode() == Instruction::AShr || 449 J->getOpcode() == Instruction::LShr)) { 450 // Only on PPC32, for 128-bit integers (specifically not 64-bit 451 // integers), these might be runtime calls. 452 return true; 453 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 454 // On PowerPC, indirect jumps use the counter register. 455 return true; 456 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 457 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 458 return true; 459 } 460 461 // FREM is always a call. 462 if (J->getOpcode() == Instruction::FRem) 463 return true; 464 465 if (STI->useSoftFloat()) { 466 switch(J->getOpcode()) { 467 case Instruction::FAdd: 468 case Instruction::FSub: 469 case Instruction::FMul: 470 case Instruction::FDiv: 471 case Instruction::FPTrunc: 472 case Instruction::FPExt: 473 case Instruction::FPToUI: 474 case Instruction::FPToSI: 475 case Instruction::UIToFP: 476 case Instruction::SIToFP: 477 case Instruction::FCmp: 478 return true; 479 } 480 } 481 482 for (Value *Operand : J->operands()) 483 if (memAddrUsesCTR(*TM, Operand)) 484 return true; 485 } 486 487 return false; 488 } 489 bool PPCCTRLoops::convertToCTRLoop(Loop *L) { 490 bool MadeChange = false; 491 492 // Do not convert small short loops to CTR loop. 493 unsigned ConstTripCount = SE->getSmallConstantTripCount(L); 494 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { 495 SmallPtrSet<const Value *, 32> EphValues; 496 auto AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 497 *L->getHeader()->getParent()); 498 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 499 CodeMetrics Metrics; 500 for (BasicBlock *BB : L->blocks()) 501 Metrics.analyzeBasicBlock(BB, *TTI, EphValues); 502 // 6 is an approximate latency for the mtctr instruction. 503 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) 504 return false; 505 } 506 507 // Process nested loops first. 508 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 509 MadeChange |= convertToCTRLoop(*I); 510 LLVM_DEBUG(dbgs() << "Nested loop converted\n"); 511 } 512 513 // If a nested loop has been converted, then we can't convert this loop. 514 if (MadeChange) 515 return MadeChange; 516 517 // Bail out if the loop has irreducible control flow. 518 LoopBlocksRPO RPOT(L); 519 RPOT.perform(LI); 520 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) 521 return false; 522 523 #ifndef NDEBUG 524 // Stop trying after reaching the limit (if any). 525 int Limit = CTRLoopLimit; 526 if (Limit >= 0) { 527 if (Counter >= CTRLoopLimit) 528 return false; 529 Counter++; 530 } 531 #endif 532 533 // We don't want to spill/restore the counter register, and so we don't 534 // want to use the counter register if the loop contains calls. 535 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 536 I != IE; ++I) 537 if (mightUseCTR(*I)) 538 return MadeChange; 539 540 SmallVector<BasicBlock*, 4> ExitingBlocks; 541 L->getExitingBlocks(ExitingBlocks); 542 543 // If there is an exit edge known to be frequently taken, 544 // we should not transform this loop. 545 for (auto &BB : ExitingBlocks) { 546 Instruction *TI = BB->getTerminator(); 547 if (!TI) continue; 548 549 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 550 uint64_t TrueWeight = 0, FalseWeight = 0; 551 if (!BI->isConditional() || 552 !BI->extractProfMetadata(TrueWeight, FalseWeight)) 553 continue; 554 555 // If the exit path is more frequent than the loop path, 556 // we return here without further analysis for this loop. 557 bool TrueIsExit = !L->contains(BI->getSuccessor(0)); 558 if (( TrueIsExit && FalseWeight < TrueWeight) || 559 (!TrueIsExit && FalseWeight > TrueWeight)) 560 return MadeChange; 561 } 562 } 563 564 BasicBlock *CountedExitBlock = nullptr; 565 const SCEV *ExitCount = nullptr; 566 BranchInst *CountedExitBranch = nullptr; 567 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 568 IE = ExitingBlocks.end(); I != IE; ++I) { 569 const SCEV *EC = SE->getExitCount(L, *I); 570 LLVM_DEBUG(dbgs() << "Exit Count for " << *L << " from block " 571 << (*I)->getName() << ": " << *EC << "\n"); 572 if (isa<SCEVCouldNotCompute>(EC)) 573 continue; 574 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 575 if (ConstEC->getValue()->isZero()) 576 continue; 577 } else if (!SE->isLoopInvariant(EC, L)) 578 continue; 579 580 if (SE->getTypeSizeInBits(EC->getType()) > (TM->isPPC64() ? 64 : 32)) 581 continue; 582 583 // If this exiting block is contained in a nested loop, it is not eligible 584 // for insertion of the branch-and-decrement since the inner loop would 585 // end up messing up the value in the CTR. 586 if (LI->getLoopFor(*I) != L) 587 continue; 588 589 // We now have a loop-invariant count of loop iterations (which is not the 590 // constant zero) for which we know that this loop will not exit via this 591 // exisiting block. 592 593 // We need to make sure that this block will run on every loop iteration. 594 // For this to be true, we must dominate all blocks with backedges. Such 595 // blocks are in-loop predecessors to the header block. 596 bool NotAlways = false; 597 for (pred_iterator PI = pred_begin(L->getHeader()), 598 PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { 599 if (!L->contains(*PI)) 600 continue; 601 602 if (!DT->dominates(*I, *PI)) { 603 NotAlways = true; 604 break; 605 } 606 } 607 608 if (NotAlways) 609 continue; 610 611 // Make sure this blocks ends with a conditional branch. 612 Instruction *TI = (*I)->getTerminator(); 613 if (!TI) 614 continue; 615 616 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 617 if (!BI->isConditional()) 618 continue; 619 620 CountedExitBranch = BI; 621 } else 622 continue; 623 624 // Note that this block may not be the loop latch block, even if the loop 625 // has a latch block. 626 CountedExitBlock = *I; 627 ExitCount = EC; 628 break; 629 } 630 631 if (!CountedExitBlock) 632 return MadeChange; 633 634 BasicBlock *Preheader = L->getLoopPreheader(); 635 636 // If we don't have a preheader, then insert one. If we already have a 637 // preheader, then we can use it (except if the preheader contains a use of 638 // the CTR register because some such uses might be reordered by the 639 // selection DAG after the mtctr instruction). 640 if (!Preheader || mightUseCTR(Preheader)) 641 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 642 if (!Preheader) 643 return MadeChange; 644 645 LLVM_DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() 646 << "\n"); 647 648 // Insert the count into the preheader and replace the condition used by the 649 // selected branch. 650 MadeChange = true; 651 652 SCEVExpander SCEVE(*SE, *DL, "loopcnt"); 653 LLVMContext &C = SE->getContext(); 654 Type *CountType = TM->isPPC64() ? Type::getInt64Ty(C) : Type::getInt32Ty(C); 655 if (!ExitCount->getType()->isPointerTy() && 656 ExitCount->getType() != CountType) 657 ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); 658 ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType)); 659 Value *ECValue = 660 SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator()); 661 662 IRBuilder<> CountBuilder(Preheader->getTerminator()); 663 Module *M = Preheader->getParent()->getParent(); 664 Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, 665 CountType); 666 CountBuilder.CreateCall(MTCTRFunc, ECValue); 667 668 IRBuilder<> CondBuilder(CountedExitBranch); 669 Value *DecFunc = 670 Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); 671 Value *NewCond = CondBuilder.CreateCall(DecFunc, {}); 672 Value *OldCond = CountedExitBranch->getCondition(); 673 CountedExitBranch->setCondition(NewCond); 674 675 // The false branch must exit the loop. 676 if (!L->contains(CountedExitBranch->getSuccessor(0))) 677 CountedExitBranch->swapSuccessors(); 678 679 // The old condition may be dead now, and may have even created a dead PHI 680 // (the original induction variable). 681 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 682 // Run through the basic blocks of the loop and see if any of them have dead 683 // PHIs that can be removed. 684 for (auto I : L->blocks()) 685 DeleteDeadPHIs(I); 686 687 ++NumCTRLoops; 688 return MadeChange; 689 } 690 691 #ifndef NDEBUG 692 static bool clobbersCTR(const MachineInstr &MI) { 693 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 694 const MachineOperand &MO = MI.getOperand(i); 695 if (MO.isReg()) { 696 if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) 697 return true; 698 } else if (MO.isRegMask()) { 699 if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) 700 return true; 701 } 702 } 703 704 return false; 705 } 706 707 static bool verifyCTRBranch(MachineBasicBlock *MBB, 708 MachineBasicBlock::iterator I) { 709 MachineBasicBlock::iterator BI = I; 710 SmallSet<MachineBasicBlock *, 16> Visited; 711 SmallVector<MachineBasicBlock *, 8> Preds; 712 bool CheckPreds; 713 714 if (I == MBB->begin()) { 715 Visited.insert(MBB); 716 goto queue_preds; 717 } else 718 --I; 719 720 check_block: 721 Visited.insert(MBB); 722 if (I == MBB->end()) 723 goto queue_preds; 724 725 CheckPreds = true; 726 for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { 727 unsigned Opc = I->getOpcode(); 728 if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { 729 CheckPreds = false; 730 break; 731 } 732 733 if (I != BI && clobbersCTR(*I)) { 734 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " (" << MBB->getFullName() 735 << ") instruction " << *I 736 << " clobbers CTR, invalidating " 737 << printMBBReference(*BI->getParent()) << " (" 738 << BI->getParent()->getFullName() << ") instruction " 739 << *BI << "\n"); 740 return false; 741 } 742 743 if (I == IE) 744 break; 745 } 746 747 if (!CheckPreds && Preds.empty()) 748 return true; 749 750 if (CheckPreds) { 751 queue_preds: 752 if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { 753 LLVM_DEBUG(dbgs() << "Unable to find a MTCTR instruction for " 754 << printMBBReference(*BI->getParent()) << " (" 755 << BI->getParent()->getFullName() << ") instruction " 756 << *BI << "\n"); 757 return false; 758 } 759 760 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 761 PIE = MBB->pred_end(); PI != PIE; ++PI) 762 Preds.push_back(*PI); 763 } 764 765 do { 766 MBB = Preds.pop_back_val(); 767 if (!Visited.count(MBB)) { 768 I = MBB->getLastNonDebugInstr(); 769 goto check_block; 770 } 771 } while (!Preds.empty()); 772 773 return true; 774 } 775 776 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { 777 MDT = &getAnalysis<MachineDominatorTree>(); 778 779 // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before 780 // any other instructions that might clobber the ctr register. 781 for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); 782 I != IE; ++I) { 783 MachineBasicBlock *MBB = &*I; 784 if (!MDT->isReachableFromEntry(MBB)) 785 continue; 786 787 for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), 788 MIIE = MBB->end(); MII != MIIE; ++MII) { 789 unsigned Opc = MII->getOpcode(); 790 if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || 791 Opc == PPC::BDZ8 || Opc == PPC::BDZ) 792 if (!verifyCTRBranch(MBB, MII)) 793 llvm_unreachable("Invalid PPC CTR loop!"); 794 } 795 } 796 797 return false; 798 } 799 #endif // NDEBUG 800