xref: /llvm-project/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp (revision b549ab02b4659c2e6164cb1a39ef798b80d643df)
1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the PPC branch instructions
11 // that decrement and test the count register (CTR) (bdnz and friends).
12 //
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 //
18 // Criteria for CTR loops:
19 //  - Countable loops (w/ ind. var for a trip count)
20 //  - Try inner-most loops first
21 //  - No nested CTR loops.
22 //  - No function calls in loops.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar.h"
27 #include "PPC.h"
28 #include "PPCTargetMachine.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ScalarEvolutionExpander.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/PassSupport.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 
50 #ifndef NDEBUG
51 #include "llvm/CodeGen/MachineDominators.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #endif
56 
57 #include <algorithm>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "ctrloops"
63 
64 #ifndef NDEBUG
65 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
66 #endif
67 
68 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
69 
70 namespace llvm {
71   void initializePPCCTRLoopsPass(PassRegistry&);
72 #ifndef NDEBUG
73   void initializePPCCTRLoopsVerifyPass(PassRegistry&);
74 #endif
75 }
76 
77 namespace {
78   struct PPCCTRLoops : public FunctionPass {
79 
80 #ifndef NDEBUG
81     static int Counter;
82 #endif
83 
84   public:
85     static char ID;
86 
87     PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
88       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
89     }
90     PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
91       initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
92     }
93 
94     bool runOnFunction(Function &F) override;
95 
96     void getAnalysisUsage(AnalysisUsage &AU) const override {
97       AU.addRequired<LoopInfoWrapperPass>();
98       AU.addPreserved<LoopInfoWrapperPass>();
99       AU.addRequired<DominatorTreeWrapperPass>();
100       AU.addPreserved<DominatorTreeWrapperPass>();
101       AU.addRequired<ScalarEvolutionWrapperPass>();
102     }
103 
104   private:
105     bool mightUseCTR(const Triple &TT, BasicBlock *BB);
106     bool convertToCTRLoop(Loop *L);
107 
108   private:
109     PPCTargetMachine *TM;
110     LoopInfo *LI;
111     ScalarEvolution *SE;
112     const DataLayout *DL;
113     DominatorTree *DT;
114     const TargetLibraryInfo *LibInfo;
115     bool PreserveLCSSA;
116   };
117 
118   char PPCCTRLoops::ID = 0;
119 #ifndef NDEBUG
120   int PPCCTRLoops::Counter = 0;
121 #endif
122 
123 #ifndef NDEBUG
124   struct PPCCTRLoopsVerify : public MachineFunctionPass {
125   public:
126     static char ID;
127 
128     PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
129       initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
130     }
131 
132     void getAnalysisUsage(AnalysisUsage &AU) const override {
133       AU.addRequired<MachineDominatorTree>();
134       MachineFunctionPass::getAnalysisUsage(AU);
135     }
136 
137     bool runOnMachineFunction(MachineFunction &MF) override;
138 
139   private:
140     MachineDominatorTree *MDT;
141   };
142 
143   char PPCCTRLoopsVerify::ID = 0;
144 #endif // NDEBUG
145 } // end anonymous namespace
146 
147 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
148                       false, false)
149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
151 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
152 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
153                     false, false)
154 
155 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
156   return new PPCCTRLoops(TM);
157 }
158 
159 #ifndef NDEBUG
160 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
161                       "PowerPC CTR Loops Verify", false, false)
162 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
163 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
164                     "PowerPC CTR Loops Verify", false, false)
165 
166 FunctionPass *llvm::createPPCCTRLoopsVerify() {
167   return new PPCCTRLoopsVerify();
168 }
169 #endif // NDEBUG
170 
171 bool PPCCTRLoops::runOnFunction(Function &F) {
172   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
173   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
174   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175   DL = &F.getParent()->getDataLayout();
176   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
177   LibInfo = TLIP ? &TLIP->getTLI() : nullptr;
178   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
179 
180   bool MadeChange = false;
181 
182   for (LoopInfo::iterator I = LI->begin(), E = LI->end();
183        I != E; ++I) {
184     Loop *L = *I;
185     if (!L->getParentLoop())
186       MadeChange |= convertToCTRLoop(L);
187   }
188 
189   return MadeChange;
190 }
191 
192 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
193   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
194     return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
195 
196   return false;
197 }
198 
199 // Determining the address of a TLS variable results in a function call in
200 // certain TLS models.
201 static bool memAddrUsesCTR(const PPCTargetMachine *TM,
202                            const Value *MemAddr) {
203   const auto *GV = dyn_cast<GlobalValue>(MemAddr);
204   if (!GV) {
205     // Recurse to check for constants that refer to TLS global variables.
206     if (const auto *CV = dyn_cast<Constant>(MemAddr))
207       for (const auto &CO : CV->operands())
208         if (memAddrUsesCTR(TM, CO))
209           return true;
210 
211     return false;
212   }
213 
214   if (!GV->isThreadLocal())
215     return false;
216   if (!TM)
217     return true;
218   TLSModel::Model Model = TM->getTLSModel(GV);
219   return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
220 }
221 
222 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
223   for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
224        J != JE; ++J) {
225     if (CallInst *CI = dyn_cast<CallInst>(J)) {
226       if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
227         // Inline ASM is okay, unless it clobbers the ctr register.
228         InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
229         for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
230           InlineAsm::ConstraintInfo &C = CIV[i];
231           if (C.Type != InlineAsm::isInput)
232             for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
233               if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
234                 return true;
235         }
236 
237         continue;
238       }
239 
240       if (!TM)
241         return true;
242       const TargetLowering *TLI =
243           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
244 
245       if (Function *F = CI->getCalledFunction()) {
246         // Most intrinsics don't become function calls, but some might.
247         // sin, cos, exp and log are always calls.
248         unsigned Opcode;
249         if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
250           switch (F->getIntrinsicID()) {
251           default: continue;
252           // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr
253           // we're definitely using CTR.
254           case Intrinsic::ppc_is_decremented_ctr_nonzero:
255           case Intrinsic::ppc_mtctr:
256             return true;
257 
258 // VisualStudio defines setjmp as _setjmp
259 #if defined(_MSC_VER) && defined(setjmp) && \
260                        !defined(setjmp_undefined_for_msvc)
261 #  pragma push_macro("setjmp")
262 #  undef setjmp
263 #  define setjmp_undefined_for_msvc
264 #endif
265 
266           case Intrinsic::setjmp:
267 
268 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
269  // let's return it to _setjmp state
270 #  pragma pop_macro("setjmp")
271 #  undef setjmp_undefined_for_msvc
272 #endif
273 
274           case Intrinsic::longjmp:
275 
276           // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
277           // because, although it does clobber the counter register, the
278           // control can't then return to inside the loop unless there is also
279           // an eh_sjlj_setjmp.
280           case Intrinsic::eh_sjlj_setjmp:
281 
282           case Intrinsic::memcpy:
283           case Intrinsic::memmove:
284           case Intrinsic::memset:
285           case Intrinsic::powi:
286           case Intrinsic::log:
287           case Intrinsic::log2:
288           case Intrinsic::log10:
289           case Intrinsic::exp:
290           case Intrinsic::exp2:
291           case Intrinsic::pow:
292           case Intrinsic::sin:
293           case Intrinsic::cos:
294           case Intrinsic::maxnum:
295           case Intrinsic::minnum:
296             return true;
297           case Intrinsic::copysign:
298             if (CI->getArgOperand(0)->getType()->getScalarType()->
299                 isPPC_FP128Ty())
300               return true;
301             else
302               continue; // ISD::FCOPYSIGN is never a library call.
303           case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
304           case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
305           case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
306           case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
307           case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
308           case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
309           case Intrinsic::round:     Opcode = ISD::FROUND;     break;
310           }
311         }
312 
313         // PowerPC does not use [US]DIVREM or other library calls for
314         // operations on regular types which are not otherwise library calls
315         // (i.e. soft float or atomics). If adapting for targets that do,
316         // additional care is required here.
317 
318         LibFunc::Func Func;
319         if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
320             LibInfo->getLibFunc(F->getName(), Func) &&
321             LibInfo->hasOptimizedCodeGen(Func)) {
322           // Non-read-only functions are never treated as intrinsics.
323           if (!CI->onlyReadsMemory())
324             return true;
325 
326           // Conversion happens only for FP calls.
327           if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
328             return true;
329 
330           switch (Func) {
331           default: return true;
332           case LibFunc::copysign:
333           case LibFunc::copysignf:
334             continue; // ISD::FCOPYSIGN is never a library call.
335           case LibFunc::copysignl:
336             return true;
337           case LibFunc::fabs:
338           case LibFunc::fabsf:
339           case LibFunc::fabsl:
340             continue; // ISD::FABS is never a library call.
341           case LibFunc::sqrt:
342           case LibFunc::sqrtf:
343           case LibFunc::sqrtl:
344             Opcode = ISD::FSQRT; break;
345           case LibFunc::floor:
346           case LibFunc::floorf:
347           case LibFunc::floorl:
348             Opcode = ISD::FFLOOR; break;
349           case LibFunc::nearbyint:
350           case LibFunc::nearbyintf:
351           case LibFunc::nearbyintl:
352             Opcode = ISD::FNEARBYINT; break;
353           case LibFunc::ceil:
354           case LibFunc::ceilf:
355           case LibFunc::ceill:
356             Opcode = ISD::FCEIL; break;
357           case LibFunc::rint:
358           case LibFunc::rintf:
359           case LibFunc::rintl:
360             Opcode = ISD::FRINT; break;
361           case LibFunc::round:
362           case LibFunc::roundf:
363           case LibFunc::roundl:
364             Opcode = ISD::FROUND; break;
365           case LibFunc::trunc:
366           case LibFunc::truncf:
367           case LibFunc::truncl:
368             Opcode = ISD::FTRUNC; break;
369           }
370 
371           auto &DL = CI->getModule()->getDataLayout();
372           MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(),
373                                             true);
374           if (VTy == MVT::Other)
375             return true;
376 
377           if (TLI->isOperationLegalOrCustom(Opcode, VTy))
378             continue;
379           else if (VTy.isVector() &&
380                    TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
381             continue;
382 
383           return true;
384         }
385       }
386 
387       return true;
388     } else if (isa<BinaryOperator>(J) &&
389                J->getType()->getScalarType()->isPPC_FP128Ty()) {
390       // Most operations on ppc_f128 values become calls.
391       return true;
392     } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
393                isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
394       CastInst *CI = cast<CastInst>(J);
395       if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
396           CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
397           isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
398           isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
399         return true;
400     } else if (isLargeIntegerTy(TT.isArch32Bit(),
401                                 J->getType()->getScalarType()) &&
402                (J->getOpcode() == Instruction::UDiv ||
403                 J->getOpcode() == Instruction::SDiv ||
404                 J->getOpcode() == Instruction::URem ||
405                 J->getOpcode() == Instruction::SRem)) {
406       return true;
407     } else if (TT.isArch32Bit() &&
408                isLargeIntegerTy(false, J->getType()->getScalarType()) &&
409                (J->getOpcode() == Instruction::Shl ||
410                 J->getOpcode() == Instruction::AShr ||
411                 J->getOpcode() == Instruction::LShr)) {
412       // Only on PPC32, for 128-bit integers (specifically not 64-bit
413       // integers), these might be runtime calls.
414       return true;
415     } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
416       // On PowerPC, indirect jumps use the counter register.
417       return true;
418     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
419       if (!TM)
420         return true;
421       const TargetLowering *TLI =
422           TM->getSubtargetImpl(*BB->getParent())->getTargetLowering();
423 
424       if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
425         return true;
426     }
427 
428     if (TM->getSubtargetImpl(*BB->getParent())->getTargetLowering()->useSoftFloat()) {
429       switch(J->getOpcode()) {
430       case Instruction::FAdd:
431       case Instruction::FSub:
432       case Instruction::FMul:
433       case Instruction::FDiv:
434       case Instruction::FRem:
435       case Instruction::FPTrunc:
436       case Instruction::FPExt:
437       case Instruction::FPToUI:
438       case Instruction::FPToSI:
439       case Instruction::UIToFP:
440       case Instruction::SIToFP:
441       case Instruction::FCmp:
442         return true;
443       }
444     }
445 
446     for (Value *Operand : J->operands())
447       if (memAddrUsesCTR(TM, Operand))
448         return true;
449   }
450 
451   return false;
452 }
453 
454 bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
455   bool MadeChange = false;
456 
457   const Triple TT =
458       Triple(L->getHeader()->getParent()->getParent()->getTargetTriple());
459   if (!TT.isArch32Bit() && !TT.isArch64Bit())
460     return MadeChange; // Unknown arch. type.
461 
462   // Process nested loops first.
463   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
464     MadeChange |= convertToCTRLoop(*I);
465     DEBUG(dbgs() << "Nested loop converted\n");
466   }
467 
468   // If a nested loop has been converted, then we can't convert this loop.
469   if (MadeChange)
470     return MadeChange;
471 
472 #ifndef NDEBUG
473   // Stop trying after reaching the limit (if any).
474   int Limit = CTRLoopLimit;
475   if (Limit >= 0) {
476     if (Counter >= CTRLoopLimit)
477       return false;
478     Counter++;
479   }
480 #endif
481 
482   // We don't want to spill/restore the counter register, and so we don't
483   // want to use the counter register if the loop contains calls.
484   for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
485        I != IE; ++I)
486     if (mightUseCTR(TT, *I))
487       return MadeChange;
488 
489   SmallVector<BasicBlock*, 4> ExitingBlocks;
490   L->getExitingBlocks(ExitingBlocks);
491 
492   BasicBlock *CountedExitBlock = nullptr;
493   const SCEV *ExitCount = nullptr;
494   BranchInst *CountedExitBranch = nullptr;
495   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
496        IE = ExitingBlocks.end(); I != IE; ++I) {
497     const SCEV *EC = SE->getExitCount(L, *I);
498     DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
499                     (*I)->getName() << ": " << *EC << "\n");
500     if (isa<SCEVCouldNotCompute>(EC))
501       continue;
502     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
503       if (ConstEC->getValue()->isZero())
504         continue;
505     } else if (!SE->isLoopInvariant(EC, L))
506       continue;
507 
508     if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
509       continue;
510 
511     // We now have a loop-invariant count of loop iterations (which is not the
512     // constant zero) for which we know that this loop will not exit via this
513     // exisiting block.
514 
515     // We need to make sure that this block will run on every loop iteration.
516     // For this to be true, we must dominate all blocks with backedges. Such
517     // blocks are in-loop predecessors to the header block.
518     bool NotAlways = false;
519     for (pred_iterator PI = pred_begin(L->getHeader()),
520          PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
521       if (!L->contains(*PI))
522         continue;
523 
524       if (!DT->dominates(*I, *PI)) {
525         NotAlways = true;
526         break;
527       }
528     }
529 
530     if (NotAlways)
531       continue;
532 
533     // Make sure this blocks ends with a conditional branch.
534     Instruction *TI = (*I)->getTerminator();
535     if (!TI)
536       continue;
537 
538     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
539       if (!BI->isConditional())
540         continue;
541 
542       CountedExitBranch = BI;
543     } else
544       continue;
545 
546     // Note that this block may not be the loop latch block, even if the loop
547     // has a latch block.
548     CountedExitBlock = *I;
549     ExitCount = EC;
550     break;
551   }
552 
553   if (!CountedExitBlock)
554     return MadeChange;
555 
556   BasicBlock *Preheader = L->getLoopPreheader();
557 
558   // If we don't have a preheader, then insert one. If we already have a
559   // preheader, then we can use it (except if the preheader contains a use of
560   // the CTR register because some such uses might be reordered by the
561   // selection DAG after the mtctr instruction).
562   if (!Preheader || mightUseCTR(TT, Preheader))
563     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
564   if (!Preheader)
565     return MadeChange;
566 
567   DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
568 
569   // Insert the count into the preheader and replace the condition used by the
570   // selected branch.
571   MadeChange = true;
572 
573   SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt");
574   LLVMContext &C = SE->getContext();
575   Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
576                                        Type::getInt32Ty(C);
577   if (!ExitCount->getType()->isPointerTy() &&
578       ExitCount->getType() != CountType)
579     ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
580   ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType));
581   Value *ECValue =
582       SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator());
583 
584   IRBuilder<> CountBuilder(Preheader->getTerminator());
585   Module *M = Preheader->getParent()->getParent();
586   Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
587                                                CountType);
588   CountBuilder.CreateCall(MTCTRFunc, ECValue);
589 
590   IRBuilder<> CondBuilder(CountedExitBranch);
591   Value *DecFunc =
592     Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
593   Value *NewCond = CondBuilder.CreateCall(DecFunc, {});
594   Value *OldCond = CountedExitBranch->getCondition();
595   CountedExitBranch->setCondition(NewCond);
596 
597   // The false branch must exit the loop.
598   if (!L->contains(CountedExitBranch->getSuccessor(0)))
599     CountedExitBranch->swapSuccessors();
600 
601   // The old condition may be dead now, and may have even created a dead PHI
602   // (the original induction variable).
603   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
604   DeleteDeadPHIs(CountedExitBlock);
605 
606   ++NumCTRLoops;
607   return MadeChange;
608 }
609 
610 #ifndef NDEBUG
611 static bool clobbersCTR(const MachineInstr *MI) {
612   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
613     const MachineOperand &MO = MI->getOperand(i);
614     if (MO.isReg()) {
615       if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
616         return true;
617     } else if (MO.isRegMask()) {
618       if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
619         return true;
620     }
621   }
622 
623   return false;
624 }
625 
626 static bool verifyCTRBranch(MachineBasicBlock *MBB,
627                             MachineBasicBlock::iterator I) {
628   MachineBasicBlock::iterator BI = I;
629   SmallSet<MachineBasicBlock *, 16>   Visited;
630   SmallVector<MachineBasicBlock *, 8> Preds;
631   bool CheckPreds;
632 
633   if (I == MBB->begin()) {
634     Visited.insert(MBB);
635     goto queue_preds;
636   } else
637     --I;
638 
639 check_block:
640   Visited.insert(MBB);
641   if (I == MBB->end())
642     goto queue_preds;
643 
644   CheckPreds = true;
645   for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
646     unsigned Opc = I->getOpcode();
647     if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
648       CheckPreds = false;
649       break;
650     }
651 
652     if (I != BI && clobbersCTR(I)) {
653       DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
654                       MBB->getFullName() << ") instruction " << *I <<
655                       " clobbers CTR, invalidating " << "BB#" <<
656                       BI->getParent()->getNumber() << " (" <<
657                       BI->getParent()->getFullName() << ") instruction " <<
658                       *BI << "\n");
659       return false;
660     }
661 
662     if (I == IE)
663       break;
664   }
665 
666   if (!CheckPreds && Preds.empty())
667     return true;
668 
669   if (CheckPreds) {
670 queue_preds:
671     if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
672       DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
673                       BI->getParent()->getNumber() << " (" <<
674                       BI->getParent()->getFullName() << ") instruction " <<
675                       *BI << "\n");
676       return false;
677     }
678 
679     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
680          PIE = MBB->pred_end(); PI != PIE; ++PI)
681       Preds.push_back(*PI);
682   }
683 
684   do {
685     MBB = Preds.pop_back_val();
686     if (!Visited.count(MBB)) {
687       I = MBB->getLastNonDebugInstr();
688       goto check_block;
689     }
690   } while (!Preds.empty());
691 
692   return true;
693 }
694 
695 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
696   MDT = &getAnalysis<MachineDominatorTree>();
697 
698   // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
699   // any other instructions that might clobber the ctr register.
700   for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
701        I != IE; ++I) {
702     MachineBasicBlock *MBB = &*I;
703     if (!MDT->isReachableFromEntry(MBB))
704       continue;
705 
706     for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
707       MIIE = MBB->end(); MII != MIIE; ++MII) {
708       unsigned Opc = MII->getOpcode();
709       if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
710           Opc == PPC::BDZ8  || Opc == PPC::BDZ)
711         if (!verifyCTRBranch(MBB, MII))
712           llvm_unreachable("Invalid PPC CTR loop!");
713     }
714   }
715 
716   return false;
717 }
718 #endif // NDEBUG
719