1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the PPC branch instructions 11 // that decrement and test the count register (CTR) (bdnz and friends). 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // 18 // Criteria for CTR loops: 19 // - Countable loops (w/ ind. var for a trip count) 20 // - Try inner-most loops first 21 // - No nested CTR loops. 22 // - No function calls in loops. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar.h" 27 #include "PPC.h" 28 #include "PPCTargetMachine.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ScalarEvolutionExpander.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/PassSupport.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 50 #ifndef NDEBUG 51 #include "llvm/CodeGen/MachineDominators.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #endif 56 57 #include <algorithm> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ctrloops" 63 64 #ifndef NDEBUG 65 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); 66 #endif 67 68 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); 69 70 namespace llvm { 71 void initializePPCCTRLoopsPass(PassRegistry&); 72 #ifndef NDEBUG 73 void initializePPCCTRLoopsVerifyPass(PassRegistry&); 74 #endif 75 } 76 77 namespace { 78 struct PPCCTRLoops : public FunctionPass { 79 80 #ifndef NDEBUG 81 static int Counter; 82 #endif 83 84 public: 85 static char ID; 86 87 PPCCTRLoops() : FunctionPass(ID), TM(nullptr) { 88 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 89 } 90 PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 91 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 92 } 93 94 bool runOnFunction(Function &F) override; 95 96 void getAnalysisUsage(AnalysisUsage &AU) const override { 97 AU.addRequired<LoopInfoWrapperPass>(); 98 AU.addPreserved<LoopInfoWrapperPass>(); 99 AU.addRequired<DominatorTreeWrapperPass>(); 100 AU.addPreserved<DominatorTreeWrapperPass>(); 101 AU.addRequired<ScalarEvolutionWrapperPass>(); 102 } 103 104 private: 105 bool mightUseCTR(const Triple &TT, BasicBlock *BB); 106 bool convertToCTRLoop(Loop *L); 107 108 private: 109 PPCTargetMachine *TM; 110 LoopInfo *LI; 111 ScalarEvolution *SE; 112 const DataLayout *DL; 113 DominatorTree *DT; 114 const TargetLibraryInfo *LibInfo; 115 }; 116 117 char PPCCTRLoops::ID = 0; 118 #ifndef NDEBUG 119 int PPCCTRLoops::Counter = 0; 120 #endif 121 122 #ifndef NDEBUG 123 struct PPCCTRLoopsVerify : public MachineFunctionPass { 124 public: 125 static char ID; 126 127 PPCCTRLoopsVerify() : MachineFunctionPass(ID) { 128 initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); 129 } 130 131 void getAnalysisUsage(AnalysisUsage &AU) const override { 132 AU.addRequired<MachineDominatorTree>(); 133 MachineFunctionPass::getAnalysisUsage(AU); 134 } 135 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 private: 139 MachineDominatorTree *MDT; 140 }; 141 142 char PPCCTRLoopsVerify::ID = 0; 143 #endif // NDEBUG 144 } // end anonymous namespace 145 146 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 147 false, false) 148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 149 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 151 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 152 false, false) 153 154 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) { 155 return new PPCCTRLoops(TM); 156 } 157 158 #ifndef NDEBUG 159 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 160 "PowerPC CTR Loops Verify", false, false) 161 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 162 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 163 "PowerPC CTR Loops Verify", false, false) 164 165 FunctionPass *llvm::createPPCCTRLoopsVerify() { 166 return new PPCCTRLoopsVerify(); 167 } 168 #endif // NDEBUG 169 170 bool PPCCTRLoops::runOnFunction(Function &F) { 171 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 172 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 173 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 174 DL = &F.getParent()->getDataLayout(); 175 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 176 LibInfo = TLIP ? &TLIP->getTLI() : nullptr; 177 178 bool MadeChange = false; 179 180 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); 181 I != E; ++I) { 182 Loop *L = *I; 183 if (!L->getParentLoop()) 184 MadeChange |= convertToCTRLoop(L); 185 } 186 187 return MadeChange; 188 } 189 190 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { 191 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 192 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 193 194 return false; 195 } 196 197 // Determining the address of a TLS variable results in a function call in 198 // certain TLS models. 199 static bool memAddrUsesCTR(const PPCTargetMachine *TM, 200 const llvm::Value *MemAddr) { 201 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 202 if (!GV) 203 return false; 204 if (!GV->isThreadLocal()) 205 return false; 206 if (!TM) 207 return true; 208 TLSModel::Model Model = TM->getTLSModel(GV); 209 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 210 } 211 212 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) { 213 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 214 J != JE; ++J) { 215 if (CallInst *CI = dyn_cast<CallInst>(J)) { 216 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { 217 // Inline ASM is okay, unless it clobbers the ctr register. 218 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 219 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 220 InlineAsm::ConstraintInfo &C = CIV[i]; 221 if (C.Type != InlineAsm::isInput) 222 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 223 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 224 return true; 225 } 226 227 continue; 228 } 229 230 if (!TM) 231 return true; 232 const TargetLowering *TLI = 233 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 234 235 if (Function *F = CI->getCalledFunction()) { 236 // Most intrinsics don't become function calls, but some might. 237 // sin, cos, exp and log are always calls. 238 unsigned Opcode; 239 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 240 switch (F->getIntrinsicID()) { 241 default: continue; 242 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr 243 // we're definitely using CTR. 244 case Intrinsic::ppc_is_decremented_ctr_nonzero: 245 case Intrinsic::ppc_mtctr: 246 return true; 247 248 // VisualStudio defines setjmp as _setjmp 249 #if defined(_MSC_VER) && defined(setjmp) && \ 250 !defined(setjmp_undefined_for_msvc) 251 # pragma push_macro("setjmp") 252 # undef setjmp 253 # define setjmp_undefined_for_msvc 254 #endif 255 256 case Intrinsic::setjmp: 257 258 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 259 // let's return it to _setjmp state 260 # pragma pop_macro("setjmp") 261 # undef setjmp_undefined_for_msvc 262 #endif 263 264 case Intrinsic::longjmp: 265 266 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 267 // because, although it does clobber the counter register, the 268 // control can't then return to inside the loop unless there is also 269 // an eh_sjlj_setjmp. 270 case Intrinsic::eh_sjlj_setjmp: 271 272 case Intrinsic::memcpy: 273 case Intrinsic::memmove: 274 case Intrinsic::memset: 275 case Intrinsic::powi: 276 case Intrinsic::log: 277 case Intrinsic::log2: 278 case Intrinsic::log10: 279 case Intrinsic::exp: 280 case Intrinsic::exp2: 281 case Intrinsic::pow: 282 case Intrinsic::sin: 283 case Intrinsic::cos: 284 return true; 285 case Intrinsic::copysign: 286 if (CI->getArgOperand(0)->getType()->getScalarType()-> 287 isPPC_FP128Ty()) 288 return true; 289 else 290 continue; // ISD::FCOPYSIGN is never a library call. 291 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 292 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 293 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 294 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 295 case Intrinsic::rint: Opcode = ISD::FRINT; break; 296 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 297 case Intrinsic::round: Opcode = ISD::FROUND; break; 298 } 299 } 300 301 // PowerPC does not use [US]DIVREM or other library calls for 302 // operations on regular types which are not otherwise library calls 303 // (i.e. soft float or atomics). If adapting for targets that do, 304 // additional care is required here. 305 306 LibFunc::Func Func; 307 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 308 LibInfo->getLibFunc(F->getName(), Func) && 309 LibInfo->hasOptimizedCodeGen(Func)) { 310 // Non-read-only functions are never treated as intrinsics. 311 if (!CI->onlyReadsMemory()) 312 return true; 313 314 // Conversion happens only for FP calls. 315 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 316 return true; 317 318 switch (Func) { 319 default: return true; 320 case LibFunc::copysign: 321 case LibFunc::copysignf: 322 continue; // ISD::FCOPYSIGN is never a library call. 323 case LibFunc::copysignl: 324 return true; 325 case LibFunc::fabs: 326 case LibFunc::fabsf: 327 case LibFunc::fabsl: 328 continue; // ISD::FABS is never a library call. 329 case LibFunc::sqrt: 330 case LibFunc::sqrtf: 331 case LibFunc::sqrtl: 332 Opcode = ISD::FSQRT; break; 333 case LibFunc::floor: 334 case LibFunc::floorf: 335 case LibFunc::floorl: 336 Opcode = ISD::FFLOOR; break; 337 case LibFunc::nearbyint: 338 case LibFunc::nearbyintf: 339 case LibFunc::nearbyintl: 340 Opcode = ISD::FNEARBYINT; break; 341 case LibFunc::ceil: 342 case LibFunc::ceilf: 343 case LibFunc::ceill: 344 Opcode = ISD::FCEIL; break; 345 case LibFunc::rint: 346 case LibFunc::rintf: 347 case LibFunc::rintl: 348 Opcode = ISD::FRINT; break; 349 case LibFunc::round: 350 case LibFunc::roundf: 351 case LibFunc::roundl: 352 Opcode = ISD::FROUND; break; 353 case LibFunc::trunc: 354 case LibFunc::truncf: 355 case LibFunc::truncl: 356 Opcode = ISD::FTRUNC; break; 357 } 358 359 auto &DL = CI->getModule()->getDataLayout(); 360 MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(), 361 true); 362 if (VTy == MVT::Other) 363 return true; 364 365 if (TLI->isOperationLegalOrCustom(Opcode, VTy)) 366 continue; 367 else if (VTy.isVector() && 368 TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType())) 369 continue; 370 371 return true; 372 } 373 } 374 375 return true; 376 } else if (isa<BinaryOperator>(J) && 377 J->getType()->getScalarType()->isPPC_FP128Ty()) { 378 // Most operations on ppc_f128 values become calls. 379 return true; 380 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 381 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 382 CastInst *CI = cast<CastInst>(J); 383 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 384 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 385 isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) || 386 isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType())) 387 return true; 388 } else if (isLargeIntegerTy(TT.isArch32Bit(), 389 J->getType()->getScalarType()) && 390 (J->getOpcode() == Instruction::UDiv || 391 J->getOpcode() == Instruction::SDiv || 392 J->getOpcode() == Instruction::URem || 393 J->getOpcode() == Instruction::SRem)) { 394 return true; 395 } else if (TT.isArch32Bit() && 396 isLargeIntegerTy(false, J->getType()->getScalarType()) && 397 (J->getOpcode() == Instruction::Shl || 398 J->getOpcode() == Instruction::AShr || 399 J->getOpcode() == Instruction::LShr)) { 400 // Only on PPC32, for 128-bit integers (specifically not 64-bit 401 // integers), these might be runtime calls. 402 return true; 403 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 404 // On PowerPC, indirect jumps use the counter register. 405 return true; 406 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 407 if (!TM) 408 return true; 409 const TargetLowering *TLI = 410 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 411 412 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 413 return true; 414 } 415 for (Value *Operand : J->operands()) 416 if (memAddrUsesCTR(TM, Operand)) 417 return true; 418 } 419 420 return false; 421 } 422 423 bool PPCCTRLoops::convertToCTRLoop(Loop *L) { 424 bool MadeChange = false; 425 426 const Triple TT = 427 Triple(L->getHeader()->getParent()->getParent()->getTargetTriple()); 428 if (!TT.isArch32Bit() && !TT.isArch64Bit()) 429 return MadeChange; // Unknown arch. type. 430 431 // Process nested loops first. 432 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 433 MadeChange |= convertToCTRLoop(*I); 434 DEBUG(dbgs() << "Nested loop converted\n"); 435 } 436 437 // If a nested loop has been converted, then we can't convert this loop. 438 if (MadeChange) 439 return MadeChange; 440 441 #ifndef NDEBUG 442 // Stop trying after reaching the limit (if any). 443 int Limit = CTRLoopLimit; 444 if (Limit >= 0) { 445 if (Counter >= CTRLoopLimit) 446 return false; 447 Counter++; 448 } 449 #endif 450 451 // We don't want to spill/restore the counter register, and so we don't 452 // want to use the counter register if the loop contains calls. 453 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 454 I != IE; ++I) 455 if (mightUseCTR(TT, *I)) 456 return MadeChange; 457 458 SmallVector<BasicBlock*, 4> ExitingBlocks; 459 L->getExitingBlocks(ExitingBlocks); 460 461 BasicBlock *CountedExitBlock = nullptr; 462 const SCEV *ExitCount = nullptr; 463 BranchInst *CountedExitBranch = nullptr; 464 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 465 IE = ExitingBlocks.end(); I != IE; ++I) { 466 const SCEV *EC = SE->getExitCount(L, *I); 467 DEBUG(dbgs() << "Exit Count for " << *L << " from block " << 468 (*I)->getName() << ": " << *EC << "\n"); 469 if (isa<SCEVCouldNotCompute>(EC)) 470 continue; 471 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 472 if (ConstEC->getValue()->isZero()) 473 continue; 474 } else if (!SE->isLoopInvariant(EC, L)) 475 continue; 476 477 if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32)) 478 continue; 479 480 // We now have a loop-invariant count of loop iterations (which is not the 481 // constant zero) for which we know that this loop will not exit via this 482 // exisiting block. 483 484 // We need to make sure that this block will run on every loop iteration. 485 // For this to be true, we must dominate all blocks with backedges. Such 486 // blocks are in-loop predecessors to the header block. 487 bool NotAlways = false; 488 for (pred_iterator PI = pred_begin(L->getHeader()), 489 PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { 490 if (!L->contains(*PI)) 491 continue; 492 493 if (!DT->dominates(*I, *PI)) { 494 NotAlways = true; 495 break; 496 } 497 } 498 499 if (NotAlways) 500 continue; 501 502 // Make sure this blocks ends with a conditional branch. 503 Instruction *TI = (*I)->getTerminator(); 504 if (!TI) 505 continue; 506 507 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 508 if (!BI->isConditional()) 509 continue; 510 511 CountedExitBranch = BI; 512 } else 513 continue; 514 515 // Note that this block may not be the loop latch block, even if the loop 516 // has a latch block. 517 CountedExitBlock = *I; 518 ExitCount = EC; 519 break; 520 } 521 522 if (!CountedExitBlock) 523 return MadeChange; 524 525 BasicBlock *Preheader = L->getLoopPreheader(); 526 527 // If we don't have a preheader, then insert one. If we already have a 528 // preheader, then we can use it (except if the preheader contains a use of 529 // the CTR register because some such uses might be reordered by the 530 // selection DAG after the mtctr instruction). 531 if (!Preheader || mightUseCTR(TT, Preheader)) 532 Preheader = InsertPreheaderForLoop(L, this); 533 if (!Preheader) 534 return MadeChange; 535 536 DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n"); 537 538 // Insert the count into the preheader and replace the condition used by the 539 // selected branch. 540 MadeChange = true; 541 542 SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt"); 543 LLVMContext &C = SE->getContext(); 544 Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) : 545 Type::getInt32Ty(C); 546 if (!ExitCount->getType()->isPointerTy() && 547 ExitCount->getType() != CountType) 548 ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); 549 ExitCount = SE->getAddExpr(ExitCount, SE->getConstant(CountType, 1)); 550 Value *ECValue = 551 SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator()); 552 553 IRBuilder<> CountBuilder(Preheader->getTerminator()); 554 Module *M = Preheader->getParent()->getParent(); 555 Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, 556 CountType); 557 CountBuilder.CreateCall(MTCTRFunc, ECValue); 558 559 IRBuilder<> CondBuilder(CountedExitBranch); 560 Value *DecFunc = 561 Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); 562 Value *NewCond = CondBuilder.CreateCall(DecFunc, {}); 563 Value *OldCond = CountedExitBranch->getCondition(); 564 CountedExitBranch->setCondition(NewCond); 565 566 // The false branch must exit the loop. 567 if (!L->contains(CountedExitBranch->getSuccessor(0))) 568 CountedExitBranch->swapSuccessors(); 569 570 // The old condition may be dead now, and may have even created a dead PHI 571 // (the original induction variable). 572 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 573 DeleteDeadPHIs(CountedExitBlock); 574 575 ++NumCTRLoops; 576 return MadeChange; 577 } 578 579 #ifndef NDEBUG 580 static bool clobbersCTR(const MachineInstr *MI) { 581 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 582 const MachineOperand &MO = MI->getOperand(i); 583 if (MO.isReg()) { 584 if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) 585 return true; 586 } else if (MO.isRegMask()) { 587 if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) 588 return true; 589 } 590 } 591 592 return false; 593 } 594 595 static bool verifyCTRBranch(MachineBasicBlock *MBB, 596 MachineBasicBlock::iterator I) { 597 MachineBasicBlock::iterator BI = I; 598 SmallSet<MachineBasicBlock *, 16> Visited; 599 SmallVector<MachineBasicBlock *, 8> Preds; 600 bool CheckPreds; 601 602 if (I == MBB->begin()) { 603 Visited.insert(MBB); 604 goto queue_preds; 605 } else 606 --I; 607 608 check_block: 609 Visited.insert(MBB); 610 if (I == MBB->end()) 611 goto queue_preds; 612 613 CheckPreds = true; 614 for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { 615 unsigned Opc = I->getOpcode(); 616 if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { 617 CheckPreds = false; 618 break; 619 } 620 621 if (I != BI && clobbersCTR(I)) { 622 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" << 623 MBB->getFullName() << ") instruction " << *I << 624 " clobbers CTR, invalidating " << "BB#" << 625 BI->getParent()->getNumber() << " (" << 626 BI->getParent()->getFullName() << ") instruction " << 627 *BI << "\n"); 628 return false; 629 } 630 631 if (I == IE) 632 break; 633 } 634 635 if (!CheckPreds && Preds.empty()) 636 return true; 637 638 if (CheckPreds) { 639 queue_preds: 640 if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { 641 DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" << 642 BI->getParent()->getNumber() << " (" << 643 BI->getParent()->getFullName() << ") instruction " << 644 *BI << "\n"); 645 return false; 646 } 647 648 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 649 PIE = MBB->pred_end(); PI != PIE; ++PI) 650 Preds.push_back(*PI); 651 } 652 653 do { 654 MBB = Preds.pop_back_val(); 655 if (!Visited.count(MBB)) { 656 I = MBB->getLastNonDebugInstr(); 657 goto check_block; 658 } 659 } while (!Preds.empty()); 660 661 return true; 662 } 663 664 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { 665 MDT = &getAnalysis<MachineDominatorTree>(); 666 667 // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before 668 // any other instructions that might clobber the ctr register. 669 for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); 670 I != IE; ++I) { 671 MachineBasicBlock *MBB = I; 672 if (!MDT->isReachableFromEntry(MBB)) 673 continue; 674 675 for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), 676 MIIE = MBB->end(); MII != MIIE; ++MII) { 677 unsigned Opc = MII->getOpcode(); 678 if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || 679 Opc == PPC::BDZ8 || Opc == PPC::BDZ) 680 if (!verifyCTRBranch(MBB, MII)) 681 llvm_unreachable("Invalid PPC CTR loop!"); 682 } 683 } 684 685 return false; 686 } 687 #endif // NDEBUG 688