1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass identifies loops where we can generate the PPC branch instructions 11 // that decrement and test the count register (CTR) (bdnz and friends). 12 // 13 // The pattern that defines the induction variable can changed depending on 14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt' 15 // normalizes induction variables, and the Loop Strength Reduction pass 16 // run by 'llc' may also make changes to the induction variable. 17 // 18 // Criteria for CTR loops: 19 // - Countable loops (w/ ind. var for a trip count) 20 // - Try inner-most loops first 21 // - No nested CTR loops. 22 // - No function calls in loops. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar.h" 27 #include "PPC.h" 28 #include "PPCTargetMachine.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ScalarEvolutionExpander.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/PassSupport.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 50 #ifndef NDEBUG 51 #include "llvm/CodeGen/MachineDominators.h" 52 #include "llvm/CodeGen/MachineFunction.h" 53 #include "llvm/CodeGen/MachineFunctionPass.h" 54 #include "llvm/CodeGen/MachineRegisterInfo.h" 55 #endif 56 57 #include <algorithm> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "ctrloops" 63 64 #ifndef NDEBUG 65 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); 66 #endif 67 68 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); 69 70 namespace llvm { 71 void initializePPCCTRLoopsPass(PassRegistry&); 72 #ifndef NDEBUG 73 void initializePPCCTRLoopsVerifyPass(PassRegistry&); 74 #endif 75 } 76 77 namespace { 78 struct PPCCTRLoops : public FunctionPass { 79 80 #ifndef NDEBUG 81 static int Counter; 82 #endif 83 84 public: 85 static char ID; 86 87 PPCCTRLoops() : FunctionPass(ID), TM(nullptr) { 88 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 89 } 90 PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 91 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); 92 } 93 94 bool runOnFunction(Function &F) override; 95 96 void getAnalysisUsage(AnalysisUsage &AU) const override { 97 AU.addRequired<LoopInfoWrapperPass>(); 98 AU.addPreserved<LoopInfoWrapperPass>(); 99 AU.addRequired<DominatorTreeWrapperPass>(); 100 AU.addPreserved<DominatorTreeWrapperPass>(); 101 AU.addRequired<ScalarEvolutionWrapperPass>(); 102 } 103 104 private: 105 bool mightUseCTR(const Triple &TT, BasicBlock *BB); 106 bool convertToCTRLoop(Loop *L); 107 108 private: 109 PPCTargetMachine *TM; 110 LoopInfo *LI; 111 ScalarEvolution *SE; 112 const DataLayout *DL; 113 DominatorTree *DT; 114 const TargetLibraryInfo *LibInfo; 115 }; 116 117 char PPCCTRLoops::ID = 0; 118 #ifndef NDEBUG 119 int PPCCTRLoops::Counter = 0; 120 #endif 121 122 #ifndef NDEBUG 123 struct PPCCTRLoopsVerify : public MachineFunctionPass { 124 public: 125 static char ID; 126 127 PPCCTRLoopsVerify() : MachineFunctionPass(ID) { 128 initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); 129 } 130 131 void getAnalysisUsage(AnalysisUsage &AU) const override { 132 AU.addRequired<MachineDominatorTree>(); 133 MachineFunctionPass::getAnalysisUsage(AU); 134 } 135 136 bool runOnMachineFunction(MachineFunction &MF) override; 137 138 private: 139 MachineDominatorTree *MDT; 140 }; 141 142 char PPCCTRLoopsVerify::ID = 0; 143 #endif // NDEBUG 144 } // end anonymous namespace 145 146 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 147 false, false) 148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 149 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 151 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", 152 false, false) 153 154 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) { 155 return new PPCCTRLoops(TM); 156 } 157 158 #ifndef NDEBUG 159 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 160 "PowerPC CTR Loops Verify", false, false) 161 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 162 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", 163 "PowerPC CTR Loops Verify", false, false) 164 165 FunctionPass *llvm::createPPCCTRLoopsVerify() { 166 return new PPCCTRLoopsVerify(); 167 } 168 #endif // NDEBUG 169 170 bool PPCCTRLoops::runOnFunction(Function &F) { 171 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 172 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 173 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 174 DL = &F.getParent()->getDataLayout(); 175 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 176 LibInfo = TLIP ? &TLIP->getTLI() : nullptr; 177 178 bool MadeChange = false; 179 180 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); 181 I != E; ++I) { 182 Loop *L = *I; 183 if (!L->getParentLoop()) 184 MadeChange |= convertToCTRLoop(L); 185 } 186 187 return MadeChange; 188 } 189 190 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { 191 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) 192 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); 193 194 return false; 195 } 196 197 // Determining the address of a TLS variable results in a function call in 198 // certain TLS models. 199 static bool memAddrUsesCTR(const PPCTargetMachine *TM, 200 const Value *MemAddr) { 201 const auto *GV = dyn_cast<GlobalValue>(MemAddr); 202 if (!GV) { 203 // Recurse to check for constants that refer to TLS global variables. 204 if (const auto *CV = dyn_cast<Constant>(MemAddr)) 205 for (const auto &CO : CV->operands()) 206 if (memAddrUsesCTR(TM, CO)) 207 return true; 208 209 return false; 210 } 211 212 if (!GV->isThreadLocal()) 213 return false; 214 if (!TM) 215 return true; 216 TLSModel::Model Model = TM->getTLSModel(GV); 217 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; 218 } 219 220 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) { 221 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); 222 J != JE; ++J) { 223 if (CallInst *CI = dyn_cast<CallInst>(J)) { 224 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { 225 // Inline ASM is okay, unless it clobbers the ctr register. 226 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); 227 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { 228 InlineAsm::ConstraintInfo &C = CIV[i]; 229 if (C.Type != InlineAsm::isInput) 230 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) 231 if (StringRef(C.Codes[j]).equals_lower("{ctr}")) 232 return true; 233 } 234 235 continue; 236 } 237 238 if (!TM) 239 return true; 240 const TargetLowering *TLI = 241 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 242 243 if (Function *F = CI->getCalledFunction()) { 244 // Most intrinsics don't become function calls, but some might. 245 // sin, cos, exp and log are always calls. 246 unsigned Opcode; 247 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { 248 switch (F->getIntrinsicID()) { 249 default: continue; 250 // If we have a call to ppc_is_decremented_ctr_nonzero, or ppc_mtctr 251 // we're definitely using CTR. 252 case Intrinsic::ppc_is_decremented_ctr_nonzero: 253 case Intrinsic::ppc_mtctr: 254 return true; 255 256 // VisualStudio defines setjmp as _setjmp 257 #if defined(_MSC_VER) && defined(setjmp) && \ 258 !defined(setjmp_undefined_for_msvc) 259 # pragma push_macro("setjmp") 260 # undef setjmp 261 # define setjmp_undefined_for_msvc 262 #endif 263 264 case Intrinsic::setjmp: 265 266 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) 267 // let's return it to _setjmp state 268 # pragma pop_macro("setjmp") 269 # undef setjmp_undefined_for_msvc 270 #endif 271 272 case Intrinsic::longjmp: 273 274 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp 275 // because, although it does clobber the counter register, the 276 // control can't then return to inside the loop unless there is also 277 // an eh_sjlj_setjmp. 278 case Intrinsic::eh_sjlj_setjmp: 279 280 case Intrinsic::memcpy: 281 case Intrinsic::memmove: 282 case Intrinsic::memset: 283 case Intrinsic::powi: 284 case Intrinsic::log: 285 case Intrinsic::log2: 286 case Intrinsic::log10: 287 case Intrinsic::exp: 288 case Intrinsic::exp2: 289 case Intrinsic::pow: 290 case Intrinsic::sin: 291 case Intrinsic::cos: 292 return true; 293 case Intrinsic::copysign: 294 if (CI->getArgOperand(0)->getType()->getScalarType()-> 295 isPPC_FP128Ty()) 296 return true; 297 else 298 continue; // ISD::FCOPYSIGN is never a library call. 299 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 300 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 301 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 302 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 303 case Intrinsic::rint: Opcode = ISD::FRINT; break; 304 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 305 case Intrinsic::round: Opcode = ISD::FROUND; break; 306 } 307 } 308 309 // PowerPC does not use [US]DIVREM or other library calls for 310 // operations on regular types which are not otherwise library calls 311 // (i.e. soft float or atomics). If adapting for targets that do, 312 // additional care is required here. 313 314 LibFunc::Func Func; 315 if (!F->hasLocalLinkage() && F->hasName() && LibInfo && 316 LibInfo->getLibFunc(F->getName(), Func) && 317 LibInfo->hasOptimizedCodeGen(Func)) { 318 // Non-read-only functions are never treated as intrinsics. 319 if (!CI->onlyReadsMemory()) 320 return true; 321 322 // Conversion happens only for FP calls. 323 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) 324 return true; 325 326 switch (Func) { 327 default: return true; 328 case LibFunc::copysign: 329 case LibFunc::copysignf: 330 continue; // ISD::FCOPYSIGN is never a library call. 331 case LibFunc::copysignl: 332 return true; 333 case LibFunc::fabs: 334 case LibFunc::fabsf: 335 case LibFunc::fabsl: 336 continue; // ISD::FABS is never a library call. 337 case LibFunc::sqrt: 338 case LibFunc::sqrtf: 339 case LibFunc::sqrtl: 340 Opcode = ISD::FSQRT; break; 341 case LibFunc::floor: 342 case LibFunc::floorf: 343 case LibFunc::floorl: 344 Opcode = ISD::FFLOOR; break; 345 case LibFunc::nearbyint: 346 case LibFunc::nearbyintf: 347 case LibFunc::nearbyintl: 348 Opcode = ISD::FNEARBYINT; break; 349 case LibFunc::ceil: 350 case LibFunc::ceilf: 351 case LibFunc::ceill: 352 Opcode = ISD::FCEIL; break; 353 case LibFunc::rint: 354 case LibFunc::rintf: 355 case LibFunc::rintl: 356 Opcode = ISD::FRINT; break; 357 case LibFunc::round: 358 case LibFunc::roundf: 359 case LibFunc::roundl: 360 Opcode = ISD::FROUND; break; 361 case LibFunc::trunc: 362 case LibFunc::truncf: 363 case LibFunc::truncl: 364 Opcode = ISD::FTRUNC; break; 365 } 366 367 auto &DL = CI->getModule()->getDataLayout(); 368 MVT VTy = TLI->getSimpleValueType(DL, CI->getArgOperand(0)->getType(), 369 true); 370 if (VTy == MVT::Other) 371 return true; 372 373 if (TLI->isOperationLegalOrCustom(Opcode, VTy)) 374 continue; 375 else if (VTy.isVector() && 376 TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType())) 377 continue; 378 379 return true; 380 } 381 } 382 383 return true; 384 } else if (isa<BinaryOperator>(J) && 385 J->getType()->getScalarType()->isPPC_FP128Ty()) { 386 // Most operations on ppc_f128 values become calls. 387 return true; 388 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || 389 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { 390 CastInst *CI = cast<CastInst>(J); 391 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || 392 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || 393 isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) || 394 isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType())) 395 return true; 396 } else if (isLargeIntegerTy(TT.isArch32Bit(), 397 J->getType()->getScalarType()) && 398 (J->getOpcode() == Instruction::UDiv || 399 J->getOpcode() == Instruction::SDiv || 400 J->getOpcode() == Instruction::URem || 401 J->getOpcode() == Instruction::SRem)) { 402 return true; 403 } else if (TT.isArch32Bit() && 404 isLargeIntegerTy(false, J->getType()->getScalarType()) && 405 (J->getOpcode() == Instruction::Shl || 406 J->getOpcode() == Instruction::AShr || 407 J->getOpcode() == Instruction::LShr)) { 408 // Only on PPC32, for 128-bit integers (specifically not 64-bit 409 // integers), these might be runtime calls. 410 return true; 411 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { 412 // On PowerPC, indirect jumps use the counter register. 413 return true; 414 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { 415 if (!TM) 416 return true; 417 const TargetLowering *TLI = 418 TM->getSubtargetImpl(*BB->getParent())->getTargetLowering(); 419 420 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) 421 return true; 422 } 423 for (Value *Operand : J->operands()) 424 if (memAddrUsesCTR(TM, Operand)) 425 return true; 426 } 427 428 return false; 429 } 430 431 bool PPCCTRLoops::convertToCTRLoop(Loop *L) { 432 bool MadeChange = false; 433 434 const Triple TT = 435 Triple(L->getHeader()->getParent()->getParent()->getTargetTriple()); 436 if (!TT.isArch32Bit() && !TT.isArch64Bit()) 437 return MadeChange; // Unknown arch. type. 438 439 // Process nested loops first. 440 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { 441 MadeChange |= convertToCTRLoop(*I); 442 DEBUG(dbgs() << "Nested loop converted\n"); 443 } 444 445 // If a nested loop has been converted, then we can't convert this loop. 446 if (MadeChange) 447 return MadeChange; 448 449 #ifndef NDEBUG 450 // Stop trying after reaching the limit (if any). 451 int Limit = CTRLoopLimit; 452 if (Limit >= 0) { 453 if (Counter >= CTRLoopLimit) 454 return false; 455 Counter++; 456 } 457 #endif 458 459 // We don't want to spill/restore the counter register, and so we don't 460 // want to use the counter register if the loop contains calls. 461 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); 462 I != IE; ++I) 463 if (mightUseCTR(TT, *I)) 464 return MadeChange; 465 466 SmallVector<BasicBlock*, 4> ExitingBlocks; 467 L->getExitingBlocks(ExitingBlocks); 468 469 BasicBlock *CountedExitBlock = nullptr; 470 const SCEV *ExitCount = nullptr; 471 BranchInst *CountedExitBranch = nullptr; 472 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), 473 IE = ExitingBlocks.end(); I != IE; ++I) { 474 const SCEV *EC = SE->getExitCount(L, *I); 475 DEBUG(dbgs() << "Exit Count for " << *L << " from block " << 476 (*I)->getName() << ": " << *EC << "\n"); 477 if (isa<SCEVCouldNotCompute>(EC)) 478 continue; 479 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { 480 if (ConstEC->getValue()->isZero()) 481 continue; 482 } else if (!SE->isLoopInvariant(EC, L)) 483 continue; 484 485 if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32)) 486 continue; 487 488 // We now have a loop-invariant count of loop iterations (which is not the 489 // constant zero) for which we know that this loop will not exit via this 490 // exisiting block. 491 492 // We need to make sure that this block will run on every loop iteration. 493 // For this to be true, we must dominate all blocks with backedges. Such 494 // blocks are in-loop predecessors to the header block. 495 bool NotAlways = false; 496 for (pred_iterator PI = pred_begin(L->getHeader()), 497 PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { 498 if (!L->contains(*PI)) 499 continue; 500 501 if (!DT->dominates(*I, *PI)) { 502 NotAlways = true; 503 break; 504 } 505 } 506 507 if (NotAlways) 508 continue; 509 510 // Make sure this blocks ends with a conditional branch. 511 Instruction *TI = (*I)->getTerminator(); 512 if (!TI) 513 continue; 514 515 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 516 if (!BI->isConditional()) 517 continue; 518 519 CountedExitBranch = BI; 520 } else 521 continue; 522 523 // Note that this block may not be the loop latch block, even if the loop 524 // has a latch block. 525 CountedExitBlock = *I; 526 ExitCount = EC; 527 break; 528 } 529 530 if (!CountedExitBlock) 531 return MadeChange; 532 533 BasicBlock *Preheader = L->getLoopPreheader(); 534 535 // If we don't have a preheader, then insert one. If we already have a 536 // preheader, then we can use it (except if the preheader contains a use of 537 // the CTR register because some such uses might be reordered by the 538 // selection DAG after the mtctr instruction). 539 if (!Preheader || mightUseCTR(TT, Preheader)) 540 Preheader = InsertPreheaderForLoop(L, this); 541 if (!Preheader) 542 return MadeChange; 543 544 DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n"); 545 546 // Insert the count into the preheader and replace the condition used by the 547 // selected branch. 548 MadeChange = true; 549 550 SCEVExpander SCEVE(*SE, Preheader->getModule()->getDataLayout(), "loopcnt"); 551 LLVMContext &C = SE->getContext(); 552 Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) : 553 Type::getInt32Ty(C); 554 if (!ExitCount->getType()->isPointerTy() && 555 ExitCount->getType() != CountType) 556 ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); 557 ExitCount = SE->getAddExpr(ExitCount, SE->getOne(CountType)); 558 Value *ECValue = 559 SCEVE.expandCodeFor(ExitCount, CountType, Preheader->getTerminator()); 560 561 IRBuilder<> CountBuilder(Preheader->getTerminator()); 562 Module *M = Preheader->getParent()->getParent(); 563 Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, 564 CountType); 565 CountBuilder.CreateCall(MTCTRFunc, ECValue); 566 567 IRBuilder<> CondBuilder(CountedExitBranch); 568 Value *DecFunc = 569 Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); 570 Value *NewCond = CondBuilder.CreateCall(DecFunc, {}); 571 Value *OldCond = CountedExitBranch->getCondition(); 572 CountedExitBranch->setCondition(NewCond); 573 574 // The false branch must exit the loop. 575 if (!L->contains(CountedExitBranch->getSuccessor(0))) 576 CountedExitBranch->swapSuccessors(); 577 578 // The old condition may be dead now, and may have even created a dead PHI 579 // (the original induction variable). 580 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 581 DeleteDeadPHIs(CountedExitBlock); 582 583 ++NumCTRLoops; 584 return MadeChange; 585 } 586 587 #ifndef NDEBUG 588 static bool clobbersCTR(const MachineInstr *MI) { 589 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 590 const MachineOperand &MO = MI->getOperand(i); 591 if (MO.isReg()) { 592 if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) 593 return true; 594 } else if (MO.isRegMask()) { 595 if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) 596 return true; 597 } 598 } 599 600 return false; 601 } 602 603 static bool verifyCTRBranch(MachineBasicBlock *MBB, 604 MachineBasicBlock::iterator I) { 605 MachineBasicBlock::iterator BI = I; 606 SmallSet<MachineBasicBlock *, 16> Visited; 607 SmallVector<MachineBasicBlock *, 8> Preds; 608 bool CheckPreds; 609 610 if (I == MBB->begin()) { 611 Visited.insert(MBB); 612 goto queue_preds; 613 } else 614 --I; 615 616 check_block: 617 Visited.insert(MBB); 618 if (I == MBB->end()) 619 goto queue_preds; 620 621 CheckPreds = true; 622 for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { 623 unsigned Opc = I->getOpcode(); 624 if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { 625 CheckPreds = false; 626 break; 627 } 628 629 if (I != BI && clobbersCTR(I)) { 630 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" << 631 MBB->getFullName() << ") instruction " << *I << 632 " clobbers CTR, invalidating " << "BB#" << 633 BI->getParent()->getNumber() << " (" << 634 BI->getParent()->getFullName() << ") instruction " << 635 *BI << "\n"); 636 return false; 637 } 638 639 if (I == IE) 640 break; 641 } 642 643 if (!CheckPreds && Preds.empty()) 644 return true; 645 646 if (CheckPreds) { 647 queue_preds: 648 if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { 649 DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" << 650 BI->getParent()->getNumber() << " (" << 651 BI->getParent()->getFullName() << ") instruction " << 652 *BI << "\n"); 653 return false; 654 } 655 656 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 657 PIE = MBB->pred_end(); PI != PIE; ++PI) 658 Preds.push_back(*PI); 659 } 660 661 do { 662 MBB = Preds.pop_back_val(); 663 if (!Visited.count(MBB)) { 664 I = MBB->getLastNonDebugInstr(); 665 goto check_block; 666 } 667 } while (!Preds.empty()); 668 669 return true; 670 } 671 672 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { 673 MDT = &getAnalysis<MachineDominatorTree>(); 674 675 // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before 676 // any other instructions that might clobber the ctr register. 677 for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); 678 I != IE; ++I) { 679 MachineBasicBlock *MBB = &*I; 680 if (!MDT->isReachableFromEntry(MBB)) 681 continue; 682 683 for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), 684 MIIE = MBB->end(); MII != MIIE; ++MII) { 685 unsigned Opc = MII->getOpcode(); 686 if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || 687 Opc == PPC::BDZ8 || Opc == PPC::BDZ) 688 if (!verifyCTRBranch(MBB, MII)) 689 llvm_unreachable("Invalid PPC CTR loop!"); 690 } 691 } 692 693 return false; 694 } 695 #endif // NDEBUG 696