1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/PPCMCExpr.h" 11 #include "MCTargetDesc/PPCMCTargetDesc.h" 12 #include "PPCTargetStreamer.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstrInfo.h" 22 #include "llvm/MC/MCParser/MCAsmLexer.h" 23 #include "llvm/MC/MCParser/MCAsmParser.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/MC/MCStreamer.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/MC/MCSymbolELF.h" 30 #include "llvm/Support/SourceMgr.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 static const MCPhysReg RRegs[32] = { 37 PPC::R0, PPC::R1, PPC::R2, PPC::R3, 38 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 39 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 40 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 41 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 42 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 43 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 44 PPC::R28, PPC::R29, PPC::R30, PPC::R31 45 }; 46 static const MCPhysReg RRegsNoR0[32] = { 47 PPC::ZERO, 48 PPC::R1, PPC::R2, PPC::R3, 49 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 50 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 51 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 52 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 53 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 54 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 55 PPC::R28, PPC::R29, PPC::R30, PPC::R31 56 }; 57 static const MCPhysReg XRegs[32] = { 58 PPC::X0, PPC::X1, PPC::X2, PPC::X3, 59 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 60 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 61 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 62 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 63 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 64 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 65 PPC::X28, PPC::X29, PPC::X30, PPC::X31 66 }; 67 static const MCPhysReg XRegsNoX0[32] = { 68 PPC::ZERO8, 69 PPC::X1, PPC::X2, PPC::X3, 70 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 71 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 72 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 73 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 74 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 75 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 76 PPC::X28, PPC::X29, PPC::X30, PPC::X31 77 }; 78 static const MCPhysReg FRegs[32] = { 79 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 80 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 81 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 82 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 83 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 84 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 85 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 86 PPC::F28, PPC::F29, PPC::F30, PPC::F31 87 }; 88 static const MCPhysReg VRegs[32] = { 89 PPC::V0, PPC::V1, PPC::V2, PPC::V3, 90 PPC::V4, PPC::V5, PPC::V6, PPC::V7, 91 PPC::V8, PPC::V9, PPC::V10, PPC::V11, 92 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 93 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 94 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 95 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 96 PPC::V28, PPC::V29, PPC::V30, PPC::V31 97 }; 98 static const MCPhysReg VSRegs[64] = { 99 PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3, 100 PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7, 101 PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11, 102 PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15, 103 PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19, 104 PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23, 105 PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27, 106 PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31, 107 108 PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3, 109 PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, 110 PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, 111 PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15, 112 PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19, 113 PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23, 114 PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27, 115 PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31 116 }; 117 static const MCPhysReg VSFRegs[64] = { 118 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 119 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 120 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 121 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 122 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 123 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 124 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 125 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 126 127 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 128 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 129 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 130 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 131 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 132 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 133 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 134 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 135 }; 136 static const MCPhysReg VSSRegs[64] = { 137 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 138 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 139 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 140 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 141 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 142 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 143 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 144 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 145 146 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 147 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 148 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 149 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 150 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 151 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 152 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 153 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 154 }; 155 static unsigned QFRegs[32] = { 156 PPC::QF0, PPC::QF1, PPC::QF2, PPC::QF3, 157 PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 158 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, 159 PPC::QF12, PPC::QF13, PPC::QF14, PPC::QF15, 160 PPC::QF16, PPC::QF17, PPC::QF18, PPC::QF19, 161 PPC::QF20, PPC::QF21, PPC::QF22, PPC::QF23, 162 PPC::QF24, PPC::QF25, PPC::QF26, PPC::QF27, 163 PPC::QF28, PPC::QF29, PPC::QF30, PPC::QF31 164 }; 165 static const MCPhysReg CRBITRegs[32] = { 166 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, 167 PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, 168 PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, 169 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, 170 PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 171 PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, 172 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, 173 PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN 174 }; 175 static const MCPhysReg CRRegs[8] = { 176 PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 177 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 178 }; 179 180 // Evaluate an expression containing condition register 181 // or condition register field symbols. Returns positive 182 // value on success, or -1 on error. 183 static int64_t 184 EvaluateCRExpr(const MCExpr *E) { 185 switch (E->getKind()) { 186 case MCExpr::Target: 187 return -1; 188 189 case MCExpr::Constant: { 190 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 191 return Res < 0 ? -1 : Res; 192 } 193 194 case MCExpr::SymbolRef: { 195 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 196 StringRef Name = SRE->getSymbol().getName(); 197 198 if (Name == "lt") return 0; 199 if (Name == "gt") return 1; 200 if (Name == "eq") return 2; 201 if (Name == "so") return 3; 202 if (Name == "un") return 3; 203 204 if (Name == "cr0") return 0; 205 if (Name == "cr1") return 1; 206 if (Name == "cr2") return 2; 207 if (Name == "cr3") return 3; 208 if (Name == "cr4") return 4; 209 if (Name == "cr5") return 5; 210 if (Name == "cr6") return 6; 211 if (Name == "cr7") return 7; 212 213 return -1; 214 } 215 216 case MCExpr::Unary: 217 return -1; 218 219 case MCExpr::Binary: { 220 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 221 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 222 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 223 int64_t Res; 224 225 if (LHSVal < 0 || RHSVal < 0) 226 return -1; 227 228 switch (BE->getOpcode()) { 229 default: return -1; 230 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 231 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 232 } 233 234 return Res < 0 ? -1 : Res; 235 } 236 } 237 238 llvm_unreachable("Invalid expression kind!"); 239 } 240 241 namespace { 242 243 struct PPCOperand; 244 245 class PPCAsmParser : public MCTargetAsmParser { 246 const MCInstrInfo &MII; 247 bool IsPPC64; 248 bool IsDarwin; 249 250 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 251 bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); } 252 253 bool isPPC64() const { return IsPPC64; } 254 bool isDarwin() const { return IsDarwin; } 255 256 bool MatchRegisterName(const AsmToken &Tok, 257 unsigned &RegNo, int64_t &IntVal); 258 259 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 260 261 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 262 PPCMCExpr::VariantKind &Variant); 263 const MCExpr *FixupVariantKind(const MCExpr *E); 264 bool ParseExpression(const MCExpr *&EVal); 265 bool ParseDarwinExpression(const MCExpr *&EVal); 266 267 bool ParseOperand(OperandVector &Operands); 268 269 bool ParseDirectiveWord(unsigned Size, SMLoc L); 270 bool ParseDirectiveTC(unsigned Size, SMLoc L); 271 bool ParseDirectiveMachine(SMLoc L); 272 bool ParseDarwinDirectiveMachine(SMLoc L); 273 bool ParseDirectiveAbiVersion(SMLoc L); 274 bool ParseDirectiveLocalEntry(SMLoc L); 275 276 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 277 OperandVector &Operands, MCStreamer &Out, 278 uint64_t &ErrorInfo, 279 bool MatchingInlineAsm) override; 280 281 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 282 283 /// @name Auto-generated Match Functions 284 /// { 285 286 #define GET_ASSEMBLER_HEADER 287 #include "PPCGenAsmMatcher.inc" 288 289 /// } 290 291 292 public: 293 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 294 const MCInstrInfo &MII, const MCTargetOptions &Options) 295 : MCTargetAsmParser(Options, STI), MII(MII) { 296 // Check for 64-bit vs. 32-bit pointer mode. 297 Triple TheTriple(STI.getTargetTriple()); 298 IsPPC64 = (TheTriple.getArch() == Triple::ppc64 || 299 TheTriple.getArch() == Triple::ppc64le); 300 IsDarwin = TheTriple.isMacOSX(); 301 // Initialize the set of available features. 302 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 303 } 304 305 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 306 SMLoc NameLoc, OperandVector &Operands) override; 307 308 bool ParseDirective(AsmToken DirectiveID) override; 309 310 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 311 unsigned Kind) override; 312 313 const MCExpr *applyModifierToExpr(const MCExpr *E, 314 MCSymbolRefExpr::VariantKind, 315 MCContext &Ctx) override; 316 }; 317 318 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 319 /// instruction. 320 struct PPCOperand : public MCParsedAsmOperand { 321 enum KindTy { 322 Token, 323 Immediate, 324 ContextImmediate, 325 Expression, 326 TLSRegister 327 } Kind; 328 329 SMLoc StartLoc, EndLoc; 330 bool IsPPC64; 331 332 struct TokOp { 333 const char *Data; 334 unsigned Length; 335 }; 336 337 struct ImmOp { 338 int64_t Val; 339 }; 340 341 struct ExprOp { 342 const MCExpr *Val; 343 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 344 }; 345 346 struct TLSRegOp { 347 const MCSymbolRefExpr *Sym; 348 }; 349 350 union { 351 struct TokOp Tok; 352 struct ImmOp Imm; 353 struct ExprOp Expr; 354 struct TLSRegOp TLSReg; 355 }; 356 357 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 358 public: 359 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 360 Kind = o.Kind; 361 StartLoc = o.StartLoc; 362 EndLoc = o.EndLoc; 363 IsPPC64 = o.IsPPC64; 364 switch (Kind) { 365 case Token: 366 Tok = o.Tok; 367 break; 368 case Immediate: 369 case ContextImmediate: 370 Imm = o.Imm; 371 break; 372 case Expression: 373 Expr = o.Expr; 374 break; 375 case TLSRegister: 376 TLSReg = o.TLSReg; 377 break; 378 } 379 } 380 381 // Disable use of sized deallocation due to overallocation of PPCOperand 382 // objects in CreateTokenWithStringCopy. 383 void operator delete(void *p) { ::operator delete(p); } 384 385 /// getStartLoc - Get the location of the first token of this operand. 386 SMLoc getStartLoc() const override { return StartLoc; } 387 388 /// getEndLoc - Get the location of the last token of this operand. 389 SMLoc getEndLoc() const override { return EndLoc; } 390 391 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 392 bool isPPC64() const { return IsPPC64; } 393 394 int64_t getImm() const { 395 assert(Kind == Immediate && "Invalid access!"); 396 return Imm.Val; 397 } 398 int64_t getImmS16Context() const { 399 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 400 if (Kind == Immediate) 401 return Imm.Val; 402 return static_cast<int16_t>(Imm.Val); 403 } 404 int64_t getImmU16Context() const { 405 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 406 return Imm.Val; 407 } 408 409 const MCExpr *getExpr() const { 410 assert(Kind == Expression && "Invalid access!"); 411 return Expr.Val; 412 } 413 414 int64_t getExprCRVal() const { 415 assert(Kind == Expression && "Invalid access!"); 416 return Expr.CRVal; 417 } 418 419 const MCExpr *getTLSReg() const { 420 assert(Kind == TLSRegister && "Invalid access!"); 421 return TLSReg.Sym; 422 } 423 424 unsigned getReg() const override { 425 assert(isRegNumber() && "Invalid access!"); 426 return (unsigned) Imm.Val; 427 } 428 429 unsigned getVSReg() const { 430 assert(isVSRegNumber() && "Invalid access!"); 431 return (unsigned) Imm.Val; 432 } 433 434 unsigned getCCReg() const { 435 assert(isCCRegNumber() && "Invalid access!"); 436 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 437 } 438 439 unsigned getCRBit() const { 440 assert(isCRBitNumber() && "Invalid access!"); 441 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 442 } 443 444 unsigned getCRBitMask() const { 445 assert(isCRBitMask() && "Invalid access!"); 446 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 447 } 448 449 bool isToken() const override { return Kind == Token; } 450 bool isImm() const override { return Kind == Immediate || Kind == Expression; } 451 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 452 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 453 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 454 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 455 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 456 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 457 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 458 bool isU6ImmX2() const { return Kind == Immediate && 459 isUInt<6>(getImm()) && 460 (getImm() & 1) == 0; } 461 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 462 bool isU7ImmX4() const { return Kind == Immediate && 463 isUInt<7>(getImm()) && 464 (getImm() & 3) == 0; } 465 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 466 bool isU8ImmX8() const { return Kind == Immediate && 467 isUInt<8>(getImm()) && 468 (getImm() & 7) == 0; } 469 470 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 471 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 472 bool isU16Imm() const { 473 switch (Kind) { 474 case Expression: 475 return true; 476 case Immediate: 477 case ContextImmediate: 478 return isUInt<16>(getImmU16Context()); 479 default: 480 return false; 481 } 482 } 483 bool isS16Imm() const { 484 switch (Kind) { 485 case Expression: 486 return true; 487 case Immediate: 488 case ContextImmediate: 489 return isInt<16>(getImmS16Context()); 490 default: 491 return false; 492 } 493 } 494 bool isS16ImmX4() const { return Kind == Expression || 495 (Kind == Immediate && isInt<16>(getImm()) && 496 (getImm() & 3) == 0); } 497 bool isS16ImmX16() const { return Kind == Expression || 498 (Kind == Immediate && isInt<16>(getImm()) && 499 (getImm() & 15) == 0); } 500 bool isS17Imm() const { 501 switch (Kind) { 502 case Expression: 503 return true; 504 case Immediate: 505 case ContextImmediate: 506 return isInt<17>(getImmS16Context()); 507 default: 508 return false; 509 } 510 } 511 bool isTLSReg() const { return Kind == TLSRegister; } 512 bool isDirectBr() const { 513 if (Kind == Expression) 514 return true; 515 if (Kind != Immediate) 516 return false; 517 // Operand must be 64-bit aligned, signed 27-bit immediate. 518 if ((getImm() & 3) != 0) 519 return false; 520 if (isInt<26>(getImm())) 521 return true; 522 if (!IsPPC64) { 523 // In 32-bit mode, large 32-bit quantities wrap around. 524 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 525 return true; 526 } 527 return false; 528 } 529 bool isCondBr() const { return Kind == Expression || 530 (Kind == Immediate && isInt<16>(getImm()) && 531 (getImm() & 3) == 0); } 532 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 533 bool isVSRegNumber() const { return Kind == Immediate && isUInt<6>(getImm()); } 534 bool isCCRegNumber() const { return (Kind == Expression 535 && isUInt<3>(getExprCRVal())) || 536 (Kind == Immediate 537 && isUInt<3>(getImm())); } 538 bool isCRBitNumber() const { return (Kind == Expression 539 && isUInt<5>(getExprCRVal())) || 540 (Kind == Immediate 541 && isUInt<5>(getImm())); } 542 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 543 isPowerOf2_32(getImm()); } 544 bool isMem() const override { return false; } 545 bool isReg() const override { return false; } 546 547 void addRegOperands(MCInst &Inst, unsigned N) const { 548 llvm_unreachable("addRegOperands"); 549 } 550 551 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 552 assert(N == 1 && "Invalid number of operands!"); 553 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 554 } 555 556 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 557 assert(N == 1 && "Invalid number of operands!"); 558 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 559 } 560 561 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 562 assert(N == 1 && "Invalid number of operands!"); 563 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 564 } 565 566 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 567 assert(N == 1 && "Invalid number of operands!"); 568 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 569 } 570 571 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 572 if (isPPC64()) 573 addRegG8RCOperands(Inst, N); 574 else 575 addRegGPRCOperands(Inst, N); 576 } 577 578 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 579 if (isPPC64()) 580 addRegG8RCNoX0Operands(Inst, N); 581 else 582 addRegGPRCNoR0Operands(Inst, N); 583 } 584 585 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 586 assert(N == 1 && "Invalid number of operands!"); 587 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 588 } 589 590 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 591 assert(N == 1 && "Invalid number of operands!"); 592 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 593 } 594 595 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 596 assert(N == 1 && "Invalid number of operands!"); 597 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 598 } 599 600 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 601 assert(N == 1 && "Invalid number of operands!"); 602 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 603 } 604 605 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 606 assert(N == 1 && "Invalid number of operands!"); 607 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 608 } 609 610 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 611 assert(N == 1 && "Invalid number of operands!"); 612 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 613 } 614 615 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 616 assert(N == 1 && "Invalid number of operands!"); 617 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 618 } 619 620 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 621 assert(N == 1 && "Invalid number of operands!"); 622 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 623 } 624 625 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 626 assert(N == 1 && "Invalid number of operands!"); 627 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 628 } 629 630 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 631 assert(N == 1 && "Invalid number of operands!"); 632 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 633 } 634 635 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 636 assert(N == 1 && "Invalid number of operands!"); 637 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 638 } 639 640 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 641 assert(N == 1 && "Invalid number of operands!"); 642 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 643 } 644 645 void addImmOperands(MCInst &Inst, unsigned N) const { 646 assert(N == 1 && "Invalid number of operands!"); 647 if (Kind == Immediate) 648 Inst.addOperand(MCOperand::createImm(getImm())); 649 else 650 Inst.addOperand(MCOperand::createExpr(getExpr())); 651 } 652 653 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 654 assert(N == 1 && "Invalid number of operands!"); 655 switch (Kind) { 656 case Immediate: 657 Inst.addOperand(MCOperand::createImm(getImm())); 658 break; 659 case ContextImmediate: 660 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 661 break; 662 default: 663 Inst.addOperand(MCOperand::createExpr(getExpr())); 664 break; 665 } 666 } 667 668 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 669 assert(N == 1 && "Invalid number of operands!"); 670 switch (Kind) { 671 case Immediate: 672 Inst.addOperand(MCOperand::createImm(getImm())); 673 break; 674 case ContextImmediate: 675 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 676 break; 677 default: 678 Inst.addOperand(MCOperand::createExpr(getExpr())); 679 break; 680 } 681 } 682 683 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 684 assert(N == 1 && "Invalid number of operands!"); 685 if (Kind == Immediate) 686 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 687 else 688 Inst.addOperand(MCOperand::createExpr(getExpr())); 689 } 690 691 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 692 assert(N == 1 && "Invalid number of operands!"); 693 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 694 } 695 696 StringRef getToken() const { 697 assert(Kind == Token && "Invalid access!"); 698 return StringRef(Tok.Data, Tok.Length); 699 } 700 701 void print(raw_ostream &OS) const override; 702 703 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 704 bool IsPPC64) { 705 auto Op = make_unique<PPCOperand>(Token); 706 Op->Tok.Data = Str.data(); 707 Op->Tok.Length = Str.size(); 708 Op->StartLoc = S; 709 Op->EndLoc = S; 710 Op->IsPPC64 = IsPPC64; 711 return Op; 712 } 713 714 static std::unique_ptr<PPCOperand> 715 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 716 // Allocate extra memory for the string and copy it. 717 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 718 // deleter which will destroy them by simply using "delete", not correctly 719 // calling operator delete on this extra memory after calling the dtor 720 // explicitly. 721 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 722 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 723 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 724 Op->Tok.Length = Str.size(); 725 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 726 Op->StartLoc = S; 727 Op->EndLoc = S; 728 Op->IsPPC64 = IsPPC64; 729 return Op; 730 } 731 732 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 733 bool IsPPC64) { 734 auto Op = make_unique<PPCOperand>(Immediate); 735 Op->Imm.Val = Val; 736 Op->StartLoc = S; 737 Op->EndLoc = E; 738 Op->IsPPC64 = IsPPC64; 739 return Op; 740 } 741 742 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 743 SMLoc E, bool IsPPC64) { 744 auto Op = make_unique<PPCOperand>(Expression); 745 Op->Expr.Val = Val; 746 Op->Expr.CRVal = EvaluateCRExpr(Val); 747 Op->StartLoc = S; 748 Op->EndLoc = E; 749 Op->IsPPC64 = IsPPC64; 750 return Op; 751 } 752 753 static std::unique_ptr<PPCOperand> 754 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 755 auto Op = make_unique<PPCOperand>(TLSRegister); 756 Op->TLSReg.Sym = Sym; 757 Op->StartLoc = S; 758 Op->EndLoc = E; 759 Op->IsPPC64 = IsPPC64; 760 return Op; 761 } 762 763 static std::unique_ptr<PPCOperand> 764 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 765 auto Op = make_unique<PPCOperand>(ContextImmediate); 766 Op->Imm.Val = Val; 767 Op->StartLoc = S; 768 Op->EndLoc = E; 769 Op->IsPPC64 = IsPPC64; 770 return Op; 771 } 772 773 static std::unique_ptr<PPCOperand> 774 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 775 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 776 return CreateImm(CE->getValue(), S, E, IsPPC64); 777 778 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 779 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 780 return CreateTLSReg(SRE, S, E, IsPPC64); 781 782 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 783 int64_t Res; 784 if (TE->evaluateAsConstant(Res)) 785 return CreateContextImm(Res, S, E, IsPPC64); 786 } 787 788 return CreateExpr(Val, S, E, IsPPC64); 789 } 790 }; 791 792 } // end anonymous namespace. 793 794 void PPCOperand::print(raw_ostream &OS) const { 795 switch (Kind) { 796 case Token: 797 OS << "'" << getToken() << "'"; 798 break; 799 case Immediate: 800 case ContextImmediate: 801 OS << getImm(); 802 break; 803 case Expression: 804 OS << *getExpr(); 805 break; 806 case TLSRegister: 807 OS << *getTLSReg(); 808 break; 809 } 810 } 811 812 static void 813 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 814 if (Op.isImm()) { 815 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 816 return; 817 } 818 const MCExpr *Expr = Op.getExpr(); 819 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 820 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 821 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 822 return; 823 } 824 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 825 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 826 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 827 BinExpr->getLHS(), Ctx); 828 Inst.addOperand(MCOperand::createExpr(NE)); 829 return; 830 } 831 } 832 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 833 } 834 835 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 836 const OperandVector &Operands) { 837 int Opcode = Inst.getOpcode(); 838 switch (Opcode) { 839 case PPC::DCBTx: 840 case PPC::DCBTT: 841 case PPC::DCBTSTx: 842 case PPC::DCBTSTT: { 843 MCInst TmpInst; 844 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 845 PPC::DCBT : PPC::DCBTST); 846 TmpInst.addOperand(MCOperand::createImm( 847 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 848 TmpInst.addOperand(Inst.getOperand(0)); 849 TmpInst.addOperand(Inst.getOperand(1)); 850 Inst = TmpInst; 851 break; 852 } 853 case PPC::DCBTCT: 854 case PPC::DCBTDS: { 855 MCInst TmpInst; 856 TmpInst.setOpcode(PPC::DCBT); 857 TmpInst.addOperand(Inst.getOperand(2)); 858 TmpInst.addOperand(Inst.getOperand(0)); 859 TmpInst.addOperand(Inst.getOperand(1)); 860 Inst = TmpInst; 861 break; 862 } 863 case PPC::DCBTSTCT: 864 case PPC::DCBTSTDS: { 865 MCInst TmpInst; 866 TmpInst.setOpcode(PPC::DCBTST); 867 TmpInst.addOperand(Inst.getOperand(2)); 868 TmpInst.addOperand(Inst.getOperand(0)); 869 TmpInst.addOperand(Inst.getOperand(1)); 870 Inst = TmpInst; 871 break; 872 } 873 case PPC::LAx: { 874 MCInst TmpInst; 875 TmpInst.setOpcode(PPC::LA); 876 TmpInst.addOperand(Inst.getOperand(0)); 877 TmpInst.addOperand(Inst.getOperand(2)); 878 TmpInst.addOperand(Inst.getOperand(1)); 879 Inst = TmpInst; 880 break; 881 } 882 case PPC::SUBI: { 883 MCInst TmpInst; 884 TmpInst.setOpcode(PPC::ADDI); 885 TmpInst.addOperand(Inst.getOperand(0)); 886 TmpInst.addOperand(Inst.getOperand(1)); 887 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 888 Inst = TmpInst; 889 break; 890 } 891 case PPC::SUBIS: { 892 MCInst TmpInst; 893 TmpInst.setOpcode(PPC::ADDIS); 894 TmpInst.addOperand(Inst.getOperand(0)); 895 TmpInst.addOperand(Inst.getOperand(1)); 896 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 897 Inst = TmpInst; 898 break; 899 } 900 case PPC::SUBIC: { 901 MCInst TmpInst; 902 TmpInst.setOpcode(PPC::ADDIC); 903 TmpInst.addOperand(Inst.getOperand(0)); 904 TmpInst.addOperand(Inst.getOperand(1)); 905 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 906 Inst = TmpInst; 907 break; 908 } 909 case PPC::SUBICo: { 910 MCInst TmpInst; 911 TmpInst.setOpcode(PPC::ADDICo); 912 TmpInst.addOperand(Inst.getOperand(0)); 913 TmpInst.addOperand(Inst.getOperand(1)); 914 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 915 Inst = TmpInst; 916 break; 917 } 918 case PPC::EXTLWI: 919 case PPC::EXTLWIo: { 920 MCInst TmpInst; 921 int64_t N = Inst.getOperand(2).getImm(); 922 int64_t B = Inst.getOperand(3).getImm(); 923 TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo); 924 TmpInst.addOperand(Inst.getOperand(0)); 925 TmpInst.addOperand(Inst.getOperand(1)); 926 TmpInst.addOperand(MCOperand::createImm(B)); 927 TmpInst.addOperand(MCOperand::createImm(0)); 928 TmpInst.addOperand(MCOperand::createImm(N - 1)); 929 Inst = TmpInst; 930 break; 931 } 932 case PPC::EXTRWI: 933 case PPC::EXTRWIo: { 934 MCInst TmpInst; 935 int64_t N = Inst.getOperand(2).getImm(); 936 int64_t B = Inst.getOperand(3).getImm(); 937 TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo); 938 TmpInst.addOperand(Inst.getOperand(0)); 939 TmpInst.addOperand(Inst.getOperand(1)); 940 TmpInst.addOperand(MCOperand::createImm(B + N)); 941 TmpInst.addOperand(MCOperand::createImm(32 - N)); 942 TmpInst.addOperand(MCOperand::createImm(31)); 943 Inst = TmpInst; 944 break; 945 } 946 case PPC::INSLWI: 947 case PPC::INSLWIo: { 948 MCInst TmpInst; 949 int64_t N = Inst.getOperand(2).getImm(); 950 int64_t B = Inst.getOperand(3).getImm(); 951 TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo); 952 TmpInst.addOperand(Inst.getOperand(0)); 953 TmpInst.addOperand(Inst.getOperand(0)); 954 TmpInst.addOperand(Inst.getOperand(1)); 955 TmpInst.addOperand(MCOperand::createImm(32 - B)); 956 TmpInst.addOperand(MCOperand::createImm(B)); 957 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 958 Inst = TmpInst; 959 break; 960 } 961 case PPC::INSRWI: 962 case PPC::INSRWIo: { 963 MCInst TmpInst; 964 int64_t N = Inst.getOperand(2).getImm(); 965 int64_t B = Inst.getOperand(3).getImm(); 966 TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo); 967 TmpInst.addOperand(Inst.getOperand(0)); 968 TmpInst.addOperand(Inst.getOperand(0)); 969 TmpInst.addOperand(Inst.getOperand(1)); 970 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 971 TmpInst.addOperand(MCOperand::createImm(B)); 972 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 973 Inst = TmpInst; 974 break; 975 } 976 case PPC::ROTRWI: 977 case PPC::ROTRWIo: { 978 MCInst TmpInst; 979 int64_t N = Inst.getOperand(2).getImm(); 980 TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo); 981 TmpInst.addOperand(Inst.getOperand(0)); 982 TmpInst.addOperand(Inst.getOperand(1)); 983 TmpInst.addOperand(MCOperand::createImm(32 - N)); 984 TmpInst.addOperand(MCOperand::createImm(0)); 985 TmpInst.addOperand(MCOperand::createImm(31)); 986 Inst = TmpInst; 987 break; 988 } 989 case PPC::SLWI: 990 case PPC::SLWIo: { 991 MCInst TmpInst; 992 int64_t N = Inst.getOperand(2).getImm(); 993 TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo); 994 TmpInst.addOperand(Inst.getOperand(0)); 995 TmpInst.addOperand(Inst.getOperand(1)); 996 TmpInst.addOperand(MCOperand::createImm(N)); 997 TmpInst.addOperand(MCOperand::createImm(0)); 998 TmpInst.addOperand(MCOperand::createImm(31 - N)); 999 Inst = TmpInst; 1000 break; 1001 } 1002 case PPC::SRWI: 1003 case PPC::SRWIo: { 1004 MCInst TmpInst; 1005 int64_t N = Inst.getOperand(2).getImm(); 1006 TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo); 1007 TmpInst.addOperand(Inst.getOperand(0)); 1008 TmpInst.addOperand(Inst.getOperand(1)); 1009 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1010 TmpInst.addOperand(MCOperand::createImm(N)); 1011 TmpInst.addOperand(MCOperand::createImm(31)); 1012 Inst = TmpInst; 1013 break; 1014 } 1015 case PPC::CLRRWI: 1016 case PPC::CLRRWIo: { 1017 MCInst TmpInst; 1018 int64_t N = Inst.getOperand(2).getImm(); 1019 TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo); 1020 TmpInst.addOperand(Inst.getOperand(0)); 1021 TmpInst.addOperand(Inst.getOperand(1)); 1022 TmpInst.addOperand(MCOperand::createImm(0)); 1023 TmpInst.addOperand(MCOperand::createImm(0)); 1024 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1025 Inst = TmpInst; 1026 break; 1027 } 1028 case PPC::CLRLSLWI: 1029 case PPC::CLRLSLWIo: { 1030 MCInst TmpInst; 1031 int64_t B = Inst.getOperand(2).getImm(); 1032 int64_t N = Inst.getOperand(3).getImm(); 1033 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo); 1034 TmpInst.addOperand(Inst.getOperand(0)); 1035 TmpInst.addOperand(Inst.getOperand(1)); 1036 TmpInst.addOperand(MCOperand::createImm(N)); 1037 TmpInst.addOperand(MCOperand::createImm(B - N)); 1038 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1039 Inst = TmpInst; 1040 break; 1041 } 1042 case PPC::EXTLDI: 1043 case PPC::EXTLDIo: { 1044 MCInst TmpInst; 1045 int64_t N = Inst.getOperand(2).getImm(); 1046 int64_t B = Inst.getOperand(3).getImm(); 1047 TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo); 1048 TmpInst.addOperand(Inst.getOperand(0)); 1049 TmpInst.addOperand(Inst.getOperand(1)); 1050 TmpInst.addOperand(MCOperand::createImm(B)); 1051 TmpInst.addOperand(MCOperand::createImm(N - 1)); 1052 Inst = TmpInst; 1053 break; 1054 } 1055 case PPC::EXTRDI: 1056 case PPC::EXTRDIo: { 1057 MCInst TmpInst; 1058 int64_t N = Inst.getOperand(2).getImm(); 1059 int64_t B = Inst.getOperand(3).getImm(); 1060 TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo); 1061 TmpInst.addOperand(Inst.getOperand(0)); 1062 TmpInst.addOperand(Inst.getOperand(1)); 1063 TmpInst.addOperand(MCOperand::createImm(B + N)); 1064 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1065 Inst = TmpInst; 1066 break; 1067 } 1068 case PPC::INSRDI: 1069 case PPC::INSRDIo: { 1070 MCInst TmpInst; 1071 int64_t N = Inst.getOperand(2).getImm(); 1072 int64_t B = Inst.getOperand(3).getImm(); 1073 TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo); 1074 TmpInst.addOperand(Inst.getOperand(0)); 1075 TmpInst.addOperand(Inst.getOperand(0)); 1076 TmpInst.addOperand(Inst.getOperand(1)); 1077 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 1078 TmpInst.addOperand(MCOperand::createImm(B)); 1079 Inst = TmpInst; 1080 break; 1081 } 1082 case PPC::ROTRDI: 1083 case PPC::ROTRDIo: { 1084 MCInst TmpInst; 1085 int64_t N = Inst.getOperand(2).getImm(); 1086 TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo); 1087 TmpInst.addOperand(Inst.getOperand(0)); 1088 TmpInst.addOperand(Inst.getOperand(1)); 1089 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1090 TmpInst.addOperand(MCOperand::createImm(0)); 1091 Inst = TmpInst; 1092 break; 1093 } 1094 case PPC::SLDI: 1095 case PPC::SLDIo: { 1096 MCInst TmpInst; 1097 int64_t N = Inst.getOperand(2).getImm(); 1098 TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo); 1099 TmpInst.addOperand(Inst.getOperand(0)); 1100 TmpInst.addOperand(Inst.getOperand(1)); 1101 TmpInst.addOperand(MCOperand::createImm(N)); 1102 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1103 Inst = TmpInst; 1104 break; 1105 } 1106 case PPC::SRDI: 1107 case PPC::SRDIo: { 1108 MCInst TmpInst; 1109 int64_t N = Inst.getOperand(2).getImm(); 1110 TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo); 1111 TmpInst.addOperand(Inst.getOperand(0)); 1112 TmpInst.addOperand(Inst.getOperand(1)); 1113 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1114 TmpInst.addOperand(MCOperand::createImm(N)); 1115 Inst = TmpInst; 1116 break; 1117 } 1118 case PPC::CLRRDI: 1119 case PPC::CLRRDIo: { 1120 MCInst TmpInst; 1121 int64_t N = Inst.getOperand(2).getImm(); 1122 TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo); 1123 TmpInst.addOperand(Inst.getOperand(0)); 1124 TmpInst.addOperand(Inst.getOperand(1)); 1125 TmpInst.addOperand(MCOperand::createImm(0)); 1126 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1127 Inst = TmpInst; 1128 break; 1129 } 1130 case PPC::CLRLSLDI: 1131 case PPC::CLRLSLDIo: { 1132 MCInst TmpInst; 1133 int64_t B = Inst.getOperand(2).getImm(); 1134 int64_t N = Inst.getOperand(3).getImm(); 1135 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo); 1136 TmpInst.addOperand(Inst.getOperand(0)); 1137 TmpInst.addOperand(Inst.getOperand(1)); 1138 TmpInst.addOperand(MCOperand::createImm(N)); 1139 TmpInst.addOperand(MCOperand::createImm(B - N)); 1140 Inst = TmpInst; 1141 break; 1142 } 1143 case PPC::RLWINMbm: 1144 case PPC::RLWINMobm: { 1145 unsigned MB, ME; 1146 int64_t BM = Inst.getOperand(3).getImm(); 1147 if (!isRunOfOnes(BM, MB, ME)) 1148 break; 1149 1150 MCInst TmpInst; 1151 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo); 1152 TmpInst.addOperand(Inst.getOperand(0)); 1153 TmpInst.addOperand(Inst.getOperand(1)); 1154 TmpInst.addOperand(Inst.getOperand(2)); 1155 TmpInst.addOperand(MCOperand::createImm(MB)); 1156 TmpInst.addOperand(MCOperand::createImm(ME)); 1157 Inst = TmpInst; 1158 break; 1159 } 1160 case PPC::RLWIMIbm: 1161 case PPC::RLWIMIobm: { 1162 unsigned MB, ME; 1163 int64_t BM = Inst.getOperand(3).getImm(); 1164 if (!isRunOfOnes(BM, MB, ME)) 1165 break; 1166 1167 MCInst TmpInst; 1168 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo); 1169 TmpInst.addOperand(Inst.getOperand(0)); 1170 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1171 TmpInst.addOperand(Inst.getOperand(1)); 1172 TmpInst.addOperand(Inst.getOperand(2)); 1173 TmpInst.addOperand(MCOperand::createImm(MB)); 1174 TmpInst.addOperand(MCOperand::createImm(ME)); 1175 Inst = TmpInst; 1176 break; 1177 } 1178 case PPC::RLWNMbm: 1179 case PPC::RLWNMobm: { 1180 unsigned MB, ME; 1181 int64_t BM = Inst.getOperand(3).getImm(); 1182 if (!isRunOfOnes(BM, MB, ME)) 1183 break; 1184 1185 MCInst TmpInst; 1186 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo); 1187 TmpInst.addOperand(Inst.getOperand(0)); 1188 TmpInst.addOperand(Inst.getOperand(1)); 1189 TmpInst.addOperand(Inst.getOperand(2)); 1190 TmpInst.addOperand(MCOperand::createImm(MB)); 1191 TmpInst.addOperand(MCOperand::createImm(ME)); 1192 Inst = TmpInst; 1193 break; 1194 } 1195 case PPC::MFTB: { 1196 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1197 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1198 Inst.setOpcode(PPC::MFSPR); 1199 } 1200 break; 1201 } 1202 case PPC::CP_COPYx: 1203 case PPC::CP_COPY_FIRST: { 1204 MCInst TmpInst; 1205 TmpInst.setOpcode(PPC::CP_COPY); 1206 TmpInst.addOperand(Inst.getOperand(0)); 1207 TmpInst.addOperand(Inst.getOperand(1)); 1208 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1209 1210 Inst = TmpInst; 1211 break; 1212 } 1213 case PPC::CP_PASTEx : 1214 case PPC::CP_PASTE_LAST: { 1215 MCInst TmpInst; 1216 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? 1217 PPC::CP_PASTE : PPC::CP_PASTEo); 1218 TmpInst.addOperand(Inst.getOperand(0)); 1219 TmpInst.addOperand(Inst.getOperand(1)); 1220 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1221 1222 Inst = TmpInst; 1223 break; 1224 } 1225 } 1226 } 1227 1228 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1229 OperandVector &Operands, 1230 MCStreamer &Out, uint64_t &ErrorInfo, 1231 bool MatchingInlineAsm) { 1232 MCInst Inst; 1233 1234 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1235 case Match_Success: 1236 // Post-process instructions (typically extended mnemonics) 1237 ProcessInstruction(Inst, Operands); 1238 Inst.setLoc(IDLoc); 1239 Out.EmitInstruction(Inst, getSTI()); 1240 return false; 1241 case Match_MissingFeature: 1242 return Error(IDLoc, "instruction use requires an option to be enabled"); 1243 case Match_MnemonicFail: 1244 return Error(IDLoc, "unrecognized instruction mnemonic"); 1245 case Match_InvalidOperand: { 1246 SMLoc ErrorLoc = IDLoc; 1247 if (ErrorInfo != ~0ULL) { 1248 if (ErrorInfo >= Operands.size()) 1249 return Error(IDLoc, "too few operands for instruction"); 1250 1251 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1252 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1253 } 1254 1255 return Error(ErrorLoc, "invalid operand for instruction"); 1256 } 1257 } 1258 1259 llvm_unreachable("Implement any new match types added!"); 1260 } 1261 1262 bool PPCAsmParser:: 1263 MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { 1264 if (Tok.is(AsmToken::Identifier)) { 1265 StringRef Name = Tok.getString(); 1266 1267 if (Name.equals_lower("lr")) { 1268 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1269 IntVal = 8; 1270 return false; 1271 } else if (Name.equals_lower("ctr")) { 1272 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1273 IntVal = 9; 1274 return false; 1275 } else if (Name.equals_lower("vrsave")) { 1276 RegNo = PPC::VRSAVE; 1277 IntVal = 256; 1278 return false; 1279 } else if (Name.startswith_lower("r") && 1280 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1281 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1282 return false; 1283 } else if (Name.startswith_lower("f") && 1284 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1285 RegNo = FRegs[IntVal]; 1286 return false; 1287 } else if (Name.startswith_lower("vs") && 1288 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1289 RegNo = VSRegs[IntVal]; 1290 return false; 1291 } else if (Name.startswith_lower("v") && 1292 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1293 RegNo = VRegs[IntVal]; 1294 return false; 1295 } else if (Name.startswith_lower("q") && 1296 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1297 RegNo = QFRegs[IntVal]; 1298 return false; 1299 } else if (Name.startswith_lower("cr") && 1300 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1301 RegNo = CRRegs[IntVal]; 1302 return false; 1303 } 1304 } 1305 1306 return true; 1307 } 1308 1309 bool PPCAsmParser:: 1310 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1311 MCAsmParser &Parser = getParser(); 1312 const AsmToken &Tok = Parser.getTok(); 1313 StartLoc = Tok.getLoc(); 1314 EndLoc = Tok.getEndLoc(); 1315 RegNo = 0; 1316 int64_t IntVal; 1317 1318 if (!MatchRegisterName(Tok, RegNo, IntVal)) { 1319 Parser.Lex(); // Eat identifier token. 1320 return false; 1321 } 1322 1323 return Error(StartLoc, "invalid register name"); 1324 } 1325 1326 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1327 /// the expression and check for VK_PPC_LO/HI/HA 1328 /// symbol variants. If all symbols with modifier use the same 1329 /// variant, return the corresponding PPCMCExpr::VariantKind, 1330 /// and a modified expression using the default symbol variant. 1331 /// Otherwise, return NULL. 1332 const MCExpr *PPCAsmParser:: 1333 ExtractModifierFromExpr(const MCExpr *E, 1334 PPCMCExpr::VariantKind &Variant) { 1335 MCContext &Context = getParser().getContext(); 1336 Variant = PPCMCExpr::VK_PPC_None; 1337 1338 switch (E->getKind()) { 1339 case MCExpr::Target: 1340 case MCExpr::Constant: 1341 return nullptr; 1342 1343 case MCExpr::SymbolRef: { 1344 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1345 1346 switch (SRE->getKind()) { 1347 case MCSymbolRefExpr::VK_PPC_LO: 1348 Variant = PPCMCExpr::VK_PPC_LO; 1349 break; 1350 case MCSymbolRefExpr::VK_PPC_HI: 1351 Variant = PPCMCExpr::VK_PPC_HI; 1352 break; 1353 case MCSymbolRefExpr::VK_PPC_HA: 1354 Variant = PPCMCExpr::VK_PPC_HA; 1355 break; 1356 case MCSymbolRefExpr::VK_PPC_HIGHER: 1357 Variant = PPCMCExpr::VK_PPC_HIGHER; 1358 break; 1359 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1360 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1361 break; 1362 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1363 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1364 break; 1365 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1366 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1367 break; 1368 default: 1369 return nullptr; 1370 } 1371 1372 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1373 } 1374 1375 case MCExpr::Unary: { 1376 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1377 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1378 if (!Sub) 1379 return nullptr; 1380 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1381 } 1382 1383 case MCExpr::Binary: { 1384 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1385 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1386 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1387 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1388 1389 if (!LHS && !RHS) 1390 return nullptr; 1391 1392 if (!LHS) LHS = BE->getLHS(); 1393 if (!RHS) RHS = BE->getRHS(); 1394 1395 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1396 Variant = RHSVariant; 1397 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1398 Variant = LHSVariant; 1399 else if (LHSVariant == RHSVariant) 1400 Variant = LHSVariant; 1401 else 1402 return nullptr; 1403 1404 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1405 } 1406 } 1407 1408 llvm_unreachable("Invalid expression kind!"); 1409 } 1410 1411 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1412 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1413 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1414 /// FIXME: This is a hack. 1415 const MCExpr *PPCAsmParser:: 1416 FixupVariantKind(const MCExpr *E) { 1417 MCContext &Context = getParser().getContext(); 1418 1419 switch (E->getKind()) { 1420 case MCExpr::Target: 1421 case MCExpr::Constant: 1422 return E; 1423 1424 case MCExpr::SymbolRef: { 1425 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1426 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1427 1428 switch (SRE->getKind()) { 1429 case MCSymbolRefExpr::VK_TLSGD: 1430 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1431 break; 1432 case MCSymbolRefExpr::VK_TLSLD: 1433 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1434 break; 1435 default: 1436 return E; 1437 } 1438 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1439 } 1440 1441 case MCExpr::Unary: { 1442 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1443 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1444 if (Sub == UE->getSubExpr()) 1445 return E; 1446 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1447 } 1448 1449 case MCExpr::Binary: { 1450 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1451 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1452 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1453 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1454 return E; 1455 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1456 } 1457 } 1458 1459 llvm_unreachable("Invalid expression kind!"); 1460 } 1461 1462 /// ParseExpression. This differs from the default "parseExpression" in that 1463 /// it handles modifiers. 1464 bool PPCAsmParser:: 1465 ParseExpression(const MCExpr *&EVal) { 1466 1467 if (isDarwin()) 1468 return ParseDarwinExpression(EVal); 1469 1470 // (ELF Platforms) 1471 // Handle \code @l/@ha \endcode 1472 if (getParser().parseExpression(EVal)) 1473 return true; 1474 1475 EVal = FixupVariantKind(EVal); 1476 1477 PPCMCExpr::VariantKind Variant; 1478 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1479 if (E) 1480 EVal = PPCMCExpr::create(Variant, E, false, getParser().getContext()); 1481 1482 return false; 1483 } 1484 1485 /// ParseDarwinExpression. (MachO Platforms) 1486 /// This differs from the default "parseExpression" in that it handles detection 1487 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1488 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1489 /// syntax form so it is done here. TODO: Determine if there is merit in arranging 1490 /// for this to be done at a higher level. 1491 bool PPCAsmParser:: 1492 ParseDarwinExpression(const MCExpr *&EVal) { 1493 MCAsmParser &Parser = getParser(); 1494 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1495 switch (getLexer().getKind()) { 1496 default: 1497 break; 1498 case AsmToken::Identifier: 1499 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1500 // something starting with any other char should be part of the 1501 // asm syntax. If handwritten asm includes an identifier like lo16, 1502 // then all bets are off - but no-one would do that, right? 1503 StringRef poss = Parser.getTok().getString(); 1504 if (poss.equals_lower("lo16")) { 1505 Variant = PPCMCExpr::VK_PPC_LO; 1506 } else if (poss.equals_lower("hi16")) { 1507 Variant = PPCMCExpr::VK_PPC_HI; 1508 } else if (poss.equals_lower("ha16")) { 1509 Variant = PPCMCExpr::VK_PPC_HA; 1510 } 1511 if (Variant != PPCMCExpr::VK_PPC_None) { 1512 Parser.Lex(); // Eat the xx16 1513 if (getLexer().isNot(AsmToken::LParen)) 1514 return Error(Parser.getTok().getLoc(), "expected '('"); 1515 Parser.Lex(); // Eat the '(' 1516 } 1517 break; 1518 } 1519 1520 if (getParser().parseExpression(EVal)) 1521 return true; 1522 1523 if (Variant != PPCMCExpr::VK_PPC_None) { 1524 if (getLexer().isNot(AsmToken::RParen)) 1525 return Error(Parser.getTok().getLoc(), "expected ')'"); 1526 Parser.Lex(); // Eat the ')' 1527 EVal = PPCMCExpr::create(Variant, EVal, false, getParser().getContext()); 1528 } 1529 return false; 1530 } 1531 1532 /// ParseOperand 1533 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1534 /// rNN for MachO. 1535 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1536 MCAsmParser &Parser = getParser(); 1537 SMLoc S = Parser.getTok().getLoc(); 1538 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1539 const MCExpr *EVal; 1540 1541 // Attempt to parse the next token as an immediate 1542 switch (getLexer().getKind()) { 1543 // Special handling for register names. These are interpreted 1544 // as immediates corresponding to the register number. 1545 case AsmToken::Percent: 1546 Parser.Lex(); // Eat the '%'. 1547 unsigned RegNo; 1548 int64_t IntVal; 1549 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1550 Parser.Lex(); // Eat the identifier token. 1551 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1552 return false; 1553 } 1554 return Error(S, "invalid register name"); 1555 1556 case AsmToken::Identifier: 1557 // Note that non-register-name identifiers from the compiler will begin 1558 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1559 // identifiers like r31foo - so we fall through in the event that parsing 1560 // a register name fails. 1561 if (isDarwin()) { 1562 unsigned RegNo; 1563 int64_t IntVal; 1564 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1565 Parser.Lex(); // Eat the identifier token. 1566 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1567 return false; 1568 } 1569 } 1570 // Fall-through to process non-register-name identifiers as expression. 1571 // All other expressions 1572 case AsmToken::LParen: 1573 case AsmToken::Plus: 1574 case AsmToken::Minus: 1575 case AsmToken::Integer: 1576 case AsmToken::Dot: 1577 case AsmToken::Dollar: 1578 case AsmToken::Exclaim: 1579 case AsmToken::Tilde: 1580 if (!ParseExpression(EVal)) 1581 break; 1582 /* fall through */ 1583 default: 1584 return Error(S, "unknown operand"); 1585 } 1586 1587 // Push the parsed operand into the list of operands 1588 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1589 1590 // Check whether this is a TLS call expression 1591 bool TLSCall = false; 1592 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1593 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1594 1595 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1596 const MCExpr *TLSSym; 1597 1598 Parser.Lex(); // Eat the '('. 1599 S = Parser.getTok().getLoc(); 1600 if (ParseExpression(TLSSym)) 1601 return Error(S, "invalid TLS call expression"); 1602 if (getLexer().isNot(AsmToken::RParen)) 1603 return Error(Parser.getTok().getLoc(), "missing ')'"); 1604 E = Parser.getTok().getLoc(); 1605 Parser.Lex(); // Eat the ')'. 1606 1607 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1608 } 1609 1610 // Otherwise, check for D-form memory operands 1611 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1612 Parser.Lex(); // Eat the '('. 1613 S = Parser.getTok().getLoc(); 1614 1615 int64_t IntVal; 1616 switch (getLexer().getKind()) { 1617 case AsmToken::Percent: 1618 Parser.Lex(); // Eat the '%'. 1619 unsigned RegNo; 1620 if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) 1621 return Error(S, "invalid register name"); 1622 Parser.Lex(); // Eat the identifier token. 1623 break; 1624 1625 case AsmToken::Integer: 1626 if (!isDarwin()) { 1627 if (getParser().parseAbsoluteExpression(IntVal) || 1628 IntVal < 0 || IntVal > 31) 1629 return Error(S, "invalid register number"); 1630 } else { 1631 return Error(S, "unexpected integer value"); 1632 } 1633 break; 1634 1635 case AsmToken::Identifier: 1636 if (isDarwin()) { 1637 unsigned RegNo; 1638 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1639 Parser.Lex(); // Eat the identifier token. 1640 break; 1641 } 1642 } 1643 // Fall-through.. 1644 1645 default: 1646 return Error(S, "invalid memory operand"); 1647 } 1648 1649 if (getLexer().isNot(AsmToken::RParen)) 1650 return Error(Parser.getTok().getLoc(), "missing ')'"); 1651 E = Parser.getTok().getLoc(); 1652 Parser.Lex(); // Eat the ')'. 1653 1654 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1655 } 1656 1657 return false; 1658 } 1659 1660 /// Parse an instruction mnemonic followed by its operands. 1661 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1662 SMLoc NameLoc, OperandVector &Operands) { 1663 // The first operand is the token for the instruction name. 1664 // If the next character is a '+' or '-', we need to add it to the 1665 // instruction name, to match what TableGen is doing. 1666 std::string NewOpcode; 1667 if (getLexer().is(AsmToken::Plus)) { 1668 getLexer().Lex(); 1669 NewOpcode = Name; 1670 NewOpcode += '+'; 1671 Name = NewOpcode; 1672 } 1673 if (getLexer().is(AsmToken::Minus)) { 1674 getLexer().Lex(); 1675 NewOpcode = Name; 1676 NewOpcode += '-'; 1677 Name = NewOpcode; 1678 } 1679 // If the instruction ends in a '.', we need to create a separate 1680 // token for it, to match what TableGen is doing. 1681 size_t Dot = Name.find('.'); 1682 StringRef Mnemonic = Name.slice(0, Dot); 1683 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1684 Operands.push_back( 1685 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1686 else 1687 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1688 if (Dot != StringRef::npos) { 1689 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1690 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1691 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1692 Operands.push_back( 1693 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1694 else 1695 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1696 } 1697 1698 // If there are no more operands then finish 1699 if (getLexer().is(AsmToken::EndOfStatement)) 1700 return false; 1701 1702 // Parse the first operand 1703 if (ParseOperand(Operands)) 1704 return true; 1705 1706 while (getLexer().isNot(AsmToken::EndOfStatement) && 1707 getLexer().is(AsmToken::Comma)) { 1708 // Consume the comma token 1709 getLexer().Lex(); 1710 1711 // Parse the next operand 1712 if (ParseOperand(Operands)) 1713 return true; 1714 } 1715 1716 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1717 // and dcbtst instructions differs for server vs. embedded cores. 1718 // The syntax for dcbt is: 1719 // dcbt ra, rb, th [server] 1720 // dcbt th, ra, rb [embedded] 1721 // where th can be omitted when it is 0. dcbtst is the same. We take the 1722 // server form to be the default, so swap the operands if we're parsing for 1723 // an embedded core (they'll be swapped again upon printing). 1724 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1725 Operands.size() == 4 && 1726 (Name == "dcbt" || Name == "dcbtst")) { 1727 std::swap(Operands[1], Operands[3]); 1728 std::swap(Operands[2], Operands[1]); 1729 } 1730 1731 return false; 1732 } 1733 1734 /// ParseDirective parses the PPC specific directives 1735 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1736 StringRef IDVal = DirectiveID.getIdentifier(); 1737 if (!isDarwin()) { 1738 if (IDVal == ".word") 1739 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1740 if (IDVal == ".llong") 1741 return ParseDirectiveWord(8, DirectiveID.getLoc()); 1742 if (IDVal == ".tc") 1743 return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); 1744 if (IDVal == ".machine") 1745 return ParseDirectiveMachine(DirectiveID.getLoc()); 1746 if (IDVal == ".abiversion") 1747 return ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1748 if (IDVal == ".localentry") 1749 return ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1750 } else { 1751 if (IDVal == ".machine") 1752 return ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1753 } 1754 return true; 1755 } 1756 1757 /// ParseDirectiveWord 1758 /// ::= .word [ expression (, expression)* ] 1759 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1760 MCAsmParser &Parser = getParser(); 1761 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1762 for (;;) { 1763 const MCExpr *Value; 1764 SMLoc ExprLoc = getLexer().getLoc(); 1765 if (getParser().parseExpression(Value)) 1766 return false; 1767 1768 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1769 assert(Size <= 8 && "Invalid size"); 1770 uint64_t IntValue = MCE->getValue(); 1771 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1772 return Error(ExprLoc, "literal value out of range for directive"); 1773 getStreamer().EmitIntValue(IntValue, Size); 1774 } else { 1775 getStreamer().EmitValue(Value, Size, ExprLoc); 1776 } 1777 1778 if (getLexer().is(AsmToken::EndOfStatement)) 1779 break; 1780 1781 if (getLexer().isNot(AsmToken::Comma)) 1782 return Error(L, "unexpected token in directive"); 1783 Parser.Lex(); 1784 } 1785 } 1786 1787 Parser.Lex(); 1788 return false; 1789 } 1790 1791 /// ParseDirectiveTC 1792 /// ::= .tc [ symbol (, expression)* ] 1793 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { 1794 MCAsmParser &Parser = getParser(); 1795 // Skip TC symbol, which is only used with XCOFF. 1796 while (getLexer().isNot(AsmToken::EndOfStatement) 1797 && getLexer().isNot(AsmToken::Comma)) 1798 Parser.Lex(); 1799 if (getLexer().isNot(AsmToken::Comma)) { 1800 Error(L, "unexpected token in directive"); 1801 return false; 1802 } 1803 Parser.Lex(); 1804 1805 // Align to word size. 1806 getParser().getStreamer().EmitValueToAlignment(Size); 1807 1808 // Emit expressions. 1809 return ParseDirectiveWord(Size, L); 1810 } 1811 1812 /// ParseDirectiveMachine (ELF platforms) 1813 /// ::= .machine [ cpu | "push" | "pop" ] 1814 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1815 MCAsmParser &Parser = getParser(); 1816 if (getLexer().isNot(AsmToken::Identifier) && 1817 getLexer().isNot(AsmToken::String)) { 1818 Error(L, "unexpected token in directive"); 1819 return false; 1820 } 1821 1822 StringRef CPU = Parser.getTok().getIdentifier(); 1823 Parser.Lex(); 1824 1825 // FIXME: Right now, the parser always allows any available 1826 // instruction, so the .machine directive is not useful. 1827 // Implement ".machine any" (by doing nothing) for the benefit 1828 // of existing assembler code. Likewise, we can then implement 1829 // ".machine push" and ".machine pop" as no-op. 1830 if (CPU != "any" && CPU != "push" && CPU != "pop") { 1831 Error(L, "unrecognized machine type"); 1832 return false; 1833 } 1834 1835 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1836 Error(L, "unexpected token in directive"); 1837 return false; 1838 } 1839 PPCTargetStreamer &TStreamer = 1840 *static_cast<PPCTargetStreamer *>( 1841 getParser().getStreamer().getTargetStreamer()); 1842 TStreamer.emitMachine(CPU); 1843 1844 return false; 1845 } 1846 1847 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1848 /// ::= .machine cpu-identifier 1849 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1850 MCAsmParser &Parser = getParser(); 1851 if (getLexer().isNot(AsmToken::Identifier) && 1852 getLexer().isNot(AsmToken::String)) { 1853 Error(L, "unexpected token in directive"); 1854 return false; 1855 } 1856 1857 StringRef CPU = Parser.getTok().getIdentifier(); 1858 Parser.Lex(); 1859 1860 // FIXME: this is only the 'default' set of cpu variants. 1861 // However we don't act on this information at present, this is simply 1862 // allowing parsing to proceed with minimal sanity checking. 1863 if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") { 1864 Error(L, "unrecognized cpu type"); 1865 return false; 1866 } 1867 1868 if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) { 1869 Error(L, "wrong cpu type specified for 64bit"); 1870 return false; 1871 } 1872 if (!isPPC64() && CPU == "ppc64") { 1873 Error(L, "wrong cpu type specified for 32bit"); 1874 return false; 1875 } 1876 1877 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1878 Error(L, "unexpected token in directive"); 1879 return false; 1880 } 1881 1882 return false; 1883 } 1884 1885 /// ParseDirectiveAbiVersion 1886 /// ::= .abiversion constant-expression 1887 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1888 int64_t AbiVersion; 1889 if (getParser().parseAbsoluteExpression(AbiVersion)){ 1890 Error(L, "expected constant expression"); 1891 return false; 1892 } 1893 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1894 Error(L, "unexpected token in directive"); 1895 return false; 1896 } 1897 1898 PPCTargetStreamer &TStreamer = 1899 *static_cast<PPCTargetStreamer *>( 1900 getParser().getStreamer().getTargetStreamer()); 1901 TStreamer.emitAbiVersion(AbiVersion); 1902 1903 return false; 1904 } 1905 1906 /// ParseDirectiveLocalEntry 1907 /// ::= .localentry symbol, expression 1908 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1909 StringRef Name; 1910 if (getParser().parseIdentifier(Name)) { 1911 Error(L, "expected identifier in directive"); 1912 return false; 1913 } 1914 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1915 1916 if (getLexer().isNot(AsmToken::Comma)) { 1917 Error(L, "unexpected token in directive"); 1918 return false; 1919 } 1920 Lex(); 1921 1922 const MCExpr *Expr; 1923 if (getParser().parseExpression(Expr)) { 1924 Error(L, "expected expression"); 1925 return false; 1926 } 1927 1928 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1929 Error(L, "unexpected token in directive"); 1930 return false; 1931 } 1932 1933 PPCTargetStreamer &TStreamer = 1934 *static_cast<PPCTargetStreamer *>( 1935 getParser().getStreamer().getTargetStreamer()); 1936 TStreamer.emitLocalEntry(Sym, Expr); 1937 1938 return false; 1939 } 1940 1941 1942 1943 /// Force static initialization. 1944 extern "C" void LLVMInitializePowerPCAsmParser() { 1945 RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target); 1946 RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target); 1947 RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget); 1948 } 1949 1950 #define GET_REGISTER_MATCHER 1951 #define GET_MATCHER_IMPLEMENTATION 1952 #include "PPCGenAsmMatcher.inc" 1953 1954 // Define this matcher function after the auto-generated include so we 1955 // have the match class enum definitions. 1956 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1957 unsigned Kind) { 1958 // If the kind is a token for a literal immediate, check if our asm 1959 // operand matches. This is for InstAliases which have a fixed-value 1960 // immediate in the syntax. 1961 int64_t ImmVal; 1962 switch (Kind) { 1963 case MCK_0: ImmVal = 0; break; 1964 case MCK_1: ImmVal = 1; break; 1965 case MCK_2: ImmVal = 2; break; 1966 case MCK_3: ImmVal = 3; break; 1967 case MCK_4: ImmVal = 4; break; 1968 case MCK_5: ImmVal = 5; break; 1969 case MCK_6: ImmVal = 6; break; 1970 case MCK_7: ImmVal = 7; break; 1971 default: return Match_InvalidOperand; 1972 } 1973 1974 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1975 if (Op.isImm() && Op.getImm() == ImmVal) 1976 return Match_Success; 1977 1978 return Match_InvalidOperand; 1979 } 1980 1981 const MCExpr * 1982 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1983 MCSymbolRefExpr::VariantKind Variant, 1984 MCContext &Ctx) { 1985 switch (Variant) { 1986 case MCSymbolRefExpr::VK_PPC_LO: 1987 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, false, Ctx); 1988 case MCSymbolRefExpr::VK_PPC_HI: 1989 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, false, Ctx); 1990 case MCSymbolRefExpr::VK_PPC_HA: 1991 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, false, Ctx); 1992 case MCSymbolRefExpr::VK_PPC_HIGHER: 1993 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx); 1994 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1995 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx); 1996 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1997 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx); 1998 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1999 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx); 2000 default: 2001 return nullptr; 2002 } 2003 } 2004