1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "MCTargetDesc/PPCMCExpr.h" 12 #include "PPCTargetStreamer.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstrInfo.h" 22 #include "llvm/MC/MCParser/MCAsmLexer.h" 23 #include "llvm/MC/MCParser/MCAsmParser.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/MC/MCTargetAsmParser.h" 29 #include "llvm/Support/SourceMgr.h" 30 #include "llvm/Support/TargetRegistry.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 static const MCPhysReg RRegs[32] = { 36 PPC::R0, PPC::R1, PPC::R2, PPC::R3, 37 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 38 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 39 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 40 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 41 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 42 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 43 PPC::R28, PPC::R29, PPC::R30, PPC::R31 44 }; 45 static const MCPhysReg RRegsNoR0[32] = { 46 PPC::ZERO, 47 PPC::R1, PPC::R2, PPC::R3, 48 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 49 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 50 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 51 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 52 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 53 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 54 PPC::R28, PPC::R29, PPC::R30, PPC::R31 55 }; 56 static const MCPhysReg XRegs[32] = { 57 PPC::X0, PPC::X1, PPC::X2, PPC::X3, 58 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 59 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 60 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 61 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 62 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 63 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 64 PPC::X28, PPC::X29, PPC::X30, PPC::X31 65 }; 66 static const MCPhysReg XRegsNoX0[32] = { 67 PPC::ZERO8, 68 PPC::X1, PPC::X2, PPC::X3, 69 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 70 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 71 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 72 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 73 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 74 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 75 PPC::X28, PPC::X29, PPC::X30, PPC::X31 76 }; 77 static const MCPhysReg FRegs[32] = { 78 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 79 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 80 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 81 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 82 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 83 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 84 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 85 PPC::F28, PPC::F29, PPC::F30, PPC::F31 86 }; 87 static const MCPhysReg VRegs[32] = { 88 PPC::V0, PPC::V1, PPC::V2, PPC::V3, 89 PPC::V4, PPC::V5, PPC::V6, PPC::V7, 90 PPC::V8, PPC::V9, PPC::V10, PPC::V11, 91 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 92 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 93 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 94 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 95 PPC::V28, PPC::V29, PPC::V30, PPC::V31 96 }; 97 static const MCPhysReg VSRegs[64] = { 98 PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3, 99 PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7, 100 PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11, 101 PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15, 102 PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19, 103 PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23, 104 PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27, 105 PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31, 106 107 PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3, 108 PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, 109 PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, 110 PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15, 111 PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19, 112 PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23, 113 PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27, 114 PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31 115 }; 116 static const MCPhysReg VSFRegs[64] = { 117 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 118 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 119 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 120 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 121 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 122 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 123 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 124 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 125 126 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 127 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 128 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 129 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 130 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 131 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 132 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 133 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 134 }; 135 static const MCPhysReg VSSRegs[64] = { 136 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 137 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 138 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 139 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 140 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 141 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 142 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 143 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 144 145 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 146 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 147 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 148 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 149 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 150 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 151 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 152 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 153 }; 154 static unsigned QFRegs[32] = { 155 PPC::QF0, PPC::QF1, PPC::QF2, PPC::QF3, 156 PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 157 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, 158 PPC::QF12, PPC::QF13, PPC::QF14, PPC::QF15, 159 PPC::QF16, PPC::QF17, PPC::QF18, PPC::QF19, 160 PPC::QF20, PPC::QF21, PPC::QF22, PPC::QF23, 161 PPC::QF24, PPC::QF25, PPC::QF26, PPC::QF27, 162 PPC::QF28, PPC::QF29, PPC::QF30, PPC::QF31 163 }; 164 static const MCPhysReg CRBITRegs[32] = { 165 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, 166 PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, 167 PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, 168 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, 169 PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 170 PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, 171 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, 172 PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN 173 }; 174 static const MCPhysReg CRRegs[8] = { 175 PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 176 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 177 }; 178 179 // Evaluate an expression containing condition register 180 // or condition register field symbols. Returns positive 181 // value on success, or -1 on error. 182 static int64_t 183 EvaluateCRExpr(const MCExpr *E) { 184 switch (E->getKind()) { 185 case MCExpr::Target: 186 return -1; 187 188 case MCExpr::Constant: { 189 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 190 return Res < 0 ? -1 : Res; 191 } 192 193 case MCExpr::SymbolRef: { 194 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 195 StringRef Name = SRE->getSymbol().getName(); 196 197 if (Name == "lt") return 0; 198 if (Name == "gt") return 1; 199 if (Name == "eq") return 2; 200 if (Name == "so") return 3; 201 if (Name == "un") return 3; 202 203 if (Name == "cr0") return 0; 204 if (Name == "cr1") return 1; 205 if (Name == "cr2") return 2; 206 if (Name == "cr3") return 3; 207 if (Name == "cr4") return 4; 208 if (Name == "cr5") return 5; 209 if (Name == "cr6") return 6; 210 if (Name == "cr7") return 7; 211 212 return -1; 213 } 214 215 case MCExpr::Unary: 216 return -1; 217 218 case MCExpr::Binary: { 219 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 220 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 221 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 222 int64_t Res; 223 224 if (LHSVal < 0 || RHSVal < 0) 225 return -1; 226 227 switch (BE->getOpcode()) { 228 default: return -1; 229 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 230 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 231 } 232 233 return Res < 0 ? -1 : Res; 234 } 235 } 236 237 llvm_unreachable("Invalid expression kind!"); 238 } 239 240 namespace { 241 242 struct PPCOperand; 243 244 class PPCAsmParser : public MCTargetAsmParser { 245 MCSubtargetInfo &STI; 246 const MCInstrInfo &MII; 247 bool IsPPC64; 248 bool IsDarwin; 249 250 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 251 bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); } 252 253 bool isPPC64() const { return IsPPC64; } 254 bool isDarwin() const { return IsDarwin; } 255 256 bool MatchRegisterName(const AsmToken &Tok, 257 unsigned &RegNo, int64_t &IntVal); 258 259 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 260 261 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 262 PPCMCExpr::VariantKind &Variant); 263 const MCExpr *FixupVariantKind(const MCExpr *E); 264 bool ParseExpression(const MCExpr *&EVal); 265 bool ParseDarwinExpression(const MCExpr *&EVal); 266 267 bool ParseOperand(OperandVector &Operands); 268 269 bool ParseDirectiveWord(unsigned Size, SMLoc L); 270 bool ParseDirectiveTC(unsigned Size, SMLoc L); 271 bool ParseDirectiveMachine(SMLoc L); 272 bool ParseDarwinDirectiveMachine(SMLoc L); 273 bool ParseDirectiveAbiVersion(SMLoc L); 274 bool ParseDirectiveLocalEntry(SMLoc L); 275 276 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 277 OperandVector &Operands, MCStreamer &Out, 278 uint64_t &ErrorInfo, 279 bool MatchingInlineAsm) override; 280 281 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 282 283 /// @name Auto-generated Match Functions 284 /// { 285 286 #define GET_ASSEMBLER_HEADER 287 #include "PPCGenAsmMatcher.inc" 288 289 /// } 290 291 292 public: 293 PPCAsmParser(MCSubtargetInfo &STI, MCAsmParser &, const MCInstrInfo &MII, 294 const MCTargetOptions &Options) 295 : MCTargetAsmParser(), STI(STI), MII(MII) { 296 // Check for 64-bit vs. 32-bit pointer mode. 297 Triple TheTriple(STI.getTargetTriple()); 298 IsPPC64 = (TheTriple.getArch() == Triple::ppc64 || 299 TheTriple.getArch() == Triple::ppc64le); 300 IsDarwin = TheTriple.isMacOSX(); 301 // Initialize the set of available features. 302 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 303 } 304 305 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 306 SMLoc NameLoc, OperandVector &Operands) override; 307 308 bool ParseDirective(AsmToken DirectiveID) override; 309 310 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 311 unsigned Kind) override; 312 313 const MCExpr *applyModifierToExpr(const MCExpr *E, 314 MCSymbolRefExpr::VariantKind, 315 MCContext &Ctx) override; 316 }; 317 318 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 319 /// instruction. 320 struct PPCOperand : public MCParsedAsmOperand { 321 enum KindTy { 322 Token, 323 Immediate, 324 ContextImmediate, 325 Expression, 326 TLSRegister 327 } Kind; 328 329 SMLoc StartLoc, EndLoc; 330 bool IsPPC64; 331 332 struct TokOp { 333 const char *Data; 334 unsigned Length; 335 }; 336 337 struct ImmOp { 338 int64_t Val; 339 }; 340 341 struct ExprOp { 342 const MCExpr *Val; 343 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 344 }; 345 346 struct TLSRegOp { 347 const MCSymbolRefExpr *Sym; 348 }; 349 350 union { 351 struct TokOp Tok; 352 struct ImmOp Imm; 353 struct ExprOp Expr; 354 struct TLSRegOp TLSReg; 355 }; 356 357 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 358 public: 359 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 360 Kind = o.Kind; 361 StartLoc = o.StartLoc; 362 EndLoc = o.EndLoc; 363 IsPPC64 = o.IsPPC64; 364 switch (Kind) { 365 case Token: 366 Tok = o.Tok; 367 break; 368 case Immediate: 369 case ContextImmediate: 370 Imm = o.Imm; 371 break; 372 case Expression: 373 Expr = o.Expr; 374 break; 375 case TLSRegister: 376 TLSReg = o.TLSReg; 377 break; 378 } 379 } 380 381 /// getStartLoc - Get the location of the first token of this operand. 382 SMLoc getStartLoc() const override { return StartLoc; } 383 384 /// getEndLoc - Get the location of the last token of this operand. 385 SMLoc getEndLoc() const override { return EndLoc; } 386 387 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 388 bool isPPC64() const { return IsPPC64; } 389 390 int64_t getImm() const { 391 assert(Kind == Immediate && "Invalid access!"); 392 return Imm.Val; 393 } 394 int64_t getImmS16Context() const { 395 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 396 if (Kind == Immediate) 397 return Imm.Val; 398 return static_cast<int16_t>(Imm.Val); 399 } 400 int64_t getImmU16Context() const { 401 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 402 return Imm.Val; 403 } 404 405 const MCExpr *getExpr() const { 406 assert(Kind == Expression && "Invalid access!"); 407 return Expr.Val; 408 } 409 410 int64_t getExprCRVal() const { 411 assert(Kind == Expression && "Invalid access!"); 412 return Expr.CRVal; 413 } 414 415 const MCExpr *getTLSReg() const { 416 assert(Kind == TLSRegister && "Invalid access!"); 417 return TLSReg.Sym; 418 } 419 420 unsigned getReg() const override { 421 assert(isRegNumber() && "Invalid access!"); 422 return (unsigned) Imm.Val; 423 } 424 425 unsigned getVSReg() const { 426 assert(isVSRegNumber() && "Invalid access!"); 427 return (unsigned) Imm.Val; 428 } 429 430 unsigned getCCReg() const { 431 assert(isCCRegNumber() && "Invalid access!"); 432 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 433 } 434 435 unsigned getCRBit() const { 436 assert(isCRBitNumber() && "Invalid access!"); 437 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 438 } 439 440 unsigned getCRBitMask() const { 441 assert(isCRBitMask() && "Invalid access!"); 442 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 443 } 444 445 bool isToken() const override { return Kind == Token; } 446 bool isImm() const override { return Kind == Immediate || Kind == Expression; } 447 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 448 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 449 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 450 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 451 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 452 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 453 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 454 bool isU6ImmX2() const { return Kind == Immediate && 455 isUInt<6>(getImm()) && 456 (getImm() & 1) == 0; } 457 bool isU7ImmX4() const { return Kind == Immediate && 458 isUInt<7>(getImm()) && 459 (getImm() & 3) == 0; } 460 bool isU8ImmX8() const { return Kind == Immediate && 461 isUInt<8>(getImm()) && 462 (getImm() & 7) == 0; } 463 464 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 465 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 466 bool isU16Imm() const { 467 switch (Kind) { 468 case Expression: 469 return true; 470 case Immediate: 471 case ContextImmediate: 472 return isUInt<16>(getImmU16Context()); 473 default: 474 return false; 475 } 476 } 477 bool isS16Imm() const { 478 switch (Kind) { 479 case Expression: 480 return true; 481 case Immediate: 482 case ContextImmediate: 483 return isInt<16>(getImmS16Context()); 484 default: 485 return false; 486 } 487 } 488 bool isS16ImmX4() const { return Kind == Expression || 489 (Kind == Immediate && isInt<16>(getImm()) && 490 (getImm() & 3) == 0); } 491 bool isS17Imm() const { 492 switch (Kind) { 493 case Expression: 494 return true; 495 case Immediate: 496 case ContextImmediate: 497 return isInt<17>(getImmS16Context()); 498 default: 499 return false; 500 } 501 } 502 bool isTLSReg() const { return Kind == TLSRegister; } 503 bool isDirectBr() const { 504 if (Kind == Expression) 505 return true; 506 if (Kind != Immediate) 507 return false; 508 // Operand must be 64-bit aligned, signed 27-bit immediate. 509 if ((getImm() & 3) != 0) 510 return false; 511 if (isInt<26>(getImm())) 512 return true; 513 if (!IsPPC64) { 514 // In 32-bit mode, large 32-bit quantities wrap around. 515 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 516 return true; 517 } 518 return false; 519 } 520 bool isCondBr() const { return Kind == Expression || 521 (Kind == Immediate && isInt<16>(getImm()) && 522 (getImm() & 3) == 0); } 523 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 524 bool isVSRegNumber() const { return Kind == Immediate && isUInt<6>(getImm()); } 525 bool isCCRegNumber() const { return (Kind == Expression 526 && isUInt<3>(getExprCRVal())) || 527 (Kind == Immediate 528 && isUInt<3>(getImm())); } 529 bool isCRBitNumber() const { return (Kind == Expression 530 && isUInt<5>(getExprCRVal())) || 531 (Kind == Immediate 532 && isUInt<5>(getImm())); } 533 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 534 isPowerOf2_32(getImm()); } 535 bool isMem() const override { return false; } 536 bool isReg() const override { return false; } 537 538 void addRegOperands(MCInst &Inst, unsigned N) const { 539 llvm_unreachable("addRegOperands"); 540 } 541 542 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 543 assert(N == 1 && "Invalid number of operands!"); 544 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 545 } 546 547 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 548 assert(N == 1 && "Invalid number of operands!"); 549 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 550 } 551 552 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 553 assert(N == 1 && "Invalid number of operands!"); 554 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 555 } 556 557 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 558 assert(N == 1 && "Invalid number of operands!"); 559 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 560 } 561 562 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 563 if (isPPC64()) 564 addRegG8RCOperands(Inst, N); 565 else 566 addRegGPRCOperands(Inst, N); 567 } 568 569 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 570 if (isPPC64()) 571 addRegG8RCNoX0Operands(Inst, N); 572 else 573 addRegGPRCNoR0Operands(Inst, N); 574 } 575 576 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 577 assert(N == 1 && "Invalid number of operands!"); 578 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 579 } 580 581 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 582 assert(N == 1 && "Invalid number of operands!"); 583 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 584 } 585 586 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 587 assert(N == 1 && "Invalid number of operands!"); 588 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 589 } 590 591 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 592 assert(N == 1 && "Invalid number of operands!"); 593 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 594 } 595 596 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 597 assert(N == 1 && "Invalid number of operands!"); 598 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 599 } 600 601 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 602 assert(N == 1 && "Invalid number of operands!"); 603 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 604 } 605 606 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 607 assert(N == 1 && "Invalid number of operands!"); 608 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 609 } 610 611 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 612 assert(N == 1 && "Invalid number of operands!"); 613 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 614 } 615 616 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 617 assert(N == 1 && "Invalid number of operands!"); 618 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 619 } 620 621 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 622 assert(N == 1 && "Invalid number of operands!"); 623 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 624 } 625 626 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 627 assert(N == 1 && "Invalid number of operands!"); 628 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 629 } 630 631 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 632 assert(N == 1 && "Invalid number of operands!"); 633 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 634 } 635 636 void addImmOperands(MCInst &Inst, unsigned N) const { 637 assert(N == 1 && "Invalid number of operands!"); 638 if (Kind == Immediate) 639 Inst.addOperand(MCOperand::createImm(getImm())); 640 else 641 Inst.addOperand(MCOperand::createExpr(getExpr())); 642 } 643 644 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 645 assert(N == 1 && "Invalid number of operands!"); 646 switch (Kind) { 647 case Immediate: 648 Inst.addOperand(MCOperand::createImm(getImm())); 649 break; 650 case ContextImmediate: 651 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 652 break; 653 default: 654 Inst.addOperand(MCOperand::createExpr(getExpr())); 655 break; 656 } 657 } 658 659 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 660 assert(N == 1 && "Invalid number of operands!"); 661 switch (Kind) { 662 case Immediate: 663 Inst.addOperand(MCOperand::createImm(getImm())); 664 break; 665 case ContextImmediate: 666 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 667 break; 668 default: 669 Inst.addOperand(MCOperand::createExpr(getExpr())); 670 break; 671 } 672 } 673 674 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 675 assert(N == 1 && "Invalid number of operands!"); 676 if (Kind == Immediate) 677 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 678 else 679 Inst.addOperand(MCOperand::createExpr(getExpr())); 680 } 681 682 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 683 assert(N == 1 && "Invalid number of operands!"); 684 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 685 } 686 687 StringRef getToken() const { 688 assert(Kind == Token && "Invalid access!"); 689 return StringRef(Tok.Data, Tok.Length); 690 } 691 692 void print(raw_ostream &OS) const override; 693 694 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 695 bool IsPPC64) { 696 auto Op = make_unique<PPCOperand>(Token); 697 Op->Tok.Data = Str.data(); 698 Op->Tok.Length = Str.size(); 699 Op->StartLoc = S; 700 Op->EndLoc = S; 701 Op->IsPPC64 = IsPPC64; 702 return Op; 703 } 704 705 static std::unique_ptr<PPCOperand> 706 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 707 // Allocate extra memory for the string and copy it. 708 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 709 // deleter which will destroy them by simply using "delete", not correctly 710 // calling operator delete on this extra memory after calling the dtor 711 // explicitly. 712 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 713 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 714 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 715 Op->Tok.Length = Str.size(); 716 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 717 Op->StartLoc = S; 718 Op->EndLoc = S; 719 Op->IsPPC64 = IsPPC64; 720 return Op; 721 } 722 723 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 724 bool IsPPC64) { 725 auto Op = make_unique<PPCOperand>(Immediate); 726 Op->Imm.Val = Val; 727 Op->StartLoc = S; 728 Op->EndLoc = E; 729 Op->IsPPC64 = IsPPC64; 730 return Op; 731 } 732 733 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 734 SMLoc E, bool IsPPC64) { 735 auto Op = make_unique<PPCOperand>(Expression); 736 Op->Expr.Val = Val; 737 Op->Expr.CRVal = EvaluateCRExpr(Val); 738 Op->StartLoc = S; 739 Op->EndLoc = E; 740 Op->IsPPC64 = IsPPC64; 741 return Op; 742 } 743 744 static std::unique_ptr<PPCOperand> 745 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 746 auto Op = make_unique<PPCOperand>(TLSRegister); 747 Op->TLSReg.Sym = Sym; 748 Op->StartLoc = S; 749 Op->EndLoc = E; 750 Op->IsPPC64 = IsPPC64; 751 return Op; 752 } 753 754 static std::unique_ptr<PPCOperand> 755 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 756 auto Op = make_unique<PPCOperand>(ContextImmediate); 757 Op->Imm.Val = Val; 758 Op->StartLoc = S; 759 Op->EndLoc = E; 760 Op->IsPPC64 = IsPPC64; 761 return Op; 762 } 763 764 static std::unique_ptr<PPCOperand> 765 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 766 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 767 return CreateImm(CE->getValue(), S, E, IsPPC64); 768 769 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 770 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 771 return CreateTLSReg(SRE, S, E, IsPPC64); 772 773 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 774 int64_t Res; 775 if (TE->EvaluateAsConstant(Res)) 776 return CreateContextImm(Res, S, E, IsPPC64); 777 } 778 779 return CreateExpr(Val, S, E, IsPPC64); 780 } 781 }; 782 783 } // end anonymous namespace. 784 785 void PPCOperand::print(raw_ostream &OS) const { 786 switch (Kind) { 787 case Token: 788 OS << "'" << getToken() << "'"; 789 break; 790 case Immediate: 791 case ContextImmediate: 792 OS << getImm(); 793 break; 794 case Expression: 795 getExpr()->print(OS); 796 break; 797 case TLSRegister: 798 getTLSReg()->print(OS); 799 break; 800 } 801 } 802 803 static void 804 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 805 if (Op.isImm()) { 806 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 807 return; 808 } 809 const MCExpr *Expr = Op.getExpr(); 810 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 811 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 812 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 813 return; 814 } 815 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 816 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 817 const MCExpr *NE = MCBinaryExpr::CreateSub(BinExpr->getRHS(), 818 BinExpr->getLHS(), Ctx); 819 Inst.addOperand(MCOperand::createExpr(NE)); 820 return; 821 } 822 } 823 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::CreateMinus(Expr, Ctx))); 824 } 825 826 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 827 const OperandVector &Operands) { 828 int Opcode = Inst.getOpcode(); 829 switch (Opcode) { 830 case PPC::DCBTx: 831 case PPC::DCBTT: 832 case PPC::DCBTSTx: 833 case PPC::DCBTSTT: { 834 MCInst TmpInst; 835 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 836 PPC::DCBT : PPC::DCBTST); 837 TmpInst.addOperand(MCOperand::createImm( 838 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 839 TmpInst.addOperand(Inst.getOperand(0)); 840 TmpInst.addOperand(Inst.getOperand(1)); 841 Inst = TmpInst; 842 break; 843 } 844 case PPC::DCBTCT: 845 case PPC::DCBTDS: { 846 MCInst TmpInst; 847 TmpInst.setOpcode(PPC::DCBT); 848 TmpInst.addOperand(Inst.getOperand(2)); 849 TmpInst.addOperand(Inst.getOperand(0)); 850 TmpInst.addOperand(Inst.getOperand(1)); 851 Inst = TmpInst; 852 break; 853 } 854 case PPC::DCBTSTCT: 855 case PPC::DCBTSTDS: { 856 MCInst TmpInst; 857 TmpInst.setOpcode(PPC::DCBTST); 858 TmpInst.addOperand(Inst.getOperand(2)); 859 TmpInst.addOperand(Inst.getOperand(0)); 860 TmpInst.addOperand(Inst.getOperand(1)); 861 Inst = TmpInst; 862 break; 863 } 864 case PPC::LAx: { 865 MCInst TmpInst; 866 TmpInst.setOpcode(PPC::LA); 867 TmpInst.addOperand(Inst.getOperand(0)); 868 TmpInst.addOperand(Inst.getOperand(2)); 869 TmpInst.addOperand(Inst.getOperand(1)); 870 Inst = TmpInst; 871 break; 872 } 873 case PPC::SUBI: { 874 MCInst TmpInst; 875 TmpInst.setOpcode(PPC::ADDI); 876 TmpInst.addOperand(Inst.getOperand(0)); 877 TmpInst.addOperand(Inst.getOperand(1)); 878 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 879 Inst = TmpInst; 880 break; 881 } 882 case PPC::SUBIS: { 883 MCInst TmpInst; 884 TmpInst.setOpcode(PPC::ADDIS); 885 TmpInst.addOperand(Inst.getOperand(0)); 886 TmpInst.addOperand(Inst.getOperand(1)); 887 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 888 Inst = TmpInst; 889 break; 890 } 891 case PPC::SUBIC: { 892 MCInst TmpInst; 893 TmpInst.setOpcode(PPC::ADDIC); 894 TmpInst.addOperand(Inst.getOperand(0)); 895 TmpInst.addOperand(Inst.getOperand(1)); 896 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 897 Inst = TmpInst; 898 break; 899 } 900 case PPC::SUBICo: { 901 MCInst TmpInst; 902 TmpInst.setOpcode(PPC::ADDICo); 903 TmpInst.addOperand(Inst.getOperand(0)); 904 TmpInst.addOperand(Inst.getOperand(1)); 905 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 906 Inst = TmpInst; 907 break; 908 } 909 case PPC::EXTLWI: 910 case PPC::EXTLWIo: { 911 MCInst TmpInst; 912 int64_t N = Inst.getOperand(2).getImm(); 913 int64_t B = Inst.getOperand(3).getImm(); 914 TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo); 915 TmpInst.addOperand(Inst.getOperand(0)); 916 TmpInst.addOperand(Inst.getOperand(1)); 917 TmpInst.addOperand(MCOperand::createImm(B)); 918 TmpInst.addOperand(MCOperand::createImm(0)); 919 TmpInst.addOperand(MCOperand::createImm(N - 1)); 920 Inst = TmpInst; 921 break; 922 } 923 case PPC::EXTRWI: 924 case PPC::EXTRWIo: { 925 MCInst TmpInst; 926 int64_t N = Inst.getOperand(2).getImm(); 927 int64_t B = Inst.getOperand(3).getImm(); 928 TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo); 929 TmpInst.addOperand(Inst.getOperand(0)); 930 TmpInst.addOperand(Inst.getOperand(1)); 931 TmpInst.addOperand(MCOperand::createImm(B + N)); 932 TmpInst.addOperand(MCOperand::createImm(32 - N)); 933 TmpInst.addOperand(MCOperand::createImm(31)); 934 Inst = TmpInst; 935 break; 936 } 937 case PPC::INSLWI: 938 case PPC::INSLWIo: { 939 MCInst TmpInst; 940 int64_t N = Inst.getOperand(2).getImm(); 941 int64_t B = Inst.getOperand(3).getImm(); 942 TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo); 943 TmpInst.addOperand(Inst.getOperand(0)); 944 TmpInst.addOperand(Inst.getOperand(0)); 945 TmpInst.addOperand(Inst.getOperand(1)); 946 TmpInst.addOperand(MCOperand::createImm(32 - B)); 947 TmpInst.addOperand(MCOperand::createImm(B)); 948 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 949 Inst = TmpInst; 950 break; 951 } 952 case PPC::INSRWI: 953 case PPC::INSRWIo: { 954 MCInst TmpInst; 955 int64_t N = Inst.getOperand(2).getImm(); 956 int64_t B = Inst.getOperand(3).getImm(); 957 TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo); 958 TmpInst.addOperand(Inst.getOperand(0)); 959 TmpInst.addOperand(Inst.getOperand(0)); 960 TmpInst.addOperand(Inst.getOperand(1)); 961 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 962 TmpInst.addOperand(MCOperand::createImm(B)); 963 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 964 Inst = TmpInst; 965 break; 966 } 967 case PPC::ROTRWI: 968 case PPC::ROTRWIo: { 969 MCInst TmpInst; 970 int64_t N = Inst.getOperand(2).getImm(); 971 TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo); 972 TmpInst.addOperand(Inst.getOperand(0)); 973 TmpInst.addOperand(Inst.getOperand(1)); 974 TmpInst.addOperand(MCOperand::createImm(32 - N)); 975 TmpInst.addOperand(MCOperand::createImm(0)); 976 TmpInst.addOperand(MCOperand::createImm(31)); 977 Inst = TmpInst; 978 break; 979 } 980 case PPC::SLWI: 981 case PPC::SLWIo: { 982 MCInst TmpInst; 983 int64_t N = Inst.getOperand(2).getImm(); 984 TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo); 985 TmpInst.addOperand(Inst.getOperand(0)); 986 TmpInst.addOperand(Inst.getOperand(1)); 987 TmpInst.addOperand(MCOperand::createImm(N)); 988 TmpInst.addOperand(MCOperand::createImm(0)); 989 TmpInst.addOperand(MCOperand::createImm(31 - N)); 990 Inst = TmpInst; 991 break; 992 } 993 case PPC::SRWI: 994 case PPC::SRWIo: { 995 MCInst TmpInst; 996 int64_t N = Inst.getOperand(2).getImm(); 997 TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo); 998 TmpInst.addOperand(Inst.getOperand(0)); 999 TmpInst.addOperand(Inst.getOperand(1)); 1000 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1001 TmpInst.addOperand(MCOperand::createImm(N)); 1002 TmpInst.addOperand(MCOperand::createImm(31)); 1003 Inst = TmpInst; 1004 break; 1005 } 1006 case PPC::CLRRWI: 1007 case PPC::CLRRWIo: { 1008 MCInst TmpInst; 1009 int64_t N = Inst.getOperand(2).getImm(); 1010 TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo); 1011 TmpInst.addOperand(Inst.getOperand(0)); 1012 TmpInst.addOperand(Inst.getOperand(1)); 1013 TmpInst.addOperand(MCOperand::createImm(0)); 1014 TmpInst.addOperand(MCOperand::createImm(0)); 1015 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1016 Inst = TmpInst; 1017 break; 1018 } 1019 case PPC::CLRLSLWI: 1020 case PPC::CLRLSLWIo: { 1021 MCInst TmpInst; 1022 int64_t B = Inst.getOperand(2).getImm(); 1023 int64_t N = Inst.getOperand(3).getImm(); 1024 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo); 1025 TmpInst.addOperand(Inst.getOperand(0)); 1026 TmpInst.addOperand(Inst.getOperand(1)); 1027 TmpInst.addOperand(MCOperand::createImm(N)); 1028 TmpInst.addOperand(MCOperand::createImm(B - N)); 1029 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1030 Inst = TmpInst; 1031 break; 1032 } 1033 case PPC::EXTLDI: 1034 case PPC::EXTLDIo: { 1035 MCInst TmpInst; 1036 int64_t N = Inst.getOperand(2).getImm(); 1037 int64_t B = Inst.getOperand(3).getImm(); 1038 TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo); 1039 TmpInst.addOperand(Inst.getOperand(0)); 1040 TmpInst.addOperand(Inst.getOperand(1)); 1041 TmpInst.addOperand(MCOperand::createImm(B)); 1042 TmpInst.addOperand(MCOperand::createImm(N - 1)); 1043 Inst = TmpInst; 1044 break; 1045 } 1046 case PPC::EXTRDI: 1047 case PPC::EXTRDIo: { 1048 MCInst TmpInst; 1049 int64_t N = Inst.getOperand(2).getImm(); 1050 int64_t B = Inst.getOperand(3).getImm(); 1051 TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo); 1052 TmpInst.addOperand(Inst.getOperand(0)); 1053 TmpInst.addOperand(Inst.getOperand(1)); 1054 TmpInst.addOperand(MCOperand::createImm(B + N)); 1055 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1056 Inst = TmpInst; 1057 break; 1058 } 1059 case PPC::INSRDI: 1060 case PPC::INSRDIo: { 1061 MCInst TmpInst; 1062 int64_t N = Inst.getOperand(2).getImm(); 1063 int64_t B = Inst.getOperand(3).getImm(); 1064 TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo); 1065 TmpInst.addOperand(Inst.getOperand(0)); 1066 TmpInst.addOperand(Inst.getOperand(0)); 1067 TmpInst.addOperand(Inst.getOperand(1)); 1068 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 1069 TmpInst.addOperand(MCOperand::createImm(B)); 1070 Inst = TmpInst; 1071 break; 1072 } 1073 case PPC::ROTRDI: 1074 case PPC::ROTRDIo: { 1075 MCInst TmpInst; 1076 int64_t N = Inst.getOperand(2).getImm(); 1077 TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo); 1078 TmpInst.addOperand(Inst.getOperand(0)); 1079 TmpInst.addOperand(Inst.getOperand(1)); 1080 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1081 TmpInst.addOperand(MCOperand::createImm(0)); 1082 Inst = TmpInst; 1083 break; 1084 } 1085 case PPC::SLDI: 1086 case PPC::SLDIo: { 1087 MCInst TmpInst; 1088 int64_t N = Inst.getOperand(2).getImm(); 1089 TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo); 1090 TmpInst.addOperand(Inst.getOperand(0)); 1091 TmpInst.addOperand(Inst.getOperand(1)); 1092 TmpInst.addOperand(MCOperand::createImm(N)); 1093 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1094 Inst = TmpInst; 1095 break; 1096 } 1097 case PPC::SRDI: 1098 case PPC::SRDIo: { 1099 MCInst TmpInst; 1100 int64_t N = Inst.getOperand(2).getImm(); 1101 TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo); 1102 TmpInst.addOperand(Inst.getOperand(0)); 1103 TmpInst.addOperand(Inst.getOperand(1)); 1104 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1105 TmpInst.addOperand(MCOperand::createImm(N)); 1106 Inst = TmpInst; 1107 break; 1108 } 1109 case PPC::CLRRDI: 1110 case PPC::CLRRDIo: { 1111 MCInst TmpInst; 1112 int64_t N = Inst.getOperand(2).getImm(); 1113 TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo); 1114 TmpInst.addOperand(Inst.getOperand(0)); 1115 TmpInst.addOperand(Inst.getOperand(1)); 1116 TmpInst.addOperand(MCOperand::createImm(0)); 1117 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1118 Inst = TmpInst; 1119 break; 1120 } 1121 case PPC::CLRLSLDI: 1122 case PPC::CLRLSLDIo: { 1123 MCInst TmpInst; 1124 int64_t B = Inst.getOperand(2).getImm(); 1125 int64_t N = Inst.getOperand(3).getImm(); 1126 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo); 1127 TmpInst.addOperand(Inst.getOperand(0)); 1128 TmpInst.addOperand(Inst.getOperand(1)); 1129 TmpInst.addOperand(MCOperand::createImm(N)); 1130 TmpInst.addOperand(MCOperand::createImm(B - N)); 1131 Inst = TmpInst; 1132 break; 1133 } 1134 case PPC::RLWINMbm: 1135 case PPC::RLWINMobm: { 1136 unsigned MB, ME; 1137 int64_t BM = Inst.getOperand(3).getImm(); 1138 if (!isRunOfOnes(BM, MB, ME)) 1139 break; 1140 1141 MCInst TmpInst; 1142 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo); 1143 TmpInst.addOperand(Inst.getOperand(0)); 1144 TmpInst.addOperand(Inst.getOperand(1)); 1145 TmpInst.addOperand(Inst.getOperand(2)); 1146 TmpInst.addOperand(MCOperand::createImm(MB)); 1147 TmpInst.addOperand(MCOperand::createImm(ME)); 1148 Inst = TmpInst; 1149 break; 1150 } 1151 case PPC::RLWIMIbm: 1152 case PPC::RLWIMIobm: { 1153 unsigned MB, ME; 1154 int64_t BM = Inst.getOperand(3).getImm(); 1155 if (!isRunOfOnes(BM, MB, ME)) 1156 break; 1157 1158 MCInst TmpInst; 1159 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo); 1160 TmpInst.addOperand(Inst.getOperand(0)); 1161 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1162 TmpInst.addOperand(Inst.getOperand(1)); 1163 TmpInst.addOperand(Inst.getOperand(2)); 1164 TmpInst.addOperand(MCOperand::createImm(MB)); 1165 TmpInst.addOperand(MCOperand::createImm(ME)); 1166 Inst = TmpInst; 1167 break; 1168 } 1169 case PPC::RLWNMbm: 1170 case PPC::RLWNMobm: { 1171 unsigned MB, ME; 1172 int64_t BM = Inst.getOperand(3).getImm(); 1173 if (!isRunOfOnes(BM, MB, ME)) 1174 break; 1175 1176 MCInst TmpInst; 1177 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo); 1178 TmpInst.addOperand(Inst.getOperand(0)); 1179 TmpInst.addOperand(Inst.getOperand(1)); 1180 TmpInst.addOperand(Inst.getOperand(2)); 1181 TmpInst.addOperand(MCOperand::createImm(MB)); 1182 TmpInst.addOperand(MCOperand::createImm(ME)); 1183 Inst = TmpInst; 1184 break; 1185 } 1186 } 1187 } 1188 1189 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1190 OperandVector &Operands, 1191 MCStreamer &Out, uint64_t &ErrorInfo, 1192 bool MatchingInlineAsm) { 1193 MCInst Inst; 1194 1195 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1196 case Match_Success: 1197 // Post-process instructions (typically extended mnemonics) 1198 ProcessInstruction(Inst, Operands); 1199 Inst.setLoc(IDLoc); 1200 Out.EmitInstruction(Inst, STI); 1201 return false; 1202 case Match_MissingFeature: 1203 return Error(IDLoc, "instruction use requires an option to be enabled"); 1204 case Match_MnemonicFail: 1205 return Error(IDLoc, "unrecognized instruction mnemonic"); 1206 case Match_InvalidOperand: { 1207 SMLoc ErrorLoc = IDLoc; 1208 if (ErrorInfo != ~0ULL) { 1209 if (ErrorInfo >= Operands.size()) 1210 return Error(IDLoc, "too few operands for instruction"); 1211 1212 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1213 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1214 } 1215 1216 return Error(ErrorLoc, "invalid operand for instruction"); 1217 } 1218 } 1219 1220 llvm_unreachable("Implement any new match types added!"); 1221 } 1222 1223 bool PPCAsmParser:: 1224 MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { 1225 if (Tok.is(AsmToken::Identifier)) { 1226 StringRef Name = Tok.getString(); 1227 1228 if (Name.equals_lower("lr")) { 1229 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1230 IntVal = 8; 1231 return false; 1232 } else if (Name.equals_lower("ctr")) { 1233 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1234 IntVal = 9; 1235 return false; 1236 } else if (Name.equals_lower("vrsave")) { 1237 RegNo = PPC::VRSAVE; 1238 IntVal = 256; 1239 return false; 1240 } else if (Name.startswith_lower("r") && 1241 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1242 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1243 return false; 1244 } else if (Name.startswith_lower("f") && 1245 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1246 RegNo = FRegs[IntVal]; 1247 return false; 1248 } else if (Name.startswith_lower("vs") && 1249 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1250 RegNo = VSRegs[IntVal]; 1251 return false; 1252 } else if (Name.startswith_lower("v") && 1253 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1254 RegNo = VRegs[IntVal]; 1255 return false; 1256 } else if (Name.startswith_lower("q") && 1257 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1258 RegNo = QFRegs[IntVal]; 1259 return false; 1260 } else if (Name.startswith_lower("cr") && 1261 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1262 RegNo = CRRegs[IntVal]; 1263 return false; 1264 } 1265 } 1266 1267 return true; 1268 } 1269 1270 bool PPCAsmParser:: 1271 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1272 MCAsmParser &Parser = getParser(); 1273 const AsmToken &Tok = Parser.getTok(); 1274 StartLoc = Tok.getLoc(); 1275 EndLoc = Tok.getEndLoc(); 1276 RegNo = 0; 1277 int64_t IntVal; 1278 1279 if (!MatchRegisterName(Tok, RegNo, IntVal)) { 1280 Parser.Lex(); // Eat identifier token. 1281 return false; 1282 } 1283 1284 return Error(StartLoc, "invalid register name"); 1285 } 1286 1287 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1288 /// the expression and check for VK_PPC_LO/HI/HA 1289 /// symbol variants. If all symbols with modifier use the same 1290 /// variant, return the corresponding PPCMCExpr::VariantKind, 1291 /// and a modified expression using the default symbol variant. 1292 /// Otherwise, return NULL. 1293 const MCExpr *PPCAsmParser:: 1294 ExtractModifierFromExpr(const MCExpr *E, 1295 PPCMCExpr::VariantKind &Variant) { 1296 MCContext &Context = getParser().getContext(); 1297 Variant = PPCMCExpr::VK_PPC_None; 1298 1299 switch (E->getKind()) { 1300 case MCExpr::Target: 1301 case MCExpr::Constant: 1302 return nullptr; 1303 1304 case MCExpr::SymbolRef: { 1305 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1306 1307 switch (SRE->getKind()) { 1308 case MCSymbolRefExpr::VK_PPC_LO: 1309 Variant = PPCMCExpr::VK_PPC_LO; 1310 break; 1311 case MCSymbolRefExpr::VK_PPC_HI: 1312 Variant = PPCMCExpr::VK_PPC_HI; 1313 break; 1314 case MCSymbolRefExpr::VK_PPC_HA: 1315 Variant = PPCMCExpr::VK_PPC_HA; 1316 break; 1317 case MCSymbolRefExpr::VK_PPC_HIGHER: 1318 Variant = PPCMCExpr::VK_PPC_HIGHER; 1319 break; 1320 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1321 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1322 break; 1323 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1324 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1325 break; 1326 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1327 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1328 break; 1329 default: 1330 return nullptr; 1331 } 1332 1333 return MCSymbolRefExpr::Create(&SRE->getSymbol(), Context); 1334 } 1335 1336 case MCExpr::Unary: { 1337 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1338 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1339 if (!Sub) 1340 return nullptr; 1341 return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context); 1342 } 1343 1344 case MCExpr::Binary: { 1345 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1346 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1347 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1348 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1349 1350 if (!LHS && !RHS) 1351 return nullptr; 1352 1353 if (!LHS) LHS = BE->getLHS(); 1354 if (!RHS) RHS = BE->getRHS(); 1355 1356 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1357 Variant = RHSVariant; 1358 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1359 Variant = LHSVariant; 1360 else if (LHSVariant == RHSVariant) 1361 Variant = LHSVariant; 1362 else 1363 return nullptr; 1364 1365 return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context); 1366 } 1367 } 1368 1369 llvm_unreachable("Invalid expression kind!"); 1370 } 1371 1372 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1373 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1374 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1375 /// FIXME: This is a hack. 1376 const MCExpr *PPCAsmParser:: 1377 FixupVariantKind(const MCExpr *E) { 1378 MCContext &Context = getParser().getContext(); 1379 1380 switch (E->getKind()) { 1381 case MCExpr::Target: 1382 case MCExpr::Constant: 1383 return E; 1384 1385 case MCExpr::SymbolRef: { 1386 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1387 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1388 1389 switch (SRE->getKind()) { 1390 case MCSymbolRefExpr::VK_TLSGD: 1391 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1392 break; 1393 case MCSymbolRefExpr::VK_TLSLD: 1394 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1395 break; 1396 default: 1397 return E; 1398 } 1399 return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, Context); 1400 } 1401 1402 case MCExpr::Unary: { 1403 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1404 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1405 if (Sub == UE->getSubExpr()) 1406 return E; 1407 return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context); 1408 } 1409 1410 case MCExpr::Binary: { 1411 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1412 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1413 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1414 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1415 return E; 1416 return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context); 1417 } 1418 } 1419 1420 llvm_unreachable("Invalid expression kind!"); 1421 } 1422 1423 /// ParseExpression. This differs from the default "parseExpression" in that 1424 /// it handles modifiers. 1425 bool PPCAsmParser:: 1426 ParseExpression(const MCExpr *&EVal) { 1427 1428 if (isDarwin()) 1429 return ParseDarwinExpression(EVal); 1430 1431 // (ELF Platforms) 1432 // Handle \code @l/@ha \endcode 1433 if (getParser().parseExpression(EVal)) 1434 return true; 1435 1436 EVal = FixupVariantKind(EVal); 1437 1438 PPCMCExpr::VariantKind Variant; 1439 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1440 if (E) 1441 EVal = PPCMCExpr::Create(Variant, E, false, getParser().getContext()); 1442 1443 return false; 1444 } 1445 1446 /// ParseDarwinExpression. (MachO Platforms) 1447 /// This differs from the default "parseExpression" in that it handles detection 1448 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1449 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1450 /// syntax form so it is done here. TODO: Determine if there is merit in arranging 1451 /// for this to be done at a higher level. 1452 bool PPCAsmParser:: 1453 ParseDarwinExpression(const MCExpr *&EVal) { 1454 MCAsmParser &Parser = getParser(); 1455 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1456 switch (getLexer().getKind()) { 1457 default: 1458 break; 1459 case AsmToken::Identifier: 1460 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1461 // something starting with any other char should be part of the 1462 // asm syntax. If handwritten asm includes an identifier like lo16, 1463 // then all bets are off - but no-one would do that, right? 1464 StringRef poss = Parser.getTok().getString(); 1465 if (poss.equals_lower("lo16")) { 1466 Variant = PPCMCExpr::VK_PPC_LO; 1467 } else if (poss.equals_lower("hi16")) { 1468 Variant = PPCMCExpr::VK_PPC_HI; 1469 } else if (poss.equals_lower("ha16")) { 1470 Variant = PPCMCExpr::VK_PPC_HA; 1471 } 1472 if (Variant != PPCMCExpr::VK_PPC_None) { 1473 Parser.Lex(); // Eat the xx16 1474 if (getLexer().isNot(AsmToken::LParen)) 1475 return Error(Parser.getTok().getLoc(), "expected '('"); 1476 Parser.Lex(); // Eat the '(' 1477 } 1478 break; 1479 } 1480 1481 if (getParser().parseExpression(EVal)) 1482 return true; 1483 1484 if (Variant != PPCMCExpr::VK_PPC_None) { 1485 if (getLexer().isNot(AsmToken::RParen)) 1486 return Error(Parser.getTok().getLoc(), "expected ')'"); 1487 Parser.Lex(); // Eat the ')' 1488 EVal = PPCMCExpr::Create(Variant, EVal, false, getParser().getContext()); 1489 } 1490 return false; 1491 } 1492 1493 /// ParseOperand 1494 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1495 /// rNN for MachO. 1496 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1497 MCAsmParser &Parser = getParser(); 1498 SMLoc S = Parser.getTok().getLoc(); 1499 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1500 const MCExpr *EVal; 1501 1502 // Attempt to parse the next token as an immediate 1503 switch (getLexer().getKind()) { 1504 // Special handling for register names. These are interpreted 1505 // as immediates corresponding to the register number. 1506 case AsmToken::Percent: 1507 Parser.Lex(); // Eat the '%'. 1508 unsigned RegNo; 1509 int64_t IntVal; 1510 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1511 Parser.Lex(); // Eat the identifier token. 1512 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1513 return false; 1514 } 1515 return Error(S, "invalid register name"); 1516 1517 case AsmToken::Identifier: 1518 // Note that non-register-name identifiers from the compiler will begin 1519 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1520 // identifiers like r31foo - so we fall through in the event that parsing 1521 // a register name fails. 1522 if (isDarwin()) { 1523 unsigned RegNo; 1524 int64_t IntVal; 1525 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1526 Parser.Lex(); // Eat the identifier token. 1527 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1528 return false; 1529 } 1530 } 1531 // Fall-through to process non-register-name identifiers as expression. 1532 // All other expressions 1533 case AsmToken::LParen: 1534 case AsmToken::Plus: 1535 case AsmToken::Minus: 1536 case AsmToken::Integer: 1537 case AsmToken::Dot: 1538 case AsmToken::Dollar: 1539 case AsmToken::Exclaim: 1540 case AsmToken::Tilde: 1541 if (!ParseExpression(EVal)) 1542 break; 1543 /* fall through */ 1544 default: 1545 return Error(S, "unknown operand"); 1546 } 1547 1548 // Push the parsed operand into the list of operands 1549 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1550 1551 // Check whether this is a TLS call expression 1552 bool TLSCall = false; 1553 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1554 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1555 1556 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1557 const MCExpr *TLSSym; 1558 1559 Parser.Lex(); // Eat the '('. 1560 S = Parser.getTok().getLoc(); 1561 if (ParseExpression(TLSSym)) 1562 return Error(S, "invalid TLS call expression"); 1563 if (getLexer().isNot(AsmToken::RParen)) 1564 return Error(Parser.getTok().getLoc(), "missing ')'"); 1565 E = Parser.getTok().getLoc(); 1566 Parser.Lex(); // Eat the ')'. 1567 1568 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1569 } 1570 1571 // Otherwise, check for D-form memory operands 1572 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1573 Parser.Lex(); // Eat the '('. 1574 S = Parser.getTok().getLoc(); 1575 1576 int64_t IntVal; 1577 switch (getLexer().getKind()) { 1578 case AsmToken::Percent: 1579 Parser.Lex(); // Eat the '%'. 1580 unsigned RegNo; 1581 if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) 1582 return Error(S, "invalid register name"); 1583 Parser.Lex(); // Eat the identifier token. 1584 break; 1585 1586 case AsmToken::Integer: 1587 if (!isDarwin()) { 1588 if (getParser().parseAbsoluteExpression(IntVal) || 1589 IntVal < 0 || IntVal > 31) 1590 return Error(S, "invalid register number"); 1591 } else { 1592 return Error(S, "unexpected integer value"); 1593 } 1594 break; 1595 1596 case AsmToken::Identifier: 1597 if (isDarwin()) { 1598 unsigned RegNo; 1599 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1600 Parser.Lex(); // Eat the identifier token. 1601 break; 1602 } 1603 } 1604 // Fall-through.. 1605 1606 default: 1607 return Error(S, "invalid memory operand"); 1608 } 1609 1610 if (getLexer().isNot(AsmToken::RParen)) 1611 return Error(Parser.getTok().getLoc(), "missing ')'"); 1612 E = Parser.getTok().getLoc(); 1613 Parser.Lex(); // Eat the ')'. 1614 1615 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1616 } 1617 1618 return false; 1619 } 1620 1621 /// Parse an instruction mnemonic followed by its operands. 1622 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1623 SMLoc NameLoc, OperandVector &Operands) { 1624 // The first operand is the token for the instruction name. 1625 // If the next character is a '+' or '-', we need to add it to the 1626 // instruction name, to match what TableGen is doing. 1627 std::string NewOpcode; 1628 if (getLexer().is(AsmToken::Plus)) { 1629 getLexer().Lex(); 1630 NewOpcode = Name; 1631 NewOpcode += '+'; 1632 Name = NewOpcode; 1633 } 1634 if (getLexer().is(AsmToken::Minus)) { 1635 getLexer().Lex(); 1636 NewOpcode = Name; 1637 NewOpcode += '-'; 1638 Name = NewOpcode; 1639 } 1640 // If the instruction ends in a '.', we need to create a separate 1641 // token for it, to match what TableGen is doing. 1642 size_t Dot = Name.find('.'); 1643 StringRef Mnemonic = Name.slice(0, Dot); 1644 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1645 Operands.push_back( 1646 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1647 else 1648 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1649 if (Dot != StringRef::npos) { 1650 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1651 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1652 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1653 Operands.push_back( 1654 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1655 else 1656 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1657 } 1658 1659 // If there are no more operands then finish 1660 if (getLexer().is(AsmToken::EndOfStatement)) 1661 return false; 1662 1663 // Parse the first operand 1664 if (ParseOperand(Operands)) 1665 return true; 1666 1667 while (getLexer().isNot(AsmToken::EndOfStatement) && 1668 getLexer().is(AsmToken::Comma)) { 1669 // Consume the comma token 1670 getLexer().Lex(); 1671 1672 // Parse the next operand 1673 if (ParseOperand(Operands)) 1674 return true; 1675 } 1676 1677 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1678 // and dcbtst instructions differs for server vs. embedded cores. 1679 // The syntax for dcbt is: 1680 // dcbt ra, rb, th [server] 1681 // dcbt th, ra, rb [embedded] 1682 // where th can be omitted when it is 0. dcbtst is the same. We take the 1683 // server form to be the default, so swap the operands if we're parsing for 1684 // an embedded core (they'll be swapped again upon printing). 1685 if (STI.getFeatureBits()[PPC::FeatureBookE] && 1686 Operands.size() == 4 && 1687 (Name == "dcbt" || Name == "dcbtst")) { 1688 std::swap(Operands[1], Operands[3]); 1689 std::swap(Operands[2], Operands[1]); 1690 } 1691 1692 return false; 1693 } 1694 1695 /// ParseDirective parses the PPC specific directives 1696 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1697 StringRef IDVal = DirectiveID.getIdentifier(); 1698 if (!isDarwin()) { 1699 if (IDVal == ".word") 1700 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1701 if (IDVal == ".llong") 1702 return ParseDirectiveWord(8, DirectiveID.getLoc()); 1703 if (IDVal == ".tc") 1704 return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); 1705 if (IDVal == ".machine") 1706 return ParseDirectiveMachine(DirectiveID.getLoc()); 1707 if (IDVal == ".abiversion") 1708 return ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1709 if (IDVal == ".localentry") 1710 return ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1711 } else { 1712 if (IDVal == ".machine") 1713 return ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1714 } 1715 return true; 1716 } 1717 1718 /// ParseDirectiveWord 1719 /// ::= .word [ expression (, expression)* ] 1720 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1721 MCAsmParser &Parser = getParser(); 1722 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1723 for (;;) { 1724 const MCExpr *Value; 1725 if (getParser().parseExpression(Value)) 1726 return false; 1727 1728 getParser().getStreamer().EmitValue(Value, Size); 1729 1730 if (getLexer().is(AsmToken::EndOfStatement)) 1731 break; 1732 1733 if (getLexer().isNot(AsmToken::Comma)) 1734 return Error(L, "unexpected token in directive"); 1735 Parser.Lex(); 1736 } 1737 } 1738 1739 Parser.Lex(); 1740 return false; 1741 } 1742 1743 /// ParseDirectiveTC 1744 /// ::= .tc [ symbol (, expression)* ] 1745 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { 1746 MCAsmParser &Parser = getParser(); 1747 // Skip TC symbol, which is only used with XCOFF. 1748 while (getLexer().isNot(AsmToken::EndOfStatement) 1749 && getLexer().isNot(AsmToken::Comma)) 1750 Parser.Lex(); 1751 if (getLexer().isNot(AsmToken::Comma)) { 1752 Error(L, "unexpected token in directive"); 1753 return false; 1754 } 1755 Parser.Lex(); 1756 1757 // Align to word size. 1758 getParser().getStreamer().EmitValueToAlignment(Size); 1759 1760 // Emit expressions. 1761 return ParseDirectiveWord(Size, L); 1762 } 1763 1764 /// ParseDirectiveMachine (ELF platforms) 1765 /// ::= .machine [ cpu | "push" | "pop" ] 1766 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1767 MCAsmParser &Parser = getParser(); 1768 if (getLexer().isNot(AsmToken::Identifier) && 1769 getLexer().isNot(AsmToken::String)) { 1770 Error(L, "unexpected token in directive"); 1771 return false; 1772 } 1773 1774 StringRef CPU = Parser.getTok().getIdentifier(); 1775 Parser.Lex(); 1776 1777 // FIXME: Right now, the parser always allows any available 1778 // instruction, so the .machine directive is not useful. 1779 // Implement ".machine any" (by doing nothing) for the benefit 1780 // of existing assembler code. Likewise, we can then implement 1781 // ".machine push" and ".machine pop" as no-op. 1782 if (CPU != "any" && CPU != "push" && CPU != "pop") { 1783 Error(L, "unrecognized machine type"); 1784 return false; 1785 } 1786 1787 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1788 Error(L, "unexpected token in directive"); 1789 return false; 1790 } 1791 PPCTargetStreamer &TStreamer = 1792 *static_cast<PPCTargetStreamer *>( 1793 getParser().getStreamer().getTargetStreamer()); 1794 TStreamer.emitMachine(CPU); 1795 1796 return false; 1797 } 1798 1799 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1800 /// ::= .machine cpu-identifier 1801 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1802 MCAsmParser &Parser = getParser(); 1803 if (getLexer().isNot(AsmToken::Identifier) && 1804 getLexer().isNot(AsmToken::String)) { 1805 Error(L, "unexpected token in directive"); 1806 return false; 1807 } 1808 1809 StringRef CPU = Parser.getTok().getIdentifier(); 1810 Parser.Lex(); 1811 1812 // FIXME: this is only the 'default' set of cpu variants. 1813 // However we don't act on this information at present, this is simply 1814 // allowing parsing to proceed with minimal sanity checking. 1815 if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") { 1816 Error(L, "unrecognized cpu type"); 1817 return false; 1818 } 1819 1820 if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) { 1821 Error(L, "wrong cpu type specified for 64bit"); 1822 return false; 1823 } 1824 if (!isPPC64() && CPU == "ppc64") { 1825 Error(L, "wrong cpu type specified for 32bit"); 1826 return false; 1827 } 1828 1829 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1830 Error(L, "unexpected token in directive"); 1831 return false; 1832 } 1833 1834 return false; 1835 } 1836 1837 /// ParseDirectiveAbiVersion 1838 /// ::= .abiversion constant-expression 1839 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1840 int64_t AbiVersion; 1841 if (getParser().parseAbsoluteExpression(AbiVersion)){ 1842 Error(L, "expected constant expression"); 1843 return false; 1844 } 1845 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1846 Error(L, "unexpected token in directive"); 1847 return false; 1848 } 1849 1850 PPCTargetStreamer &TStreamer = 1851 *static_cast<PPCTargetStreamer *>( 1852 getParser().getStreamer().getTargetStreamer()); 1853 TStreamer.emitAbiVersion(AbiVersion); 1854 1855 return false; 1856 } 1857 1858 /// ParseDirectiveLocalEntry 1859 /// ::= .localentry symbol, expression 1860 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1861 StringRef Name; 1862 if (getParser().parseIdentifier(Name)) { 1863 Error(L, "expected identifier in directive"); 1864 return false; 1865 } 1866 MCSymbol *Sym = getContext().getOrCreateSymbol(Name); 1867 1868 if (getLexer().isNot(AsmToken::Comma)) { 1869 Error(L, "unexpected token in directive"); 1870 return false; 1871 } 1872 Lex(); 1873 1874 const MCExpr *Expr; 1875 if (getParser().parseExpression(Expr)) { 1876 Error(L, "expected expression"); 1877 return false; 1878 } 1879 1880 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1881 Error(L, "unexpected token in directive"); 1882 return false; 1883 } 1884 1885 PPCTargetStreamer &TStreamer = 1886 *static_cast<PPCTargetStreamer *>( 1887 getParser().getStreamer().getTargetStreamer()); 1888 TStreamer.emitLocalEntry(Sym, Expr); 1889 1890 return false; 1891 } 1892 1893 1894 1895 /// Force static initialization. 1896 extern "C" void LLVMInitializePowerPCAsmParser() { 1897 RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target); 1898 RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target); 1899 RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget); 1900 } 1901 1902 #define GET_REGISTER_MATCHER 1903 #define GET_MATCHER_IMPLEMENTATION 1904 #include "PPCGenAsmMatcher.inc" 1905 1906 // Define this matcher function after the auto-generated include so we 1907 // have the match class enum definitions. 1908 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1909 unsigned Kind) { 1910 // If the kind is a token for a literal immediate, check if our asm 1911 // operand matches. This is for InstAliases which have a fixed-value 1912 // immediate in the syntax. 1913 int64_t ImmVal; 1914 switch (Kind) { 1915 case MCK_0: ImmVal = 0; break; 1916 case MCK_1: ImmVal = 1; break; 1917 case MCK_2: ImmVal = 2; break; 1918 case MCK_3: ImmVal = 3; break; 1919 case MCK_4: ImmVal = 4; break; 1920 case MCK_5: ImmVal = 5; break; 1921 case MCK_6: ImmVal = 6; break; 1922 case MCK_7: ImmVal = 7; break; 1923 default: return Match_InvalidOperand; 1924 } 1925 1926 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1927 if (Op.isImm() && Op.getImm() == ImmVal) 1928 return Match_Success; 1929 1930 return Match_InvalidOperand; 1931 } 1932 1933 const MCExpr * 1934 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1935 MCSymbolRefExpr::VariantKind Variant, 1936 MCContext &Ctx) { 1937 switch (Variant) { 1938 case MCSymbolRefExpr::VK_PPC_LO: 1939 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_LO, E, false, Ctx); 1940 case MCSymbolRefExpr::VK_PPC_HI: 1941 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HI, E, false, Ctx); 1942 case MCSymbolRefExpr::VK_PPC_HA: 1943 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HA, E, false, Ctx); 1944 case MCSymbolRefExpr::VK_PPC_HIGHER: 1945 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx); 1946 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1947 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx); 1948 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1949 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx); 1950 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1951 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx); 1952 default: 1953 return nullptr; 1954 } 1955 } 1956