1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "MCTargetDesc/PPCMCExpr.h" 12 #include "PPCTargetStreamer.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstrInfo.h" 22 #include "llvm/MC/MCParser/MCAsmLexer.h" 23 #include "llvm/MC/MCParser/MCAsmParser.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCRegisterInfo.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/MC/MCTargetAsmParser.h" 29 #include "llvm/Support/SourceMgr.h" 30 #include "llvm/Support/TargetRegistry.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 static const MCPhysReg RRegs[32] = { 36 PPC::R0, PPC::R1, PPC::R2, PPC::R3, 37 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 38 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 39 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 40 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 41 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 42 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 43 PPC::R28, PPC::R29, PPC::R30, PPC::R31 44 }; 45 static const MCPhysReg RRegsNoR0[32] = { 46 PPC::ZERO, 47 PPC::R1, PPC::R2, PPC::R3, 48 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 49 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 50 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 51 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 52 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 53 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 54 PPC::R28, PPC::R29, PPC::R30, PPC::R31 55 }; 56 static const MCPhysReg XRegs[32] = { 57 PPC::X0, PPC::X1, PPC::X2, PPC::X3, 58 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 59 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 60 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 61 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 62 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 63 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 64 PPC::X28, PPC::X29, PPC::X30, PPC::X31 65 }; 66 static const MCPhysReg XRegsNoX0[32] = { 67 PPC::ZERO8, 68 PPC::X1, PPC::X2, PPC::X3, 69 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 70 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 71 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 72 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 73 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 74 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 75 PPC::X28, PPC::X29, PPC::X30, PPC::X31 76 }; 77 static const MCPhysReg FRegs[32] = { 78 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 79 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 80 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 81 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 82 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 83 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 84 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 85 PPC::F28, PPC::F29, PPC::F30, PPC::F31 86 }; 87 static const MCPhysReg VRegs[32] = { 88 PPC::V0, PPC::V1, PPC::V2, PPC::V3, 89 PPC::V4, PPC::V5, PPC::V6, PPC::V7, 90 PPC::V8, PPC::V9, PPC::V10, PPC::V11, 91 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 92 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 93 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 94 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 95 PPC::V28, PPC::V29, PPC::V30, PPC::V31 96 }; 97 static const MCPhysReg VSRegs[64] = { 98 PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3, 99 PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7, 100 PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11, 101 PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15, 102 PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19, 103 PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23, 104 PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27, 105 PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31, 106 107 PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3, 108 PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, 109 PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, 110 PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15, 111 PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19, 112 PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23, 113 PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27, 114 PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31 115 }; 116 static const MCPhysReg VSFRegs[64] = { 117 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 118 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 119 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 120 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 121 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 122 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 123 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 124 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 125 126 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 127 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 128 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 129 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 130 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 131 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 132 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 133 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 134 }; 135 static const MCPhysReg VSSRegs[64] = { 136 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 137 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 138 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 139 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 140 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 141 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 142 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 143 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 144 145 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 146 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 147 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 148 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 149 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 150 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 151 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 152 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 153 }; 154 static unsigned QFRegs[32] = { 155 PPC::QF0, PPC::QF1, PPC::QF2, PPC::QF3, 156 PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 157 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, 158 PPC::QF12, PPC::QF13, PPC::QF14, PPC::QF15, 159 PPC::QF16, PPC::QF17, PPC::QF18, PPC::QF19, 160 PPC::QF20, PPC::QF21, PPC::QF22, PPC::QF23, 161 PPC::QF24, PPC::QF25, PPC::QF26, PPC::QF27, 162 PPC::QF28, PPC::QF29, PPC::QF30, PPC::QF31 163 }; 164 static const MCPhysReg CRBITRegs[32] = { 165 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, 166 PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, 167 PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, 168 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, 169 PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 170 PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, 171 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, 172 PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN 173 }; 174 static const MCPhysReg CRRegs[8] = { 175 PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 176 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 177 }; 178 179 // Evaluate an expression containing condition register 180 // or condition register field symbols. Returns positive 181 // value on success, or -1 on error. 182 static int64_t 183 EvaluateCRExpr(const MCExpr *E) { 184 switch (E->getKind()) { 185 case MCExpr::Target: 186 return -1; 187 188 case MCExpr::Constant: { 189 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 190 return Res < 0 ? -1 : Res; 191 } 192 193 case MCExpr::SymbolRef: { 194 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 195 StringRef Name = SRE->getSymbol().getName(); 196 197 if (Name == "lt") return 0; 198 if (Name == "gt") return 1; 199 if (Name == "eq") return 2; 200 if (Name == "so") return 3; 201 if (Name == "un") return 3; 202 203 if (Name == "cr0") return 0; 204 if (Name == "cr1") return 1; 205 if (Name == "cr2") return 2; 206 if (Name == "cr3") return 3; 207 if (Name == "cr4") return 4; 208 if (Name == "cr5") return 5; 209 if (Name == "cr6") return 6; 210 if (Name == "cr7") return 7; 211 212 return -1; 213 } 214 215 case MCExpr::Unary: 216 return -1; 217 218 case MCExpr::Binary: { 219 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 220 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 221 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 222 int64_t Res; 223 224 if (LHSVal < 0 || RHSVal < 0) 225 return -1; 226 227 switch (BE->getOpcode()) { 228 default: return -1; 229 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 230 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 231 } 232 233 return Res < 0 ? -1 : Res; 234 } 235 } 236 237 llvm_unreachable("Invalid expression kind!"); 238 } 239 240 namespace { 241 242 struct PPCOperand; 243 244 class PPCAsmParser : public MCTargetAsmParser { 245 MCSubtargetInfo &STI; 246 const MCInstrInfo &MII; 247 bool IsPPC64; 248 bool IsDarwin; 249 250 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 251 bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); } 252 253 bool isPPC64() const { return IsPPC64; } 254 bool isDarwin() const { return IsDarwin; } 255 256 bool MatchRegisterName(const AsmToken &Tok, 257 unsigned &RegNo, int64_t &IntVal); 258 259 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 260 261 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 262 PPCMCExpr::VariantKind &Variant); 263 const MCExpr *FixupVariantKind(const MCExpr *E); 264 bool ParseExpression(const MCExpr *&EVal); 265 bool ParseDarwinExpression(const MCExpr *&EVal); 266 267 bool ParseOperand(OperandVector &Operands); 268 269 bool ParseDirectiveWord(unsigned Size, SMLoc L); 270 bool ParseDirectiveTC(unsigned Size, SMLoc L); 271 bool ParseDirectiveMachine(SMLoc L); 272 bool ParseDarwinDirectiveMachine(SMLoc L); 273 bool ParseDirectiveAbiVersion(SMLoc L); 274 bool ParseDirectiveLocalEntry(SMLoc L); 275 276 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 277 OperandVector &Operands, MCStreamer &Out, 278 uint64_t &ErrorInfo, 279 bool MatchingInlineAsm) override; 280 281 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 282 283 /// @name Auto-generated Match Functions 284 /// { 285 286 #define GET_ASSEMBLER_HEADER 287 #include "PPCGenAsmMatcher.inc" 288 289 /// } 290 291 292 public: 293 PPCAsmParser(MCSubtargetInfo &STI, MCAsmParser &, const MCInstrInfo &MII, 294 const MCTargetOptions &Options) 295 : MCTargetAsmParser(), STI(STI), MII(MII) { 296 // Check for 64-bit vs. 32-bit pointer mode. 297 Triple TheTriple(STI.getTargetTriple()); 298 IsPPC64 = (TheTriple.getArch() == Triple::ppc64 || 299 TheTriple.getArch() == Triple::ppc64le); 300 IsDarwin = TheTriple.isMacOSX(); 301 // Initialize the set of available features. 302 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 303 } 304 305 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 306 SMLoc NameLoc, OperandVector &Operands) override; 307 308 bool ParseDirective(AsmToken DirectiveID) override; 309 310 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 311 unsigned Kind) override; 312 313 const MCExpr *applyModifierToExpr(const MCExpr *E, 314 MCSymbolRefExpr::VariantKind, 315 MCContext &Ctx) override; 316 }; 317 318 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 319 /// instruction. 320 struct PPCOperand : public MCParsedAsmOperand { 321 enum KindTy { 322 Token, 323 Immediate, 324 ContextImmediate, 325 Expression, 326 TLSRegister 327 } Kind; 328 329 SMLoc StartLoc, EndLoc; 330 bool IsPPC64; 331 332 struct TokOp { 333 const char *Data; 334 unsigned Length; 335 }; 336 337 struct ImmOp { 338 int64_t Val; 339 }; 340 341 struct ExprOp { 342 const MCExpr *Val; 343 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 344 }; 345 346 struct TLSRegOp { 347 const MCSymbolRefExpr *Sym; 348 }; 349 350 union { 351 struct TokOp Tok; 352 struct ImmOp Imm; 353 struct ExprOp Expr; 354 struct TLSRegOp TLSReg; 355 }; 356 357 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 358 public: 359 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 360 Kind = o.Kind; 361 StartLoc = o.StartLoc; 362 EndLoc = o.EndLoc; 363 IsPPC64 = o.IsPPC64; 364 switch (Kind) { 365 case Token: 366 Tok = o.Tok; 367 break; 368 case Immediate: 369 case ContextImmediate: 370 Imm = o.Imm; 371 break; 372 case Expression: 373 Expr = o.Expr; 374 break; 375 case TLSRegister: 376 TLSReg = o.TLSReg; 377 break; 378 } 379 } 380 381 /// getStartLoc - Get the location of the first token of this operand. 382 SMLoc getStartLoc() const override { return StartLoc; } 383 384 /// getEndLoc - Get the location of the last token of this operand. 385 SMLoc getEndLoc() const override { return EndLoc; } 386 387 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 388 bool isPPC64() const { return IsPPC64; } 389 390 int64_t getImm() const { 391 assert(Kind == Immediate && "Invalid access!"); 392 return Imm.Val; 393 } 394 int64_t getImmS16Context() const { 395 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 396 if (Kind == Immediate) 397 return Imm.Val; 398 return static_cast<int16_t>(Imm.Val); 399 } 400 int64_t getImmU16Context() const { 401 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 402 return Imm.Val; 403 } 404 405 const MCExpr *getExpr() const { 406 assert(Kind == Expression && "Invalid access!"); 407 return Expr.Val; 408 } 409 410 int64_t getExprCRVal() const { 411 assert(Kind == Expression && "Invalid access!"); 412 return Expr.CRVal; 413 } 414 415 const MCExpr *getTLSReg() const { 416 assert(Kind == TLSRegister && "Invalid access!"); 417 return TLSReg.Sym; 418 } 419 420 unsigned getReg() const override { 421 assert(isRegNumber() && "Invalid access!"); 422 return (unsigned) Imm.Val; 423 } 424 425 unsigned getVSReg() const { 426 assert(isVSRegNumber() && "Invalid access!"); 427 return (unsigned) Imm.Val; 428 } 429 430 unsigned getCCReg() const { 431 assert(isCCRegNumber() && "Invalid access!"); 432 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 433 } 434 435 unsigned getCRBit() const { 436 assert(isCRBitNumber() && "Invalid access!"); 437 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 438 } 439 440 unsigned getCRBitMask() const { 441 assert(isCRBitMask() && "Invalid access!"); 442 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 443 } 444 445 bool isToken() const override { return Kind == Token; } 446 bool isImm() const override { return Kind == Immediate || Kind == Expression; } 447 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 448 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 449 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 450 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 451 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 452 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 453 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 454 bool isU6ImmX2() const { return Kind == Immediate && 455 isUInt<6>(getImm()) && 456 (getImm() & 1) == 0; } 457 bool isU7ImmX4() const { return Kind == Immediate && 458 isUInt<7>(getImm()) && 459 (getImm() & 3) == 0; } 460 bool isU8ImmX8() const { return Kind == Immediate && 461 isUInt<8>(getImm()) && 462 (getImm() & 7) == 0; } 463 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 464 bool isU16Imm() const { 465 switch (Kind) { 466 case Expression: 467 return true; 468 case Immediate: 469 case ContextImmediate: 470 return isUInt<16>(getImmU16Context()); 471 default: 472 return false; 473 } 474 } 475 bool isS16Imm() const { 476 switch (Kind) { 477 case Expression: 478 return true; 479 case Immediate: 480 case ContextImmediate: 481 return isInt<16>(getImmS16Context()); 482 default: 483 return false; 484 } 485 } 486 bool isS16ImmX4() const { return Kind == Expression || 487 (Kind == Immediate && isInt<16>(getImm()) && 488 (getImm() & 3) == 0); } 489 bool isS17Imm() const { 490 switch (Kind) { 491 case Expression: 492 return true; 493 case Immediate: 494 case ContextImmediate: 495 return isInt<17>(getImmS16Context()); 496 default: 497 return false; 498 } 499 } 500 bool isTLSReg() const { return Kind == TLSRegister; } 501 bool isDirectBr() const { 502 if (Kind == Expression) 503 return true; 504 if (Kind != Immediate) 505 return false; 506 // Operand must be 64-bit aligned, signed 27-bit immediate. 507 if ((getImm() & 3) != 0) 508 return false; 509 if (isInt<26>(getImm())) 510 return true; 511 if (!IsPPC64) { 512 // In 32-bit mode, large 32-bit quantities wrap around. 513 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 514 return true; 515 } 516 return false; 517 } 518 bool isCondBr() const { return Kind == Expression || 519 (Kind == Immediate && isInt<16>(getImm()) && 520 (getImm() & 3) == 0); } 521 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 522 bool isVSRegNumber() const { return Kind == Immediate && isUInt<6>(getImm()); } 523 bool isCCRegNumber() const { return (Kind == Expression 524 && isUInt<3>(getExprCRVal())) || 525 (Kind == Immediate 526 && isUInt<3>(getImm())); } 527 bool isCRBitNumber() const { return (Kind == Expression 528 && isUInt<5>(getExprCRVal())) || 529 (Kind == Immediate 530 && isUInt<5>(getImm())); } 531 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 532 isPowerOf2_32(getImm()); } 533 bool isMem() const override { return false; } 534 bool isReg() const override { return false; } 535 536 void addRegOperands(MCInst &Inst, unsigned N) const { 537 llvm_unreachable("addRegOperands"); 538 } 539 540 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 541 assert(N == 1 && "Invalid number of operands!"); 542 Inst.addOperand(MCOperand::CreateReg(RRegs[getReg()])); 543 } 544 545 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 546 assert(N == 1 && "Invalid number of operands!"); 547 Inst.addOperand(MCOperand::CreateReg(RRegsNoR0[getReg()])); 548 } 549 550 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 551 assert(N == 1 && "Invalid number of operands!"); 552 Inst.addOperand(MCOperand::CreateReg(XRegs[getReg()])); 553 } 554 555 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 556 assert(N == 1 && "Invalid number of operands!"); 557 Inst.addOperand(MCOperand::CreateReg(XRegsNoX0[getReg()])); 558 } 559 560 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 561 if (isPPC64()) 562 addRegG8RCOperands(Inst, N); 563 else 564 addRegGPRCOperands(Inst, N); 565 } 566 567 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 568 if (isPPC64()) 569 addRegG8RCNoX0Operands(Inst, N); 570 else 571 addRegGPRCNoR0Operands(Inst, N); 572 } 573 574 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 575 assert(N == 1 && "Invalid number of operands!"); 576 Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()])); 577 } 578 579 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 580 assert(N == 1 && "Invalid number of operands!"); 581 Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()])); 582 } 583 584 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 585 assert(N == 1 && "Invalid number of operands!"); 586 Inst.addOperand(MCOperand::CreateReg(VRegs[getReg()])); 587 } 588 589 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 590 assert(N == 1 && "Invalid number of operands!"); 591 Inst.addOperand(MCOperand::CreateReg(VSRegs[getVSReg()])); 592 } 593 594 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 595 assert(N == 1 && "Invalid number of operands!"); 596 Inst.addOperand(MCOperand::CreateReg(VSFRegs[getVSReg()])); 597 } 598 599 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 600 assert(N == 1 && "Invalid number of operands!"); 601 Inst.addOperand(MCOperand::CreateReg(VSSRegs[getVSReg()])); 602 } 603 604 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 605 assert(N == 1 && "Invalid number of operands!"); 606 Inst.addOperand(MCOperand::CreateReg(QFRegs[getReg()])); 607 } 608 609 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 610 assert(N == 1 && "Invalid number of operands!"); 611 Inst.addOperand(MCOperand::CreateReg(QFRegs[getReg()])); 612 } 613 614 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 615 assert(N == 1 && "Invalid number of operands!"); 616 Inst.addOperand(MCOperand::CreateReg(QFRegs[getReg()])); 617 } 618 619 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 620 assert(N == 1 && "Invalid number of operands!"); 621 Inst.addOperand(MCOperand::CreateReg(CRBITRegs[getCRBit()])); 622 } 623 624 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 625 assert(N == 1 && "Invalid number of operands!"); 626 Inst.addOperand(MCOperand::CreateReg(CRRegs[getCCReg()])); 627 } 628 629 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 630 assert(N == 1 && "Invalid number of operands!"); 631 Inst.addOperand(MCOperand::CreateReg(CRRegs[getCRBitMask()])); 632 } 633 634 void addImmOperands(MCInst &Inst, unsigned N) const { 635 assert(N == 1 && "Invalid number of operands!"); 636 if (Kind == Immediate) 637 Inst.addOperand(MCOperand::CreateImm(getImm())); 638 else 639 Inst.addOperand(MCOperand::CreateExpr(getExpr())); 640 } 641 642 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 643 assert(N == 1 && "Invalid number of operands!"); 644 switch (Kind) { 645 case Immediate: 646 Inst.addOperand(MCOperand::CreateImm(getImm())); 647 break; 648 case ContextImmediate: 649 Inst.addOperand(MCOperand::CreateImm(getImmS16Context())); 650 break; 651 default: 652 Inst.addOperand(MCOperand::CreateExpr(getExpr())); 653 break; 654 } 655 } 656 657 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 658 assert(N == 1 && "Invalid number of operands!"); 659 switch (Kind) { 660 case Immediate: 661 Inst.addOperand(MCOperand::CreateImm(getImm())); 662 break; 663 case ContextImmediate: 664 Inst.addOperand(MCOperand::CreateImm(getImmU16Context())); 665 break; 666 default: 667 Inst.addOperand(MCOperand::CreateExpr(getExpr())); 668 break; 669 } 670 } 671 672 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 673 assert(N == 1 && "Invalid number of operands!"); 674 if (Kind == Immediate) 675 Inst.addOperand(MCOperand::CreateImm(getImm() / 4)); 676 else 677 Inst.addOperand(MCOperand::CreateExpr(getExpr())); 678 } 679 680 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 681 assert(N == 1 && "Invalid number of operands!"); 682 Inst.addOperand(MCOperand::CreateExpr(getTLSReg())); 683 } 684 685 StringRef getToken() const { 686 assert(Kind == Token && "Invalid access!"); 687 return StringRef(Tok.Data, Tok.Length); 688 } 689 690 void print(raw_ostream &OS) const override; 691 692 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 693 bool IsPPC64) { 694 auto Op = make_unique<PPCOperand>(Token); 695 Op->Tok.Data = Str.data(); 696 Op->Tok.Length = Str.size(); 697 Op->StartLoc = S; 698 Op->EndLoc = S; 699 Op->IsPPC64 = IsPPC64; 700 return Op; 701 } 702 703 static std::unique_ptr<PPCOperand> 704 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 705 // Allocate extra memory for the string and copy it. 706 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 707 // deleter which will destroy them by simply using "delete", not correctly 708 // calling operator delete on this extra memory after calling the dtor 709 // explicitly. 710 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 711 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 712 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 713 Op->Tok.Length = Str.size(); 714 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 715 Op->StartLoc = S; 716 Op->EndLoc = S; 717 Op->IsPPC64 = IsPPC64; 718 return Op; 719 } 720 721 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 722 bool IsPPC64) { 723 auto Op = make_unique<PPCOperand>(Immediate); 724 Op->Imm.Val = Val; 725 Op->StartLoc = S; 726 Op->EndLoc = E; 727 Op->IsPPC64 = IsPPC64; 728 return Op; 729 } 730 731 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 732 SMLoc E, bool IsPPC64) { 733 auto Op = make_unique<PPCOperand>(Expression); 734 Op->Expr.Val = Val; 735 Op->Expr.CRVal = EvaluateCRExpr(Val); 736 Op->StartLoc = S; 737 Op->EndLoc = E; 738 Op->IsPPC64 = IsPPC64; 739 return Op; 740 } 741 742 static std::unique_ptr<PPCOperand> 743 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 744 auto Op = make_unique<PPCOperand>(TLSRegister); 745 Op->TLSReg.Sym = Sym; 746 Op->StartLoc = S; 747 Op->EndLoc = E; 748 Op->IsPPC64 = IsPPC64; 749 return Op; 750 } 751 752 static std::unique_ptr<PPCOperand> 753 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 754 auto Op = make_unique<PPCOperand>(ContextImmediate); 755 Op->Imm.Val = Val; 756 Op->StartLoc = S; 757 Op->EndLoc = E; 758 Op->IsPPC64 = IsPPC64; 759 return Op; 760 } 761 762 static std::unique_ptr<PPCOperand> 763 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 764 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 765 return CreateImm(CE->getValue(), S, E, IsPPC64); 766 767 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 768 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 769 return CreateTLSReg(SRE, S, E, IsPPC64); 770 771 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 772 int64_t Res; 773 if (TE->EvaluateAsConstant(Res)) 774 return CreateContextImm(Res, S, E, IsPPC64); 775 } 776 777 return CreateExpr(Val, S, E, IsPPC64); 778 } 779 }; 780 781 } // end anonymous namespace. 782 783 void PPCOperand::print(raw_ostream &OS) const { 784 switch (Kind) { 785 case Token: 786 OS << "'" << getToken() << "'"; 787 break; 788 case Immediate: 789 case ContextImmediate: 790 OS << getImm(); 791 break; 792 case Expression: 793 getExpr()->print(OS); 794 break; 795 case TLSRegister: 796 getTLSReg()->print(OS); 797 break; 798 } 799 } 800 801 static void 802 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 803 if (Op.isImm()) { 804 Inst.addOperand(MCOperand::CreateImm(-Op.getImm())); 805 return; 806 } 807 const MCExpr *Expr = Op.getExpr(); 808 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 809 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 810 Inst.addOperand(MCOperand::CreateExpr(UnExpr->getSubExpr())); 811 return; 812 } 813 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 814 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 815 const MCExpr *NE = MCBinaryExpr::CreateSub(BinExpr->getRHS(), 816 BinExpr->getLHS(), Ctx); 817 Inst.addOperand(MCOperand::CreateExpr(NE)); 818 return; 819 } 820 } 821 Inst.addOperand(MCOperand::CreateExpr(MCUnaryExpr::CreateMinus(Expr, Ctx))); 822 } 823 824 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 825 const OperandVector &Operands) { 826 int Opcode = Inst.getOpcode(); 827 switch (Opcode) { 828 case PPC::DCBTx: 829 case PPC::DCBTT: 830 case PPC::DCBTSTx: 831 case PPC::DCBTSTT: { 832 MCInst TmpInst; 833 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 834 PPC::DCBT : PPC::DCBTST); 835 TmpInst.addOperand(MCOperand::CreateImm( 836 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 837 TmpInst.addOperand(Inst.getOperand(0)); 838 TmpInst.addOperand(Inst.getOperand(1)); 839 Inst = TmpInst; 840 break; 841 } 842 case PPC::DCBTCT: 843 case PPC::DCBTDS: { 844 MCInst TmpInst; 845 TmpInst.setOpcode(PPC::DCBT); 846 TmpInst.addOperand(Inst.getOperand(2)); 847 TmpInst.addOperand(Inst.getOperand(0)); 848 TmpInst.addOperand(Inst.getOperand(1)); 849 Inst = TmpInst; 850 break; 851 } 852 case PPC::DCBTSTCT: 853 case PPC::DCBTSTDS: { 854 MCInst TmpInst; 855 TmpInst.setOpcode(PPC::DCBTST); 856 TmpInst.addOperand(Inst.getOperand(2)); 857 TmpInst.addOperand(Inst.getOperand(0)); 858 TmpInst.addOperand(Inst.getOperand(1)); 859 Inst = TmpInst; 860 break; 861 } 862 case PPC::LAx: { 863 MCInst TmpInst; 864 TmpInst.setOpcode(PPC::LA); 865 TmpInst.addOperand(Inst.getOperand(0)); 866 TmpInst.addOperand(Inst.getOperand(2)); 867 TmpInst.addOperand(Inst.getOperand(1)); 868 Inst = TmpInst; 869 break; 870 } 871 case PPC::SUBI: { 872 MCInst TmpInst; 873 TmpInst.setOpcode(PPC::ADDI); 874 TmpInst.addOperand(Inst.getOperand(0)); 875 TmpInst.addOperand(Inst.getOperand(1)); 876 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 877 Inst = TmpInst; 878 break; 879 } 880 case PPC::SUBIS: { 881 MCInst TmpInst; 882 TmpInst.setOpcode(PPC::ADDIS); 883 TmpInst.addOperand(Inst.getOperand(0)); 884 TmpInst.addOperand(Inst.getOperand(1)); 885 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 886 Inst = TmpInst; 887 break; 888 } 889 case PPC::SUBIC: { 890 MCInst TmpInst; 891 TmpInst.setOpcode(PPC::ADDIC); 892 TmpInst.addOperand(Inst.getOperand(0)); 893 TmpInst.addOperand(Inst.getOperand(1)); 894 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 895 Inst = TmpInst; 896 break; 897 } 898 case PPC::SUBICo: { 899 MCInst TmpInst; 900 TmpInst.setOpcode(PPC::ADDICo); 901 TmpInst.addOperand(Inst.getOperand(0)); 902 TmpInst.addOperand(Inst.getOperand(1)); 903 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 904 Inst = TmpInst; 905 break; 906 } 907 case PPC::EXTLWI: 908 case PPC::EXTLWIo: { 909 MCInst TmpInst; 910 int64_t N = Inst.getOperand(2).getImm(); 911 int64_t B = Inst.getOperand(3).getImm(); 912 TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo); 913 TmpInst.addOperand(Inst.getOperand(0)); 914 TmpInst.addOperand(Inst.getOperand(1)); 915 TmpInst.addOperand(MCOperand::CreateImm(B)); 916 TmpInst.addOperand(MCOperand::CreateImm(0)); 917 TmpInst.addOperand(MCOperand::CreateImm(N - 1)); 918 Inst = TmpInst; 919 break; 920 } 921 case PPC::EXTRWI: 922 case PPC::EXTRWIo: { 923 MCInst TmpInst; 924 int64_t N = Inst.getOperand(2).getImm(); 925 int64_t B = Inst.getOperand(3).getImm(); 926 TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo); 927 TmpInst.addOperand(Inst.getOperand(0)); 928 TmpInst.addOperand(Inst.getOperand(1)); 929 TmpInst.addOperand(MCOperand::CreateImm(B + N)); 930 TmpInst.addOperand(MCOperand::CreateImm(32 - N)); 931 TmpInst.addOperand(MCOperand::CreateImm(31)); 932 Inst = TmpInst; 933 break; 934 } 935 case PPC::INSLWI: 936 case PPC::INSLWIo: { 937 MCInst TmpInst; 938 int64_t N = Inst.getOperand(2).getImm(); 939 int64_t B = Inst.getOperand(3).getImm(); 940 TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo); 941 TmpInst.addOperand(Inst.getOperand(0)); 942 TmpInst.addOperand(Inst.getOperand(0)); 943 TmpInst.addOperand(Inst.getOperand(1)); 944 TmpInst.addOperand(MCOperand::CreateImm(32 - B)); 945 TmpInst.addOperand(MCOperand::CreateImm(B)); 946 TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1)); 947 Inst = TmpInst; 948 break; 949 } 950 case PPC::INSRWI: 951 case PPC::INSRWIo: { 952 MCInst TmpInst; 953 int64_t N = Inst.getOperand(2).getImm(); 954 int64_t B = Inst.getOperand(3).getImm(); 955 TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo); 956 TmpInst.addOperand(Inst.getOperand(0)); 957 TmpInst.addOperand(Inst.getOperand(0)); 958 TmpInst.addOperand(Inst.getOperand(1)); 959 TmpInst.addOperand(MCOperand::CreateImm(32 - (B + N))); 960 TmpInst.addOperand(MCOperand::CreateImm(B)); 961 TmpInst.addOperand(MCOperand::CreateImm((B + N) - 1)); 962 Inst = TmpInst; 963 break; 964 } 965 case PPC::ROTRWI: 966 case PPC::ROTRWIo: { 967 MCInst TmpInst; 968 int64_t N = Inst.getOperand(2).getImm(); 969 TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo); 970 TmpInst.addOperand(Inst.getOperand(0)); 971 TmpInst.addOperand(Inst.getOperand(1)); 972 TmpInst.addOperand(MCOperand::CreateImm(32 - N)); 973 TmpInst.addOperand(MCOperand::CreateImm(0)); 974 TmpInst.addOperand(MCOperand::CreateImm(31)); 975 Inst = TmpInst; 976 break; 977 } 978 case PPC::SLWI: 979 case PPC::SLWIo: { 980 MCInst TmpInst; 981 int64_t N = Inst.getOperand(2).getImm(); 982 TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo); 983 TmpInst.addOperand(Inst.getOperand(0)); 984 TmpInst.addOperand(Inst.getOperand(1)); 985 TmpInst.addOperand(MCOperand::CreateImm(N)); 986 TmpInst.addOperand(MCOperand::CreateImm(0)); 987 TmpInst.addOperand(MCOperand::CreateImm(31 - N)); 988 Inst = TmpInst; 989 break; 990 } 991 case PPC::SRWI: 992 case PPC::SRWIo: { 993 MCInst TmpInst; 994 int64_t N = Inst.getOperand(2).getImm(); 995 TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo); 996 TmpInst.addOperand(Inst.getOperand(0)); 997 TmpInst.addOperand(Inst.getOperand(1)); 998 TmpInst.addOperand(MCOperand::CreateImm(32 - N)); 999 TmpInst.addOperand(MCOperand::CreateImm(N)); 1000 TmpInst.addOperand(MCOperand::CreateImm(31)); 1001 Inst = TmpInst; 1002 break; 1003 } 1004 case PPC::CLRRWI: 1005 case PPC::CLRRWIo: { 1006 MCInst TmpInst; 1007 int64_t N = Inst.getOperand(2).getImm(); 1008 TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo); 1009 TmpInst.addOperand(Inst.getOperand(0)); 1010 TmpInst.addOperand(Inst.getOperand(1)); 1011 TmpInst.addOperand(MCOperand::CreateImm(0)); 1012 TmpInst.addOperand(MCOperand::CreateImm(0)); 1013 TmpInst.addOperand(MCOperand::CreateImm(31 - N)); 1014 Inst = TmpInst; 1015 break; 1016 } 1017 case PPC::CLRLSLWI: 1018 case PPC::CLRLSLWIo: { 1019 MCInst TmpInst; 1020 int64_t B = Inst.getOperand(2).getImm(); 1021 int64_t N = Inst.getOperand(3).getImm(); 1022 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo); 1023 TmpInst.addOperand(Inst.getOperand(0)); 1024 TmpInst.addOperand(Inst.getOperand(1)); 1025 TmpInst.addOperand(MCOperand::CreateImm(N)); 1026 TmpInst.addOperand(MCOperand::CreateImm(B - N)); 1027 TmpInst.addOperand(MCOperand::CreateImm(31 - N)); 1028 Inst = TmpInst; 1029 break; 1030 } 1031 case PPC::EXTLDI: 1032 case PPC::EXTLDIo: { 1033 MCInst TmpInst; 1034 int64_t N = Inst.getOperand(2).getImm(); 1035 int64_t B = Inst.getOperand(3).getImm(); 1036 TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo); 1037 TmpInst.addOperand(Inst.getOperand(0)); 1038 TmpInst.addOperand(Inst.getOperand(1)); 1039 TmpInst.addOperand(MCOperand::CreateImm(B)); 1040 TmpInst.addOperand(MCOperand::CreateImm(N - 1)); 1041 Inst = TmpInst; 1042 break; 1043 } 1044 case PPC::EXTRDI: 1045 case PPC::EXTRDIo: { 1046 MCInst TmpInst; 1047 int64_t N = Inst.getOperand(2).getImm(); 1048 int64_t B = Inst.getOperand(3).getImm(); 1049 TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo); 1050 TmpInst.addOperand(Inst.getOperand(0)); 1051 TmpInst.addOperand(Inst.getOperand(1)); 1052 TmpInst.addOperand(MCOperand::CreateImm(B + N)); 1053 TmpInst.addOperand(MCOperand::CreateImm(64 - N)); 1054 Inst = TmpInst; 1055 break; 1056 } 1057 case PPC::INSRDI: 1058 case PPC::INSRDIo: { 1059 MCInst TmpInst; 1060 int64_t N = Inst.getOperand(2).getImm(); 1061 int64_t B = Inst.getOperand(3).getImm(); 1062 TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo); 1063 TmpInst.addOperand(Inst.getOperand(0)); 1064 TmpInst.addOperand(Inst.getOperand(0)); 1065 TmpInst.addOperand(Inst.getOperand(1)); 1066 TmpInst.addOperand(MCOperand::CreateImm(64 - (B + N))); 1067 TmpInst.addOperand(MCOperand::CreateImm(B)); 1068 Inst = TmpInst; 1069 break; 1070 } 1071 case PPC::ROTRDI: 1072 case PPC::ROTRDIo: { 1073 MCInst TmpInst; 1074 int64_t N = Inst.getOperand(2).getImm(); 1075 TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo); 1076 TmpInst.addOperand(Inst.getOperand(0)); 1077 TmpInst.addOperand(Inst.getOperand(1)); 1078 TmpInst.addOperand(MCOperand::CreateImm(64 - N)); 1079 TmpInst.addOperand(MCOperand::CreateImm(0)); 1080 Inst = TmpInst; 1081 break; 1082 } 1083 case PPC::SLDI: 1084 case PPC::SLDIo: { 1085 MCInst TmpInst; 1086 int64_t N = Inst.getOperand(2).getImm(); 1087 TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo); 1088 TmpInst.addOperand(Inst.getOperand(0)); 1089 TmpInst.addOperand(Inst.getOperand(1)); 1090 TmpInst.addOperand(MCOperand::CreateImm(N)); 1091 TmpInst.addOperand(MCOperand::CreateImm(63 - N)); 1092 Inst = TmpInst; 1093 break; 1094 } 1095 case PPC::SRDI: 1096 case PPC::SRDIo: { 1097 MCInst TmpInst; 1098 int64_t N = Inst.getOperand(2).getImm(); 1099 TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo); 1100 TmpInst.addOperand(Inst.getOperand(0)); 1101 TmpInst.addOperand(Inst.getOperand(1)); 1102 TmpInst.addOperand(MCOperand::CreateImm(64 - N)); 1103 TmpInst.addOperand(MCOperand::CreateImm(N)); 1104 Inst = TmpInst; 1105 break; 1106 } 1107 case PPC::CLRRDI: 1108 case PPC::CLRRDIo: { 1109 MCInst TmpInst; 1110 int64_t N = Inst.getOperand(2).getImm(); 1111 TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo); 1112 TmpInst.addOperand(Inst.getOperand(0)); 1113 TmpInst.addOperand(Inst.getOperand(1)); 1114 TmpInst.addOperand(MCOperand::CreateImm(0)); 1115 TmpInst.addOperand(MCOperand::CreateImm(63 - N)); 1116 Inst = TmpInst; 1117 break; 1118 } 1119 case PPC::CLRLSLDI: 1120 case PPC::CLRLSLDIo: { 1121 MCInst TmpInst; 1122 int64_t B = Inst.getOperand(2).getImm(); 1123 int64_t N = Inst.getOperand(3).getImm(); 1124 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo); 1125 TmpInst.addOperand(Inst.getOperand(0)); 1126 TmpInst.addOperand(Inst.getOperand(1)); 1127 TmpInst.addOperand(MCOperand::CreateImm(N)); 1128 TmpInst.addOperand(MCOperand::CreateImm(B - N)); 1129 Inst = TmpInst; 1130 break; 1131 } 1132 case PPC::RLWINMbm: 1133 case PPC::RLWINMobm: { 1134 unsigned MB, ME; 1135 int64_t BM = Inst.getOperand(3).getImm(); 1136 if (!isRunOfOnes(BM, MB, ME)) 1137 break; 1138 1139 MCInst TmpInst; 1140 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo); 1141 TmpInst.addOperand(Inst.getOperand(0)); 1142 TmpInst.addOperand(Inst.getOperand(1)); 1143 TmpInst.addOperand(Inst.getOperand(2)); 1144 TmpInst.addOperand(MCOperand::CreateImm(MB)); 1145 TmpInst.addOperand(MCOperand::CreateImm(ME)); 1146 Inst = TmpInst; 1147 break; 1148 } 1149 case PPC::RLWIMIbm: 1150 case PPC::RLWIMIobm: { 1151 unsigned MB, ME; 1152 int64_t BM = Inst.getOperand(3).getImm(); 1153 if (!isRunOfOnes(BM, MB, ME)) 1154 break; 1155 1156 MCInst TmpInst; 1157 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo); 1158 TmpInst.addOperand(Inst.getOperand(0)); 1159 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1160 TmpInst.addOperand(Inst.getOperand(1)); 1161 TmpInst.addOperand(Inst.getOperand(2)); 1162 TmpInst.addOperand(MCOperand::CreateImm(MB)); 1163 TmpInst.addOperand(MCOperand::CreateImm(ME)); 1164 Inst = TmpInst; 1165 break; 1166 } 1167 case PPC::RLWNMbm: 1168 case PPC::RLWNMobm: { 1169 unsigned MB, ME; 1170 int64_t BM = Inst.getOperand(3).getImm(); 1171 if (!isRunOfOnes(BM, MB, ME)) 1172 break; 1173 1174 MCInst TmpInst; 1175 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo); 1176 TmpInst.addOperand(Inst.getOperand(0)); 1177 TmpInst.addOperand(Inst.getOperand(1)); 1178 TmpInst.addOperand(Inst.getOperand(2)); 1179 TmpInst.addOperand(MCOperand::CreateImm(MB)); 1180 TmpInst.addOperand(MCOperand::CreateImm(ME)); 1181 Inst = TmpInst; 1182 break; 1183 } 1184 } 1185 } 1186 1187 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1188 OperandVector &Operands, 1189 MCStreamer &Out, uint64_t &ErrorInfo, 1190 bool MatchingInlineAsm) { 1191 MCInst Inst; 1192 1193 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1194 case Match_Success: 1195 // Post-process instructions (typically extended mnemonics) 1196 ProcessInstruction(Inst, Operands); 1197 Inst.setLoc(IDLoc); 1198 Out.EmitInstruction(Inst, STI); 1199 return false; 1200 case Match_MissingFeature: 1201 return Error(IDLoc, "instruction use requires an option to be enabled"); 1202 case Match_MnemonicFail: 1203 return Error(IDLoc, "unrecognized instruction mnemonic"); 1204 case Match_InvalidOperand: { 1205 SMLoc ErrorLoc = IDLoc; 1206 if (ErrorInfo != ~0ULL) { 1207 if (ErrorInfo >= Operands.size()) 1208 return Error(IDLoc, "too few operands for instruction"); 1209 1210 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1211 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1212 } 1213 1214 return Error(ErrorLoc, "invalid operand for instruction"); 1215 } 1216 } 1217 1218 llvm_unreachable("Implement any new match types added!"); 1219 } 1220 1221 bool PPCAsmParser:: 1222 MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { 1223 if (Tok.is(AsmToken::Identifier)) { 1224 StringRef Name = Tok.getString(); 1225 1226 if (Name.equals_lower("lr")) { 1227 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1228 IntVal = 8; 1229 return false; 1230 } else if (Name.equals_lower("ctr")) { 1231 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1232 IntVal = 9; 1233 return false; 1234 } else if (Name.equals_lower("vrsave")) { 1235 RegNo = PPC::VRSAVE; 1236 IntVal = 256; 1237 return false; 1238 } else if (Name.startswith_lower("r") && 1239 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1240 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1241 return false; 1242 } else if (Name.startswith_lower("f") && 1243 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1244 RegNo = FRegs[IntVal]; 1245 return false; 1246 } else if (Name.startswith_lower("vs") && 1247 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1248 RegNo = VSRegs[IntVal]; 1249 return false; 1250 } else if (Name.startswith_lower("v") && 1251 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1252 RegNo = VRegs[IntVal]; 1253 return false; 1254 } else if (Name.startswith_lower("q") && 1255 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1256 RegNo = QFRegs[IntVal]; 1257 return false; 1258 } else if (Name.startswith_lower("cr") && 1259 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1260 RegNo = CRRegs[IntVal]; 1261 return false; 1262 } 1263 } 1264 1265 return true; 1266 } 1267 1268 bool PPCAsmParser:: 1269 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1270 MCAsmParser &Parser = getParser(); 1271 const AsmToken &Tok = Parser.getTok(); 1272 StartLoc = Tok.getLoc(); 1273 EndLoc = Tok.getEndLoc(); 1274 RegNo = 0; 1275 int64_t IntVal; 1276 1277 if (!MatchRegisterName(Tok, RegNo, IntVal)) { 1278 Parser.Lex(); // Eat identifier token. 1279 return false; 1280 } 1281 1282 return Error(StartLoc, "invalid register name"); 1283 } 1284 1285 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1286 /// the expression and check for VK_PPC_LO/HI/HA 1287 /// symbol variants. If all symbols with modifier use the same 1288 /// variant, return the corresponding PPCMCExpr::VariantKind, 1289 /// and a modified expression using the default symbol variant. 1290 /// Otherwise, return NULL. 1291 const MCExpr *PPCAsmParser:: 1292 ExtractModifierFromExpr(const MCExpr *E, 1293 PPCMCExpr::VariantKind &Variant) { 1294 MCContext &Context = getParser().getContext(); 1295 Variant = PPCMCExpr::VK_PPC_None; 1296 1297 switch (E->getKind()) { 1298 case MCExpr::Target: 1299 case MCExpr::Constant: 1300 return nullptr; 1301 1302 case MCExpr::SymbolRef: { 1303 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1304 1305 switch (SRE->getKind()) { 1306 case MCSymbolRefExpr::VK_PPC_LO: 1307 Variant = PPCMCExpr::VK_PPC_LO; 1308 break; 1309 case MCSymbolRefExpr::VK_PPC_HI: 1310 Variant = PPCMCExpr::VK_PPC_HI; 1311 break; 1312 case MCSymbolRefExpr::VK_PPC_HA: 1313 Variant = PPCMCExpr::VK_PPC_HA; 1314 break; 1315 case MCSymbolRefExpr::VK_PPC_HIGHER: 1316 Variant = PPCMCExpr::VK_PPC_HIGHER; 1317 break; 1318 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1319 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1320 break; 1321 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1322 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1323 break; 1324 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1325 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1326 break; 1327 default: 1328 return nullptr; 1329 } 1330 1331 return MCSymbolRefExpr::Create(&SRE->getSymbol(), Context); 1332 } 1333 1334 case MCExpr::Unary: { 1335 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1336 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1337 if (!Sub) 1338 return nullptr; 1339 return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context); 1340 } 1341 1342 case MCExpr::Binary: { 1343 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1344 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1345 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1346 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1347 1348 if (!LHS && !RHS) 1349 return nullptr; 1350 1351 if (!LHS) LHS = BE->getLHS(); 1352 if (!RHS) RHS = BE->getRHS(); 1353 1354 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1355 Variant = RHSVariant; 1356 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1357 Variant = LHSVariant; 1358 else if (LHSVariant == RHSVariant) 1359 Variant = LHSVariant; 1360 else 1361 return nullptr; 1362 1363 return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context); 1364 } 1365 } 1366 1367 llvm_unreachable("Invalid expression kind!"); 1368 } 1369 1370 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1371 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1372 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1373 /// FIXME: This is a hack. 1374 const MCExpr *PPCAsmParser:: 1375 FixupVariantKind(const MCExpr *E) { 1376 MCContext &Context = getParser().getContext(); 1377 1378 switch (E->getKind()) { 1379 case MCExpr::Target: 1380 case MCExpr::Constant: 1381 return E; 1382 1383 case MCExpr::SymbolRef: { 1384 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1385 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1386 1387 switch (SRE->getKind()) { 1388 case MCSymbolRefExpr::VK_TLSGD: 1389 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1390 break; 1391 case MCSymbolRefExpr::VK_TLSLD: 1392 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1393 break; 1394 default: 1395 return E; 1396 } 1397 return MCSymbolRefExpr::Create(&SRE->getSymbol(), Variant, Context); 1398 } 1399 1400 case MCExpr::Unary: { 1401 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1402 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1403 if (Sub == UE->getSubExpr()) 1404 return E; 1405 return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context); 1406 } 1407 1408 case MCExpr::Binary: { 1409 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1410 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1411 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1412 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1413 return E; 1414 return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context); 1415 } 1416 } 1417 1418 llvm_unreachable("Invalid expression kind!"); 1419 } 1420 1421 /// ParseExpression. This differs from the default "parseExpression" in that 1422 /// it handles modifiers. 1423 bool PPCAsmParser:: 1424 ParseExpression(const MCExpr *&EVal) { 1425 1426 if (isDarwin()) 1427 return ParseDarwinExpression(EVal); 1428 1429 // (ELF Platforms) 1430 // Handle \code @l/@ha \endcode 1431 if (getParser().parseExpression(EVal)) 1432 return true; 1433 1434 EVal = FixupVariantKind(EVal); 1435 1436 PPCMCExpr::VariantKind Variant; 1437 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1438 if (E) 1439 EVal = PPCMCExpr::Create(Variant, E, false, getParser().getContext()); 1440 1441 return false; 1442 } 1443 1444 /// ParseDarwinExpression. (MachO Platforms) 1445 /// This differs from the default "parseExpression" in that it handles detection 1446 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1447 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1448 /// syntax form so it is done here. TODO: Determine if there is merit in arranging 1449 /// for this to be done at a higher level. 1450 bool PPCAsmParser:: 1451 ParseDarwinExpression(const MCExpr *&EVal) { 1452 MCAsmParser &Parser = getParser(); 1453 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1454 switch (getLexer().getKind()) { 1455 default: 1456 break; 1457 case AsmToken::Identifier: 1458 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1459 // something starting with any other char should be part of the 1460 // asm syntax. If handwritten asm includes an identifier like lo16, 1461 // then all bets are off - but no-one would do that, right? 1462 StringRef poss = Parser.getTok().getString(); 1463 if (poss.equals_lower("lo16")) { 1464 Variant = PPCMCExpr::VK_PPC_LO; 1465 } else if (poss.equals_lower("hi16")) { 1466 Variant = PPCMCExpr::VK_PPC_HI; 1467 } else if (poss.equals_lower("ha16")) { 1468 Variant = PPCMCExpr::VK_PPC_HA; 1469 } 1470 if (Variant != PPCMCExpr::VK_PPC_None) { 1471 Parser.Lex(); // Eat the xx16 1472 if (getLexer().isNot(AsmToken::LParen)) 1473 return Error(Parser.getTok().getLoc(), "expected '('"); 1474 Parser.Lex(); // Eat the '(' 1475 } 1476 break; 1477 } 1478 1479 if (getParser().parseExpression(EVal)) 1480 return true; 1481 1482 if (Variant != PPCMCExpr::VK_PPC_None) { 1483 if (getLexer().isNot(AsmToken::RParen)) 1484 return Error(Parser.getTok().getLoc(), "expected ')'"); 1485 Parser.Lex(); // Eat the ')' 1486 EVal = PPCMCExpr::Create(Variant, EVal, false, getParser().getContext()); 1487 } 1488 return false; 1489 } 1490 1491 /// ParseOperand 1492 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1493 /// rNN for MachO. 1494 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1495 MCAsmParser &Parser = getParser(); 1496 SMLoc S = Parser.getTok().getLoc(); 1497 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1498 const MCExpr *EVal; 1499 1500 // Attempt to parse the next token as an immediate 1501 switch (getLexer().getKind()) { 1502 // Special handling for register names. These are interpreted 1503 // as immediates corresponding to the register number. 1504 case AsmToken::Percent: 1505 Parser.Lex(); // Eat the '%'. 1506 unsigned RegNo; 1507 int64_t IntVal; 1508 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1509 Parser.Lex(); // Eat the identifier token. 1510 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1511 return false; 1512 } 1513 return Error(S, "invalid register name"); 1514 1515 case AsmToken::Identifier: 1516 // Note that non-register-name identifiers from the compiler will begin 1517 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1518 // identifiers like r31foo - so we fall through in the event that parsing 1519 // a register name fails. 1520 if (isDarwin()) { 1521 unsigned RegNo; 1522 int64_t IntVal; 1523 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1524 Parser.Lex(); // Eat the identifier token. 1525 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1526 return false; 1527 } 1528 } 1529 // Fall-through to process non-register-name identifiers as expression. 1530 // All other expressions 1531 case AsmToken::LParen: 1532 case AsmToken::Plus: 1533 case AsmToken::Minus: 1534 case AsmToken::Integer: 1535 case AsmToken::Dot: 1536 case AsmToken::Dollar: 1537 case AsmToken::Exclaim: 1538 case AsmToken::Tilde: 1539 if (!ParseExpression(EVal)) 1540 break; 1541 /* fall through */ 1542 default: 1543 return Error(S, "unknown operand"); 1544 } 1545 1546 // Push the parsed operand into the list of operands 1547 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1548 1549 // Check whether this is a TLS call expression 1550 bool TLSCall = false; 1551 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1552 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1553 1554 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1555 const MCExpr *TLSSym; 1556 1557 Parser.Lex(); // Eat the '('. 1558 S = Parser.getTok().getLoc(); 1559 if (ParseExpression(TLSSym)) 1560 return Error(S, "invalid TLS call expression"); 1561 if (getLexer().isNot(AsmToken::RParen)) 1562 return Error(Parser.getTok().getLoc(), "missing ')'"); 1563 E = Parser.getTok().getLoc(); 1564 Parser.Lex(); // Eat the ')'. 1565 1566 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1567 } 1568 1569 // Otherwise, check for D-form memory operands 1570 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1571 Parser.Lex(); // Eat the '('. 1572 S = Parser.getTok().getLoc(); 1573 1574 int64_t IntVal; 1575 switch (getLexer().getKind()) { 1576 case AsmToken::Percent: 1577 Parser.Lex(); // Eat the '%'. 1578 unsigned RegNo; 1579 if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) 1580 return Error(S, "invalid register name"); 1581 Parser.Lex(); // Eat the identifier token. 1582 break; 1583 1584 case AsmToken::Integer: 1585 if (!isDarwin()) { 1586 if (getParser().parseAbsoluteExpression(IntVal) || 1587 IntVal < 0 || IntVal > 31) 1588 return Error(S, "invalid register number"); 1589 } else { 1590 return Error(S, "unexpected integer value"); 1591 } 1592 break; 1593 1594 case AsmToken::Identifier: 1595 if (isDarwin()) { 1596 unsigned RegNo; 1597 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1598 Parser.Lex(); // Eat the identifier token. 1599 break; 1600 } 1601 } 1602 // Fall-through.. 1603 1604 default: 1605 return Error(S, "invalid memory operand"); 1606 } 1607 1608 if (getLexer().isNot(AsmToken::RParen)) 1609 return Error(Parser.getTok().getLoc(), "missing ')'"); 1610 E = Parser.getTok().getLoc(); 1611 Parser.Lex(); // Eat the ')'. 1612 1613 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1614 } 1615 1616 return false; 1617 } 1618 1619 /// Parse an instruction mnemonic followed by its operands. 1620 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1621 SMLoc NameLoc, OperandVector &Operands) { 1622 // The first operand is the token for the instruction name. 1623 // If the next character is a '+' or '-', we need to add it to the 1624 // instruction name, to match what TableGen is doing. 1625 std::string NewOpcode; 1626 if (getLexer().is(AsmToken::Plus)) { 1627 getLexer().Lex(); 1628 NewOpcode = Name; 1629 NewOpcode += '+'; 1630 Name = NewOpcode; 1631 } 1632 if (getLexer().is(AsmToken::Minus)) { 1633 getLexer().Lex(); 1634 NewOpcode = Name; 1635 NewOpcode += '-'; 1636 Name = NewOpcode; 1637 } 1638 // If the instruction ends in a '.', we need to create a separate 1639 // token for it, to match what TableGen is doing. 1640 size_t Dot = Name.find('.'); 1641 StringRef Mnemonic = Name.slice(0, Dot); 1642 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1643 Operands.push_back( 1644 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1645 else 1646 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1647 if (Dot != StringRef::npos) { 1648 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1649 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1650 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1651 Operands.push_back( 1652 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1653 else 1654 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1655 } 1656 1657 // If there are no more operands then finish 1658 if (getLexer().is(AsmToken::EndOfStatement)) 1659 return false; 1660 1661 // Parse the first operand 1662 if (ParseOperand(Operands)) 1663 return true; 1664 1665 while (getLexer().isNot(AsmToken::EndOfStatement) && 1666 getLexer().is(AsmToken::Comma)) { 1667 // Consume the comma token 1668 getLexer().Lex(); 1669 1670 // Parse the next operand 1671 if (ParseOperand(Operands)) 1672 return true; 1673 } 1674 1675 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1676 // and dcbtst instructions differs for server vs. embedded cores. 1677 // The syntax for dcbt is: 1678 // dcbt ra, rb, th [server] 1679 // dcbt th, ra, rb [embedded] 1680 // where th can be omitted when it is 0. dcbtst is the same. We take the 1681 // server form to be the default, so swap the operands if we're parsing for 1682 // an embedded core (they'll be swapped again upon printing). 1683 if ((STI.getFeatureBits() & PPC::FeatureBookE) != 0 && 1684 Operands.size() == 4 && 1685 (Name == "dcbt" || Name == "dcbtst")) { 1686 std::swap(Operands[1], Operands[3]); 1687 std::swap(Operands[2], Operands[1]); 1688 } 1689 1690 return false; 1691 } 1692 1693 /// ParseDirective parses the PPC specific directives 1694 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1695 StringRef IDVal = DirectiveID.getIdentifier(); 1696 if (!isDarwin()) { 1697 if (IDVal == ".word") 1698 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1699 if (IDVal == ".llong") 1700 return ParseDirectiveWord(8, DirectiveID.getLoc()); 1701 if (IDVal == ".tc") 1702 return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); 1703 if (IDVal == ".machine") 1704 return ParseDirectiveMachine(DirectiveID.getLoc()); 1705 if (IDVal == ".abiversion") 1706 return ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1707 if (IDVal == ".localentry") 1708 return ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1709 } else { 1710 if (IDVal == ".machine") 1711 return ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1712 } 1713 return true; 1714 } 1715 1716 /// ParseDirectiveWord 1717 /// ::= .word [ expression (, expression)* ] 1718 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1719 MCAsmParser &Parser = getParser(); 1720 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1721 for (;;) { 1722 const MCExpr *Value; 1723 if (getParser().parseExpression(Value)) 1724 return false; 1725 1726 getParser().getStreamer().EmitValue(Value, Size); 1727 1728 if (getLexer().is(AsmToken::EndOfStatement)) 1729 break; 1730 1731 if (getLexer().isNot(AsmToken::Comma)) 1732 return Error(L, "unexpected token in directive"); 1733 Parser.Lex(); 1734 } 1735 } 1736 1737 Parser.Lex(); 1738 return false; 1739 } 1740 1741 /// ParseDirectiveTC 1742 /// ::= .tc [ symbol (, expression)* ] 1743 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { 1744 MCAsmParser &Parser = getParser(); 1745 // Skip TC symbol, which is only used with XCOFF. 1746 while (getLexer().isNot(AsmToken::EndOfStatement) 1747 && getLexer().isNot(AsmToken::Comma)) 1748 Parser.Lex(); 1749 if (getLexer().isNot(AsmToken::Comma)) { 1750 Error(L, "unexpected token in directive"); 1751 return false; 1752 } 1753 Parser.Lex(); 1754 1755 // Align to word size. 1756 getParser().getStreamer().EmitValueToAlignment(Size); 1757 1758 // Emit expressions. 1759 return ParseDirectiveWord(Size, L); 1760 } 1761 1762 /// ParseDirectiveMachine (ELF platforms) 1763 /// ::= .machine [ cpu | "push" | "pop" ] 1764 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1765 MCAsmParser &Parser = getParser(); 1766 if (getLexer().isNot(AsmToken::Identifier) && 1767 getLexer().isNot(AsmToken::String)) { 1768 Error(L, "unexpected token in directive"); 1769 return false; 1770 } 1771 1772 StringRef CPU = Parser.getTok().getIdentifier(); 1773 Parser.Lex(); 1774 1775 // FIXME: Right now, the parser always allows any available 1776 // instruction, so the .machine directive is not useful. 1777 // Implement ".machine any" (by doing nothing) for the benefit 1778 // of existing assembler code. Likewise, we can then implement 1779 // ".machine push" and ".machine pop" as no-op. 1780 if (CPU != "any" && CPU != "push" && CPU != "pop") { 1781 Error(L, "unrecognized machine type"); 1782 return false; 1783 } 1784 1785 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1786 Error(L, "unexpected token in directive"); 1787 return false; 1788 } 1789 PPCTargetStreamer &TStreamer = 1790 *static_cast<PPCTargetStreamer *>( 1791 getParser().getStreamer().getTargetStreamer()); 1792 TStreamer.emitMachine(CPU); 1793 1794 return false; 1795 } 1796 1797 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1798 /// ::= .machine cpu-identifier 1799 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1800 MCAsmParser &Parser = getParser(); 1801 if (getLexer().isNot(AsmToken::Identifier) && 1802 getLexer().isNot(AsmToken::String)) { 1803 Error(L, "unexpected token in directive"); 1804 return false; 1805 } 1806 1807 StringRef CPU = Parser.getTok().getIdentifier(); 1808 Parser.Lex(); 1809 1810 // FIXME: this is only the 'default' set of cpu variants. 1811 // However we don't act on this information at present, this is simply 1812 // allowing parsing to proceed with minimal sanity checking. 1813 if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") { 1814 Error(L, "unrecognized cpu type"); 1815 return false; 1816 } 1817 1818 if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) { 1819 Error(L, "wrong cpu type specified for 64bit"); 1820 return false; 1821 } 1822 if (!isPPC64() && CPU == "ppc64") { 1823 Error(L, "wrong cpu type specified for 32bit"); 1824 return false; 1825 } 1826 1827 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1828 Error(L, "unexpected token in directive"); 1829 return false; 1830 } 1831 1832 return false; 1833 } 1834 1835 /// ParseDirectiveAbiVersion 1836 /// ::= .abiversion constant-expression 1837 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1838 int64_t AbiVersion; 1839 if (getParser().parseAbsoluteExpression(AbiVersion)){ 1840 Error(L, "expected constant expression"); 1841 return false; 1842 } 1843 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1844 Error(L, "unexpected token in directive"); 1845 return false; 1846 } 1847 1848 PPCTargetStreamer &TStreamer = 1849 *static_cast<PPCTargetStreamer *>( 1850 getParser().getStreamer().getTargetStreamer()); 1851 TStreamer.emitAbiVersion(AbiVersion); 1852 1853 return false; 1854 } 1855 1856 /// ParseDirectiveLocalEntry 1857 /// ::= .localentry symbol, expression 1858 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1859 StringRef Name; 1860 if (getParser().parseIdentifier(Name)) { 1861 Error(L, "expected identifier in directive"); 1862 return false; 1863 } 1864 MCSymbol *Sym = getContext().GetOrCreateSymbol(Name); 1865 1866 if (getLexer().isNot(AsmToken::Comma)) { 1867 Error(L, "unexpected token in directive"); 1868 return false; 1869 } 1870 Lex(); 1871 1872 const MCExpr *Expr; 1873 if (getParser().parseExpression(Expr)) { 1874 Error(L, "expected expression"); 1875 return false; 1876 } 1877 1878 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1879 Error(L, "unexpected token in directive"); 1880 return false; 1881 } 1882 1883 PPCTargetStreamer &TStreamer = 1884 *static_cast<PPCTargetStreamer *>( 1885 getParser().getStreamer().getTargetStreamer()); 1886 TStreamer.emitLocalEntry(Sym, Expr); 1887 1888 return false; 1889 } 1890 1891 1892 1893 /// Force static initialization. 1894 extern "C" void LLVMInitializePowerPCAsmParser() { 1895 RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target); 1896 RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target); 1897 RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget); 1898 } 1899 1900 #define GET_REGISTER_MATCHER 1901 #define GET_MATCHER_IMPLEMENTATION 1902 #include "PPCGenAsmMatcher.inc" 1903 1904 // Define this matcher function after the auto-generated include so we 1905 // have the match class enum definitions. 1906 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1907 unsigned Kind) { 1908 // If the kind is a token for a literal immediate, check if our asm 1909 // operand matches. This is for InstAliases which have a fixed-value 1910 // immediate in the syntax. 1911 int64_t ImmVal; 1912 switch (Kind) { 1913 case MCK_0: ImmVal = 0; break; 1914 case MCK_1: ImmVal = 1; break; 1915 case MCK_2: ImmVal = 2; break; 1916 case MCK_3: ImmVal = 3; break; 1917 case MCK_4: ImmVal = 4; break; 1918 case MCK_5: ImmVal = 5; break; 1919 case MCK_6: ImmVal = 6; break; 1920 case MCK_7: ImmVal = 7; break; 1921 default: return Match_InvalidOperand; 1922 } 1923 1924 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1925 if (Op.isImm() && Op.getImm() == ImmVal) 1926 return Match_Success; 1927 1928 return Match_InvalidOperand; 1929 } 1930 1931 const MCExpr * 1932 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1933 MCSymbolRefExpr::VariantKind Variant, 1934 MCContext &Ctx) { 1935 switch (Variant) { 1936 case MCSymbolRefExpr::VK_PPC_LO: 1937 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_LO, E, false, Ctx); 1938 case MCSymbolRefExpr::VK_PPC_HI: 1939 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HI, E, false, Ctx); 1940 case MCSymbolRefExpr::VK_PPC_HA: 1941 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HA, E, false, Ctx); 1942 case MCSymbolRefExpr::VK_PPC_HIGHER: 1943 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx); 1944 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1945 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx); 1946 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1947 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx); 1948 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1949 return PPCMCExpr::Create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx); 1950 default: 1951 return nullptr; 1952 } 1953 } 1954