1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/PPCMCExpr.h" 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "PPCTargetStreamer.h" 12 #include "TargetInfo/PowerPCTargetInfo.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/StringSwitch.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/MC/MCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCInstrInfo.h" 20 #include "llvm/MC/MCParser/MCAsmLexer.h" 21 #include "llvm/MC/MCParser/MCAsmParser.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/MC/MCSymbolELF.h" 27 #include "llvm/Support/SourceMgr.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 DEFINE_PPC_REGCLASSES; 34 35 // Evaluate an expression containing condition register 36 // or condition register field symbols. Returns positive 37 // value on success, or -1 on error. 38 static int64_t 39 EvaluateCRExpr(const MCExpr *E) { 40 switch (E->getKind()) { 41 case MCExpr::Target: 42 return -1; 43 44 case MCExpr::Constant: { 45 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 46 return Res < 0 ? -1 : Res; 47 } 48 49 case MCExpr::SymbolRef: { 50 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 51 StringRef Name = SRE->getSymbol().getName(); 52 53 if (Name == "lt") return 0; 54 if (Name == "gt") return 1; 55 if (Name == "eq") return 2; 56 if (Name == "so") return 3; 57 if (Name == "un") return 3; 58 59 if (Name == "cr0") return 0; 60 if (Name == "cr1") return 1; 61 if (Name == "cr2") return 2; 62 if (Name == "cr3") return 3; 63 if (Name == "cr4") return 4; 64 if (Name == "cr5") return 5; 65 if (Name == "cr6") return 6; 66 if (Name == "cr7") return 7; 67 68 return -1; 69 } 70 71 case MCExpr::Unary: 72 return -1; 73 74 case MCExpr::Binary: { 75 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 76 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 77 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 78 int64_t Res; 79 80 if (LHSVal < 0 || RHSVal < 0) 81 return -1; 82 83 switch (BE->getOpcode()) { 84 default: return -1; 85 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 86 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 87 } 88 89 return Res < 0 ? -1 : Res; 90 } 91 } 92 93 llvm_unreachable("Invalid expression kind!"); 94 } 95 96 namespace { 97 98 struct PPCOperand; 99 100 class PPCAsmParser : public MCTargetAsmParser { 101 bool IsPPC64; 102 bool IsDarwin; 103 104 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 105 106 bool isPPC64() const { return IsPPC64; } 107 bool isDarwin() const { return IsDarwin; } 108 109 bool MatchRegisterName(unsigned &RegNo, int64_t &IntVal); 110 111 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 112 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 113 SMLoc &EndLoc) override; 114 115 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 116 PPCMCExpr::VariantKind &Variant); 117 const MCExpr *FixupVariantKind(const MCExpr *E); 118 bool ParseExpression(const MCExpr *&EVal); 119 bool ParseDarwinExpression(const MCExpr *&EVal); 120 121 bool ParseOperand(OperandVector &Operands); 122 123 bool ParseDirectiveWord(unsigned Size, AsmToken ID); 124 bool ParseDirectiveTC(unsigned Size, AsmToken ID); 125 bool ParseDirectiveMachine(SMLoc L); 126 bool ParseDarwinDirectiveMachine(SMLoc L); 127 bool ParseDirectiveAbiVersion(SMLoc L); 128 bool ParseDirectiveLocalEntry(SMLoc L); 129 130 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 131 OperandVector &Operands, MCStreamer &Out, 132 uint64_t &ErrorInfo, 133 bool MatchingInlineAsm) override; 134 135 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 136 137 /// @name Auto-generated Match Functions 138 /// { 139 140 #define GET_ASSEMBLER_HEADER 141 #include "PPCGenAsmMatcher.inc" 142 143 /// } 144 145 146 public: 147 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 148 const MCInstrInfo &MII, const MCTargetOptions &Options) 149 : MCTargetAsmParser(Options, STI, MII) { 150 // Check for 64-bit vs. 32-bit pointer mode. 151 const Triple &TheTriple = STI.getTargetTriple(); 152 IsPPC64 = TheTriple.isPPC64(); 153 IsDarwin = TheTriple.isMacOSX(); 154 // Initialize the set of available features. 155 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 156 } 157 158 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 159 SMLoc NameLoc, OperandVector &Operands) override; 160 161 bool ParseDirective(AsmToken DirectiveID) override; 162 163 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 164 unsigned Kind) override; 165 166 const MCExpr *applyModifierToExpr(const MCExpr *E, 167 MCSymbolRefExpr::VariantKind, 168 MCContext &Ctx) override; 169 }; 170 171 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 172 /// instruction. 173 struct PPCOperand : public MCParsedAsmOperand { 174 enum KindTy { 175 Token, 176 Immediate, 177 ContextImmediate, 178 Expression, 179 TLSRegister 180 } Kind; 181 182 SMLoc StartLoc, EndLoc; 183 bool IsPPC64; 184 185 struct TokOp { 186 const char *Data; 187 unsigned Length; 188 }; 189 190 struct ImmOp { 191 int64_t Val; 192 }; 193 194 struct ExprOp { 195 const MCExpr *Val; 196 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 197 }; 198 199 struct TLSRegOp { 200 const MCSymbolRefExpr *Sym; 201 }; 202 203 union { 204 struct TokOp Tok; 205 struct ImmOp Imm; 206 struct ExprOp Expr; 207 struct TLSRegOp TLSReg; 208 }; 209 210 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 211 public: 212 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 213 Kind = o.Kind; 214 StartLoc = o.StartLoc; 215 EndLoc = o.EndLoc; 216 IsPPC64 = o.IsPPC64; 217 switch (Kind) { 218 case Token: 219 Tok = o.Tok; 220 break; 221 case Immediate: 222 case ContextImmediate: 223 Imm = o.Imm; 224 break; 225 case Expression: 226 Expr = o.Expr; 227 break; 228 case TLSRegister: 229 TLSReg = o.TLSReg; 230 break; 231 } 232 } 233 234 // Disable use of sized deallocation due to overallocation of PPCOperand 235 // objects in CreateTokenWithStringCopy. 236 void operator delete(void *p) { ::operator delete(p); } 237 238 /// getStartLoc - Get the location of the first token of this operand. 239 SMLoc getStartLoc() const override { return StartLoc; } 240 241 /// getEndLoc - Get the location of the last token of this operand. 242 SMLoc getEndLoc() const override { return EndLoc; } 243 244 /// getLocRange - Get the range between the first and last token of this 245 /// operand. 246 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 247 248 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 249 bool isPPC64() const { return IsPPC64; } 250 251 int64_t getImm() const { 252 assert(Kind == Immediate && "Invalid access!"); 253 return Imm.Val; 254 } 255 int64_t getImmS16Context() const { 256 assert((Kind == Immediate || Kind == ContextImmediate) && 257 "Invalid access!"); 258 if (Kind == Immediate) 259 return Imm.Val; 260 return static_cast<int16_t>(Imm.Val); 261 } 262 int64_t getImmU16Context() const { 263 assert((Kind == Immediate || Kind == ContextImmediate) && 264 "Invalid access!"); 265 return Imm.Val; 266 } 267 268 const MCExpr *getExpr() const { 269 assert(Kind == Expression && "Invalid access!"); 270 return Expr.Val; 271 } 272 273 int64_t getExprCRVal() const { 274 assert(Kind == Expression && "Invalid access!"); 275 return Expr.CRVal; 276 } 277 278 const MCExpr *getTLSReg() const { 279 assert(Kind == TLSRegister && "Invalid access!"); 280 return TLSReg.Sym; 281 } 282 283 unsigned getReg() const override { 284 assert(isRegNumber() && "Invalid access!"); 285 return (unsigned) Imm.Val; 286 } 287 288 unsigned getVSReg() const { 289 assert(isVSRegNumber() && "Invalid access!"); 290 return (unsigned) Imm.Val; 291 } 292 293 unsigned getVSRpEvenReg() const { 294 assert(isVSRpEvenRegNumber() && "Invalid access!"); 295 return (unsigned) Imm.Val >> 1; 296 } 297 298 unsigned getCCReg() const { 299 assert(isCCRegNumber() && "Invalid access!"); 300 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 301 } 302 303 unsigned getCRBit() const { 304 assert(isCRBitNumber() && "Invalid access!"); 305 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 306 } 307 308 unsigned getCRBitMask() const { 309 assert(isCRBitMask() && "Invalid access!"); 310 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 311 } 312 313 bool isToken() const override { return Kind == Token; } 314 bool isImm() const override { 315 return Kind == Immediate || Kind == Expression; 316 } 317 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 318 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 319 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 320 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 321 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 322 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 323 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 324 bool isU6ImmX2() const { return Kind == Immediate && 325 isUInt<6>(getImm()) && 326 (getImm() & 1) == 0; } 327 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 328 bool isU7ImmX4() const { return Kind == Immediate && 329 isUInt<7>(getImm()) && 330 (getImm() & 3) == 0; } 331 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 332 bool isU8ImmX8() const { return Kind == Immediate && 333 isUInt<8>(getImm()) && 334 (getImm() & 7) == 0; } 335 336 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 337 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 338 bool isU16Imm() const { 339 switch (Kind) { 340 case Expression: 341 return true; 342 case Immediate: 343 case ContextImmediate: 344 return isUInt<16>(getImmU16Context()); 345 default: 346 return false; 347 } 348 } 349 bool isS16Imm() const { 350 switch (Kind) { 351 case Expression: 352 return true; 353 case Immediate: 354 case ContextImmediate: 355 return isInt<16>(getImmS16Context()); 356 default: 357 return false; 358 } 359 } 360 bool isS16ImmX4() const { return Kind == Expression || 361 (Kind == Immediate && isInt<16>(getImm()) && 362 (getImm() & 3) == 0); } 363 bool isS16ImmX16() const { return Kind == Expression || 364 (Kind == Immediate && isInt<16>(getImm()) && 365 (getImm() & 15) == 0); } 366 bool isS34ImmX16() const { 367 return Kind == Expression || 368 (Kind == Immediate && isInt<34>(getImm()) && (getImm() & 15) == 0); 369 } 370 bool isS34Imm() const { 371 // Once the PC-Rel ABI is finalized, evaluate whether a 34-bit 372 // ContextImmediate is needed. 373 return Kind == Expression || (Kind == Immediate && isInt<34>(getImm())); 374 } 375 376 bool isS17Imm() const { 377 switch (Kind) { 378 case Expression: 379 return true; 380 case Immediate: 381 case ContextImmediate: 382 return isInt<17>(getImmS16Context()); 383 default: 384 return false; 385 } 386 } 387 bool isTLSReg() const { return Kind == TLSRegister; } 388 bool isDirectBr() const { 389 if (Kind == Expression) 390 return true; 391 if (Kind != Immediate) 392 return false; 393 // Operand must be 64-bit aligned, signed 27-bit immediate. 394 if ((getImm() & 3) != 0) 395 return false; 396 if (isInt<26>(getImm())) 397 return true; 398 if (!IsPPC64) { 399 // In 32-bit mode, large 32-bit quantities wrap around. 400 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 401 return true; 402 } 403 return false; 404 } 405 bool isCondBr() const { return Kind == Expression || 406 (Kind == Immediate && isInt<16>(getImm()) && 407 (getImm() & 3) == 0); } 408 bool isImmZero() const { return Kind == Immediate && getImm() == 0; } 409 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 410 bool isVSRpEvenRegNumber() const { 411 return Kind == Immediate && isUInt<6>(getImm()) && ((getImm() & 1) == 0); 412 } 413 bool isVSRegNumber() const { 414 return Kind == Immediate && isUInt<6>(getImm()); 415 } 416 bool isCCRegNumber() const { return (Kind == Expression 417 && isUInt<3>(getExprCRVal())) || 418 (Kind == Immediate 419 && isUInt<3>(getImm())); } 420 bool isCRBitNumber() const { return (Kind == Expression 421 && isUInt<5>(getExprCRVal())) || 422 (Kind == Immediate 423 && isUInt<5>(getImm())); } 424 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 425 isPowerOf2_32(getImm()); } 426 bool isATBitsAsHint() const { return false; } 427 bool isMem() const override { return false; } 428 bool isReg() const override { return false; } 429 430 void addRegOperands(MCInst &Inst, unsigned N) const { 431 llvm_unreachable("addRegOperands"); 432 } 433 434 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 435 assert(N == 1 && "Invalid number of operands!"); 436 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 437 } 438 439 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 440 assert(N == 1 && "Invalid number of operands!"); 441 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 442 } 443 444 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 445 assert(N == 1 && "Invalid number of operands!"); 446 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 447 } 448 449 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 450 assert(N == 1 && "Invalid number of operands!"); 451 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 452 } 453 454 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 455 if (isPPC64()) 456 addRegG8RCOperands(Inst, N); 457 else 458 addRegGPRCOperands(Inst, N); 459 } 460 461 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 462 if (isPPC64()) 463 addRegG8RCNoX0Operands(Inst, N); 464 else 465 addRegGPRCNoR0Operands(Inst, N); 466 } 467 468 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 469 assert(N == 1 && "Invalid number of operands!"); 470 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 471 } 472 473 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 474 assert(N == 1 && "Invalid number of operands!"); 475 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 476 } 477 478 void addRegVFRCOperands(MCInst &Inst, unsigned N) const { 479 assert(N == 1 && "Invalid number of operands!"); 480 Inst.addOperand(MCOperand::createReg(VFRegs[getReg()])); 481 } 482 483 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 484 assert(N == 1 && "Invalid number of operands!"); 485 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 486 } 487 488 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 489 assert(N == 1 && "Invalid number of operands!"); 490 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 491 } 492 493 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 494 assert(N == 1 && "Invalid number of operands!"); 495 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 496 } 497 498 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 499 assert(N == 1 && "Invalid number of operands!"); 500 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 501 } 502 503 void addRegSPE4RCOperands(MCInst &Inst, unsigned N) const { 504 assert(N == 1 && "Invalid number of operands!"); 505 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 506 } 507 508 void addRegSPERCOperands(MCInst &Inst, unsigned N) const { 509 assert(N == 1 && "Invalid number of operands!"); 510 Inst.addOperand(MCOperand::createReg(SPERegs[getReg()])); 511 } 512 513 void addRegVSRpRCOperands(MCInst &Inst, unsigned N) const { 514 assert(N == 1 && "Invalid number of operands!"); 515 Inst.addOperand(MCOperand::createReg(VSRpRegs[getVSRpEvenReg()])); 516 } 517 518 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 519 assert(N == 1 && "Invalid number of operands!"); 520 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 521 } 522 523 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 524 assert(N == 1 && "Invalid number of operands!"); 525 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 526 } 527 528 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 529 assert(N == 1 && "Invalid number of operands!"); 530 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 531 } 532 533 void addImmOperands(MCInst &Inst, unsigned N) const { 534 assert(N == 1 && "Invalid number of operands!"); 535 if (Kind == Immediate) 536 Inst.addOperand(MCOperand::createImm(getImm())); 537 else 538 Inst.addOperand(MCOperand::createExpr(getExpr())); 539 } 540 541 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 542 assert(N == 1 && "Invalid number of operands!"); 543 switch (Kind) { 544 case Immediate: 545 Inst.addOperand(MCOperand::createImm(getImm())); 546 break; 547 case ContextImmediate: 548 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 549 break; 550 default: 551 Inst.addOperand(MCOperand::createExpr(getExpr())); 552 break; 553 } 554 } 555 556 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 557 assert(N == 1 && "Invalid number of operands!"); 558 switch (Kind) { 559 case Immediate: 560 Inst.addOperand(MCOperand::createImm(getImm())); 561 break; 562 case ContextImmediate: 563 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 564 break; 565 default: 566 Inst.addOperand(MCOperand::createExpr(getExpr())); 567 break; 568 } 569 } 570 571 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 572 assert(N == 1 && "Invalid number of operands!"); 573 if (Kind == Immediate) 574 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 575 else 576 Inst.addOperand(MCOperand::createExpr(getExpr())); 577 } 578 579 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 580 assert(N == 1 && "Invalid number of operands!"); 581 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 582 } 583 584 StringRef getToken() const { 585 assert(Kind == Token && "Invalid access!"); 586 return StringRef(Tok.Data, Tok.Length); 587 } 588 589 void print(raw_ostream &OS) const override; 590 591 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 592 bool IsPPC64) { 593 auto Op = std::make_unique<PPCOperand>(Token); 594 Op->Tok.Data = Str.data(); 595 Op->Tok.Length = Str.size(); 596 Op->StartLoc = S; 597 Op->EndLoc = S; 598 Op->IsPPC64 = IsPPC64; 599 return Op; 600 } 601 602 static std::unique_ptr<PPCOperand> 603 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 604 // Allocate extra memory for the string and copy it. 605 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 606 // deleter which will destroy them by simply using "delete", not correctly 607 // calling operator delete on this extra memory after calling the dtor 608 // explicitly. 609 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 610 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 611 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 612 Op->Tok.Length = Str.size(); 613 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 614 Op->StartLoc = S; 615 Op->EndLoc = S; 616 Op->IsPPC64 = IsPPC64; 617 return Op; 618 } 619 620 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 621 bool IsPPC64) { 622 auto Op = std::make_unique<PPCOperand>(Immediate); 623 Op->Imm.Val = Val; 624 Op->StartLoc = S; 625 Op->EndLoc = E; 626 Op->IsPPC64 = IsPPC64; 627 return Op; 628 } 629 630 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 631 SMLoc E, bool IsPPC64) { 632 auto Op = std::make_unique<PPCOperand>(Expression); 633 Op->Expr.Val = Val; 634 Op->Expr.CRVal = EvaluateCRExpr(Val); 635 Op->StartLoc = S; 636 Op->EndLoc = E; 637 Op->IsPPC64 = IsPPC64; 638 return Op; 639 } 640 641 static std::unique_ptr<PPCOperand> 642 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 643 auto Op = std::make_unique<PPCOperand>(TLSRegister); 644 Op->TLSReg.Sym = Sym; 645 Op->StartLoc = S; 646 Op->EndLoc = E; 647 Op->IsPPC64 = IsPPC64; 648 return Op; 649 } 650 651 static std::unique_ptr<PPCOperand> 652 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 653 auto Op = std::make_unique<PPCOperand>(ContextImmediate); 654 Op->Imm.Val = Val; 655 Op->StartLoc = S; 656 Op->EndLoc = E; 657 Op->IsPPC64 = IsPPC64; 658 return Op; 659 } 660 661 static std::unique_ptr<PPCOperand> 662 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 663 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 664 return CreateImm(CE->getValue(), S, E, IsPPC64); 665 666 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 667 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS || 668 SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL) 669 return CreateTLSReg(SRE, S, E, IsPPC64); 670 671 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 672 int64_t Res; 673 if (TE->evaluateAsConstant(Res)) 674 return CreateContextImm(Res, S, E, IsPPC64); 675 } 676 677 return CreateExpr(Val, S, E, IsPPC64); 678 } 679 }; 680 681 } // end anonymous namespace. 682 683 void PPCOperand::print(raw_ostream &OS) const { 684 switch (Kind) { 685 case Token: 686 OS << "'" << getToken() << "'"; 687 break; 688 case Immediate: 689 case ContextImmediate: 690 OS << getImm(); 691 break; 692 case Expression: 693 OS << *getExpr(); 694 break; 695 case TLSRegister: 696 OS << *getTLSReg(); 697 break; 698 } 699 } 700 701 static void 702 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 703 if (Op.isImm()) { 704 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 705 return; 706 } 707 const MCExpr *Expr = Op.getExpr(); 708 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 709 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 710 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 711 return; 712 } 713 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 714 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 715 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 716 BinExpr->getLHS(), Ctx); 717 Inst.addOperand(MCOperand::createExpr(NE)); 718 return; 719 } 720 } 721 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 722 } 723 724 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 725 const OperandVector &Operands) { 726 int Opcode = Inst.getOpcode(); 727 switch (Opcode) { 728 case PPC::DCBTx: 729 case PPC::DCBTT: 730 case PPC::DCBTSTx: 731 case PPC::DCBTSTT: { 732 MCInst TmpInst; 733 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 734 PPC::DCBT : PPC::DCBTST); 735 TmpInst.addOperand(MCOperand::createImm( 736 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 737 TmpInst.addOperand(Inst.getOperand(0)); 738 TmpInst.addOperand(Inst.getOperand(1)); 739 Inst = TmpInst; 740 break; 741 } 742 case PPC::DCBTCT: 743 case PPC::DCBTDS: { 744 MCInst TmpInst; 745 TmpInst.setOpcode(PPC::DCBT); 746 TmpInst.addOperand(Inst.getOperand(2)); 747 TmpInst.addOperand(Inst.getOperand(0)); 748 TmpInst.addOperand(Inst.getOperand(1)); 749 Inst = TmpInst; 750 break; 751 } 752 case PPC::DCBTSTCT: 753 case PPC::DCBTSTDS: { 754 MCInst TmpInst; 755 TmpInst.setOpcode(PPC::DCBTST); 756 TmpInst.addOperand(Inst.getOperand(2)); 757 TmpInst.addOperand(Inst.getOperand(0)); 758 TmpInst.addOperand(Inst.getOperand(1)); 759 Inst = TmpInst; 760 break; 761 } 762 case PPC::DCBFx: 763 case PPC::DCBFL: 764 case PPC::DCBFLP: { 765 int L = 0; 766 if (Opcode == PPC::DCBFL) 767 L = 1; 768 else if (Opcode == PPC::DCBFLP) 769 L = 3; 770 771 MCInst TmpInst; 772 TmpInst.setOpcode(PPC::DCBF); 773 TmpInst.addOperand(MCOperand::createImm(L)); 774 TmpInst.addOperand(Inst.getOperand(0)); 775 TmpInst.addOperand(Inst.getOperand(1)); 776 Inst = TmpInst; 777 break; 778 } 779 case PPC::LAx: { 780 MCInst TmpInst; 781 TmpInst.setOpcode(PPC::LA); 782 TmpInst.addOperand(Inst.getOperand(0)); 783 TmpInst.addOperand(Inst.getOperand(2)); 784 TmpInst.addOperand(Inst.getOperand(1)); 785 Inst = TmpInst; 786 break; 787 } 788 case PPC::SUBI: { 789 MCInst TmpInst; 790 TmpInst.setOpcode(PPC::ADDI); 791 TmpInst.addOperand(Inst.getOperand(0)); 792 TmpInst.addOperand(Inst.getOperand(1)); 793 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 794 Inst = TmpInst; 795 break; 796 } 797 case PPC::SUBIS: { 798 MCInst TmpInst; 799 TmpInst.setOpcode(PPC::ADDIS); 800 TmpInst.addOperand(Inst.getOperand(0)); 801 TmpInst.addOperand(Inst.getOperand(1)); 802 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 803 Inst = TmpInst; 804 break; 805 } 806 case PPC::SUBIC: { 807 MCInst TmpInst; 808 TmpInst.setOpcode(PPC::ADDIC); 809 TmpInst.addOperand(Inst.getOperand(0)); 810 TmpInst.addOperand(Inst.getOperand(1)); 811 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 812 Inst = TmpInst; 813 break; 814 } 815 case PPC::SUBIC_rec: { 816 MCInst TmpInst; 817 TmpInst.setOpcode(PPC::ADDIC_rec); 818 TmpInst.addOperand(Inst.getOperand(0)); 819 TmpInst.addOperand(Inst.getOperand(1)); 820 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 821 Inst = TmpInst; 822 break; 823 } 824 case PPC::EXTLWI: 825 case PPC::EXTLWI_rec: { 826 MCInst TmpInst; 827 int64_t N = Inst.getOperand(2).getImm(); 828 int64_t B = Inst.getOperand(3).getImm(); 829 TmpInst.setOpcode(Opcode == PPC::EXTLWI ? PPC::RLWINM : PPC::RLWINM_rec); 830 TmpInst.addOperand(Inst.getOperand(0)); 831 TmpInst.addOperand(Inst.getOperand(1)); 832 TmpInst.addOperand(MCOperand::createImm(B)); 833 TmpInst.addOperand(MCOperand::createImm(0)); 834 TmpInst.addOperand(MCOperand::createImm(N - 1)); 835 Inst = TmpInst; 836 break; 837 } 838 case PPC::EXTRWI: 839 case PPC::EXTRWI_rec: { 840 MCInst TmpInst; 841 int64_t N = Inst.getOperand(2).getImm(); 842 int64_t B = Inst.getOperand(3).getImm(); 843 TmpInst.setOpcode(Opcode == PPC::EXTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 844 TmpInst.addOperand(Inst.getOperand(0)); 845 TmpInst.addOperand(Inst.getOperand(1)); 846 TmpInst.addOperand(MCOperand::createImm(B + N)); 847 TmpInst.addOperand(MCOperand::createImm(32 - N)); 848 TmpInst.addOperand(MCOperand::createImm(31)); 849 Inst = TmpInst; 850 break; 851 } 852 case PPC::INSLWI: 853 case PPC::INSLWI_rec: { 854 MCInst TmpInst; 855 int64_t N = Inst.getOperand(2).getImm(); 856 int64_t B = Inst.getOperand(3).getImm(); 857 TmpInst.setOpcode(Opcode == PPC::INSLWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 858 TmpInst.addOperand(Inst.getOperand(0)); 859 TmpInst.addOperand(Inst.getOperand(0)); 860 TmpInst.addOperand(Inst.getOperand(1)); 861 TmpInst.addOperand(MCOperand::createImm(32 - B)); 862 TmpInst.addOperand(MCOperand::createImm(B)); 863 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 864 Inst = TmpInst; 865 break; 866 } 867 case PPC::INSRWI: 868 case PPC::INSRWI_rec: { 869 MCInst TmpInst; 870 int64_t N = Inst.getOperand(2).getImm(); 871 int64_t B = Inst.getOperand(3).getImm(); 872 TmpInst.setOpcode(Opcode == PPC::INSRWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 873 TmpInst.addOperand(Inst.getOperand(0)); 874 TmpInst.addOperand(Inst.getOperand(0)); 875 TmpInst.addOperand(Inst.getOperand(1)); 876 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 877 TmpInst.addOperand(MCOperand::createImm(B)); 878 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 879 Inst = TmpInst; 880 break; 881 } 882 case PPC::ROTRWI: 883 case PPC::ROTRWI_rec: { 884 MCInst TmpInst; 885 int64_t N = Inst.getOperand(2).getImm(); 886 TmpInst.setOpcode(Opcode == PPC::ROTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 887 TmpInst.addOperand(Inst.getOperand(0)); 888 TmpInst.addOperand(Inst.getOperand(1)); 889 TmpInst.addOperand(MCOperand::createImm(32 - N)); 890 TmpInst.addOperand(MCOperand::createImm(0)); 891 TmpInst.addOperand(MCOperand::createImm(31)); 892 Inst = TmpInst; 893 break; 894 } 895 case PPC::SLWI: 896 case PPC::SLWI_rec: { 897 MCInst TmpInst; 898 int64_t N = Inst.getOperand(2).getImm(); 899 TmpInst.setOpcode(Opcode == PPC::SLWI ? PPC::RLWINM : PPC::RLWINM_rec); 900 TmpInst.addOperand(Inst.getOperand(0)); 901 TmpInst.addOperand(Inst.getOperand(1)); 902 TmpInst.addOperand(MCOperand::createImm(N)); 903 TmpInst.addOperand(MCOperand::createImm(0)); 904 TmpInst.addOperand(MCOperand::createImm(31 - N)); 905 Inst = TmpInst; 906 break; 907 } 908 case PPC::SRWI: 909 case PPC::SRWI_rec: { 910 MCInst TmpInst; 911 int64_t N = Inst.getOperand(2).getImm(); 912 TmpInst.setOpcode(Opcode == PPC::SRWI ? PPC::RLWINM : PPC::RLWINM_rec); 913 TmpInst.addOperand(Inst.getOperand(0)); 914 TmpInst.addOperand(Inst.getOperand(1)); 915 TmpInst.addOperand(MCOperand::createImm(32 - N)); 916 TmpInst.addOperand(MCOperand::createImm(N)); 917 TmpInst.addOperand(MCOperand::createImm(31)); 918 Inst = TmpInst; 919 break; 920 } 921 case PPC::CLRRWI: 922 case PPC::CLRRWI_rec: { 923 MCInst TmpInst; 924 int64_t N = Inst.getOperand(2).getImm(); 925 TmpInst.setOpcode(Opcode == PPC::CLRRWI ? PPC::RLWINM : PPC::RLWINM_rec); 926 TmpInst.addOperand(Inst.getOperand(0)); 927 TmpInst.addOperand(Inst.getOperand(1)); 928 TmpInst.addOperand(MCOperand::createImm(0)); 929 TmpInst.addOperand(MCOperand::createImm(0)); 930 TmpInst.addOperand(MCOperand::createImm(31 - N)); 931 Inst = TmpInst; 932 break; 933 } 934 case PPC::CLRLSLWI: 935 case PPC::CLRLSLWI_rec: { 936 MCInst TmpInst; 937 int64_t B = Inst.getOperand(2).getImm(); 938 int64_t N = Inst.getOperand(3).getImm(); 939 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI ? PPC::RLWINM : PPC::RLWINM_rec); 940 TmpInst.addOperand(Inst.getOperand(0)); 941 TmpInst.addOperand(Inst.getOperand(1)); 942 TmpInst.addOperand(MCOperand::createImm(N)); 943 TmpInst.addOperand(MCOperand::createImm(B - N)); 944 TmpInst.addOperand(MCOperand::createImm(31 - N)); 945 Inst = TmpInst; 946 break; 947 } 948 case PPC::EXTLDI: 949 case PPC::EXTLDI_rec: { 950 MCInst TmpInst; 951 int64_t N = Inst.getOperand(2).getImm(); 952 int64_t B = Inst.getOperand(3).getImm(); 953 TmpInst.setOpcode(Opcode == PPC::EXTLDI ? PPC::RLDICR : PPC::RLDICR_rec); 954 TmpInst.addOperand(Inst.getOperand(0)); 955 TmpInst.addOperand(Inst.getOperand(1)); 956 TmpInst.addOperand(MCOperand::createImm(B)); 957 TmpInst.addOperand(MCOperand::createImm(N - 1)); 958 Inst = TmpInst; 959 break; 960 } 961 case PPC::EXTRDI: 962 case PPC::EXTRDI_rec: { 963 MCInst TmpInst; 964 int64_t N = Inst.getOperand(2).getImm(); 965 int64_t B = Inst.getOperand(3).getImm(); 966 TmpInst.setOpcode(Opcode == PPC::EXTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 967 TmpInst.addOperand(Inst.getOperand(0)); 968 TmpInst.addOperand(Inst.getOperand(1)); 969 TmpInst.addOperand(MCOperand::createImm(B + N)); 970 TmpInst.addOperand(MCOperand::createImm(64 - N)); 971 Inst = TmpInst; 972 break; 973 } 974 case PPC::INSRDI: 975 case PPC::INSRDI_rec: { 976 MCInst TmpInst; 977 int64_t N = Inst.getOperand(2).getImm(); 978 int64_t B = Inst.getOperand(3).getImm(); 979 TmpInst.setOpcode(Opcode == PPC::INSRDI ? PPC::RLDIMI : PPC::RLDIMI_rec); 980 TmpInst.addOperand(Inst.getOperand(0)); 981 TmpInst.addOperand(Inst.getOperand(0)); 982 TmpInst.addOperand(Inst.getOperand(1)); 983 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 984 TmpInst.addOperand(MCOperand::createImm(B)); 985 Inst = TmpInst; 986 break; 987 } 988 case PPC::ROTRDI: 989 case PPC::ROTRDI_rec: { 990 MCInst TmpInst; 991 int64_t N = Inst.getOperand(2).getImm(); 992 TmpInst.setOpcode(Opcode == PPC::ROTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 993 TmpInst.addOperand(Inst.getOperand(0)); 994 TmpInst.addOperand(Inst.getOperand(1)); 995 TmpInst.addOperand(MCOperand::createImm(64 - N)); 996 TmpInst.addOperand(MCOperand::createImm(0)); 997 Inst = TmpInst; 998 break; 999 } 1000 case PPC::SLDI: 1001 case PPC::SLDI_rec: { 1002 MCInst TmpInst; 1003 int64_t N = Inst.getOperand(2).getImm(); 1004 TmpInst.setOpcode(Opcode == PPC::SLDI ? PPC::RLDICR : PPC::RLDICR_rec); 1005 TmpInst.addOperand(Inst.getOperand(0)); 1006 TmpInst.addOperand(Inst.getOperand(1)); 1007 TmpInst.addOperand(MCOperand::createImm(N)); 1008 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1009 Inst = TmpInst; 1010 break; 1011 } 1012 case PPC::SUBPCIS: { 1013 MCInst TmpInst; 1014 int64_t N = Inst.getOperand(1).getImm(); 1015 TmpInst.setOpcode(PPC::ADDPCIS); 1016 TmpInst.addOperand(Inst.getOperand(0)); 1017 TmpInst.addOperand(MCOperand::createImm(-N)); 1018 Inst = TmpInst; 1019 break; 1020 } 1021 case PPC::SRDI: 1022 case PPC::SRDI_rec: { 1023 MCInst TmpInst; 1024 int64_t N = Inst.getOperand(2).getImm(); 1025 TmpInst.setOpcode(Opcode == PPC::SRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1026 TmpInst.addOperand(Inst.getOperand(0)); 1027 TmpInst.addOperand(Inst.getOperand(1)); 1028 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1029 TmpInst.addOperand(MCOperand::createImm(N)); 1030 Inst = TmpInst; 1031 break; 1032 } 1033 case PPC::CLRRDI: 1034 case PPC::CLRRDI_rec: { 1035 MCInst TmpInst; 1036 int64_t N = Inst.getOperand(2).getImm(); 1037 TmpInst.setOpcode(Opcode == PPC::CLRRDI ? PPC::RLDICR : PPC::RLDICR_rec); 1038 TmpInst.addOperand(Inst.getOperand(0)); 1039 TmpInst.addOperand(Inst.getOperand(1)); 1040 TmpInst.addOperand(MCOperand::createImm(0)); 1041 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1042 Inst = TmpInst; 1043 break; 1044 } 1045 case PPC::CLRLSLDI: 1046 case PPC::CLRLSLDI_rec: { 1047 MCInst TmpInst; 1048 int64_t B = Inst.getOperand(2).getImm(); 1049 int64_t N = Inst.getOperand(3).getImm(); 1050 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI ? PPC::RLDIC : PPC::RLDIC_rec); 1051 TmpInst.addOperand(Inst.getOperand(0)); 1052 TmpInst.addOperand(Inst.getOperand(1)); 1053 TmpInst.addOperand(MCOperand::createImm(N)); 1054 TmpInst.addOperand(MCOperand::createImm(B - N)); 1055 Inst = TmpInst; 1056 break; 1057 } 1058 case PPC::RLWINMbm: 1059 case PPC::RLWINMbm_rec: { 1060 unsigned MB, ME; 1061 int64_t BM = Inst.getOperand(3).getImm(); 1062 if (!isRunOfOnes(BM, MB, ME)) 1063 break; 1064 1065 MCInst TmpInst; 1066 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINM_rec); 1067 TmpInst.addOperand(Inst.getOperand(0)); 1068 TmpInst.addOperand(Inst.getOperand(1)); 1069 TmpInst.addOperand(Inst.getOperand(2)); 1070 TmpInst.addOperand(MCOperand::createImm(MB)); 1071 TmpInst.addOperand(MCOperand::createImm(ME)); 1072 Inst = TmpInst; 1073 break; 1074 } 1075 case PPC::RLWIMIbm: 1076 case PPC::RLWIMIbm_rec: { 1077 unsigned MB, ME; 1078 int64_t BM = Inst.getOperand(3).getImm(); 1079 if (!isRunOfOnes(BM, MB, ME)) 1080 break; 1081 1082 MCInst TmpInst; 1083 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMI_rec); 1084 TmpInst.addOperand(Inst.getOperand(0)); 1085 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1086 TmpInst.addOperand(Inst.getOperand(1)); 1087 TmpInst.addOperand(Inst.getOperand(2)); 1088 TmpInst.addOperand(MCOperand::createImm(MB)); 1089 TmpInst.addOperand(MCOperand::createImm(ME)); 1090 Inst = TmpInst; 1091 break; 1092 } 1093 case PPC::RLWNMbm: 1094 case PPC::RLWNMbm_rec: { 1095 unsigned MB, ME; 1096 int64_t BM = Inst.getOperand(3).getImm(); 1097 if (!isRunOfOnes(BM, MB, ME)) 1098 break; 1099 1100 MCInst TmpInst; 1101 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNM_rec); 1102 TmpInst.addOperand(Inst.getOperand(0)); 1103 TmpInst.addOperand(Inst.getOperand(1)); 1104 TmpInst.addOperand(Inst.getOperand(2)); 1105 TmpInst.addOperand(MCOperand::createImm(MB)); 1106 TmpInst.addOperand(MCOperand::createImm(ME)); 1107 Inst = TmpInst; 1108 break; 1109 } 1110 case PPC::MFTB: { 1111 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1112 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1113 Inst.setOpcode(PPC::MFSPR); 1114 } 1115 break; 1116 } 1117 case PPC::CP_COPYx: 1118 case PPC::CP_COPY_FIRST: { 1119 MCInst TmpInst; 1120 TmpInst.setOpcode(PPC::CP_COPY); 1121 TmpInst.addOperand(Inst.getOperand(0)); 1122 TmpInst.addOperand(Inst.getOperand(1)); 1123 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1124 1125 Inst = TmpInst; 1126 break; 1127 } 1128 case PPC::CP_PASTEx : 1129 case PPC::CP_PASTE_LAST: { 1130 MCInst TmpInst; 1131 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? PPC::CP_PASTE 1132 : PPC::CP_PASTE_rec); 1133 TmpInst.addOperand(Inst.getOperand(0)); 1134 TmpInst.addOperand(Inst.getOperand(1)); 1135 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1136 1137 Inst = TmpInst; 1138 break; 1139 } 1140 } 1141 } 1142 1143 static std::string PPCMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 1144 unsigned VariantID = 0); 1145 1146 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1147 OperandVector &Operands, 1148 MCStreamer &Out, uint64_t &ErrorInfo, 1149 bool MatchingInlineAsm) { 1150 MCInst Inst; 1151 1152 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1153 case Match_Success: 1154 // Post-process instructions (typically extended mnemonics) 1155 ProcessInstruction(Inst, Operands); 1156 Inst.setLoc(IDLoc); 1157 Out.emitInstruction(Inst, getSTI()); 1158 return false; 1159 case Match_MissingFeature: 1160 return Error(IDLoc, "instruction use requires an option to be enabled"); 1161 case Match_MnemonicFail: { 1162 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1163 std::string Suggestion = PPCMnemonicSpellCheck( 1164 ((PPCOperand &)*Operands[0]).getToken(), FBS); 1165 return Error(IDLoc, "invalid instruction" + Suggestion, 1166 ((PPCOperand &)*Operands[0]).getLocRange()); 1167 } 1168 case Match_InvalidOperand: { 1169 SMLoc ErrorLoc = IDLoc; 1170 if (ErrorInfo != ~0ULL) { 1171 if (ErrorInfo >= Operands.size()) 1172 return Error(IDLoc, "too few operands for instruction"); 1173 1174 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1175 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1176 } 1177 1178 return Error(ErrorLoc, "invalid operand for instruction"); 1179 } 1180 } 1181 1182 llvm_unreachable("Implement any new match types added!"); 1183 } 1184 1185 bool PPCAsmParser::MatchRegisterName(unsigned &RegNo, int64_t &IntVal) { 1186 if (getParser().getTok().is(AsmToken::Identifier)) { 1187 StringRef Name = getParser().getTok().getString(); 1188 if (Name.equals_lower("lr")) { 1189 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1190 IntVal = 8; 1191 } else if (Name.equals_lower("ctr")) { 1192 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1193 IntVal = 9; 1194 } else if (Name.equals_lower("vrsave")) { 1195 RegNo = PPC::VRSAVE; 1196 IntVal = 256; 1197 } else if (Name.startswith_lower("r") && 1198 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1199 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1200 } else if (Name.startswith_lower("f") && 1201 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1202 RegNo = FRegs[IntVal]; 1203 } else if (Name.startswith_lower("vs") && 1204 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1205 RegNo = VSRegs[IntVal]; 1206 } else if (Name.startswith_lower("v") && 1207 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1208 RegNo = VRegs[IntVal]; 1209 } else if (Name.startswith_lower("cr") && 1210 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1211 RegNo = CRRegs[IntVal]; 1212 } else 1213 return true; 1214 getParser().Lex(); 1215 return false; 1216 } 1217 return true; 1218 } 1219 1220 bool PPCAsmParser:: 1221 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1222 if (tryParseRegister(RegNo, StartLoc, EndLoc) != MatchOperand_Success) 1223 return TokError("invalid register name"); 1224 return false; 1225 } 1226 1227 OperandMatchResultTy PPCAsmParser::tryParseRegister(unsigned &RegNo, 1228 SMLoc &StartLoc, 1229 SMLoc &EndLoc) { 1230 const AsmToken &Tok = getParser().getTok(); 1231 StartLoc = Tok.getLoc(); 1232 EndLoc = Tok.getEndLoc(); 1233 RegNo = 0; 1234 int64_t IntVal; 1235 if (MatchRegisterName(RegNo, IntVal)) 1236 return MatchOperand_NoMatch; 1237 return MatchOperand_Success; 1238 } 1239 1240 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1241 /// the expression and check for VK_PPC_LO/HI/HA 1242 /// symbol variants. If all symbols with modifier use the same 1243 /// variant, return the corresponding PPCMCExpr::VariantKind, 1244 /// and a modified expression using the default symbol variant. 1245 /// Otherwise, return NULL. 1246 const MCExpr *PPCAsmParser:: 1247 ExtractModifierFromExpr(const MCExpr *E, 1248 PPCMCExpr::VariantKind &Variant) { 1249 MCContext &Context = getParser().getContext(); 1250 Variant = PPCMCExpr::VK_PPC_None; 1251 1252 switch (E->getKind()) { 1253 case MCExpr::Target: 1254 case MCExpr::Constant: 1255 return nullptr; 1256 1257 case MCExpr::SymbolRef: { 1258 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1259 1260 switch (SRE->getKind()) { 1261 case MCSymbolRefExpr::VK_PPC_LO: 1262 Variant = PPCMCExpr::VK_PPC_LO; 1263 break; 1264 case MCSymbolRefExpr::VK_PPC_HI: 1265 Variant = PPCMCExpr::VK_PPC_HI; 1266 break; 1267 case MCSymbolRefExpr::VK_PPC_HA: 1268 Variant = PPCMCExpr::VK_PPC_HA; 1269 break; 1270 case MCSymbolRefExpr::VK_PPC_HIGH: 1271 Variant = PPCMCExpr::VK_PPC_HIGH; 1272 break; 1273 case MCSymbolRefExpr::VK_PPC_HIGHA: 1274 Variant = PPCMCExpr::VK_PPC_HIGHA; 1275 break; 1276 case MCSymbolRefExpr::VK_PPC_HIGHER: 1277 Variant = PPCMCExpr::VK_PPC_HIGHER; 1278 break; 1279 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1280 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1281 break; 1282 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1283 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1284 break; 1285 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1286 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1287 break; 1288 default: 1289 return nullptr; 1290 } 1291 1292 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1293 } 1294 1295 case MCExpr::Unary: { 1296 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1297 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1298 if (!Sub) 1299 return nullptr; 1300 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1301 } 1302 1303 case MCExpr::Binary: { 1304 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1305 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1306 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1307 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1308 1309 if (!LHS && !RHS) 1310 return nullptr; 1311 1312 if (!LHS) LHS = BE->getLHS(); 1313 if (!RHS) RHS = BE->getRHS(); 1314 1315 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1316 Variant = RHSVariant; 1317 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1318 Variant = LHSVariant; 1319 else if (LHSVariant == RHSVariant) 1320 Variant = LHSVariant; 1321 else 1322 return nullptr; 1323 1324 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1325 } 1326 } 1327 1328 llvm_unreachable("Invalid expression kind!"); 1329 } 1330 1331 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1332 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1333 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1334 /// FIXME: This is a hack. 1335 const MCExpr *PPCAsmParser:: 1336 FixupVariantKind(const MCExpr *E) { 1337 MCContext &Context = getParser().getContext(); 1338 1339 switch (E->getKind()) { 1340 case MCExpr::Target: 1341 case MCExpr::Constant: 1342 return E; 1343 1344 case MCExpr::SymbolRef: { 1345 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1346 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1347 1348 switch (SRE->getKind()) { 1349 case MCSymbolRefExpr::VK_TLSGD: 1350 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1351 break; 1352 case MCSymbolRefExpr::VK_TLSLD: 1353 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1354 break; 1355 default: 1356 return E; 1357 } 1358 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1359 } 1360 1361 case MCExpr::Unary: { 1362 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1363 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1364 if (Sub == UE->getSubExpr()) 1365 return E; 1366 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1367 } 1368 1369 case MCExpr::Binary: { 1370 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1371 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1372 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1373 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1374 return E; 1375 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1376 } 1377 } 1378 1379 llvm_unreachable("Invalid expression kind!"); 1380 } 1381 1382 /// ParseExpression. This differs from the default "parseExpression" in that 1383 /// it handles modifiers. 1384 bool PPCAsmParser:: 1385 ParseExpression(const MCExpr *&EVal) { 1386 1387 if (isDarwin()) 1388 return ParseDarwinExpression(EVal); 1389 1390 // (ELF Platforms) 1391 // Handle \code @l/@ha \endcode 1392 if (getParser().parseExpression(EVal)) 1393 return true; 1394 1395 EVal = FixupVariantKind(EVal); 1396 1397 PPCMCExpr::VariantKind Variant; 1398 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1399 if (E) 1400 EVal = PPCMCExpr::create(Variant, E, getParser().getContext()); 1401 1402 return false; 1403 } 1404 1405 /// ParseDarwinExpression. (MachO Platforms) 1406 /// This differs from the default "parseExpression" in that it handles detection 1407 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1408 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1409 /// syntax form so it is done here. TODO: Determine if there is merit in 1410 /// arranging for this to be done at a higher level. 1411 bool PPCAsmParser:: 1412 ParseDarwinExpression(const MCExpr *&EVal) { 1413 MCAsmParser &Parser = getParser(); 1414 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1415 switch (getLexer().getKind()) { 1416 default: 1417 break; 1418 case AsmToken::Identifier: 1419 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1420 // something starting with any other char should be part of the 1421 // asm syntax. If handwritten asm includes an identifier like lo16, 1422 // then all bets are off - but no-one would do that, right? 1423 StringRef poss = Parser.getTok().getString(); 1424 if (poss.equals_lower("lo16")) { 1425 Variant = PPCMCExpr::VK_PPC_LO; 1426 } else if (poss.equals_lower("hi16")) { 1427 Variant = PPCMCExpr::VK_PPC_HI; 1428 } else if (poss.equals_lower("ha16")) { 1429 Variant = PPCMCExpr::VK_PPC_HA; 1430 } 1431 if (Variant != PPCMCExpr::VK_PPC_None) { 1432 Parser.Lex(); // Eat the xx16 1433 if (getLexer().isNot(AsmToken::LParen)) 1434 return Error(Parser.getTok().getLoc(), "expected '('"); 1435 Parser.Lex(); // Eat the '(' 1436 } 1437 break; 1438 } 1439 1440 if (getParser().parseExpression(EVal)) 1441 return true; 1442 1443 if (Variant != PPCMCExpr::VK_PPC_None) { 1444 if (getLexer().isNot(AsmToken::RParen)) 1445 return Error(Parser.getTok().getLoc(), "expected ')'"); 1446 Parser.Lex(); // Eat the ')' 1447 EVal = PPCMCExpr::create(Variant, EVal, getParser().getContext()); 1448 } 1449 return false; 1450 } 1451 1452 /// ParseOperand 1453 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1454 /// rNN for MachO. 1455 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1456 MCAsmParser &Parser = getParser(); 1457 SMLoc S = Parser.getTok().getLoc(); 1458 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1459 const MCExpr *EVal; 1460 1461 // Attempt to parse the next token as an immediate 1462 switch (getLexer().getKind()) { 1463 // Special handling for register names. These are interpreted 1464 // as immediates corresponding to the register number. 1465 case AsmToken::Percent: 1466 Parser.Lex(); // Eat the '%'. 1467 unsigned RegNo; 1468 int64_t IntVal; 1469 if (MatchRegisterName(RegNo, IntVal)) 1470 return Error(S, "invalid register name"); 1471 1472 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1473 return false; 1474 1475 case AsmToken::Identifier: 1476 case AsmToken::LParen: 1477 case AsmToken::Plus: 1478 case AsmToken::Minus: 1479 case AsmToken::Integer: 1480 case AsmToken::Dot: 1481 case AsmToken::Dollar: 1482 case AsmToken::Exclaim: 1483 case AsmToken::Tilde: 1484 // Note that non-register-name identifiers from the compiler will begin 1485 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1486 // identifiers like r31foo - so we fall through in the event that parsing 1487 // a register name fails. 1488 if (isDarwin()) { 1489 unsigned RegNo; 1490 int64_t IntVal; 1491 if (!MatchRegisterName(RegNo, IntVal)) { 1492 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1493 return false; 1494 } 1495 } 1496 // All other expressions 1497 1498 if (!ParseExpression(EVal)) 1499 break; 1500 // Fall-through 1501 LLVM_FALLTHROUGH; 1502 default: 1503 return Error(S, "unknown operand"); 1504 } 1505 1506 // Push the parsed operand into the list of operands 1507 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1508 1509 // Check whether this is a TLS call expression 1510 bool TLSCall = false; 1511 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1512 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1513 1514 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1515 const MCExpr *TLSSym; 1516 1517 Parser.Lex(); // Eat the '('. 1518 S = Parser.getTok().getLoc(); 1519 if (ParseExpression(TLSSym)) 1520 return Error(S, "invalid TLS call expression"); 1521 if (getLexer().isNot(AsmToken::RParen)) 1522 return Error(Parser.getTok().getLoc(), "missing ')'"); 1523 E = Parser.getTok().getLoc(); 1524 Parser.Lex(); // Eat the ')'. 1525 1526 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1527 } 1528 1529 // Otherwise, check for D-form memory operands 1530 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1531 Parser.Lex(); // Eat the '('. 1532 S = Parser.getTok().getLoc(); 1533 1534 int64_t IntVal; 1535 switch (getLexer().getKind()) { 1536 case AsmToken::Percent: 1537 Parser.Lex(); // Eat the '%'. 1538 unsigned RegNo; 1539 if (MatchRegisterName(RegNo, IntVal)) 1540 return Error(S, "invalid register name"); 1541 break; 1542 1543 case AsmToken::Integer: 1544 if (isDarwin()) 1545 return Error(S, "unexpected integer value"); 1546 else if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 || 1547 IntVal > 31) 1548 return Error(S, "invalid register number"); 1549 break; 1550 case AsmToken::Identifier: 1551 if (isDarwin()) { 1552 unsigned RegNo; 1553 if (!MatchRegisterName(RegNo, IntVal)) { 1554 break; 1555 } 1556 } 1557 LLVM_FALLTHROUGH; 1558 1559 default: 1560 return Error(S, "invalid memory operand"); 1561 } 1562 1563 E = Parser.getTok().getLoc(); 1564 if (parseToken(AsmToken::RParen, "missing ')'")) 1565 return true; 1566 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1567 } 1568 1569 return false; 1570 } 1571 1572 /// Parse an instruction mnemonic followed by its operands. 1573 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1574 SMLoc NameLoc, OperandVector &Operands) { 1575 // The first operand is the token for the instruction name. 1576 // If the next character is a '+' or '-', we need to add it to the 1577 // instruction name, to match what TableGen is doing. 1578 std::string NewOpcode; 1579 if (parseOptionalToken(AsmToken::Plus)) { 1580 NewOpcode = std::string(Name); 1581 NewOpcode += '+'; 1582 Name = NewOpcode; 1583 } 1584 if (parseOptionalToken(AsmToken::Minus)) { 1585 NewOpcode = std::string(Name); 1586 NewOpcode += '-'; 1587 Name = NewOpcode; 1588 } 1589 // If the instruction ends in a '.', we need to create a separate 1590 // token for it, to match what TableGen is doing. 1591 size_t Dot = Name.find('.'); 1592 StringRef Mnemonic = Name.slice(0, Dot); 1593 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1594 Operands.push_back( 1595 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1596 else 1597 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1598 if (Dot != StringRef::npos) { 1599 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1600 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1601 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1602 Operands.push_back( 1603 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1604 else 1605 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1606 } 1607 1608 // If there are no more operands then finish 1609 if (parseOptionalToken(AsmToken::EndOfStatement)) 1610 return false; 1611 1612 // Parse the first operand 1613 if (ParseOperand(Operands)) 1614 return true; 1615 1616 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 1617 if (parseToken(AsmToken::Comma) || ParseOperand(Operands)) 1618 return true; 1619 } 1620 1621 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1622 // and dcbtst instructions differs for server vs. embedded cores. 1623 // The syntax for dcbt is: 1624 // dcbt ra, rb, th [server] 1625 // dcbt th, ra, rb [embedded] 1626 // where th can be omitted when it is 0. dcbtst is the same. We take the 1627 // server form to be the default, so swap the operands if we're parsing for 1628 // an embedded core (they'll be swapped again upon printing). 1629 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1630 Operands.size() == 4 && 1631 (Name == "dcbt" || Name == "dcbtst")) { 1632 std::swap(Operands[1], Operands[3]); 1633 std::swap(Operands[2], Operands[1]); 1634 } 1635 1636 return false; 1637 } 1638 1639 /// ParseDirective parses the PPC specific directives 1640 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1641 StringRef IDVal = DirectiveID.getIdentifier(); 1642 if (isDarwin()) { 1643 if (IDVal == ".machine") 1644 ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1645 else 1646 return true; 1647 } else if (IDVal == ".word") 1648 ParseDirectiveWord(2, DirectiveID); 1649 else if (IDVal == ".llong") 1650 ParseDirectiveWord(8, DirectiveID); 1651 else if (IDVal == ".tc") 1652 ParseDirectiveTC(isPPC64() ? 8 : 4, DirectiveID); 1653 else if (IDVal == ".machine") 1654 ParseDirectiveMachine(DirectiveID.getLoc()); 1655 else if (IDVal == ".abiversion") 1656 ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1657 else if (IDVal == ".localentry") 1658 ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1659 else 1660 return true; 1661 return false; 1662 } 1663 1664 /// ParseDirectiveWord 1665 /// ::= .word [ expression (, expression)* ] 1666 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, AsmToken ID) { 1667 auto parseOp = [&]() -> bool { 1668 const MCExpr *Value; 1669 SMLoc ExprLoc = getParser().getTok().getLoc(); 1670 if (getParser().parseExpression(Value)) 1671 return true; 1672 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1673 assert(Size <= 8 && "Invalid size"); 1674 uint64_t IntValue = MCE->getValue(); 1675 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1676 return Error(ExprLoc, "literal value out of range for '" + 1677 ID.getIdentifier() + "' directive"); 1678 getStreamer().emitIntValue(IntValue, Size); 1679 } else 1680 getStreamer().emitValue(Value, Size, ExprLoc); 1681 return false; 1682 }; 1683 1684 if (parseMany(parseOp)) 1685 return addErrorSuffix(" in '" + ID.getIdentifier() + "' directive"); 1686 return false; 1687 } 1688 1689 /// ParseDirectiveTC 1690 /// ::= .tc [ symbol (, expression)* ] 1691 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, AsmToken ID) { 1692 MCAsmParser &Parser = getParser(); 1693 // Skip TC symbol, which is only used with XCOFF. 1694 while (getLexer().isNot(AsmToken::EndOfStatement) 1695 && getLexer().isNot(AsmToken::Comma)) 1696 Parser.Lex(); 1697 if (parseToken(AsmToken::Comma)) 1698 return addErrorSuffix(" in '.tc' directive"); 1699 1700 // Align to word size. 1701 getParser().getStreamer().emitValueToAlignment(Size); 1702 1703 // Emit expressions. 1704 return ParseDirectiveWord(Size, ID); 1705 } 1706 1707 /// ParseDirectiveMachine (ELF platforms) 1708 /// ::= .machine [ cpu | "push" | "pop" ] 1709 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1710 MCAsmParser &Parser = getParser(); 1711 if (Parser.getTok().isNot(AsmToken::Identifier) && 1712 Parser.getTok().isNot(AsmToken::String)) 1713 return Error(L, "unexpected token in '.machine' directive"); 1714 1715 StringRef CPU = Parser.getTok().getIdentifier(); 1716 1717 // FIXME: Right now, the parser always allows any available 1718 // instruction, so the .machine directive is not useful. 1719 // Implement ".machine any" (by doing nothing) for the benefit 1720 // of existing assembler code. Likewise, we can then implement 1721 // ".machine push" and ".machine pop" as no-op. 1722 if (CPU != "any" && CPU != "push" && CPU != "pop") 1723 return TokError("unrecognized machine type"); 1724 1725 Parser.Lex(); 1726 1727 if (parseToken(AsmToken::EndOfStatement)) 1728 return addErrorSuffix(" in '.machine' directive"); 1729 1730 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1731 getParser().getStreamer().getTargetStreamer()); 1732 if (TStreamer != nullptr) 1733 TStreamer->emitMachine(CPU); 1734 1735 return false; 1736 } 1737 1738 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1739 /// ::= .machine cpu-identifier 1740 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1741 MCAsmParser &Parser = getParser(); 1742 if (Parser.getTok().isNot(AsmToken::Identifier) && 1743 Parser.getTok().isNot(AsmToken::String)) 1744 return Error(L, "unexpected token in directive"); 1745 1746 StringRef CPU = Parser.getTok().getIdentifier(); 1747 Parser.Lex(); 1748 1749 // FIXME: this is only the 'default' set of cpu variants. 1750 // However we don't act on this information at present, this is simply 1751 // allowing parsing to proceed with minimal sanity checking. 1752 if (check(CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64", L, 1753 "unrecognized cpu type") || 1754 check(isPPC64() && (CPU == "ppc7400" || CPU == "ppc"), L, 1755 "wrong cpu type specified for 64bit") || 1756 check(!isPPC64() && CPU == "ppc64", L, 1757 "wrong cpu type specified for 32bit") || 1758 parseToken(AsmToken::EndOfStatement)) 1759 return addErrorSuffix(" in '.machine' directive"); 1760 return false; 1761 } 1762 1763 /// ParseDirectiveAbiVersion 1764 /// ::= .abiversion constant-expression 1765 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1766 int64_t AbiVersion; 1767 if (check(getParser().parseAbsoluteExpression(AbiVersion), L, 1768 "expected constant expression") || 1769 parseToken(AsmToken::EndOfStatement)) 1770 return addErrorSuffix(" in '.abiversion' directive"); 1771 1772 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1773 getParser().getStreamer().getTargetStreamer()); 1774 if (TStreamer != nullptr) 1775 TStreamer->emitAbiVersion(AbiVersion); 1776 1777 return false; 1778 } 1779 1780 /// ParseDirectiveLocalEntry 1781 /// ::= .localentry symbol, expression 1782 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1783 StringRef Name; 1784 if (getParser().parseIdentifier(Name)) 1785 return Error(L, "expected identifier in '.localentry' directive"); 1786 1787 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1788 const MCExpr *Expr; 1789 1790 if (parseToken(AsmToken::Comma) || 1791 check(getParser().parseExpression(Expr), L, "expected expression") || 1792 parseToken(AsmToken::EndOfStatement)) 1793 return addErrorSuffix(" in '.localentry' directive"); 1794 1795 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1796 getParser().getStreamer().getTargetStreamer()); 1797 if (TStreamer != nullptr) 1798 TStreamer->emitLocalEntry(Sym, Expr); 1799 1800 return false; 1801 } 1802 1803 1804 1805 /// Force static initialization. 1806 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmParser() { 1807 RegisterMCAsmParser<PPCAsmParser> A(getThePPC32Target()); 1808 RegisterMCAsmParser<PPCAsmParser> B(getThePPC64Target()); 1809 RegisterMCAsmParser<PPCAsmParser> C(getThePPC64LETarget()); 1810 } 1811 1812 #define GET_REGISTER_MATCHER 1813 #define GET_MATCHER_IMPLEMENTATION 1814 #define GET_MNEMONIC_SPELL_CHECKER 1815 #include "PPCGenAsmMatcher.inc" 1816 1817 // Define this matcher function after the auto-generated include so we 1818 // have the match class enum definitions. 1819 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1820 unsigned Kind) { 1821 // If the kind is a token for a literal immediate, check if our asm 1822 // operand matches. This is for InstAliases which have a fixed-value 1823 // immediate in the syntax. 1824 int64_t ImmVal; 1825 switch (Kind) { 1826 case MCK_0: ImmVal = 0; break; 1827 case MCK_1: ImmVal = 1; break; 1828 case MCK_2: ImmVal = 2; break; 1829 case MCK_3: ImmVal = 3; break; 1830 case MCK_4: ImmVal = 4; break; 1831 case MCK_5: ImmVal = 5; break; 1832 case MCK_6: ImmVal = 6; break; 1833 case MCK_7: ImmVal = 7; break; 1834 default: return Match_InvalidOperand; 1835 } 1836 1837 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1838 if (Op.isImm() && Op.getImm() == ImmVal) 1839 return Match_Success; 1840 1841 return Match_InvalidOperand; 1842 } 1843 1844 const MCExpr * 1845 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1846 MCSymbolRefExpr::VariantKind Variant, 1847 MCContext &Ctx) { 1848 switch (Variant) { 1849 case MCSymbolRefExpr::VK_PPC_LO: 1850 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, Ctx); 1851 case MCSymbolRefExpr::VK_PPC_HI: 1852 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, Ctx); 1853 case MCSymbolRefExpr::VK_PPC_HA: 1854 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, Ctx); 1855 case MCSymbolRefExpr::VK_PPC_HIGH: 1856 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGH, E, Ctx); 1857 case MCSymbolRefExpr::VK_PPC_HIGHA: 1858 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHA, E, Ctx); 1859 case MCSymbolRefExpr::VK_PPC_HIGHER: 1860 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, Ctx); 1861 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1862 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, Ctx); 1863 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1864 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, Ctx); 1865 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1866 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, Ctx); 1867 default: 1868 return nullptr; 1869 } 1870 } 1871