1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/PPCMCExpr.h" 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "PPCTargetStreamer.h" 12 #include "TargetInfo/PowerPCTargetInfo.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/StringSwitch.h" 15 #include "llvm/ADT/Twine.h" 16 #include "llvm/MC/MCContext.h" 17 #include "llvm/MC/MCExpr.h" 18 #include "llvm/MC/MCInst.h" 19 #include "llvm/MC/MCInstrInfo.h" 20 #include "llvm/MC/MCParser/MCAsmLexer.h" 21 #include "llvm/MC/MCParser/MCAsmParser.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/MC/MCSymbolELF.h" 27 #include "llvm/Support/SourceMgr.h" 28 #include "llvm/Support/TargetRegistry.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 DEFINE_PPC_REGCLASSES; 34 35 // Evaluate an expression containing condition register 36 // or condition register field symbols. Returns positive 37 // value on success, or -1 on error. 38 static int64_t 39 EvaluateCRExpr(const MCExpr *E) { 40 switch (E->getKind()) { 41 case MCExpr::Target: 42 return -1; 43 44 case MCExpr::Constant: { 45 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 46 return Res < 0 ? -1 : Res; 47 } 48 49 case MCExpr::SymbolRef: { 50 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 51 StringRef Name = SRE->getSymbol().getName(); 52 53 if (Name == "lt") return 0; 54 if (Name == "gt") return 1; 55 if (Name == "eq") return 2; 56 if (Name == "so") return 3; 57 if (Name == "un") return 3; 58 59 if (Name == "cr0") return 0; 60 if (Name == "cr1") return 1; 61 if (Name == "cr2") return 2; 62 if (Name == "cr3") return 3; 63 if (Name == "cr4") return 4; 64 if (Name == "cr5") return 5; 65 if (Name == "cr6") return 6; 66 if (Name == "cr7") return 7; 67 68 return -1; 69 } 70 71 case MCExpr::Unary: 72 return -1; 73 74 case MCExpr::Binary: { 75 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 76 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 77 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 78 int64_t Res; 79 80 if (LHSVal < 0 || RHSVal < 0) 81 return -1; 82 83 switch (BE->getOpcode()) { 84 default: return -1; 85 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 86 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 87 } 88 89 return Res < 0 ? -1 : Res; 90 } 91 } 92 93 llvm_unreachable("Invalid expression kind!"); 94 } 95 96 namespace { 97 98 struct PPCOperand; 99 100 class PPCAsmParser : public MCTargetAsmParser { 101 bool IsPPC64; 102 bool IsDarwin; 103 104 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 105 106 bool isPPC64() const { return IsPPC64; } 107 bool isDarwin() const { return IsDarwin; } 108 109 bool MatchRegisterName(unsigned &RegNo, int64_t &IntVal); 110 111 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 112 113 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 114 PPCMCExpr::VariantKind &Variant); 115 const MCExpr *FixupVariantKind(const MCExpr *E); 116 bool ParseExpression(const MCExpr *&EVal); 117 bool ParseDarwinExpression(const MCExpr *&EVal); 118 119 bool ParseOperand(OperandVector &Operands); 120 121 bool ParseDirectiveWord(unsigned Size, AsmToken ID); 122 bool ParseDirectiveTC(unsigned Size, AsmToken ID); 123 bool ParseDirectiveMachine(SMLoc L); 124 bool ParseDarwinDirectiveMachine(SMLoc L); 125 bool ParseDirectiveAbiVersion(SMLoc L); 126 bool ParseDirectiveLocalEntry(SMLoc L); 127 128 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 129 OperandVector &Operands, MCStreamer &Out, 130 uint64_t &ErrorInfo, 131 bool MatchingInlineAsm) override; 132 133 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 134 135 /// @name Auto-generated Match Functions 136 /// { 137 138 #define GET_ASSEMBLER_HEADER 139 #include "PPCGenAsmMatcher.inc" 140 141 /// } 142 143 144 public: 145 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 146 const MCInstrInfo &MII, const MCTargetOptions &Options) 147 : MCTargetAsmParser(Options, STI, MII) { 148 // Check for 64-bit vs. 32-bit pointer mode. 149 const Triple &TheTriple = STI.getTargetTriple(); 150 IsPPC64 = TheTriple.isPPC64(); 151 IsDarwin = TheTriple.isMacOSX(); 152 // Initialize the set of available features. 153 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 154 } 155 156 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 157 SMLoc NameLoc, OperandVector &Operands) override; 158 159 bool ParseDirective(AsmToken DirectiveID) override; 160 161 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 162 unsigned Kind) override; 163 164 const MCExpr *applyModifierToExpr(const MCExpr *E, 165 MCSymbolRefExpr::VariantKind, 166 MCContext &Ctx) override; 167 }; 168 169 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 170 /// instruction. 171 struct PPCOperand : public MCParsedAsmOperand { 172 enum KindTy { 173 Token, 174 Immediate, 175 ContextImmediate, 176 Expression, 177 TLSRegister 178 } Kind; 179 180 SMLoc StartLoc, EndLoc; 181 bool IsPPC64; 182 183 struct TokOp { 184 const char *Data; 185 unsigned Length; 186 }; 187 188 struct ImmOp { 189 int64_t Val; 190 }; 191 192 struct ExprOp { 193 const MCExpr *Val; 194 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 195 }; 196 197 struct TLSRegOp { 198 const MCSymbolRefExpr *Sym; 199 }; 200 201 union { 202 struct TokOp Tok; 203 struct ImmOp Imm; 204 struct ExprOp Expr; 205 struct TLSRegOp TLSReg; 206 }; 207 208 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 209 public: 210 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 211 Kind = o.Kind; 212 StartLoc = o.StartLoc; 213 EndLoc = o.EndLoc; 214 IsPPC64 = o.IsPPC64; 215 switch (Kind) { 216 case Token: 217 Tok = o.Tok; 218 break; 219 case Immediate: 220 case ContextImmediate: 221 Imm = o.Imm; 222 break; 223 case Expression: 224 Expr = o.Expr; 225 break; 226 case TLSRegister: 227 TLSReg = o.TLSReg; 228 break; 229 } 230 } 231 232 // Disable use of sized deallocation due to overallocation of PPCOperand 233 // objects in CreateTokenWithStringCopy. 234 void operator delete(void *p) { ::operator delete(p); } 235 236 /// getStartLoc - Get the location of the first token of this operand. 237 SMLoc getStartLoc() const override { return StartLoc; } 238 239 /// getEndLoc - Get the location of the last token of this operand. 240 SMLoc getEndLoc() const override { return EndLoc; } 241 242 /// getLocRange - Get the range between the first and last token of this 243 /// operand. 244 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 245 246 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 247 bool isPPC64() const { return IsPPC64; } 248 249 int64_t getImm() const { 250 assert(Kind == Immediate && "Invalid access!"); 251 return Imm.Val; 252 } 253 int64_t getImmS16Context() const { 254 assert((Kind == Immediate || Kind == ContextImmediate) && 255 "Invalid access!"); 256 if (Kind == Immediate) 257 return Imm.Val; 258 return static_cast<int16_t>(Imm.Val); 259 } 260 int64_t getImmU16Context() const { 261 assert((Kind == Immediate || Kind == ContextImmediate) && 262 "Invalid access!"); 263 return Imm.Val; 264 } 265 266 const MCExpr *getExpr() const { 267 assert(Kind == Expression && "Invalid access!"); 268 return Expr.Val; 269 } 270 271 int64_t getExprCRVal() const { 272 assert(Kind == Expression && "Invalid access!"); 273 return Expr.CRVal; 274 } 275 276 const MCExpr *getTLSReg() const { 277 assert(Kind == TLSRegister && "Invalid access!"); 278 return TLSReg.Sym; 279 } 280 281 unsigned getReg() const override { 282 assert(isRegNumber() && "Invalid access!"); 283 return (unsigned) Imm.Val; 284 } 285 286 unsigned getVSReg() const { 287 assert(isVSRegNumber() && "Invalid access!"); 288 return (unsigned) Imm.Val; 289 } 290 291 unsigned getCCReg() const { 292 assert(isCCRegNumber() && "Invalid access!"); 293 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 294 } 295 296 unsigned getCRBit() const { 297 assert(isCRBitNumber() && "Invalid access!"); 298 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 299 } 300 301 unsigned getCRBitMask() const { 302 assert(isCRBitMask() && "Invalid access!"); 303 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 304 } 305 306 bool isToken() const override { return Kind == Token; } 307 bool isImm() const override { 308 return Kind == Immediate || Kind == Expression; 309 } 310 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 311 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 312 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 313 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 314 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 315 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 316 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 317 bool isU6ImmX2() const { return Kind == Immediate && 318 isUInt<6>(getImm()) && 319 (getImm() & 1) == 0; } 320 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 321 bool isU7ImmX4() const { return Kind == Immediate && 322 isUInt<7>(getImm()) && 323 (getImm() & 3) == 0; } 324 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 325 bool isU8ImmX8() const { return Kind == Immediate && 326 isUInt<8>(getImm()) && 327 (getImm() & 7) == 0; } 328 329 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 330 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 331 bool isU16Imm() const { 332 switch (Kind) { 333 case Expression: 334 return true; 335 case Immediate: 336 case ContextImmediate: 337 return isUInt<16>(getImmU16Context()); 338 default: 339 return false; 340 } 341 } 342 bool isS16Imm() const { 343 switch (Kind) { 344 case Expression: 345 return true; 346 case Immediate: 347 case ContextImmediate: 348 return isInt<16>(getImmS16Context()); 349 default: 350 return false; 351 } 352 } 353 bool isS16ImmX4() const { return Kind == Expression || 354 (Kind == Immediate && isInt<16>(getImm()) && 355 (getImm() & 3) == 0); } 356 bool isS16ImmX16() const { return Kind == Expression || 357 (Kind == Immediate && isInt<16>(getImm()) && 358 (getImm() & 15) == 0); } 359 bool isS34ImmX16() const { 360 return Kind == Expression || 361 (Kind == Immediate && isInt<34>(getImm()) && (getImm() & 15) == 0); 362 } 363 bool isS34Imm() const { 364 // Once the PC-Rel ABI is finalized, evaluate whether a 34-bit 365 // ContextImmediate is needed. 366 return Kind == Expression || (Kind == Immediate && isInt<34>(getImm())); 367 } 368 369 bool isS17Imm() const { 370 switch (Kind) { 371 case Expression: 372 return true; 373 case Immediate: 374 case ContextImmediate: 375 return isInt<17>(getImmS16Context()); 376 default: 377 return false; 378 } 379 } 380 bool isTLSReg() const { return Kind == TLSRegister; } 381 bool isDirectBr() const { 382 if (Kind == Expression) 383 return true; 384 if (Kind != Immediate) 385 return false; 386 // Operand must be 64-bit aligned, signed 27-bit immediate. 387 if ((getImm() & 3) != 0) 388 return false; 389 if (isInt<26>(getImm())) 390 return true; 391 if (!IsPPC64) { 392 // In 32-bit mode, large 32-bit quantities wrap around. 393 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 394 return true; 395 } 396 return false; 397 } 398 bool isCondBr() const { return Kind == Expression || 399 (Kind == Immediate && isInt<16>(getImm()) && 400 (getImm() & 3) == 0); } 401 bool isImmZero() const { return Kind == Immediate && getImm() == 0; } 402 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 403 bool isVSRegNumber() const { 404 return Kind == Immediate && isUInt<6>(getImm()); 405 } 406 bool isCCRegNumber() const { return (Kind == Expression 407 && isUInt<3>(getExprCRVal())) || 408 (Kind == Immediate 409 && isUInt<3>(getImm())); } 410 bool isCRBitNumber() const { return (Kind == Expression 411 && isUInt<5>(getExprCRVal())) || 412 (Kind == Immediate 413 && isUInt<5>(getImm())); } 414 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 415 isPowerOf2_32(getImm()); } 416 bool isATBitsAsHint() const { return false; } 417 bool isMem() const override { return false; } 418 bool isReg() const override { return false; } 419 420 void addRegOperands(MCInst &Inst, unsigned N) const { 421 llvm_unreachable("addRegOperands"); 422 } 423 424 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 425 assert(N == 1 && "Invalid number of operands!"); 426 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 427 } 428 429 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 430 assert(N == 1 && "Invalid number of operands!"); 431 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 432 } 433 434 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 435 assert(N == 1 && "Invalid number of operands!"); 436 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 437 } 438 439 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 440 assert(N == 1 && "Invalid number of operands!"); 441 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 442 } 443 444 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 445 if (isPPC64()) 446 addRegG8RCOperands(Inst, N); 447 else 448 addRegGPRCOperands(Inst, N); 449 } 450 451 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 452 if (isPPC64()) 453 addRegG8RCNoX0Operands(Inst, N); 454 else 455 addRegGPRCNoR0Operands(Inst, N); 456 } 457 458 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 459 assert(N == 1 && "Invalid number of operands!"); 460 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 461 } 462 463 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 464 assert(N == 1 && "Invalid number of operands!"); 465 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 466 } 467 468 void addRegVFRCOperands(MCInst &Inst, unsigned N) const { 469 assert(N == 1 && "Invalid number of operands!"); 470 Inst.addOperand(MCOperand::createReg(VFRegs[getReg()])); 471 } 472 473 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 474 assert(N == 1 && "Invalid number of operands!"); 475 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 476 } 477 478 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 479 assert(N == 1 && "Invalid number of operands!"); 480 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 481 } 482 483 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 484 assert(N == 1 && "Invalid number of operands!"); 485 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 486 } 487 488 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 489 assert(N == 1 && "Invalid number of operands!"); 490 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 491 } 492 493 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 494 assert(N == 1 && "Invalid number of operands!"); 495 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 496 } 497 498 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 499 assert(N == 1 && "Invalid number of operands!"); 500 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 501 } 502 503 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 504 assert(N == 1 && "Invalid number of operands!"); 505 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 506 } 507 508 void addRegSPE4RCOperands(MCInst &Inst, unsigned N) const { 509 assert(N == 1 && "Invalid number of operands!"); 510 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 511 } 512 513 void addRegSPERCOperands(MCInst &Inst, unsigned N) const { 514 assert(N == 1 && "Invalid number of operands!"); 515 Inst.addOperand(MCOperand::createReg(SPERegs[getReg()])); 516 } 517 518 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 519 assert(N == 1 && "Invalid number of operands!"); 520 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 521 } 522 523 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 524 assert(N == 1 && "Invalid number of operands!"); 525 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 526 } 527 528 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 529 assert(N == 1 && "Invalid number of operands!"); 530 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 531 } 532 533 void addImmOperands(MCInst &Inst, unsigned N) const { 534 assert(N == 1 && "Invalid number of operands!"); 535 if (Kind == Immediate) 536 Inst.addOperand(MCOperand::createImm(getImm())); 537 else 538 Inst.addOperand(MCOperand::createExpr(getExpr())); 539 } 540 541 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 542 assert(N == 1 && "Invalid number of operands!"); 543 switch (Kind) { 544 case Immediate: 545 Inst.addOperand(MCOperand::createImm(getImm())); 546 break; 547 case ContextImmediate: 548 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 549 break; 550 default: 551 Inst.addOperand(MCOperand::createExpr(getExpr())); 552 break; 553 } 554 } 555 556 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 557 assert(N == 1 && "Invalid number of operands!"); 558 switch (Kind) { 559 case Immediate: 560 Inst.addOperand(MCOperand::createImm(getImm())); 561 break; 562 case ContextImmediate: 563 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 564 break; 565 default: 566 Inst.addOperand(MCOperand::createExpr(getExpr())); 567 break; 568 } 569 } 570 571 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 572 assert(N == 1 && "Invalid number of operands!"); 573 if (Kind == Immediate) 574 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 575 else 576 Inst.addOperand(MCOperand::createExpr(getExpr())); 577 } 578 579 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 580 assert(N == 1 && "Invalid number of operands!"); 581 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 582 } 583 584 StringRef getToken() const { 585 assert(Kind == Token && "Invalid access!"); 586 return StringRef(Tok.Data, Tok.Length); 587 } 588 589 void print(raw_ostream &OS) const override; 590 591 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 592 bool IsPPC64) { 593 auto Op = std::make_unique<PPCOperand>(Token); 594 Op->Tok.Data = Str.data(); 595 Op->Tok.Length = Str.size(); 596 Op->StartLoc = S; 597 Op->EndLoc = S; 598 Op->IsPPC64 = IsPPC64; 599 return Op; 600 } 601 602 static std::unique_ptr<PPCOperand> 603 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 604 // Allocate extra memory for the string and copy it. 605 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 606 // deleter which will destroy them by simply using "delete", not correctly 607 // calling operator delete on this extra memory after calling the dtor 608 // explicitly. 609 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 610 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 611 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 612 Op->Tok.Length = Str.size(); 613 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 614 Op->StartLoc = S; 615 Op->EndLoc = S; 616 Op->IsPPC64 = IsPPC64; 617 return Op; 618 } 619 620 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 621 bool IsPPC64) { 622 auto Op = std::make_unique<PPCOperand>(Immediate); 623 Op->Imm.Val = Val; 624 Op->StartLoc = S; 625 Op->EndLoc = E; 626 Op->IsPPC64 = IsPPC64; 627 return Op; 628 } 629 630 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 631 SMLoc E, bool IsPPC64) { 632 auto Op = std::make_unique<PPCOperand>(Expression); 633 Op->Expr.Val = Val; 634 Op->Expr.CRVal = EvaluateCRExpr(Val); 635 Op->StartLoc = S; 636 Op->EndLoc = E; 637 Op->IsPPC64 = IsPPC64; 638 return Op; 639 } 640 641 static std::unique_ptr<PPCOperand> 642 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 643 auto Op = std::make_unique<PPCOperand>(TLSRegister); 644 Op->TLSReg.Sym = Sym; 645 Op->StartLoc = S; 646 Op->EndLoc = E; 647 Op->IsPPC64 = IsPPC64; 648 return Op; 649 } 650 651 static std::unique_ptr<PPCOperand> 652 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 653 auto Op = std::make_unique<PPCOperand>(ContextImmediate); 654 Op->Imm.Val = Val; 655 Op->StartLoc = S; 656 Op->EndLoc = E; 657 Op->IsPPC64 = IsPPC64; 658 return Op; 659 } 660 661 static std::unique_ptr<PPCOperand> 662 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 663 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 664 return CreateImm(CE->getValue(), S, E, IsPPC64); 665 666 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 667 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 668 return CreateTLSReg(SRE, S, E, IsPPC64); 669 670 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 671 int64_t Res; 672 if (TE->evaluateAsConstant(Res)) 673 return CreateContextImm(Res, S, E, IsPPC64); 674 } 675 676 return CreateExpr(Val, S, E, IsPPC64); 677 } 678 }; 679 680 } // end anonymous namespace. 681 682 void PPCOperand::print(raw_ostream &OS) const { 683 switch (Kind) { 684 case Token: 685 OS << "'" << getToken() << "'"; 686 break; 687 case Immediate: 688 case ContextImmediate: 689 OS << getImm(); 690 break; 691 case Expression: 692 OS << *getExpr(); 693 break; 694 case TLSRegister: 695 OS << *getTLSReg(); 696 break; 697 } 698 } 699 700 static void 701 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 702 if (Op.isImm()) { 703 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 704 return; 705 } 706 const MCExpr *Expr = Op.getExpr(); 707 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 708 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 709 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 710 return; 711 } 712 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 713 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 714 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 715 BinExpr->getLHS(), Ctx); 716 Inst.addOperand(MCOperand::createExpr(NE)); 717 return; 718 } 719 } 720 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 721 } 722 723 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 724 const OperandVector &Operands) { 725 int Opcode = Inst.getOpcode(); 726 switch (Opcode) { 727 case PPC::DCBTx: 728 case PPC::DCBTT: 729 case PPC::DCBTSTx: 730 case PPC::DCBTSTT: { 731 MCInst TmpInst; 732 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 733 PPC::DCBT : PPC::DCBTST); 734 TmpInst.addOperand(MCOperand::createImm( 735 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 736 TmpInst.addOperand(Inst.getOperand(0)); 737 TmpInst.addOperand(Inst.getOperand(1)); 738 Inst = TmpInst; 739 break; 740 } 741 case PPC::DCBTCT: 742 case PPC::DCBTDS: { 743 MCInst TmpInst; 744 TmpInst.setOpcode(PPC::DCBT); 745 TmpInst.addOperand(Inst.getOperand(2)); 746 TmpInst.addOperand(Inst.getOperand(0)); 747 TmpInst.addOperand(Inst.getOperand(1)); 748 Inst = TmpInst; 749 break; 750 } 751 case PPC::DCBTSTCT: 752 case PPC::DCBTSTDS: { 753 MCInst TmpInst; 754 TmpInst.setOpcode(PPC::DCBTST); 755 TmpInst.addOperand(Inst.getOperand(2)); 756 TmpInst.addOperand(Inst.getOperand(0)); 757 TmpInst.addOperand(Inst.getOperand(1)); 758 Inst = TmpInst; 759 break; 760 } 761 case PPC::DCBFx: 762 case PPC::DCBFL: 763 case PPC::DCBFLP: { 764 int L = 0; 765 if (Opcode == PPC::DCBFL) 766 L = 1; 767 else if (Opcode == PPC::DCBFLP) 768 L = 3; 769 770 MCInst TmpInst; 771 TmpInst.setOpcode(PPC::DCBF); 772 TmpInst.addOperand(MCOperand::createImm(L)); 773 TmpInst.addOperand(Inst.getOperand(0)); 774 TmpInst.addOperand(Inst.getOperand(1)); 775 Inst = TmpInst; 776 break; 777 } 778 case PPC::LAx: { 779 MCInst TmpInst; 780 TmpInst.setOpcode(PPC::LA); 781 TmpInst.addOperand(Inst.getOperand(0)); 782 TmpInst.addOperand(Inst.getOperand(2)); 783 TmpInst.addOperand(Inst.getOperand(1)); 784 Inst = TmpInst; 785 break; 786 } 787 case PPC::SUBI: { 788 MCInst TmpInst; 789 TmpInst.setOpcode(PPC::ADDI); 790 TmpInst.addOperand(Inst.getOperand(0)); 791 TmpInst.addOperand(Inst.getOperand(1)); 792 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 793 Inst = TmpInst; 794 break; 795 } 796 case PPC::SUBIS: { 797 MCInst TmpInst; 798 TmpInst.setOpcode(PPC::ADDIS); 799 TmpInst.addOperand(Inst.getOperand(0)); 800 TmpInst.addOperand(Inst.getOperand(1)); 801 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 802 Inst = TmpInst; 803 break; 804 } 805 case PPC::SUBIC: { 806 MCInst TmpInst; 807 TmpInst.setOpcode(PPC::ADDIC); 808 TmpInst.addOperand(Inst.getOperand(0)); 809 TmpInst.addOperand(Inst.getOperand(1)); 810 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 811 Inst = TmpInst; 812 break; 813 } 814 case PPC::SUBIC_rec: { 815 MCInst TmpInst; 816 TmpInst.setOpcode(PPC::ADDIC_rec); 817 TmpInst.addOperand(Inst.getOperand(0)); 818 TmpInst.addOperand(Inst.getOperand(1)); 819 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 820 Inst = TmpInst; 821 break; 822 } 823 case PPC::EXTLWI: 824 case PPC::EXTLWI_rec: { 825 MCInst TmpInst; 826 int64_t N = Inst.getOperand(2).getImm(); 827 int64_t B = Inst.getOperand(3).getImm(); 828 TmpInst.setOpcode(Opcode == PPC::EXTLWI ? PPC::RLWINM : PPC::RLWINM_rec); 829 TmpInst.addOperand(Inst.getOperand(0)); 830 TmpInst.addOperand(Inst.getOperand(1)); 831 TmpInst.addOperand(MCOperand::createImm(B)); 832 TmpInst.addOperand(MCOperand::createImm(0)); 833 TmpInst.addOperand(MCOperand::createImm(N - 1)); 834 Inst = TmpInst; 835 break; 836 } 837 case PPC::EXTRWI: 838 case PPC::EXTRWI_rec: { 839 MCInst TmpInst; 840 int64_t N = Inst.getOperand(2).getImm(); 841 int64_t B = Inst.getOperand(3).getImm(); 842 TmpInst.setOpcode(Opcode == PPC::EXTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 843 TmpInst.addOperand(Inst.getOperand(0)); 844 TmpInst.addOperand(Inst.getOperand(1)); 845 TmpInst.addOperand(MCOperand::createImm(B + N)); 846 TmpInst.addOperand(MCOperand::createImm(32 - N)); 847 TmpInst.addOperand(MCOperand::createImm(31)); 848 Inst = TmpInst; 849 break; 850 } 851 case PPC::INSLWI: 852 case PPC::INSLWI_rec: { 853 MCInst TmpInst; 854 int64_t N = Inst.getOperand(2).getImm(); 855 int64_t B = Inst.getOperand(3).getImm(); 856 TmpInst.setOpcode(Opcode == PPC::INSLWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 857 TmpInst.addOperand(Inst.getOperand(0)); 858 TmpInst.addOperand(Inst.getOperand(0)); 859 TmpInst.addOperand(Inst.getOperand(1)); 860 TmpInst.addOperand(MCOperand::createImm(32 - B)); 861 TmpInst.addOperand(MCOperand::createImm(B)); 862 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 863 Inst = TmpInst; 864 break; 865 } 866 case PPC::INSRWI: 867 case PPC::INSRWI_rec: { 868 MCInst TmpInst; 869 int64_t N = Inst.getOperand(2).getImm(); 870 int64_t B = Inst.getOperand(3).getImm(); 871 TmpInst.setOpcode(Opcode == PPC::INSRWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 872 TmpInst.addOperand(Inst.getOperand(0)); 873 TmpInst.addOperand(Inst.getOperand(0)); 874 TmpInst.addOperand(Inst.getOperand(1)); 875 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 876 TmpInst.addOperand(MCOperand::createImm(B)); 877 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 878 Inst = TmpInst; 879 break; 880 } 881 case PPC::ROTRWI: 882 case PPC::ROTRWI_rec: { 883 MCInst TmpInst; 884 int64_t N = Inst.getOperand(2).getImm(); 885 TmpInst.setOpcode(Opcode == PPC::ROTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 886 TmpInst.addOperand(Inst.getOperand(0)); 887 TmpInst.addOperand(Inst.getOperand(1)); 888 TmpInst.addOperand(MCOperand::createImm(32 - N)); 889 TmpInst.addOperand(MCOperand::createImm(0)); 890 TmpInst.addOperand(MCOperand::createImm(31)); 891 Inst = TmpInst; 892 break; 893 } 894 case PPC::SLWI: 895 case PPC::SLWI_rec: { 896 MCInst TmpInst; 897 int64_t N = Inst.getOperand(2).getImm(); 898 TmpInst.setOpcode(Opcode == PPC::SLWI ? PPC::RLWINM : PPC::RLWINM_rec); 899 TmpInst.addOperand(Inst.getOperand(0)); 900 TmpInst.addOperand(Inst.getOperand(1)); 901 TmpInst.addOperand(MCOperand::createImm(N)); 902 TmpInst.addOperand(MCOperand::createImm(0)); 903 TmpInst.addOperand(MCOperand::createImm(31 - N)); 904 Inst = TmpInst; 905 break; 906 } 907 case PPC::SRWI: 908 case PPC::SRWI_rec: { 909 MCInst TmpInst; 910 int64_t N = Inst.getOperand(2).getImm(); 911 TmpInst.setOpcode(Opcode == PPC::SRWI ? PPC::RLWINM : PPC::RLWINM_rec); 912 TmpInst.addOperand(Inst.getOperand(0)); 913 TmpInst.addOperand(Inst.getOperand(1)); 914 TmpInst.addOperand(MCOperand::createImm(32 - N)); 915 TmpInst.addOperand(MCOperand::createImm(N)); 916 TmpInst.addOperand(MCOperand::createImm(31)); 917 Inst = TmpInst; 918 break; 919 } 920 case PPC::CLRRWI: 921 case PPC::CLRRWI_rec: { 922 MCInst TmpInst; 923 int64_t N = Inst.getOperand(2).getImm(); 924 TmpInst.setOpcode(Opcode == PPC::CLRRWI ? PPC::RLWINM : PPC::RLWINM_rec); 925 TmpInst.addOperand(Inst.getOperand(0)); 926 TmpInst.addOperand(Inst.getOperand(1)); 927 TmpInst.addOperand(MCOperand::createImm(0)); 928 TmpInst.addOperand(MCOperand::createImm(0)); 929 TmpInst.addOperand(MCOperand::createImm(31 - N)); 930 Inst = TmpInst; 931 break; 932 } 933 case PPC::CLRLSLWI: 934 case PPC::CLRLSLWI_rec: { 935 MCInst TmpInst; 936 int64_t B = Inst.getOperand(2).getImm(); 937 int64_t N = Inst.getOperand(3).getImm(); 938 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI ? PPC::RLWINM : PPC::RLWINM_rec); 939 TmpInst.addOperand(Inst.getOperand(0)); 940 TmpInst.addOperand(Inst.getOperand(1)); 941 TmpInst.addOperand(MCOperand::createImm(N)); 942 TmpInst.addOperand(MCOperand::createImm(B - N)); 943 TmpInst.addOperand(MCOperand::createImm(31 - N)); 944 Inst = TmpInst; 945 break; 946 } 947 case PPC::EXTLDI: 948 case PPC::EXTLDI_rec: { 949 MCInst TmpInst; 950 int64_t N = Inst.getOperand(2).getImm(); 951 int64_t B = Inst.getOperand(3).getImm(); 952 TmpInst.setOpcode(Opcode == PPC::EXTLDI ? PPC::RLDICR : PPC::RLDICR_rec); 953 TmpInst.addOperand(Inst.getOperand(0)); 954 TmpInst.addOperand(Inst.getOperand(1)); 955 TmpInst.addOperand(MCOperand::createImm(B)); 956 TmpInst.addOperand(MCOperand::createImm(N - 1)); 957 Inst = TmpInst; 958 break; 959 } 960 case PPC::EXTRDI: 961 case PPC::EXTRDI_rec: { 962 MCInst TmpInst; 963 int64_t N = Inst.getOperand(2).getImm(); 964 int64_t B = Inst.getOperand(3).getImm(); 965 TmpInst.setOpcode(Opcode == PPC::EXTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 966 TmpInst.addOperand(Inst.getOperand(0)); 967 TmpInst.addOperand(Inst.getOperand(1)); 968 TmpInst.addOperand(MCOperand::createImm(B + N)); 969 TmpInst.addOperand(MCOperand::createImm(64 - N)); 970 Inst = TmpInst; 971 break; 972 } 973 case PPC::INSRDI: 974 case PPC::INSRDI_rec: { 975 MCInst TmpInst; 976 int64_t N = Inst.getOperand(2).getImm(); 977 int64_t B = Inst.getOperand(3).getImm(); 978 TmpInst.setOpcode(Opcode == PPC::INSRDI ? PPC::RLDIMI : PPC::RLDIMI_rec); 979 TmpInst.addOperand(Inst.getOperand(0)); 980 TmpInst.addOperand(Inst.getOperand(0)); 981 TmpInst.addOperand(Inst.getOperand(1)); 982 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 983 TmpInst.addOperand(MCOperand::createImm(B)); 984 Inst = TmpInst; 985 break; 986 } 987 case PPC::ROTRDI: 988 case PPC::ROTRDI_rec: { 989 MCInst TmpInst; 990 int64_t N = Inst.getOperand(2).getImm(); 991 TmpInst.setOpcode(Opcode == PPC::ROTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 992 TmpInst.addOperand(Inst.getOperand(0)); 993 TmpInst.addOperand(Inst.getOperand(1)); 994 TmpInst.addOperand(MCOperand::createImm(64 - N)); 995 TmpInst.addOperand(MCOperand::createImm(0)); 996 Inst = TmpInst; 997 break; 998 } 999 case PPC::SLDI: 1000 case PPC::SLDI_rec: { 1001 MCInst TmpInst; 1002 int64_t N = Inst.getOperand(2).getImm(); 1003 TmpInst.setOpcode(Opcode == PPC::SLDI ? PPC::RLDICR : PPC::RLDICR_rec); 1004 TmpInst.addOperand(Inst.getOperand(0)); 1005 TmpInst.addOperand(Inst.getOperand(1)); 1006 TmpInst.addOperand(MCOperand::createImm(N)); 1007 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1008 Inst = TmpInst; 1009 break; 1010 } 1011 case PPC::SUBPCIS: { 1012 MCInst TmpInst; 1013 int64_t N = Inst.getOperand(1).getImm(); 1014 TmpInst.setOpcode(PPC::ADDPCIS); 1015 TmpInst.addOperand(Inst.getOperand(0)); 1016 TmpInst.addOperand(MCOperand::createImm(-N)); 1017 Inst = TmpInst; 1018 break; 1019 } 1020 case PPC::SRDI: 1021 case PPC::SRDI_rec: { 1022 MCInst TmpInst; 1023 int64_t N = Inst.getOperand(2).getImm(); 1024 TmpInst.setOpcode(Opcode == PPC::SRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1025 TmpInst.addOperand(Inst.getOperand(0)); 1026 TmpInst.addOperand(Inst.getOperand(1)); 1027 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1028 TmpInst.addOperand(MCOperand::createImm(N)); 1029 Inst = TmpInst; 1030 break; 1031 } 1032 case PPC::CLRRDI: 1033 case PPC::CLRRDI_rec: { 1034 MCInst TmpInst; 1035 int64_t N = Inst.getOperand(2).getImm(); 1036 TmpInst.setOpcode(Opcode == PPC::CLRRDI ? PPC::RLDICR : PPC::RLDICR_rec); 1037 TmpInst.addOperand(Inst.getOperand(0)); 1038 TmpInst.addOperand(Inst.getOperand(1)); 1039 TmpInst.addOperand(MCOperand::createImm(0)); 1040 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1041 Inst = TmpInst; 1042 break; 1043 } 1044 case PPC::CLRLSLDI: 1045 case PPC::CLRLSLDI_rec: { 1046 MCInst TmpInst; 1047 int64_t B = Inst.getOperand(2).getImm(); 1048 int64_t N = Inst.getOperand(3).getImm(); 1049 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI ? PPC::RLDIC : PPC::RLDIC_rec); 1050 TmpInst.addOperand(Inst.getOperand(0)); 1051 TmpInst.addOperand(Inst.getOperand(1)); 1052 TmpInst.addOperand(MCOperand::createImm(N)); 1053 TmpInst.addOperand(MCOperand::createImm(B - N)); 1054 Inst = TmpInst; 1055 break; 1056 } 1057 case PPC::RLWINMbm: 1058 case PPC::RLWINMbm_rec: { 1059 unsigned MB, ME; 1060 int64_t BM = Inst.getOperand(3).getImm(); 1061 if (!isRunOfOnes(BM, MB, ME)) 1062 break; 1063 1064 MCInst TmpInst; 1065 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINM_rec); 1066 TmpInst.addOperand(Inst.getOperand(0)); 1067 TmpInst.addOperand(Inst.getOperand(1)); 1068 TmpInst.addOperand(Inst.getOperand(2)); 1069 TmpInst.addOperand(MCOperand::createImm(MB)); 1070 TmpInst.addOperand(MCOperand::createImm(ME)); 1071 Inst = TmpInst; 1072 break; 1073 } 1074 case PPC::RLWIMIbm: 1075 case PPC::RLWIMIbm_rec: { 1076 unsigned MB, ME; 1077 int64_t BM = Inst.getOperand(3).getImm(); 1078 if (!isRunOfOnes(BM, MB, ME)) 1079 break; 1080 1081 MCInst TmpInst; 1082 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMI_rec); 1083 TmpInst.addOperand(Inst.getOperand(0)); 1084 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1085 TmpInst.addOperand(Inst.getOperand(1)); 1086 TmpInst.addOperand(Inst.getOperand(2)); 1087 TmpInst.addOperand(MCOperand::createImm(MB)); 1088 TmpInst.addOperand(MCOperand::createImm(ME)); 1089 Inst = TmpInst; 1090 break; 1091 } 1092 case PPC::RLWNMbm: 1093 case PPC::RLWNMbm_rec: { 1094 unsigned MB, ME; 1095 int64_t BM = Inst.getOperand(3).getImm(); 1096 if (!isRunOfOnes(BM, MB, ME)) 1097 break; 1098 1099 MCInst TmpInst; 1100 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNM_rec); 1101 TmpInst.addOperand(Inst.getOperand(0)); 1102 TmpInst.addOperand(Inst.getOperand(1)); 1103 TmpInst.addOperand(Inst.getOperand(2)); 1104 TmpInst.addOperand(MCOperand::createImm(MB)); 1105 TmpInst.addOperand(MCOperand::createImm(ME)); 1106 Inst = TmpInst; 1107 break; 1108 } 1109 case PPC::MFTB: { 1110 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1111 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1112 Inst.setOpcode(PPC::MFSPR); 1113 } 1114 break; 1115 } 1116 case PPC::CP_COPYx: 1117 case PPC::CP_COPY_FIRST: { 1118 MCInst TmpInst; 1119 TmpInst.setOpcode(PPC::CP_COPY); 1120 TmpInst.addOperand(Inst.getOperand(0)); 1121 TmpInst.addOperand(Inst.getOperand(1)); 1122 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1123 1124 Inst = TmpInst; 1125 break; 1126 } 1127 case PPC::CP_PASTEx : 1128 case PPC::CP_PASTE_LAST: { 1129 MCInst TmpInst; 1130 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? PPC::CP_PASTE 1131 : PPC::CP_PASTE_rec); 1132 TmpInst.addOperand(Inst.getOperand(0)); 1133 TmpInst.addOperand(Inst.getOperand(1)); 1134 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1135 1136 Inst = TmpInst; 1137 break; 1138 } 1139 } 1140 } 1141 1142 static std::string PPCMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 1143 unsigned VariantID = 0); 1144 1145 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1146 OperandVector &Operands, 1147 MCStreamer &Out, uint64_t &ErrorInfo, 1148 bool MatchingInlineAsm) { 1149 MCInst Inst; 1150 1151 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1152 case Match_Success: 1153 // Post-process instructions (typically extended mnemonics) 1154 ProcessInstruction(Inst, Operands); 1155 Inst.setLoc(IDLoc); 1156 Out.EmitInstruction(Inst, getSTI()); 1157 return false; 1158 case Match_MissingFeature: 1159 return Error(IDLoc, "instruction use requires an option to be enabled"); 1160 case Match_MnemonicFail: { 1161 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1162 std::string Suggestion = PPCMnemonicSpellCheck( 1163 ((PPCOperand &)*Operands[0]).getToken(), FBS); 1164 return Error(IDLoc, "invalid instruction" + Suggestion, 1165 ((PPCOperand &)*Operands[0]).getLocRange()); 1166 } 1167 case Match_InvalidOperand: { 1168 SMLoc ErrorLoc = IDLoc; 1169 if (ErrorInfo != ~0ULL) { 1170 if (ErrorInfo >= Operands.size()) 1171 return Error(IDLoc, "too few operands for instruction"); 1172 1173 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1174 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1175 } 1176 1177 return Error(ErrorLoc, "invalid operand for instruction"); 1178 } 1179 } 1180 1181 llvm_unreachable("Implement any new match types added!"); 1182 } 1183 1184 bool PPCAsmParser::MatchRegisterName(unsigned &RegNo, int64_t &IntVal) { 1185 if (getParser().getTok().is(AsmToken::Identifier)) { 1186 StringRef Name = getParser().getTok().getString(); 1187 if (Name.equals_lower("lr")) { 1188 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1189 IntVal = 8; 1190 } else if (Name.equals_lower("ctr")) { 1191 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1192 IntVal = 9; 1193 } else if (Name.equals_lower("vrsave")) { 1194 RegNo = PPC::VRSAVE; 1195 IntVal = 256; 1196 } else if (Name.startswith_lower("r") && 1197 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1198 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1199 } else if (Name.startswith_lower("f") && 1200 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1201 RegNo = FRegs[IntVal]; 1202 } else if (Name.startswith_lower("vs") && 1203 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1204 RegNo = VSRegs[IntVal]; 1205 } else if (Name.startswith_lower("v") && 1206 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1207 RegNo = VRegs[IntVal]; 1208 } else if (Name.startswith_lower("q") && 1209 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1210 RegNo = QFRegs[IntVal]; 1211 } else if (Name.startswith_lower("cr") && 1212 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1213 RegNo = CRRegs[IntVal]; 1214 } else 1215 return true; 1216 getParser().Lex(); 1217 return false; 1218 } 1219 return true; 1220 } 1221 1222 bool PPCAsmParser:: 1223 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1224 const AsmToken &Tok = getParser().getTok(); 1225 StartLoc = Tok.getLoc(); 1226 EndLoc = Tok.getEndLoc(); 1227 RegNo = 0; 1228 int64_t IntVal; 1229 if (MatchRegisterName(RegNo, IntVal)) 1230 return TokError("invalid register name"); 1231 return false; 1232 } 1233 1234 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1235 /// the expression and check for VK_PPC_LO/HI/HA 1236 /// symbol variants. If all symbols with modifier use the same 1237 /// variant, return the corresponding PPCMCExpr::VariantKind, 1238 /// and a modified expression using the default symbol variant. 1239 /// Otherwise, return NULL. 1240 const MCExpr *PPCAsmParser:: 1241 ExtractModifierFromExpr(const MCExpr *E, 1242 PPCMCExpr::VariantKind &Variant) { 1243 MCContext &Context = getParser().getContext(); 1244 Variant = PPCMCExpr::VK_PPC_None; 1245 1246 switch (E->getKind()) { 1247 case MCExpr::Target: 1248 case MCExpr::Constant: 1249 return nullptr; 1250 1251 case MCExpr::SymbolRef: { 1252 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1253 1254 switch (SRE->getKind()) { 1255 case MCSymbolRefExpr::VK_PPC_LO: 1256 Variant = PPCMCExpr::VK_PPC_LO; 1257 break; 1258 case MCSymbolRefExpr::VK_PPC_HI: 1259 Variant = PPCMCExpr::VK_PPC_HI; 1260 break; 1261 case MCSymbolRefExpr::VK_PPC_HA: 1262 Variant = PPCMCExpr::VK_PPC_HA; 1263 break; 1264 case MCSymbolRefExpr::VK_PPC_HIGH: 1265 Variant = PPCMCExpr::VK_PPC_HIGH; 1266 break; 1267 case MCSymbolRefExpr::VK_PPC_HIGHA: 1268 Variant = PPCMCExpr::VK_PPC_HIGHA; 1269 break; 1270 case MCSymbolRefExpr::VK_PPC_HIGHER: 1271 Variant = PPCMCExpr::VK_PPC_HIGHER; 1272 break; 1273 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1274 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1275 break; 1276 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1277 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1278 break; 1279 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1280 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1281 break; 1282 default: 1283 return nullptr; 1284 } 1285 1286 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1287 } 1288 1289 case MCExpr::Unary: { 1290 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1291 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1292 if (!Sub) 1293 return nullptr; 1294 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1295 } 1296 1297 case MCExpr::Binary: { 1298 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1299 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1300 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1301 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1302 1303 if (!LHS && !RHS) 1304 return nullptr; 1305 1306 if (!LHS) LHS = BE->getLHS(); 1307 if (!RHS) RHS = BE->getRHS(); 1308 1309 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1310 Variant = RHSVariant; 1311 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1312 Variant = LHSVariant; 1313 else if (LHSVariant == RHSVariant) 1314 Variant = LHSVariant; 1315 else 1316 return nullptr; 1317 1318 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1319 } 1320 } 1321 1322 llvm_unreachable("Invalid expression kind!"); 1323 } 1324 1325 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1326 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1327 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1328 /// FIXME: This is a hack. 1329 const MCExpr *PPCAsmParser:: 1330 FixupVariantKind(const MCExpr *E) { 1331 MCContext &Context = getParser().getContext(); 1332 1333 switch (E->getKind()) { 1334 case MCExpr::Target: 1335 case MCExpr::Constant: 1336 return E; 1337 1338 case MCExpr::SymbolRef: { 1339 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1340 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1341 1342 switch (SRE->getKind()) { 1343 case MCSymbolRefExpr::VK_TLSGD: 1344 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1345 break; 1346 case MCSymbolRefExpr::VK_TLSLD: 1347 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1348 break; 1349 default: 1350 return E; 1351 } 1352 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1353 } 1354 1355 case MCExpr::Unary: { 1356 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1357 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1358 if (Sub == UE->getSubExpr()) 1359 return E; 1360 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1361 } 1362 1363 case MCExpr::Binary: { 1364 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1365 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1366 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1367 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1368 return E; 1369 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1370 } 1371 } 1372 1373 llvm_unreachable("Invalid expression kind!"); 1374 } 1375 1376 /// ParseExpression. This differs from the default "parseExpression" in that 1377 /// it handles modifiers. 1378 bool PPCAsmParser:: 1379 ParseExpression(const MCExpr *&EVal) { 1380 1381 if (isDarwin()) 1382 return ParseDarwinExpression(EVal); 1383 1384 // (ELF Platforms) 1385 // Handle \code @l/@ha \endcode 1386 if (getParser().parseExpression(EVal)) 1387 return true; 1388 1389 EVal = FixupVariantKind(EVal); 1390 1391 PPCMCExpr::VariantKind Variant; 1392 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1393 if (E) 1394 EVal = PPCMCExpr::create(Variant, E, getParser().getContext()); 1395 1396 return false; 1397 } 1398 1399 /// ParseDarwinExpression. (MachO Platforms) 1400 /// This differs from the default "parseExpression" in that it handles detection 1401 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1402 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1403 /// syntax form so it is done here. TODO: Determine if there is merit in 1404 /// arranging for this to be done at a higher level. 1405 bool PPCAsmParser:: 1406 ParseDarwinExpression(const MCExpr *&EVal) { 1407 MCAsmParser &Parser = getParser(); 1408 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1409 switch (getLexer().getKind()) { 1410 default: 1411 break; 1412 case AsmToken::Identifier: 1413 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1414 // something starting with any other char should be part of the 1415 // asm syntax. If handwritten asm includes an identifier like lo16, 1416 // then all bets are off - but no-one would do that, right? 1417 StringRef poss = Parser.getTok().getString(); 1418 if (poss.equals_lower("lo16")) { 1419 Variant = PPCMCExpr::VK_PPC_LO; 1420 } else if (poss.equals_lower("hi16")) { 1421 Variant = PPCMCExpr::VK_PPC_HI; 1422 } else if (poss.equals_lower("ha16")) { 1423 Variant = PPCMCExpr::VK_PPC_HA; 1424 } 1425 if (Variant != PPCMCExpr::VK_PPC_None) { 1426 Parser.Lex(); // Eat the xx16 1427 if (getLexer().isNot(AsmToken::LParen)) 1428 return Error(Parser.getTok().getLoc(), "expected '('"); 1429 Parser.Lex(); // Eat the '(' 1430 } 1431 break; 1432 } 1433 1434 if (getParser().parseExpression(EVal)) 1435 return true; 1436 1437 if (Variant != PPCMCExpr::VK_PPC_None) { 1438 if (getLexer().isNot(AsmToken::RParen)) 1439 return Error(Parser.getTok().getLoc(), "expected ')'"); 1440 Parser.Lex(); // Eat the ')' 1441 EVal = PPCMCExpr::create(Variant, EVal, getParser().getContext()); 1442 } 1443 return false; 1444 } 1445 1446 /// ParseOperand 1447 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1448 /// rNN for MachO. 1449 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1450 MCAsmParser &Parser = getParser(); 1451 SMLoc S = Parser.getTok().getLoc(); 1452 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1453 const MCExpr *EVal; 1454 1455 // Attempt to parse the next token as an immediate 1456 switch (getLexer().getKind()) { 1457 // Special handling for register names. These are interpreted 1458 // as immediates corresponding to the register number. 1459 case AsmToken::Percent: 1460 Parser.Lex(); // Eat the '%'. 1461 unsigned RegNo; 1462 int64_t IntVal; 1463 if (MatchRegisterName(RegNo, IntVal)) 1464 return Error(S, "invalid register name"); 1465 1466 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1467 return false; 1468 1469 case AsmToken::Identifier: 1470 case AsmToken::LParen: 1471 case AsmToken::Plus: 1472 case AsmToken::Minus: 1473 case AsmToken::Integer: 1474 case AsmToken::Dot: 1475 case AsmToken::Dollar: 1476 case AsmToken::Exclaim: 1477 case AsmToken::Tilde: 1478 // Note that non-register-name identifiers from the compiler will begin 1479 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1480 // identifiers like r31foo - so we fall through in the event that parsing 1481 // a register name fails. 1482 if (isDarwin()) { 1483 unsigned RegNo; 1484 int64_t IntVal; 1485 if (!MatchRegisterName(RegNo, IntVal)) { 1486 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1487 return false; 1488 } 1489 } 1490 // All other expressions 1491 1492 if (!ParseExpression(EVal)) 1493 break; 1494 // Fall-through 1495 LLVM_FALLTHROUGH; 1496 default: 1497 return Error(S, "unknown operand"); 1498 } 1499 1500 // Push the parsed operand into the list of operands 1501 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1502 1503 // Check whether this is a TLS call expression 1504 bool TLSCall = false; 1505 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1506 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1507 1508 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1509 const MCExpr *TLSSym; 1510 1511 Parser.Lex(); // Eat the '('. 1512 S = Parser.getTok().getLoc(); 1513 if (ParseExpression(TLSSym)) 1514 return Error(S, "invalid TLS call expression"); 1515 if (getLexer().isNot(AsmToken::RParen)) 1516 return Error(Parser.getTok().getLoc(), "missing ')'"); 1517 E = Parser.getTok().getLoc(); 1518 Parser.Lex(); // Eat the ')'. 1519 1520 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1521 } 1522 1523 // Otherwise, check for D-form memory operands 1524 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1525 Parser.Lex(); // Eat the '('. 1526 S = Parser.getTok().getLoc(); 1527 1528 int64_t IntVal; 1529 switch (getLexer().getKind()) { 1530 case AsmToken::Percent: 1531 Parser.Lex(); // Eat the '%'. 1532 unsigned RegNo; 1533 if (MatchRegisterName(RegNo, IntVal)) 1534 return Error(S, "invalid register name"); 1535 break; 1536 1537 case AsmToken::Integer: 1538 if (isDarwin()) 1539 return Error(S, "unexpected integer value"); 1540 else if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 || 1541 IntVal > 31) 1542 return Error(S, "invalid register number"); 1543 break; 1544 case AsmToken::Identifier: 1545 if (isDarwin()) { 1546 unsigned RegNo; 1547 if (!MatchRegisterName(RegNo, IntVal)) { 1548 break; 1549 } 1550 } 1551 LLVM_FALLTHROUGH; 1552 1553 default: 1554 return Error(S, "invalid memory operand"); 1555 } 1556 1557 E = Parser.getTok().getLoc(); 1558 if (parseToken(AsmToken::RParen, "missing ')'")) 1559 return true; 1560 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1561 } 1562 1563 return false; 1564 } 1565 1566 /// Parse an instruction mnemonic followed by its operands. 1567 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1568 SMLoc NameLoc, OperandVector &Operands) { 1569 // The first operand is the token for the instruction name. 1570 // If the next character is a '+' or '-', we need to add it to the 1571 // instruction name, to match what TableGen is doing. 1572 std::string NewOpcode; 1573 if (parseOptionalToken(AsmToken::Plus)) { 1574 NewOpcode = std::string(Name); 1575 NewOpcode += '+'; 1576 Name = NewOpcode; 1577 } 1578 if (parseOptionalToken(AsmToken::Minus)) { 1579 NewOpcode = std::string(Name); 1580 NewOpcode += '-'; 1581 Name = NewOpcode; 1582 } 1583 // If the instruction ends in a '.', we need to create a separate 1584 // token for it, to match what TableGen is doing. 1585 size_t Dot = Name.find('.'); 1586 StringRef Mnemonic = Name.slice(0, Dot); 1587 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1588 Operands.push_back( 1589 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1590 else 1591 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1592 if (Dot != StringRef::npos) { 1593 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1594 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1595 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1596 Operands.push_back( 1597 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1598 else 1599 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1600 } 1601 1602 // If there are no more operands then finish 1603 if (parseOptionalToken(AsmToken::EndOfStatement)) 1604 return false; 1605 1606 // Parse the first operand 1607 if (ParseOperand(Operands)) 1608 return true; 1609 1610 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 1611 if (parseToken(AsmToken::Comma) || ParseOperand(Operands)) 1612 return true; 1613 } 1614 1615 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1616 // and dcbtst instructions differs for server vs. embedded cores. 1617 // The syntax for dcbt is: 1618 // dcbt ra, rb, th [server] 1619 // dcbt th, ra, rb [embedded] 1620 // where th can be omitted when it is 0. dcbtst is the same. We take the 1621 // server form to be the default, so swap the operands if we're parsing for 1622 // an embedded core (they'll be swapped again upon printing). 1623 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1624 Operands.size() == 4 && 1625 (Name == "dcbt" || Name == "dcbtst")) { 1626 std::swap(Operands[1], Operands[3]); 1627 std::swap(Operands[2], Operands[1]); 1628 } 1629 1630 return false; 1631 } 1632 1633 /// ParseDirective parses the PPC specific directives 1634 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1635 StringRef IDVal = DirectiveID.getIdentifier(); 1636 if (isDarwin()) { 1637 if (IDVal == ".machine") 1638 ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1639 else 1640 return true; 1641 } else if (IDVal == ".word") 1642 ParseDirectiveWord(2, DirectiveID); 1643 else if (IDVal == ".llong") 1644 ParseDirectiveWord(8, DirectiveID); 1645 else if (IDVal == ".tc") 1646 ParseDirectiveTC(isPPC64() ? 8 : 4, DirectiveID); 1647 else if (IDVal == ".machine") 1648 ParseDirectiveMachine(DirectiveID.getLoc()); 1649 else if (IDVal == ".abiversion") 1650 ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1651 else if (IDVal == ".localentry") 1652 ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1653 else 1654 return true; 1655 return false; 1656 } 1657 1658 /// ParseDirectiveWord 1659 /// ::= .word [ expression (, expression)* ] 1660 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, AsmToken ID) { 1661 auto parseOp = [&]() -> bool { 1662 const MCExpr *Value; 1663 SMLoc ExprLoc = getParser().getTok().getLoc(); 1664 if (getParser().parseExpression(Value)) 1665 return true; 1666 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1667 assert(Size <= 8 && "Invalid size"); 1668 uint64_t IntValue = MCE->getValue(); 1669 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1670 return Error(ExprLoc, "literal value out of range for '" + 1671 ID.getIdentifier() + "' directive"); 1672 getStreamer().EmitIntValue(IntValue, Size); 1673 } else 1674 getStreamer().EmitValue(Value, Size, ExprLoc); 1675 return false; 1676 }; 1677 1678 if (parseMany(parseOp)) 1679 return addErrorSuffix(" in '" + ID.getIdentifier() + "' directive"); 1680 return false; 1681 } 1682 1683 /// ParseDirectiveTC 1684 /// ::= .tc [ symbol (, expression)* ] 1685 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, AsmToken ID) { 1686 MCAsmParser &Parser = getParser(); 1687 // Skip TC symbol, which is only used with XCOFF. 1688 while (getLexer().isNot(AsmToken::EndOfStatement) 1689 && getLexer().isNot(AsmToken::Comma)) 1690 Parser.Lex(); 1691 if (parseToken(AsmToken::Comma)) 1692 return addErrorSuffix(" in '.tc' directive"); 1693 1694 // Align to word size. 1695 getParser().getStreamer().EmitValueToAlignment(Size); 1696 1697 // Emit expressions. 1698 return ParseDirectiveWord(Size, ID); 1699 } 1700 1701 /// ParseDirectiveMachine (ELF platforms) 1702 /// ::= .machine [ cpu | "push" | "pop" ] 1703 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1704 MCAsmParser &Parser = getParser(); 1705 if (Parser.getTok().isNot(AsmToken::Identifier) && 1706 Parser.getTok().isNot(AsmToken::String)) 1707 return Error(L, "unexpected token in '.machine' directive"); 1708 1709 StringRef CPU = Parser.getTok().getIdentifier(); 1710 1711 // FIXME: Right now, the parser always allows any available 1712 // instruction, so the .machine directive is not useful. 1713 // Implement ".machine any" (by doing nothing) for the benefit 1714 // of existing assembler code. Likewise, we can then implement 1715 // ".machine push" and ".machine pop" as no-op. 1716 if (CPU != "any" && CPU != "push" && CPU != "pop") 1717 return TokError("unrecognized machine type"); 1718 1719 Parser.Lex(); 1720 1721 if (parseToken(AsmToken::EndOfStatement)) 1722 return addErrorSuffix(" in '.machine' directive"); 1723 1724 PPCTargetStreamer &TStreamer = 1725 *static_cast<PPCTargetStreamer *>( 1726 getParser().getStreamer().getTargetStreamer()); 1727 TStreamer.emitMachine(CPU); 1728 1729 return false; 1730 } 1731 1732 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1733 /// ::= .machine cpu-identifier 1734 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1735 MCAsmParser &Parser = getParser(); 1736 if (Parser.getTok().isNot(AsmToken::Identifier) && 1737 Parser.getTok().isNot(AsmToken::String)) 1738 return Error(L, "unexpected token in directive"); 1739 1740 StringRef CPU = Parser.getTok().getIdentifier(); 1741 Parser.Lex(); 1742 1743 // FIXME: this is only the 'default' set of cpu variants. 1744 // However we don't act on this information at present, this is simply 1745 // allowing parsing to proceed with minimal sanity checking. 1746 if (check(CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64", L, 1747 "unrecognized cpu type") || 1748 check(isPPC64() && (CPU == "ppc7400" || CPU == "ppc"), L, 1749 "wrong cpu type specified for 64bit") || 1750 check(!isPPC64() && CPU == "ppc64", L, 1751 "wrong cpu type specified for 32bit") || 1752 parseToken(AsmToken::EndOfStatement)) 1753 return addErrorSuffix(" in '.machine' directive"); 1754 return false; 1755 } 1756 1757 /// ParseDirectiveAbiVersion 1758 /// ::= .abiversion constant-expression 1759 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1760 int64_t AbiVersion; 1761 if (check(getParser().parseAbsoluteExpression(AbiVersion), L, 1762 "expected constant expression") || 1763 parseToken(AsmToken::EndOfStatement)) 1764 return addErrorSuffix(" in '.abiversion' directive"); 1765 1766 PPCTargetStreamer &TStreamer = 1767 *static_cast<PPCTargetStreamer *>( 1768 getParser().getStreamer().getTargetStreamer()); 1769 TStreamer.emitAbiVersion(AbiVersion); 1770 1771 return false; 1772 } 1773 1774 /// ParseDirectiveLocalEntry 1775 /// ::= .localentry symbol, expression 1776 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1777 StringRef Name; 1778 if (getParser().parseIdentifier(Name)) 1779 return Error(L, "expected identifier in '.localentry' directive"); 1780 1781 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1782 const MCExpr *Expr; 1783 1784 if (parseToken(AsmToken::Comma) || 1785 check(getParser().parseExpression(Expr), L, "expected expression") || 1786 parseToken(AsmToken::EndOfStatement)) 1787 return addErrorSuffix(" in '.localentry' directive"); 1788 1789 PPCTargetStreamer &TStreamer = 1790 *static_cast<PPCTargetStreamer *>( 1791 getParser().getStreamer().getTargetStreamer()); 1792 TStreamer.emitLocalEntry(Sym, Expr); 1793 1794 return false; 1795 } 1796 1797 1798 1799 /// Force static initialization. 1800 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmParser() { 1801 RegisterMCAsmParser<PPCAsmParser> A(getThePPC32Target()); 1802 RegisterMCAsmParser<PPCAsmParser> B(getThePPC64Target()); 1803 RegisterMCAsmParser<PPCAsmParser> C(getThePPC64LETarget()); 1804 } 1805 1806 #define GET_REGISTER_MATCHER 1807 #define GET_MATCHER_IMPLEMENTATION 1808 #define GET_MNEMONIC_SPELL_CHECKER 1809 #include "PPCGenAsmMatcher.inc" 1810 1811 // Define this matcher function after the auto-generated include so we 1812 // have the match class enum definitions. 1813 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1814 unsigned Kind) { 1815 // If the kind is a token for a literal immediate, check if our asm 1816 // operand matches. This is for InstAliases which have a fixed-value 1817 // immediate in the syntax. 1818 int64_t ImmVal; 1819 switch (Kind) { 1820 case MCK_0: ImmVal = 0; break; 1821 case MCK_1: ImmVal = 1; break; 1822 case MCK_2: ImmVal = 2; break; 1823 case MCK_3: ImmVal = 3; break; 1824 case MCK_4: ImmVal = 4; break; 1825 case MCK_5: ImmVal = 5; break; 1826 case MCK_6: ImmVal = 6; break; 1827 case MCK_7: ImmVal = 7; break; 1828 default: return Match_InvalidOperand; 1829 } 1830 1831 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1832 if (Op.isImm() && Op.getImm() == ImmVal) 1833 return Match_Success; 1834 1835 return Match_InvalidOperand; 1836 } 1837 1838 const MCExpr * 1839 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1840 MCSymbolRefExpr::VariantKind Variant, 1841 MCContext &Ctx) { 1842 switch (Variant) { 1843 case MCSymbolRefExpr::VK_PPC_LO: 1844 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, Ctx); 1845 case MCSymbolRefExpr::VK_PPC_HI: 1846 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, Ctx); 1847 case MCSymbolRefExpr::VK_PPC_HA: 1848 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, Ctx); 1849 case MCSymbolRefExpr::VK_PPC_HIGH: 1850 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGH, E, Ctx); 1851 case MCSymbolRefExpr::VK_PPC_HIGHA: 1852 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHA, E, Ctx); 1853 case MCSymbolRefExpr::VK_PPC_HIGHER: 1854 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, Ctx); 1855 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1856 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, Ctx); 1857 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1858 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, Ctx); 1859 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1860 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, Ctx); 1861 default: 1862 return nullptr; 1863 } 1864 } 1865