1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/PPCMCExpr.h" 11 #include "MCTargetDesc/PPCMCTargetDesc.h" 12 #include "PPCTargetStreamer.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstrInfo.h" 22 #include "llvm/MC/MCParser/MCAsmLexer.h" 23 #include "llvm/MC/MCParser/MCAsmParser.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/MC/MCStreamer.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/MC/MCSymbolELF.h" 30 #include "llvm/Support/SourceMgr.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 static const MCPhysReg RRegs[32] = { 37 PPC::R0, PPC::R1, PPC::R2, PPC::R3, 38 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 39 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 40 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 41 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 42 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 43 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 44 PPC::R28, PPC::R29, PPC::R30, PPC::R31 45 }; 46 static const MCPhysReg RRegsNoR0[32] = { 47 PPC::ZERO, 48 PPC::R1, PPC::R2, PPC::R3, 49 PPC::R4, PPC::R5, PPC::R6, PPC::R7, 50 PPC::R8, PPC::R9, PPC::R10, PPC::R11, 51 PPC::R12, PPC::R13, PPC::R14, PPC::R15, 52 PPC::R16, PPC::R17, PPC::R18, PPC::R19, 53 PPC::R20, PPC::R21, PPC::R22, PPC::R23, 54 PPC::R24, PPC::R25, PPC::R26, PPC::R27, 55 PPC::R28, PPC::R29, PPC::R30, PPC::R31 56 }; 57 static const MCPhysReg XRegs[32] = { 58 PPC::X0, PPC::X1, PPC::X2, PPC::X3, 59 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 60 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 61 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 62 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 63 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 64 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 65 PPC::X28, PPC::X29, PPC::X30, PPC::X31 66 }; 67 static const MCPhysReg XRegsNoX0[32] = { 68 PPC::ZERO8, 69 PPC::X1, PPC::X2, PPC::X3, 70 PPC::X4, PPC::X5, PPC::X6, PPC::X7, 71 PPC::X8, PPC::X9, PPC::X10, PPC::X11, 72 PPC::X12, PPC::X13, PPC::X14, PPC::X15, 73 PPC::X16, PPC::X17, PPC::X18, PPC::X19, 74 PPC::X20, PPC::X21, PPC::X22, PPC::X23, 75 PPC::X24, PPC::X25, PPC::X26, PPC::X27, 76 PPC::X28, PPC::X29, PPC::X30, PPC::X31 77 }; 78 static const MCPhysReg FRegs[32] = { 79 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 80 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 81 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 82 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 83 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 84 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 85 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 86 PPC::F28, PPC::F29, PPC::F30, PPC::F31 87 }; 88 static const MCPhysReg VRegs[32] = { 89 PPC::V0, PPC::V1, PPC::V2, PPC::V3, 90 PPC::V4, PPC::V5, PPC::V6, PPC::V7, 91 PPC::V8, PPC::V9, PPC::V10, PPC::V11, 92 PPC::V12, PPC::V13, PPC::V14, PPC::V15, 93 PPC::V16, PPC::V17, PPC::V18, PPC::V19, 94 PPC::V20, PPC::V21, PPC::V22, PPC::V23, 95 PPC::V24, PPC::V25, PPC::V26, PPC::V27, 96 PPC::V28, PPC::V29, PPC::V30, PPC::V31 97 }; 98 static const MCPhysReg VSRegs[64] = { 99 PPC::VSL0, PPC::VSL1, PPC::VSL2, PPC::VSL3, 100 PPC::VSL4, PPC::VSL5, PPC::VSL6, PPC::VSL7, 101 PPC::VSL8, PPC::VSL9, PPC::VSL10, PPC::VSL11, 102 PPC::VSL12, PPC::VSL13, PPC::VSL14, PPC::VSL15, 103 PPC::VSL16, PPC::VSL17, PPC::VSL18, PPC::VSL19, 104 PPC::VSL20, PPC::VSL21, PPC::VSL22, PPC::VSL23, 105 PPC::VSL24, PPC::VSL25, PPC::VSL26, PPC::VSL27, 106 PPC::VSL28, PPC::VSL29, PPC::VSL30, PPC::VSL31, 107 108 PPC::VSH0, PPC::VSH1, PPC::VSH2, PPC::VSH3, 109 PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, 110 PPC::VSH8, PPC::VSH9, PPC::VSH10, PPC::VSH11, 111 PPC::VSH12, PPC::VSH13, PPC::VSH14, PPC::VSH15, 112 PPC::VSH16, PPC::VSH17, PPC::VSH18, PPC::VSH19, 113 PPC::VSH20, PPC::VSH21, PPC::VSH22, PPC::VSH23, 114 PPC::VSH24, PPC::VSH25, PPC::VSH26, PPC::VSH27, 115 PPC::VSH28, PPC::VSH29, PPC::VSH30, PPC::VSH31 116 }; 117 static const MCPhysReg VSFRegs[64] = { 118 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 119 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 120 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 121 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 122 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 123 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 124 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 125 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 126 127 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 128 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 129 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 130 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 131 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 132 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 133 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 134 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 135 }; 136 static const MCPhysReg VSSRegs[64] = { 137 PPC::F0, PPC::F1, PPC::F2, PPC::F3, 138 PPC::F4, PPC::F5, PPC::F6, PPC::F7, 139 PPC::F8, PPC::F9, PPC::F10, PPC::F11, 140 PPC::F12, PPC::F13, PPC::F14, PPC::F15, 141 PPC::F16, PPC::F17, PPC::F18, PPC::F19, 142 PPC::F20, PPC::F21, PPC::F22, PPC::F23, 143 PPC::F24, PPC::F25, PPC::F26, PPC::F27, 144 PPC::F28, PPC::F29, PPC::F30, PPC::F31, 145 146 PPC::VF0, PPC::VF1, PPC::VF2, PPC::VF3, 147 PPC::VF4, PPC::VF5, PPC::VF6, PPC::VF7, 148 PPC::VF8, PPC::VF9, PPC::VF10, PPC::VF11, 149 PPC::VF12, PPC::VF13, PPC::VF14, PPC::VF15, 150 PPC::VF16, PPC::VF17, PPC::VF18, PPC::VF19, 151 PPC::VF20, PPC::VF21, PPC::VF22, PPC::VF23, 152 PPC::VF24, PPC::VF25, PPC::VF26, PPC::VF27, 153 PPC::VF28, PPC::VF29, PPC::VF30, PPC::VF31 154 }; 155 static unsigned QFRegs[32] = { 156 PPC::QF0, PPC::QF1, PPC::QF2, PPC::QF3, 157 PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 158 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, 159 PPC::QF12, PPC::QF13, PPC::QF14, PPC::QF15, 160 PPC::QF16, PPC::QF17, PPC::QF18, PPC::QF19, 161 PPC::QF20, PPC::QF21, PPC::QF22, PPC::QF23, 162 PPC::QF24, PPC::QF25, PPC::QF26, PPC::QF27, 163 PPC::QF28, PPC::QF29, PPC::QF30, PPC::QF31 164 }; 165 static const MCPhysReg CRBITRegs[32] = { 166 PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, 167 PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, 168 PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, 169 PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, 170 PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, 171 PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, 172 PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, 173 PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN 174 }; 175 static const MCPhysReg CRRegs[8] = { 176 PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, 177 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 178 }; 179 180 // Evaluate an expression containing condition register 181 // or condition register field symbols. Returns positive 182 // value on success, or -1 on error. 183 static int64_t 184 EvaluateCRExpr(const MCExpr *E) { 185 switch (E->getKind()) { 186 case MCExpr::Target: 187 return -1; 188 189 case MCExpr::Constant: { 190 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 191 return Res < 0 ? -1 : Res; 192 } 193 194 case MCExpr::SymbolRef: { 195 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 196 StringRef Name = SRE->getSymbol().getName(); 197 198 if (Name == "lt") return 0; 199 if (Name == "gt") return 1; 200 if (Name == "eq") return 2; 201 if (Name == "so") return 3; 202 if (Name == "un") return 3; 203 204 if (Name == "cr0") return 0; 205 if (Name == "cr1") return 1; 206 if (Name == "cr2") return 2; 207 if (Name == "cr3") return 3; 208 if (Name == "cr4") return 4; 209 if (Name == "cr5") return 5; 210 if (Name == "cr6") return 6; 211 if (Name == "cr7") return 7; 212 213 return -1; 214 } 215 216 case MCExpr::Unary: 217 return -1; 218 219 case MCExpr::Binary: { 220 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 221 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 222 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 223 int64_t Res; 224 225 if (LHSVal < 0 || RHSVal < 0) 226 return -1; 227 228 switch (BE->getOpcode()) { 229 default: return -1; 230 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 231 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 232 } 233 234 return Res < 0 ? -1 : Res; 235 } 236 } 237 238 llvm_unreachable("Invalid expression kind!"); 239 } 240 241 namespace { 242 243 struct PPCOperand; 244 245 class PPCAsmParser : public MCTargetAsmParser { 246 const MCInstrInfo &MII; 247 bool IsPPC64; 248 bool IsDarwin; 249 250 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 251 bool Error(SMLoc L, const Twine &Msg) { return getParser().Error(L, Msg); } 252 253 bool isPPC64() const { return IsPPC64; } 254 bool isDarwin() const { return IsDarwin; } 255 256 bool MatchRegisterName(const AsmToken &Tok, 257 unsigned &RegNo, int64_t &IntVal); 258 259 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 260 261 const MCExpr *ExtractModifierFromExpr(const MCExpr *E, 262 PPCMCExpr::VariantKind &Variant); 263 const MCExpr *FixupVariantKind(const MCExpr *E); 264 bool ParseExpression(const MCExpr *&EVal); 265 bool ParseDarwinExpression(const MCExpr *&EVal); 266 267 bool ParseOperand(OperandVector &Operands); 268 269 bool ParseDirectiveWord(unsigned Size, SMLoc L); 270 bool ParseDirectiveTC(unsigned Size, SMLoc L); 271 bool ParseDirectiveMachine(SMLoc L); 272 bool ParseDarwinDirectiveMachine(SMLoc L); 273 bool ParseDirectiveAbiVersion(SMLoc L); 274 bool ParseDirectiveLocalEntry(SMLoc L); 275 276 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 277 OperandVector &Operands, MCStreamer &Out, 278 uint64_t &ErrorInfo, 279 bool MatchingInlineAsm) override; 280 281 void ProcessInstruction(MCInst &Inst, const OperandVector &Ops); 282 283 /// @name Auto-generated Match Functions 284 /// { 285 286 #define GET_ASSEMBLER_HEADER 287 #include "PPCGenAsmMatcher.inc" 288 289 /// } 290 291 292 public: 293 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 294 const MCInstrInfo &MII, const MCTargetOptions &Options) 295 : MCTargetAsmParser(Options, STI), MII(MII) { 296 // Check for 64-bit vs. 32-bit pointer mode. 297 Triple TheTriple(STI.getTargetTriple()); 298 IsPPC64 = (TheTriple.getArch() == Triple::ppc64 || 299 TheTriple.getArch() == Triple::ppc64le); 300 IsDarwin = TheTriple.isMacOSX(); 301 // Initialize the set of available features. 302 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 303 } 304 305 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 306 SMLoc NameLoc, OperandVector &Operands) override; 307 308 bool ParseDirective(AsmToken DirectiveID) override; 309 310 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 311 unsigned Kind) override; 312 313 const MCExpr *applyModifierToExpr(const MCExpr *E, 314 MCSymbolRefExpr::VariantKind, 315 MCContext &Ctx) override; 316 }; 317 318 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 319 /// instruction. 320 struct PPCOperand : public MCParsedAsmOperand { 321 enum KindTy { 322 Token, 323 Immediate, 324 ContextImmediate, 325 Expression, 326 TLSRegister 327 } Kind; 328 329 SMLoc StartLoc, EndLoc; 330 bool IsPPC64; 331 332 struct TokOp { 333 const char *Data; 334 unsigned Length; 335 }; 336 337 struct ImmOp { 338 int64_t Val; 339 }; 340 341 struct ExprOp { 342 const MCExpr *Val; 343 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 344 }; 345 346 struct TLSRegOp { 347 const MCSymbolRefExpr *Sym; 348 }; 349 350 union { 351 struct TokOp Tok; 352 struct ImmOp Imm; 353 struct ExprOp Expr; 354 struct TLSRegOp TLSReg; 355 }; 356 357 PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 358 public: 359 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 360 Kind = o.Kind; 361 StartLoc = o.StartLoc; 362 EndLoc = o.EndLoc; 363 IsPPC64 = o.IsPPC64; 364 switch (Kind) { 365 case Token: 366 Tok = o.Tok; 367 break; 368 case Immediate: 369 case ContextImmediate: 370 Imm = o.Imm; 371 break; 372 case Expression: 373 Expr = o.Expr; 374 break; 375 case TLSRegister: 376 TLSReg = o.TLSReg; 377 break; 378 } 379 } 380 381 // Disable use of sized deallocation due to overallocation of PPCOperand 382 // objects in CreateTokenWithStringCopy. 383 void operator delete(void *p) { ::operator delete(p); } 384 385 /// getStartLoc - Get the location of the first token of this operand. 386 SMLoc getStartLoc() const override { return StartLoc; } 387 388 /// getEndLoc - Get the location of the last token of this operand. 389 SMLoc getEndLoc() const override { return EndLoc; } 390 391 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 392 bool isPPC64() const { return IsPPC64; } 393 394 int64_t getImm() const { 395 assert(Kind == Immediate && "Invalid access!"); 396 return Imm.Val; 397 } 398 int64_t getImmS16Context() const { 399 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 400 if (Kind == Immediate) 401 return Imm.Val; 402 return static_cast<int16_t>(Imm.Val); 403 } 404 int64_t getImmU16Context() const { 405 assert((Kind == Immediate || Kind == ContextImmediate) && "Invalid access!"); 406 return Imm.Val; 407 } 408 409 const MCExpr *getExpr() const { 410 assert(Kind == Expression && "Invalid access!"); 411 return Expr.Val; 412 } 413 414 int64_t getExprCRVal() const { 415 assert(Kind == Expression && "Invalid access!"); 416 return Expr.CRVal; 417 } 418 419 const MCExpr *getTLSReg() const { 420 assert(Kind == TLSRegister && "Invalid access!"); 421 return TLSReg.Sym; 422 } 423 424 unsigned getReg() const override { 425 assert(isRegNumber() && "Invalid access!"); 426 return (unsigned) Imm.Val; 427 } 428 429 unsigned getVSReg() const { 430 assert(isVSRegNumber() && "Invalid access!"); 431 return (unsigned) Imm.Val; 432 } 433 434 unsigned getCCReg() const { 435 assert(isCCRegNumber() && "Invalid access!"); 436 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 437 } 438 439 unsigned getCRBit() const { 440 assert(isCRBitNumber() && "Invalid access!"); 441 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 442 } 443 444 unsigned getCRBitMask() const { 445 assert(isCRBitMask() && "Invalid access!"); 446 return 7 - countTrailingZeros<uint64_t>(Imm.Val); 447 } 448 449 bool isToken() const override { return Kind == Token; } 450 bool isImm() const override { return Kind == Immediate || Kind == Expression; } 451 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 452 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 453 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 454 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 455 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 456 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 457 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 458 bool isU6ImmX2() const { return Kind == Immediate && 459 isUInt<6>(getImm()) && 460 (getImm() & 1) == 0; } 461 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 462 bool isU7ImmX4() const { return Kind == Immediate && 463 isUInt<7>(getImm()) && 464 (getImm() & 3) == 0; } 465 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 466 bool isU8ImmX8() const { return Kind == Immediate && 467 isUInt<8>(getImm()) && 468 (getImm() & 7) == 0; } 469 470 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 471 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 472 bool isU16Imm() const { 473 switch (Kind) { 474 case Expression: 475 return true; 476 case Immediate: 477 case ContextImmediate: 478 return isUInt<16>(getImmU16Context()); 479 default: 480 return false; 481 } 482 } 483 bool isS16Imm() const { 484 switch (Kind) { 485 case Expression: 486 return true; 487 case Immediate: 488 case ContextImmediate: 489 return isInt<16>(getImmS16Context()); 490 default: 491 return false; 492 } 493 } 494 bool isS16ImmX4() const { return Kind == Expression || 495 (Kind == Immediate && isInt<16>(getImm()) && 496 (getImm() & 3) == 0); } 497 bool isS16ImmX16() const { return Kind == Expression || 498 (Kind == Immediate && isInt<16>(getImm()) && 499 (getImm() & 15) == 0); } 500 bool isS17Imm() const { 501 switch (Kind) { 502 case Expression: 503 return true; 504 case Immediate: 505 case ContextImmediate: 506 return isInt<17>(getImmS16Context()); 507 default: 508 return false; 509 } 510 } 511 bool isTLSReg() const { return Kind == TLSRegister; } 512 bool isDirectBr() const { 513 if (Kind == Expression) 514 return true; 515 if (Kind != Immediate) 516 return false; 517 // Operand must be 64-bit aligned, signed 27-bit immediate. 518 if ((getImm() & 3) != 0) 519 return false; 520 if (isInt<26>(getImm())) 521 return true; 522 if (!IsPPC64) { 523 // In 32-bit mode, large 32-bit quantities wrap around. 524 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 525 return true; 526 } 527 return false; 528 } 529 bool isCondBr() const { return Kind == Expression || 530 (Kind == Immediate && isInt<16>(getImm()) && 531 (getImm() & 3) == 0); } 532 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 533 bool isD8RCRegNumber() const { return Kind == Immediate && 534 isUInt<5>(getImm()) && 535 // required even register id 536 !(getImm() & 0x1); } 537 bool isVSRegNumber() const { return Kind == Immediate && isUInt<6>(getImm()); } 538 bool isCCRegNumber() const { return (Kind == Expression 539 && isUInt<3>(getExprCRVal())) || 540 (Kind == Immediate 541 && isUInt<3>(getImm())); } 542 bool isCRBitNumber() const { return (Kind == Expression 543 && isUInt<5>(getExprCRVal())) || 544 (Kind == Immediate 545 && isUInt<5>(getImm())); } 546 bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && 547 isPowerOf2_32(getImm()); } 548 bool isMem() const override { return false; } 549 bool isReg() const override { return false; } 550 551 void addRegOperands(MCInst &Inst, unsigned N) const { 552 llvm_unreachable("addRegOperands"); 553 } 554 555 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 556 assert(N == 1 && "Invalid number of operands!"); 557 Inst.addOperand(MCOperand::createReg(RRegs[getReg()])); 558 } 559 560 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 561 assert(N == 1 && "Invalid number of operands!"); 562 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getReg()])); 563 } 564 565 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 566 assert(N == 1 && "Invalid number of operands!"); 567 Inst.addOperand(MCOperand::createReg(XRegs[getReg()])); 568 } 569 570 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 571 assert(N == 1 && "Invalid number of operands!"); 572 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getReg()])); 573 } 574 575 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 576 if (isPPC64()) 577 addRegG8RCOperands(Inst, N); 578 else 579 addRegGPRCOperands(Inst, N); 580 } 581 582 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 583 if (isPPC64()) 584 addRegG8RCNoX0Operands(Inst, N); 585 else 586 addRegGPRCNoR0Operands(Inst, N); 587 } 588 589 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 590 assert(N == 1 && "Invalid number of operands!"); 591 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 592 } 593 594 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 595 assert(N == 1 && "Invalid number of operands!"); 596 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 597 } 598 599 void addRegD8RCOperands(MCInst &Inst, unsigned N) const { 600 assert(N == 1 && "Invalid number of operands!"); 601 Inst.addOperand(MCOperand::createReg(FRegs[getReg()])); 602 } 603 604 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 605 assert(N == 1 && "Invalid number of operands!"); 606 Inst.addOperand(MCOperand::createReg(VRegs[getReg()])); 607 } 608 609 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 610 assert(N == 1 && "Invalid number of operands!"); 611 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 612 } 613 614 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 615 assert(N == 1 && "Invalid number of operands!"); 616 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 617 } 618 619 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 620 assert(N == 1 && "Invalid number of operands!"); 621 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 622 } 623 624 void addRegQFRCOperands(MCInst &Inst, unsigned N) const { 625 assert(N == 1 && "Invalid number of operands!"); 626 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 627 } 628 629 void addRegQSRCOperands(MCInst &Inst, unsigned N) const { 630 assert(N == 1 && "Invalid number of operands!"); 631 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 632 } 633 634 void addRegQBRCOperands(MCInst &Inst, unsigned N) const { 635 assert(N == 1 && "Invalid number of operands!"); 636 Inst.addOperand(MCOperand::createReg(QFRegs[getReg()])); 637 } 638 639 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 640 assert(N == 1 && "Invalid number of operands!"); 641 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 642 } 643 644 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 645 assert(N == 1 && "Invalid number of operands!"); 646 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 647 } 648 649 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 650 assert(N == 1 && "Invalid number of operands!"); 651 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 652 } 653 654 void addImmOperands(MCInst &Inst, unsigned N) const { 655 assert(N == 1 && "Invalid number of operands!"); 656 if (Kind == Immediate) 657 Inst.addOperand(MCOperand::createImm(getImm())); 658 else 659 Inst.addOperand(MCOperand::createExpr(getExpr())); 660 } 661 662 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 663 assert(N == 1 && "Invalid number of operands!"); 664 switch (Kind) { 665 case Immediate: 666 Inst.addOperand(MCOperand::createImm(getImm())); 667 break; 668 case ContextImmediate: 669 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 670 break; 671 default: 672 Inst.addOperand(MCOperand::createExpr(getExpr())); 673 break; 674 } 675 } 676 677 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 678 assert(N == 1 && "Invalid number of operands!"); 679 switch (Kind) { 680 case Immediate: 681 Inst.addOperand(MCOperand::createImm(getImm())); 682 break; 683 case ContextImmediate: 684 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 685 break; 686 default: 687 Inst.addOperand(MCOperand::createExpr(getExpr())); 688 break; 689 } 690 } 691 692 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 693 assert(N == 1 && "Invalid number of operands!"); 694 if (Kind == Immediate) 695 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 696 else 697 Inst.addOperand(MCOperand::createExpr(getExpr())); 698 } 699 700 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 701 assert(N == 1 && "Invalid number of operands!"); 702 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 703 } 704 705 StringRef getToken() const { 706 assert(Kind == Token && "Invalid access!"); 707 return StringRef(Tok.Data, Tok.Length); 708 } 709 710 void print(raw_ostream &OS) const override; 711 712 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 713 bool IsPPC64) { 714 auto Op = make_unique<PPCOperand>(Token); 715 Op->Tok.Data = Str.data(); 716 Op->Tok.Length = Str.size(); 717 Op->StartLoc = S; 718 Op->EndLoc = S; 719 Op->IsPPC64 = IsPPC64; 720 return Op; 721 } 722 723 static std::unique_ptr<PPCOperand> 724 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 725 // Allocate extra memory for the string and copy it. 726 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 727 // deleter which will destroy them by simply using "delete", not correctly 728 // calling operator delete on this extra memory after calling the dtor 729 // explicitly. 730 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 731 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 732 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 733 Op->Tok.Length = Str.size(); 734 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 735 Op->StartLoc = S; 736 Op->EndLoc = S; 737 Op->IsPPC64 = IsPPC64; 738 return Op; 739 } 740 741 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 742 bool IsPPC64) { 743 auto Op = make_unique<PPCOperand>(Immediate); 744 Op->Imm.Val = Val; 745 Op->StartLoc = S; 746 Op->EndLoc = E; 747 Op->IsPPC64 = IsPPC64; 748 return Op; 749 } 750 751 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 752 SMLoc E, bool IsPPC64) { 753 auto Op = make_unique<PPCOperand>(Expression); 754 Op->Expr.Val = Val; 755 Op->Expr.CRVal = EvaluateCRExpr(Val); 756 Op->StartLoc = S; 757 Op->EndLoc = E; 758 Op->IsPPC64 = IsPPC64; 759 return Op; 760 } 761 762 static std::unique_ptr<PPCOperand> 763 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 764 auto Op = make_unique<PPCOperand>(TLSRegister); 765 Op->TLSReg.Sym = Sym; 766 Op->StartLoc = S; 767 Op->EndLoc = E; 768 Op->IsPPC64 = IsPPC64; 769 return Op; 770 } 771 772 static std::unique_ptr<PPCOperand> 773 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 774 auto Op = make_unique<PPCOperand>(ContextImmediate); 775 Op->Imm.Val = Val; 776 Op->StartLoc = S; 777 Op->EndLoc = E; 778 Op->IsPPC64 = IsPPC64; 779 return Op; 780 } 781 782 static std::unique_ptr<PPCOperand> 783 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 784 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 785 return CreateImm(CE->getValue(), S, E, IsPPC64); 786 787 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 788 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS) 789 return CreateTLSReg(SRE, S, E, IsPPC64); 790 791 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 792 int64_t Res; 793 if (TE->evaluateAsConstant(Res)) 794 return CreateContextImm(Res, S, E, IsPPC64); 795 } 796 797 return CreateExpr(Val, S, E, IsPPC64); 798 } 799 }; 800 801 } // end anonymous namespace. 802 803 void PPCOperand::print(raw_ostream &OS) const { 804 switch (Kind) { 805 case Token: 806 OS << "'" << getToken() << "'"; 807 break; 808 case Immediate: 809 case ContextImmediate: 810 OS << getImm(); 811 break; 812 case Expression: 813 OS << *getExpr(); 814 break; 815 case TLSRegister: 816 OS << *getTLSReg(); 817 break; 818 } 819 } 820 821 static void 822 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 823 if (Op.isImm()) { 824 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 825 return; 826 } 827 const MCExpr *Expr = Op.getExpr(); 828 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 829 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 830 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 831 return; 832 } 833 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 834 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 835 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 836 BinExpr->getLHS(), Ctx); 837 Inst.addOperand(MCOperand::createExpr(NE)); 838 return; 839 } 840 } 841 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 842 } 843 844 void PPCAsmParser::ProcessInstruction(MCInst &Inst, 845 const OperandVector &Operands) { 846 int Opcode = Inst.getOpcode(); 847 switch (Opcode) { 848 case PPC::DCBTx: 849 case PPC::DCBTT: 850 case PPC::DCBTSTx: 851 case PPC::DCBTSTT: { 852 MCInst TmpInst; 853 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 854 PPC::DCBT : PPC::DCBTST); 855 TmpInst.addOperand(MCOperand::createImm( 856 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 857 TmpInst.addOperand(Inst.getOperand(0)); 858 TmpInst.addOperand(Inst.getOperand(1)); 859 Inst = TmpInst; 860 break; 861 } 862 case PPC::DCBTCT: 863 case PPC::DCBTDS: { 864 MCInst TmpInst; 865 TmpInst.setOpcode(PPC::DCBT); 866 TmpInst.addOperand(Inst.getOperand(2)); 867 TmpInst.addOperand(Inst.getOperand(0)); 868 TmpInst.addOperand(Inst.getOperand(1)); 869 Inst = TmpInst; 870 break; 871 } 872 case PPC::DCBTSTCT: 873 case PPC::DCBTSTDS: { 874 MCInst TmpInst; 875 TmpInst.setOpcode(PPC::DCBTST); 876 TmpInst.addOperand(Inst.getOperand(2)); 877 TmpInst.addOperand(Inst.getOperand(0)); 878 TmpInst.addOperand(Inst.getOperand(1)); 879 Inst = TmpInst; 880 break; 881 } 882 case PPC::LAx: { 883 MCInst TmpInst; 884 TmpInst.setOpcode(PPC::LA); 885 TmpInst.addOperand(Inst.getOperand(0)); 886 TmpInst.addOperand(Inst.getOperand(2)); 887 TmpInst.addOperand(Inst.getOperand(1)); 888 Inst = TmpInst; 889 break; 890 } 891 case PPC::SUBI: { 892 MCInst TmpInst; 893 TmpInst.setOpcode(PPC::ADDI); 894 TmpInst.addOperand(Inst.getOperand(0)); 895 TmpInst.addOperand(Inst.getOperand(1)); 896 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 897 Inst = TmpInst; 898 break; 899 } 900 case PPC::SUBIS: { 901 MCInst TmpInst; 902 TmpInst.setOpcode(PPC::ADDIS); 903 TmpInst.addOperand(Inst.getOperand(0)); 904 TmpInst.addOperand(Inst.getOperand(1)); 905 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 906 Inst = TmpInst; 907 break; 908 } 909 case PPC::SUBIC: { 910 MCInst TmpInst; 911 TmpInst.setOpcode(PPC::ADDIC); 912 TmpInst.addOperand(Inst.getOperand(0)); 913 TmpInst.addOperand(Inst.getOperand(1)); 914 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 915 Inst = TmpInst; 916 break; 917 } 918 case PPC::SUBICo: { 919 MCInst TmpInst; 920 TmpInst.setOpcode(PPC::ADDICo); 921 TmpInst.addOperand(Inst.getOperand(0)); 922 TmpInst.addOperand(Inst.getOperand(1)); 923 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 924 Inst = TmpInst; 925 break; 926 } 927 case PPC::EXTLWI: 928 case PPC::EXTLWIo: { 929 MCInst TmpInst; 930 int64_t N = Inst.getOperand(2).getImm(); 931 int64_t B = Inst.getOperand(3).getImm(); 932 TmpInst.setOpcode(Opcode == PPC::EXTLWI? PPC::RLWINM : PPC::RLWINMo); 933 TmpInst.addOperand(Inst.getOperand(0)); 934 TmpInst.addOperand(Inst.getOperand(1)); 935 TmpInst.addOperand(MCOperand::createImm(B)); 936 TmpInst.addOperand(MCOperand::createImm(0)); 937 TmpInst.addOperand(MCOperand::createImm(N - 1)); 938 Inst = TmpInst; 939 break; 940 } 941 case PPC::EXTRWI: 942 case PPC::EXTRWIo: { 943 MCInst TmpInst; 944 int64_t N = Inst.getOperand(2).getImm(); 945 int64_t B = Inst.getOperand(3).getImm(); 946 TmpInst.setOpcode(Opcode == PPC::EXTRWI? PPC::RLWINM : PPC::RLWINMo); 947 TmpInst.addOperand(Inst.getOperand(0)); 948 TmpInst.addOperand(Inst.getOperand(1)); 949 TmpInst.addOperand(MCOperand::createImm(B + N)); 950 TmpInst.addOperand(MCOperand::createImm(32 - N)); 951 TmpInst.addOperand(MCOperand::createImm(31)); 952 Inst = TmpInst; 953 break; 954 } 955 case PPC::INSLWI: 956 case PPC::INSLWIo: { 957 MCInst TmpInst; 958 int64_t N = Inst.getOperand(2).getImm(); 959 int64_t B = Inst.getOperand(3).getImm(); 960 TmpInst.setOpcode(Opcode == PPC::INSLWI? PPC::RLWIMI : PPC::RLWIMIo); 961 TmpInst.addOperand(Inst.getOperand(0)); 962 TmpInst.addOperand(Inst.getOperand(0)); 963 TmpInst.addOperand(Inst.getOperand(1)); 964 TmpInst.addOperand(MCOperand::createImm(32 - B)); 965 TmpInst.addOperand(MCOperand::createImm(B)); 966 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 967 Inst = TmpInst; 968 break; 969 } 970 case PPC::INSRWI: 971 case PPC::INSRWIo: { 972 MCInst TmpInst; 973 int64_t N = Inst.getOperand(2).getImm(); 974 int64_t B = Inst.getOperand(3).getImm(); 975 TmpInst.setOpcode(Opcode == PPC::INSRWI? PPC::RLWIMI : PPC::RLWIMIo); 976 TmpInst.addOperand(Inst.getOperand(0)); 977 TmpInst.addOperand(Inst.getOperand(0)); 978 TmpInst.addOperand(Inst.getOperand(1)); 979 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 980 TmpInst.addOperand(MCOperand::createImm(B)); 981 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 982 Inst = TmpInst; 983 break; 984 } 985 case PPC::ROTRWI: 986 case PPC::ROTRWIo: { 987 MCInst TmpInst; 988 int64_t N = Inst.getOperand(2).getImm(); 989 TmpInst.setOpcode(Opcode == PPC::ROTRWI? PPC::RLWINM : PPC::RLWINMo); 990 TmpInst.addOperand(Inst.getOperand(0)); 991 TmpInst.addOperand(Inst.getOperand(1)); 992 TmpInst.addOperand(MCOperand::createImm(32 - N)); 993 TmpInst.addOperand(MCOperand::createImm(0)); 994 TmpInst.addOperand(MCOperand::createImm(31)); 995 Inst = TmpInst; 996 break; 997 } 998 case PPC::SLWI: 999 case PPC::SLWIo: { 1000 MCInst TmpInst; 1001 int64_t N = Inst.getOperand(2).getImm(); 1002 TmpInst.setOpcode(Opcode == PPC::SLWI? PPC::RLWINM : PPC::RLWINMo); 1003 TmpInst.addOperand(Inst.getOperand(0)); 1004 TmpInst.addOperand(Inst.getOperand(1)); 1005 TmpInst.addOperand(MCOperand::createImm(N)); 1006 TmpInst.addOperand(MCOperand::createImm(0)); 1007 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1008 Inst = TmpInst; 1009 break; 1010 } 1011 case PPC::SRWI: 1012 case PPC::SRWIo: { 1013 MCInst TmpInst; 1014 int64_t N = Inst.getOperand(2).getImm(); 1015 TmpInst.setOpcode(Opcode == PPC::SRWI? PPC::RLWINM : PPC::RLWINMo); 1016 TmpInst.addOperand(Inst.getOperand(0)); 1017 TmpInst.addOperand(Inst.getOperand(1)); 1018 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1019 TmpInst.addOperand(MCOperand::createImm(N)); 1020 TmpInst.addOperand(MCOperand::createImm(31)); 1021 Inst = TmpInst; 1022 break; 1023 } 1024 case PPC::CLRRWI: 1025 case PPC::CLRRWIo: { 1026 MCInst TmpInst; 1027 int64_t N = Inst.getOperand(2).getImm(); 1028 TmpInst.setOpcode(Opcode == PPC::CLRRWI? PPC::RLWINM : PPC::RLWINMo); 1029 TmpInst.addOperand(Inst.getOperand(0)); 1030 TmpInst.addOperand(Inst.getOperand(1)); 1031 TmpInst.addOperand(MCOperand::createImm(0)); 1032 TmpInst.addOperand(MCOperand::createImm(0)); 1033 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1034 Inst = TmpInst; 1035 break; 1036 } 1037 case PPC::CLRLSLWI: 1038 case PPC::CLRLSLWIo: { 1039 MCInst TmpInst; 1040 int64_t B = Inst.getOperand(2).getImm(); 1041 int64_t N = Inst.getOperand(3).getImm(); 1042 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI? PPC::RLWINM : PPC::RLWINMo); 1043 TmpInst.addOperand(Inst.getOperand(0)); 1044 TmpInst.addOperand(Inst.getOperand(1)); 1045 TmpInst.addOperand(MCOperand::createImm(N)); 1046 TmpInst.addOperand(MCOperand::createImm(B - N)); 1047 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1048 Inst = TmpInst; 1049 break; 1050 } 1051 case PPC::EXTLDI: 1052 case PPC::EXTLDIo: { 1053 MCInst TmpInst; 1054 int64_t N = Inst.getOperand(2).getImm(); 1055 int64_t B = Inst.getOperand(3).getImm(); 1056 TmpInst.setOpcode(Opcode == PPC::EXTLDI? PPC::RLDICR : PPC::RLDICRo); 1057 TmpInst.addOperand(Inst.getOperand(0)); 1058 TmpInst.addOperand(Inst.getOperand(1)); 1059 TmpInst.addOperand(MCOperand::createImm(B)); 1060 TmpInst.addOperand(MCOperand::createImm(N - 1)); 1061 Inst = TmpInst; 1062 break; 1063 } 1064 case PPC::EXTRDI: 1065 case PPC::EXTRDIo: { 1066 MCInst TmpInst; 1067 int64_t N = Inst.getOperand(2).getImm(); 1068 int64_t B = Inst.getOperand(3).getImm(); 1069 TmpInst.setOpcode(Opcode == PPC::EXTRDI? PPC::RLDICL : PPC::RLDICLo); 1070 TmpInst.addOperand(Inst.getOperand(0)); 1071 TmpInst.addOperand(Inst.getOperand(1)); 1072 TmpInst.addOperand(MCOperand::createImm(B + N)); 1073 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1074 Inst = TmpInst; 1075 break; 1076 } 1077 case PPC::INSRDI: 1078 case PPC::INSRDIo: { 1079 MCInst TmpInst; 1080 int64_t N = Inst.getOperand(2).getImm(); 1081 int64_t B = Inst.getOperand(3).getImm(); 1082 TmpInst.setOpcode(Opcode == PPC::INSRDI? PPC::RLDIMI : PPC::RLDIMIo); 1083 TmpInst.addOperand(Inst.getOperand(0)); 1084 TmpInst.addOperand(Inst.getOperand(0)); 1085 TmpInst.addOperand(Inst.getOperand(1)); 1086 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 1087 TmpInst.addOperand(MCOperand::createImm(B)); 1088 Inst = TmpInst; 1089 break; 1090 } 1091 case PPC::ROTRDI: 1092 case PPC::ROTRDIo: { 1093 MCInst TmpInst; 1094 int64_t N = Inst.getOperand(2).getImm(); 1095 TmpInst.setOpcode(Opcode == PPC::ROTRDI? PPC::RLDICL : PPC::RLDICLo); 1096 TmpInst.addOperand(Inst.getOperand(0)); 1097 TmpInst.addOperand(Inst.getOperand(1)); 1098 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1099 TmpInst.addOperand(MCOperand::createImm(0)); 1100 Inst = TmpInst; 1101 break; 1102 } 1103 case PPC::SLDI: 1104 case PPC::SLDIo: { 1105 MCInst TmpInst; 1106 int64_t N = Inst.getOperand(2).getImm(); 1107 TmpInst.setOpcode(Opcode == PPC::SLDI? PPC::RLDICR : PPC::RLDICRo); 1108 TmpInst.addOperand(Inst.getOperand(0)); 1109 TmpInst.addOperand(Inst.getOperand(1)); 1110 TmpInst.addOperand(MCOperand::createImm(N)); 1111 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1112 Inst = TmpInst; 1113 break; 1114 } 1115 case PPC::SRDI: 1116 case PPC::SRDIo: { 1117 MCInst TmpInst; 1118 int64_t N = Inst.getOperand(2).getImm(); 1119 TmpInst.setOpcode(Opcode == PPC::SRDI? PPC::RLDICL : PPC::RLDICLo); 1120 TmpInst.addOperand(Inst.getOperand(0)); 1121 TmpInst.addOperand(Inst.getOperand(1)); 1122 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1123 TmpInst.addOperand(MCOperand::createImm(N)); 1124 Inst = TmpInst; 1125 break; 1126 } 1127 case PPC::CLRRDI: 1128 case PPC::CLRRDIo: { 1129 MCInst TmpInst; 1130 int64_t N = Inst.getOperand(2).getImm(); 1131 TmpInst.setOpcode(Opcode == PPC::CLRRDI? PPC::RLDICR : PPC::RLDICRo); 1132 TmpInst.addOperand(Inst.getOperand(0)); 1133 TmpInst.addOperand(Inst.getOperand(1)); 1134 TmpInst.addOperand(MCOperand::createImm(0)); 1135 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1136 Inst = TmpInst; 1137 break; 1138 } 1139 case PPC::CLRLSLDI: 1140 case PPC::CLRLSLDIo: { 1141 MCInst TmpInst; 1142 int64_t B = Inst.getOperand(2).getImm(); 1143 int64_t N = Inst.getOperand(3).getImm(); 1144 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI? PPC::RLDIC : PPC::RLDICo); 1145 TmpInst.addOperand(Inst.getOperand(0)); 1146 TmpInst.addOperand(Inst.getOperand(1)); 1147 TmpInst.addOperand(MCOperand::createImm(N)); 1148 TmpInst.addOperand(MCOperand::createImm(B - N)); 1149 Inst = TmpInst; 1150 break; 1151 } 1152 case PPC::RLWINMbm: 1153 case PPC::RLWINMobm: { 1154 unsigned MB, ME; 1155 int64_t BM = Inst.getOperand(3).getImm(); 1156 if (!isRunOfOnes(BM, MB, ME)) 1157 break; 1158 1159 MCInst TmpInst; 1160 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINMo); 1161 TmpInst.addOperand(Inst.getOperand(0)); 1162 TmpInst.addOperand(Inst.getOperand(1)); 1163 TmpInst.addOperand(Inst.getOperand(2)); 1164 TmpInst.addOperand(MCOperand::createImm(MB)); 1165 TmpInst.addOperand(MCOperand::createImm(ME)); 1166 Inst = TmpInst; 1167 break; 1168 } 1169 case PPC::RLWIMIbm: 1170 case PPC::RLWIMIobm: { 1171 unsigned MB, ME; 1172 int64_t BM = Inst.getOperand(3).getImm(); 1173 if (!isRunOfOnes(BM, MB, ME)) 1174 break; 1175 1176 MCInst TmpInst; 1177 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMIo); 1178 TmpInst.addOperand(Inst.getOperand(0)); 1179 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1180 TmpInst.addOperand(Inst.getOperand(1)); 1181 TmpInst.addOperand(Inst.getOperand(2)); 1182 TmpInst.addOperand(MCOperand::createImm(MB)); 1183 TmpInst.addOperand(MCOperand::createImm(ME)); 1184 Inst = TmpInst; 1185 break; 1186 } 1187 case PPC::RLWNMbm: 1188 case PPC::RLWNMobm: { 1189 unsigned MB, ME; 1190 int64_t BM = Inst.getOperand(3).getImm(); 1191 if (!isRunOfOnes(BM, MB, ME)) 1192 break; 1193 1194 MCInst TmpInst; 1195 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNMo); 1196 TmpInst.addOperand(Inst.getOperand(0)); 1197 TmpInst.addOperand(Inst.getOperand(1)); 1198 TmpInst.addOperand(Inst.getOperand(2)); 1199 TmpInst.addOperand(MCOperand::createImm(MB)); 1200 TmpInst.addOperand(MCOperand::createImm(ME)); 1201 Inst = TmpInst; 1202 break; 1203 } 1204 case PPC::MFTB: { 1205 if (getSTI().getFeatureBits()[PPC::FeatureMFTB]) { 1206 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1207 Inst.setOpcode(PPC::MFSPR); 1208 } 1209 break; 1210 } 1211 case PPC::CP_COPYx: 1212 case PPC::CP_COPY_FIRST: { 1213 MCInst TmpInst; 1214 TmpInst.setOpcode(PPC::CP_COPY); 1215 TmpInst.addOperand(Inst.getOperand(0)); 1216 TmpInst.addOperand(Inst.getOperand(1)); 1217 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_COPYx ? 0 : 1)); 1218 1219 Inst = TmpInst; 1220 break; 1221 } 1222 case PPC::CP_PASTEx : 1223 case PPC::CP_PASTE_LAST: { 1224 MCInst TmpInst; 1225 TmpInst.setOpcode(Opcode == PPC::CP_PASTEx ? 1226 PPC::CP_PASTE : PPC::CP_PASTEo); 1227 TmpInst.addOperand(Inst.getOperand(0)); 1228 TmpInst.addOperand(Inst.getOperand(1)); 1229 TmpInst.addOperand(MCOperand::createImm(Opcode == PPC::CP_PASTEx ? 0 : 1)); 1230 1231 Inst = TmpInst; 1232 break; 1233 } 1234 // ISA3.0 Instructions: 1235 case PPC::SUBPCIS: 1236 case PPC::LNIA: { 1237 MCInst TmpInst; 1238 TmpInst.setOpcode(PPC::ADDPCIS); 1239 TmpInst.addOperand(Inst.getOperand(0)); 1240 if (Opcode == PPC::SUBPCIS) 1241 addNegOperand(TmpInst, Inst.getOperand(1), getContext()); 1242 else 1243 TmpInst.addOperand(MCOperand::createImm(0)); 1244 Inst = TmpInst; 1245 break; 1246 } 1247 } 1248 } 1249 1250 bool PPCAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1251 OperandVector &Operands, 1252 MCStreamer &Out, uint64_t &ErrorInfo, 1253 bool MatchingInlineAsm) { 1254 MCInst Inst; 1255 1256 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1257 case Match_Success: 1258 // Post-process instructions (typically extended mnemonics) 1259 ProcessInstruction(Inst, Operands); 1260 Inst.setLoc(IDLoc); 1261 Out.EmitInstruction(Inst, getSTI()); 1262 return false; 1263 case Match_MissingFeature: 1264 return Error(IDLoc, "instruction use requires an option to be enabled"); 1265 case Match_MnemonicFail: 1266 return Error(IDLoc, "unrecognized instruction mnemonic"); 1267 case Match_InvalidOperand: { 1268 SMLoc ErrorLoc = IDLoc; 1269 if (ErrorInfo != ~0ULL) { 1270 if (ErrorInfo >= Operands.size()) 1271 return Error(IDLoc, "too few operands for instruction"); 1272 1273 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1274 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1275 } 1276 1277 return Error(ErrorLoc, "invalid operand for instruction"); 1278 } 1279 } 1280 1281 llvm_unreachable("Implement any new match types added!"); 1282 } 1283 1284 bool PPCAsmParser:: 1285 MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { 1286 if (Tok.is(AsmToken::Identifier)) { 1287 StringRef Name = Tok.getString(); 1288 1289 if (Name.equals_lower("lr")) { 1290 RegNo = isPPC64()? PPC::LR8 : PPC::LR; 1291 IntVal = 8; 1292 return false; 1293 } else if (Name.equals_lower("ctr")) { 1294 RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; 1295 IntVal = 9; 1296 return false; 1297 } else if (Name.equals_lower("vrsave")) { 1298 RegNo = PPC::VRSAVE; 1299 IntVal = 256; 1300 return false; 1301 } else if (Name.startswith_lower("r") && 1302 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1303 RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; 1304 return false; 1305 } else if (Name.startswith_lower("f") && 1306 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1307 RegNo = FRegs[IntVal]; 1308 return false; 1309 } else if (Name.startswith_lower("vs") && 1310 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 64) { 1311 RegNo = VSRegs[IntVal]; 1312 return false; 1313 } else if (Name.startswith_lower("v") && 1314 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1315 RegNo = VRegs[IntVal]; 1316 return false; 1317 } else if (Name.startswith_lower("q") && 1318 !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { 1319 RegNo = QFRegs[IntVal]; 1320 return false; 1321 } else if (Name.startswith_lower("cr") && 1322 !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { 1323 RegNo = CRRegs[IntVal]; 1324 return false; 1325 } 1326 } 1327 1328 return true; 1329 } 1330 1331 bool PPCAsmParser:: 1332 ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { 1333 MCAsmParser &Parser = getParser(); 1334 const AsmToken &Tok = Parser.getTok(); 1335 StartLoc = Tok.getLoc(); 1336 EndLoc = Tok.getEndLoc(); 1337 RegNo = 0; 1338 int64_t IntVal; 1339 1340 if (!MatchRegisterName(Tok, RegNo, IntVal)) { 1341 Parser.Lex(); // Eat identifier token. 1342 return false; 1343 } 1344 1345 return Error(StartLoc, "invalid register name"); 1346 } 1347 1348 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1349 /// the expression and check for VK_PPC_LO/HI/HA 1350 /// symbol variants. If all symbols with modifier use the same 1351 /// variant, return the corresponding PPCMCExpr::VariantKind, 1352 /// and a modified expression using the default symbol variant. 1353 /// Otherwise, return NULL. 1354 const MCExpr *PPCAsmParser:: 1355 ExtractModifierFromExpr(const MCExpr *E, 1356 PPCMCExpr::VariantKind &Variant) { 1357 MCContext &Context = getParser().getContext(); 1358 Variant = PPCMCExpr::VK_PPC_None; 1359 1360 switch (E->getKind()) { 1361 case MCExpr::Target: 1362 case MCExpr::Constant: 1363 return nullptr; 1364 1365 case MCExpr::SymbolRef: { 1366 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1367 1368 switch (SRE->getKind()) { 1369 case MCSymbolRefExpr::VK_PPC_LO: 1370 Variant = PPCMCExpr::VK_PPC_LO; 1371 break; 1372 case MCSymbolRefExpr::VK_PPC_HI: 1373 Variant = PPCMCExpr::VK_PPC_HI; 1374 break; 1375 case MCSymbolRefExpr::VK_PPC_HA: 1376 Variant = PPCMCExpr::VK_PPC_HA; 1377 break; 1378 case MCSymbolRefExpr::VK_PPC_HIGHER: 1379 Variant = PPCMCExpr::VK_PPC_HIGHER; 1380 break; 1381 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1382 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1383 break; 1384 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1385 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1386 break; 1387 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1388 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1389 break; 1390 default: 1391 return nullptr; 1392 } 1393 1394 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1395 } 1396 1397 case MCExpr::Unary: { 1398 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1399 const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); 1400 if (!Sub) 1401 return nullptr; 1402 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1403 } 1404 1405 case MCExpr::Binary: { 1406 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1407 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1408 const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); 1409 const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); 1410 1411 if (!LHS && !RHS) 1412 return nullptr; 1413 1414 if (!LHS) LHS = BE->getLHS(); 1415 if (!RHS) RHS = BE->getRHS(); 1416 1417 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1418 Variant = RHSVariant; 1419 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1420 Variant = LHSVariant; 1421 else if (LHSVariant == RHSVariant) 1422 Variant = LHSVariant; 1423 else 1424 return nullptr; 1425 1426 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1427 } 1428 } 1429 1430 llvm_unreachable("Invalid expression kind!"); 1431 } 1432 1433 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1434 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1435 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1436 /// FIXME: This is a hack. 1437 const MCExpr *PPCAsmParser:: 1438 FixupVariantKind(const MCExpr *E) { 1439 MCContext &Context = getParser().getContext(); 1440 1441 switch (E->getKind()) { 1442 case MCExpr::Target: 1443 case MCExpr::Constant: 1444 return E; 1445 1446 case MCExpr::SymbolRef: { 1447 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1448 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1449 1450 switch (SRE->getKind()) { 1451 case MCSymbolRefExpr::VK_TLSGD: 1452 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1453 break; 1454 case MCSymbolRefExpr::VK_TLSLD: 1455 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1456 break; 1457 default: 1458 return E; 1459 } 1460 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1461 } 1462 1463 case MCExpr::Unary: { 1464 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1465 const MCExpr *Sub = FixupVariantKind(UE->getSubExpr()); 1466 if (Sub == UE->getSubExpr()) 1467 return E; 1468 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1469 } 1470 1471 case MCExpr::Binary: { 1472 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1473 const MCExpr *LHS = FixupVariantKind(BE->getLHS()); 1474 const MCExpr *RHS = FixupVariantKind(BE->getRHS()); 1475 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1476 return E; 1477 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1478 } 1479 } 1480 1481 llvm_unreachable("Invalid expression kind!"); 1482 } 1483 1484 /// ParseExpression. This differs from the default "parseExpression" in that 1485 /// it handles modifiers. 1486 bool PPCAsmParser:: 1487 ParseExpression(const MCExpr *&EVal) { 1488 1489 if (isDarwin()) 1490 return ParseDarwinExpression(EVal); 1491 1492 // (ELF Platforms) 1493 // Handle \code @l/@ha \endcode 1494 if (getParser().parseExpression(EVal)) 1495 return true; 1496 1497 EVal = FixupVariantKind(EVal); 1498 1499 PPCMCExpr::VariantKind Variant; 1500 const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); 1501 if (E) 1502 EVal = PPCMCExpr::create(Variant, E, false, getParser().getContext()); 1503 1504 return false; 1505 } 1506 1507 /// ParseDarwinExpression. (MachO Platforms) 1508 /// This differs from the default "parseExpression" in that it handles detection 1509 /// of the \code hi16(), ha16() and lo16() \endcode modifiers. At present, 1510 /// parseExpression() doesn't recognise the modifiers when in the Darwin/MachO 1511 /// syntax form so it is done here. TODO: Determine if there is merit in arranging 1512 /// for this to be done at a higher level. 1513 bool PPCAsmParser:: 1514 ParseDarwinExpression(const MCExpr *&EVal) { 1515 MCAsmParser &Parser = getParser(); 1516 PPCMCExpr::VariantKind Variant = PPCMCExpr::VK_PPC_None; 1517 switch (getLexer().getKind()) { 1518 default: 1519 break; 1520 case AsmToken::Identifier: 1521 // Compiler-generated Darwin identifiers begin with L,l,_ or "; thus 1522 // something starting with any other char should be part of the 1523 // asm syntax. If handwritten asm includes an identifier like lo16, 1524 // then all bets are off - but no-one would do that, right? 1525 StringRef poss = Parser.getTok().getString(); 1526 if (poss.equals_lower("lo16")) { 1527 Variant = PPCMCExpr::VK_PPC_LO; 1528 } else if (poss.equals_lower("hi16")) { 1529 Variant = PPCMCExpr::VK_PPC_HI; 1530 } else if (poss.equals_lower("ha16")) { 1531 Variant = PPCMCExpr::VK_PPC_HA; 1532 } 1533 if (Variant != PPCMCExpr::VK_PPC_None) { 1534 Parser.Lex(); // Eat the xx16 1535 if (getLexer().isNot(AsmToken::LParen)) 1536 return Error(Parser.getTok().getLoc(), "expected '('"); 1537 Parser.Lex(); // Eat the '(' 1538 } 1539 break; 1540 } 1541 1542 if (getParser().parseExpression(EVal)) 1543 return true; 1544 1545 if (Variant != PPCMCExpr::VK_PPC_None) { 1546 if (getLexer().isNot(AsmToken::RParen)) 1547 return Error(Parser.getTok().getLoc(), "expected ')'"); 1548 Parser.Lex(); // Eat the ')' 1549 EVal = PPCMCExpr::create(Variant, EVal, false, getParser().getContext()); 1550 } 1551 return false; 1552 } 1553 1554 /// ParseOperand 1555 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1556 /// rNN for MachO. 1557 bool PPCAsmParser::ParseOperand(OperandVector &Operands) { 1558 MCAsmParser &Parser = getParser(); 1559 SMLoc S = Parser.getTok().getLoc(); 1560 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1561 const MCExpr *EVal; 1562 1563 // Attempt to parse the next token as an immediate 1564 switch (getLexer().getKind()) { 1565 // Special handling for register names. These are interpreted 1566 // as immediates corresponding to the register number. 1567 case AsmToken::Percent: 1568 Parser.Lex(); // Eat the '%'. 1569 unsigned RegNo; 1570 int64_t IntVal; 1571 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1572 Parser.Lex(); // Eat the identifier token. 1573 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1574 return false; 1575 } 1576 return Error(S, "invalid register name"); 1577 1578 case AsmToken::Identifier: 1579 // Note that non-register-name identifiers from the compiler will begin 1580 // with '_', 'L'/'l' or '"'. Of course, handwritten asm could include 1581 // identifiers like r31foo - so we fall through in the event that parsing 1582 // a register name fails. 1583 if (isDarwin()) { 1584 unsigned RegNo; 1585 int64_t IntVal; 1586 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1587 Parser.Lex(); // Eat the identifier token. 1588 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1589 return false; 1590 } 1591 } 1592 // Fall-through to process non-register-name identifiers as expression. 1593 // All other expressions 1594 case AsmToken::LParen: 1595 case AsmToken::Plus: 1596 case AsmToken::Minus: 1597 case AsmToken::Integer: 1598 case AsmToken::Dot: 1599 case AsmToken::Dollar: 1600 case AsmToken::Exclaim: 1601 case AsmToken::Tilde: 1602 if (!ParseExpression(EVal)) 1603 break; 1604 /* fall through */ 1605 default: 1606 return Error(S, "unknown operand"); 1607 } 1608 1609 // Push the parsed operand into the list of operands 1610 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1611 1612 // Check whether this is a TLS call expression 1613 bool TLSCall = false; 1614 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) 1615 TLSCall = Ref->getSymbol().getName() == "__tls_get_addr"; 1616 1617 if (TLSCall && getLexer().is(AsmToken::LParen)) { 1618 const MCExpr *TLSSym; 1619 1620 Parser.Lex(); // Eat the '('. 1621 S = Parser.getTok().getLoc(); 1622 if (ParseExpression(TLSSym)) 1623 return Error(S, "invalid TLS call expression"); 1624 if (getLexer().isNot(AsmToken::RParen)) 1625 return Error(Parser.getTok().getLoc(), "missing ')'"); 1626 E = Parser.getTok().getLoc(); 1627 Parser.Lex(); // Eat the ')'. 1628 1629 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1630 } 1631 1632 // Otherwise, check for D-form memory operands 1633 if (!TLSCall && getLexer().is(AsmToken::LParen)) { 1634 Parser.Lex(); // Eat the '('. 1635 S = Parser.getTok().getLoc(); 1636 1637 int64_t IntVal; 1638 switch (getLexer().getKind()) { 1639 case AsmToken::Percent: 1640 Parser.Lex(); // Eat the '%'. 1641 unsigned RegNo; 1642 if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) 1643 return Error(S, "invalid register name"); 1644 Parser.Lex(); // Eat the identifier token. 1645 break; 1646 1647 case AsmToken::Integer: 1648 if (!isDarwin()) { 1649 if (getParser().parseAbsoluteExpression(IntVal) || 1650 IntVal < 0 || IntVal > 31) 1651 return Error(S, "invalid register number"); 1652 } else { 1653 return Error(S, "unexpected integer value"); 1654 } 1655 break; 1656 1657 case AsmToken::Identifier: 1658 if (isDarwin()) { 1659 unsigned RegNo; 1660 if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { 1661 Parser.Lex(); // Eat the identifier token. 1662 break; 1663 } 1664 } 1665 // Fall-through.. 1666 1667 default: 1668 return Error(S, "invalid memory operand"); 1669 } 1670 1671 if (getLexer().isNot(AsmToken::RParen)) 1672 return Error(Parser.getTok().getLoc(), "missing ')'"); 1673 E = Parser.getTok().getLoc(); 1674 Parser.Lex(); // Eat the ')'. 1675 1676 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1677 } 1678 1679 return false; 1680 } 1681 1682 /// Parse an instruction mnemonic followed by its operands. 1683 bool PPCAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 1684 SMLoc NameLoc, OperandVector &Operands) { 1685 // The first operand is the token for the instruction name. 1686 // If the next character is a '+' or '-', we need to add it to the 1687 // instruction name, to match what TableGen is doing. 1688 std::string NewOpcode; 1689 if (getLexer().is(AsmToken::Plus)) { 1690 getLexer().Lex(); 1691 NewOpcode = Name; 1692 NewOpcode += '+'; 1693 Name = NewOpcode; 1694 } 1695 if (getLexer().is(AsmToken::Minus)) { 1696 getLexer().Lex(); 1697 NewOpcode = Name; 1698 NewOpcode += '-'; 1699 Name = NewOpcode; 1700 } 1701 // If the instruction ends in a '.', we need to create a separate 1702 // token for it, to match what TableGen is doing. 1703 size_t Dot = Name.find('.'); 1704 StringRef Mnemonic = Name.slice(0, Dot); 1705 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1706 Operands.push_back( 1707 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1708 else 1709 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1710 if (Dot != StringRef::npos) { 1711 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1712 StringRef DotStr = Name.slice(Dot, StringRef::npos); 1713 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1714 Operands.push_back( 1715 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1716 else 1717 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1718 } 1719 1720 // If there are no more operands then finish 1721 if (getLexer().is(AsmToken::EndOfStatement)) 1722 return false; 1723 1724 // Parse the first operand 1725 if (ParseOperand(Operands)) 1726 return true; 1727 1728 while (getLexer().isNot(AsmToken::EndOfStatement) && 1729 getLexer().is(AsmToken::Comma)) { 1730 // Consume the comma token 1731 getLexer().Lex(); 1732 1733 // Parse the next operand 1734 if (ParseOperand(Operands)) 1735 return true; 1736 } 1737 1738 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1739 // and dcbtst instructions differs for server vs. embedded cores. 1740 // The syntax for dcbt is: 1741 // dcbt ra, rb, th [server] 1742 // dcbt th, ra, rb [embedded] 1743 // where th can be omitted when it is 0. dcbtst is the same. We take the 1744 // server form to be the default, so swap the operands if we're parsing for 1745 // an embedded core (they'll be swapped again upon printing). 1746 if (getSTI().getFeatureBits()[PPC::FeatureBookE] && 1747 Operands.size() == 4 && 1748 (Name == "dcbt" || Name == "dcbtst")) { 1749 std::swap(Operands[1], Operands[3]); 1750 std::swap(Operands[2], Operands[1]); 1751 } 1752 1753 return false; 1754 } 1755 1756 /// ParseDirective parses the PPC specific directives 1757 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1758 StringRef IDVal = DirectiveID.getIdentifier(); 1759 if (!isDarwin()) { 1760 if (IDVal == ".word") 1761 return ParseDirectiveWord(2, DirectiveID.getLoc()); 1762 if (IDVal == ".llong") 1763 return ParseDirectiveWord(8, DirectiveID.getLoc()); 1764 if (IDVal == ".tc") 1765 return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); 1766 if (IDVal == ".machine") 1767 return ParseDirectiveMachine(DirectiveID.getLoc()); 1768 if (IDVal == ".abiversion") 1769 return ParseDirectiveAbiVersion(DirectiveID.getLoc()); 1770 if (IDVal == ".localentry") 1771 return ParseDirectiveLocalEntry(DirectiveID.getLoc()); 1772 } else { 1773 if (IDVal == ".machine") 1774 return ParseDarwinDirectiveMachine(DirectiveID.getLoc()); 1775 } 1776 return true; 1777 } 1778 1779 /// ParseDirectiveWord 1780 /// ::= .word [ expression (, expression)* ] 1781 bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { 1782 MCAsmParser &Parser = getParser(); 1783 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1784 for (;;) { 1785 const MCExpr *Value; 1786 SMLoc ExprLoc = getLexer().getLoc(); 1787 if (getParser().parseExpression(Value)) 1788 return false; 1789 1790 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1791 assert(Size <= 8 && "Invalid size"); 1792 uint64_t IntValue = MCE->getValue(); 1793 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1794 return Error(ExprLoc, "literal value out of range for directive"); 1795 getStreamer().EmitIntValue(IntValue, Size); 1796 } else { 1797 getStreamer().EmitValue(Value, Size, ExprLoc); 1798 } 1799 1800 if (getLexer().is(AsmToken::EndOfStatement)) 1801 break; 1802 1803 if (getLexer().isNot(AsmToken::Comma)) 1804 return Error(L, "unexpected token in directive"); 1805 Parser.Lex(); 1806 } 1807 } 1808 1809 Parser.Lex(); 1810 return false; 1811 } 1812 1813 /// ParseDirectiveTC 1814 /// ::= .tc [ symbol (, expression)* ] 1815 bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { 1816 MCAsmParser &Parser = getParser(); 1817 // Skip TC symbol, which is only used with XCOFF. 1818 while (getLexer().isNot(AsmToken::EndOfStatement) 1819 && getLexer().isNot(AsmToken::Comma)) 1820 Parser.Lex(); 1821 if (getLexer().isNot(AsmToken::Comma)) { 1822 Error(L, "unexpected token in directive"); 1823 return false; 1824 } 1825 Parser.Lex(); 1826 1827 // Align to word size. 1828 getParser().getStreamer().EmitValueToAlignment(Size); 1829 1830 // Emit expressions. 1831 return ParseDirectiveWord(Size, L); 1832 } 1833 1834 /// ParseDirectiveMachine (ELF platforms) 1835 /// ::= .machine [ cpu | "push" | "pop" ] 1836 bool PPCAsmParser::ParseDirectiveMachine(SMLoc L) { 1837 MCAsmParser &Parser = getParser(); 1838 if (getLexer().isNot(AsmToken::Identifier) && 1839 getLexer().isNot(AsmToken::String)) { 1840 Error(L, "unexpected token in directive"); 1841 return false; 1842 } 1843 1844 StringRef CPU = Parser.getTok().getIdentifier(); 1845 Parser.Lex(); 1846 1847 // FIXME: Right now, the parser always allows any available 1848 // instruction, so the .machine directive is not useful. 1849 // Implement ".machine any" (by doing nothing) for the benefit 1850 // of existing assembler code. Likewise, we can then implement 1851 // ".machine push" and ".machine pop" as no-op. 1852 if (CPU != "any" && CPU != "push" && CPU != "pop") { 1853 Error(L, "unrecognized machine type"); 1854 return false; 1855 } 1856 1857 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1858 Error(L, "unexpected token in directive"); 1859 return false; 1860 } 1861 PPCTargetStreamer &TStreamer = 1862 *static_cast<PPCTargetStreamer *>( 1863 getParser().getStreamer().getTargetStreamer()); 1864 TStreamer.emitMachine(CPU); 1865 1866 return false; 1867 } 1868 1869 /// ParseDarwinDirectiveMachine (Mach-o platforms) 1870 /// ::= .machine cpu-identifier 1871 bool PPCAsmParser::ParseDarwinDirectiveMachine(SMLoc L) { 1872 MCAsmParser &Parser = getParser(); 1873 if (getLexer().isNot(AsmToken::Identifier) && 1874 getLexer().isNot(AsmToken::String)) { 1875 Error(L, "unexpected token in directive"); 1876 return false; 1877 } 1878 1879 StringRef CPU = Parser.getTok().getIdentifier(); 1880 Parser.Lex(); 1881 1882 // FIXME: this is only the 'default' set of cpu variants. 1883 // However we don't act on this information at present, this is simply 1884 // allowing parsing to proceed with minimal sanity checking. 1885 if (CPU != "ppc7400" && CPU != "ppc" && CPU != "ppc64") { 1886 Error(L, "unrecognized cpu type"); 1887 return false; 1888 } 1889 1890 if (isPPC64() && (CPU == "ppc7400" || CPU == "ppc")) { 1891 Error(L, "wrong cpu type specified for 64bit"); 1892 return false; 1893 } 1894 if (!isPPC64() && CPU == "ppc64") { 1895 Error(L, "wrong cpu type specified for 32bit"); 1896 return false; 1897 } 1898 1899 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1900 Error(L, "unexpected token in directive"); 1901 return false; 1902 } 1903 1904 return false; 1905 } 1906 1907 /// ParseDirectiveAbiVersion 1908 /// ::= .abiversion constant-expression 1909 bool PPCAsmParser::ParseDirectiveAbiVersion(SMLoc L) { 1910 int64_t AbiVersion; 1911 if (getParser().parseAbsoluteExpression(AbiVersion)){ 1912 Error(L, "expected constant expression"); 1913 return false; 1914 } 1915 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1916 Error(L, "unexpected token in directive"); 1917 return false; 1918 } 1919 1920 PPCTargetStreamer &TStreamer = 1921 *static_cast<PPCTargetStreamer *>( 1922 getParser().getStreamer().getTargetStreamer()); 1923 TStreamer.emitAbiVersion(AbiVersion); 1924 1925 return false; 1926 } 1927 1928 /// ParseDirectiveLocalEntry 1929 /// ::= .localentry symbol, expression 1930 bool PPCAsmParser::ParseDirectiveLocalEntry(SMLoc L) { 1931 StringRef Name; 1932 if (getParser().parseIdentifier(Name)) { 1933 Error(L, "expected identifier in directive"); 1934 return false; 1935 } 1936 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1937 1938 if (getLexer().isNot(AsmToken::Comma)) { 1939 Error(L, "unexpected token in directive"); 1940 return false; 1941 } 1942 Lex(); 1943 1944 const MCExpr *Expr; 1945 if (getParser().parseExpression(Expr)) { 1946 Error(L, "expected expression"); 1947 return false; 1948 } 1949 1950 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1951 Error(L, "unexpected token in directive"); 1952 return false; 1953 } 1954 1955 PPCTargetStreamer &TStreamer = 1956 *static_cast<PPCTargetStreamer *>( 1957 getParser().getStreamer().getTargetStreamer()); 1958 TStreamer.emitLocalEntry(Sym, Expr); 1959 1960 return false; 1961 } 1962 1963 1964 1965 /// Force static initialization. 1966 extern "C" void LLVMInitializePowerPCAsmParser() { 1967 RegisterMCAsmParser<PPCAsmParser> A(ThePPC32Target); 1968 RegisterMCAsmParser<PPCAsmParser> B(ThePPC64Target); 1969 RegisterMCAsmParser<PPCAsmParser> C(ThePPC64LETarget); 1970 } 1971 1972 #define GET_REGISTER_MATCHER 1973 #define GET_MATCHER_IMPLEMENTATION 1974 #include "PPCGenAsmMatcher.inc" 1975 1976 // Define this matcher function after the auto-generated include so we 1977 // have the match class enum definitions. 1978 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1979 unsigned Kind) { 1980 // If the kind is a token for a literal immediate, check if our asm 1981 // operand matches. This is for InstAliases which have a fixed-value 1982 // immediate in the syntax. 1983 int64_t ImmVal; 1984 switch (Kind) { 1985 case MCK_0: ImmVal = 0; break; 1986 case MCK_1: ImmVal = 1; break; 1987 case MCK_2: ImmVal = 2; break; 1988 case MCK_3: ImmVal = 3; break; 1989 case MCK_4: ImmVal = 4; break; 1990 case MCK_5: ImmVal = 5; break; 1991 case MCK_6: ImmVal = 6; break; 1992 case MCK_7: ImmVal = 7; break; 1993 default: return Match_InvalidOperand; 1994 } 1995 1996 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1997 if (Op.isImm() && Op.getImm() == ImmVal) 1998 return Match_Success; 1999 2000 return Match_InvalidOperand; 2001 } 2002 2003 const MCExpr * 2004 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 2005 MCSymbolRefExpr::VariantKind Variant, 2006 MCContext &Ctx) { 2007 switch (Variant) { 2008 case MCSymbolRefExpr::VK_PPC_LO: 2009 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, false, Ctx); 2010 case MCSymbolRefExpr::VK_PPC_HI: 2011 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, false, Ctx); 2012 case MCSymbolRefExpr::VK_PPC_HA: 2013 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, false, Ctx); 2014 case MCSymbolRefExpr::VK_PPC_HIGHER: 2015 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, false, Ctx); 2016 case MCSymbolRefExpr::VK_PPC_HIGHERA: 2017 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, false, Ctx); 2018 case MCSymbolRefExpr::VK_PPC_HIGHEST: 2019 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, false, Ctx); 2020 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 2021 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, false, Ctx); 2022 default: 2023 return nullptr; 2024 } 2025 } 2026