xref: /llvm-project/llvm/lib/Target/Mips/MipsFastISel.cpp (revision 73e89cf66d4b88d568ff4c718ae7bf55588ef2be)
1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/FastISel.h"
30 #include "llvm/CodeGen/FunctionLoweringInfo.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/CodeGenTypes/MachineValueType.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include <algorithm>
68 #include <array>
69 #include <cassert>
70 #include <cstdint>
71 
72 #define DEBUG_TYPE "mips-fastisel"
73 
74 using namespace llvm;
75 
76 extern cl::opt<bool> EmitJalrReloc;
77 
78 namespace {
79 
80 class MipsFastISel final : public FastISel {
81 
82   // All possible address modes.
83   class Address {
84   public:
85     using BaseKind = enum { RegBase, FrameIndexBase };
86 
87   private:
88     BaseKind Kind = RegBase;
89     union {
90       unsigned Reg;
91       int FI;
92     } Base;
93 
94     int64_t Offset = 0;
95 
96     const GlobalValue *GV = nullptr;
97 
98   public:
99     // Innocuous defaults for our address.
100     Address() { Base.Reg = 0; }
101 
102     void setKind(BaseKind K) { Kind = K; }
103     BaseKind getKind() const { return Kind; }
104     bool isRegBase() const { return Kind == RegBase; }
105     bool isFIBase() const { return Kind == FrameIndexBase; }
106 
107     void setReg(unsigned Reg) {
108       assert(isRegBase() && "Invalid base register access!");
109       Base.Reg = Reg;
110     }
111 
112     unsigned getReg() const {
113       assert(isRegBase() && "Invalid base register access!");
114       return Base.Reg;
115     }
116 
117     void setFI(unsigned FI) {
118       assert(isFIBase() && "Invalid base frame index access!");
119       Base.FI = FI;
120     }
121 
122     unsigned getFI() const {
123       assert(isFIBase() && "Invalid base frame index access!");
124       return Base.FI;
125     }
126 
127     void setOffset(int64_t Offset_) { Offset = Offset_; }
128     int64_t getOffset() const { return Offset; }
129     void setGlobalValue(const GlobalValue *G) { GV = G; }
130     const GlobalValue *getGlobalValue() { return GV; }
131   };
132 
133   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
134   /// make the right decision when generating code for different targets.
135   const TargetMachine &TM;
136   const MipsSubtarget *Subtarget;
137   const TargetInstrInfo &TII;
138   const TargetLowering &TLI;
139   MipsFunctionInfo *MFI;
140 
141   // Convenience variables to avoid some queries.
142   LLVMContext *Context;
143 
144   bool fastLowerArguments() override;
145   bool fastLowerCall(CallLoweringInfo &CLI) override;
146   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
147 
148   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
149   // floating point but not reject doing fast-isel in other
150   // situations
151 
152 private:
153   // Selection routines.
154   bool selectLogicalOp(const Instruction *I);
155   bool selectLoad(const Instruction *I);
156   bool selectStore(const Instruction *I);
157   bool selectBranch(const Instruction *I);
158   bool selectSelect(const Instruction *I);
159   bool selectCmp(const Instruction *I);
160   bool selectFPExt(const Instruction *I);
161   bool selectFPTrunc(const Instruction *I);
162   bool selectFPToInt(const Instruction *I, bool IsSigned);
163   bool selectRet(const Instruction *I);
164   bool selectTrunc(const Instruction *I);
165   bool selectIntExt(const Instruction *I);
166   bool selectShift(const Instruction *I);
167   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
168 
169   // Utility helper routines.
170   bool isTypeLegal(Type *Ty, MVT &VT);
171   bool isTypeSupported(Type *Ty, MVT &VT);
172   bool isLoadTypeLegal(Type *Ty, MVT &VT);
173   bool computeAddress(const Value *Obj, Address &Addr);
174   bool computeCallAddress(const Value *V, Address &Addr);
175   void simplifyAddress(Address &Addr);
176 
177   // Emit helper routines.
178   bool emitCmp(unsigned DestReg, const CmpInst *CI);
179   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr);
180   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr);
181   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
182   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
183 
184                   bool IsZExt);
185   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
186 
187   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
188   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
189                        unsigned DestReg);
190   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
191                        unsigned DestReg);
192 
193   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
194 
195   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
196                          const Value *RHS);
197 
198   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
199   unsigned materializeGV(const GlobalValue *GV, MVT VT);
200   unsigned materializeInt(const Constant *C, MVT VT);
201   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
202   unsigned materializeExternalCallSym(MCSymbol *Syn);
203 
204   MachineInstrBuilder emitInst(unsigned Opc) {
205     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
206   }
207 
208   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
209     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
210                    DstReg);
211   }
212 
213   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
214                                     unsigned MemReg, int64_t MemOffset) {
215     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
216   }
217 
218   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
219                                    unsigned MemReg, int64_t MemOffset) {
220     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
221   }
222 
223   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
224                            const TargetRegisterClass *RC,
225                            unsigned Op0, unsigned Op1);
226 
227   // for some reason, this default is not generated by tablegen
228   // so we explicitly generate it here.
229   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
230                              unsigned Op0, uint64_t imm1, uint64_t imm2,
231                              unsigned Op3) {
232     return 0;
233   }
234 
235   // Call handling routines.
236 private:
237   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
238   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
239                        unsigned &NumBytes);
240   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
241 
242   const MipsABIInfo &getABI() const {
243     return static_cast<const MipsTargetMachine &>(TM).getABI();
244   }
245 
246 public:
247   // Backend specific FastISel code.
248   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
249                         const TargetLibraryInfo *libInfo)
250       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
251         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
252         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
253     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
254     Context = &funcInfo.Fn->getContext();
255     UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
256   }
257 
258   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
259   unsigned fastMaterializeConstant(const Constant *C) override;
260   bool fastSelectInstruction(const Instruction *I) override;
261 
262 #include "MipsGenFastISel.inc"
263 };
264 
265 } // end anonymous namespace
266 
267 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
268                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
269                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
270 
271 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
272                             CCValAssign::LocInfo LocInfo,
273                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
274   llvm_unreachable("should not be called");
275 }
276 
277 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
278                             CCValAssign::LocInfo LocInfo,
279                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
280   llvm_unreachable("should not be called");
281 }
282 
283 #include "MipsGenCallingConv.inc"
284 
285 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
286   return CC_MipsO32;
287 }
288 
289 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
290                                      const Value *LHS, const Value *RHS) {
291   // Canonicalize immediates to the RHS first.
292   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
293     std::swap(LHS, RHS);
294 
295   unsigned Opc;
296   switch (ISDOpc) {
297   case ISD::AND:
298     Opc = Mips::AND;
299     break;
300   case ISD::OR:
301     Opc = Mips::OR;
302     break;
303   case ISD::XOR:
304     Opc = Mips::XOR;
305     break;
306   default:
307     llvm_unreachable("unexpected opcode");
308   }
309 
310   Register LHSReg = getRegForValue(LHS);
311   if (!LHSReg)
312     return 0;
313 
314   unsigned RHSReg;
315   if (const auto *C = dyn_cast<ConstantInt>(RHS))
316     RHSReg = materializeInt(C, MVT::i32);
317   else
318     RHSReg = getRegForValue(RHS);
319   if (!RHSReg)
320     return 0;
321 
322   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
323   if (!ResultReg)
324     return 0;
325 
326   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
327   return ResultReg;
328 }
329 
330 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
331   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
332          "Alloca should always return a pointer.");
333 
334   DenseMap<const AllocaInst *, int>::iterator SI =
335       FuncInfo.StaticAllocaMap.find(AI);
336 
337   if (SI != FuncInfo.StaticAllocaMap.end()) {
338     Register ResultReg = createResultReg(&Mips::GPR32RegClass);
339     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::LEA_ADDiu),
340             ResultReg)
341         .addFrameIndex(SI->second)
342         .addImm(0);
343     return ResultReg;
344   }
345 
346   return 0;
347 }
348 
349 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
350   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
351     return 0;
352   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
353   const ConstantInt *CI = cast<ConstantInt>(C);
354   return materialize32BitInt(CI->getZExtValue(), RC);
355 }
356 
357 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
358                                            const TargetRegisterClass *RC) {
359   Register ResultReg = createResultReg(RC);
360 
361   if (isInt<16>(Imm)) {
362     unsigned Opc = Mips::ADDiu;
363     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
364     return ResultReg;
365   } else if (isUInt<16>(Imm)) {
366     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
367     return ResultReg;
368   }
369   unsigned Lo = Imm & 0xFFFF;
370   unsigned Hi = (Imm >> 16) & 0xFFFF;
371   if (Lo) {
372     // Both Lo and Hi have nonzero bits.
373     Register TmpReg = createResultReg(RC);
374     emitInst(Mips::LUi, TmpReg).addImm(Hi);
375     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
376   } else {
377     emitInst(Mips::LUi, ResultReg).addImm(Hi);
378   }
379   return ResultReg;
380 }
381 
382 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
383   if (UnsupportedFPMode)
384     return 0;
385   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
386   if (VT == MVT::f32) {
387     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
388     Register DestReg = createResultReg(RC);
389     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
390     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
391     return DestReg;
392   } else if (VT == MVT::f64) {
393     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
394     Register DestReg = createResultReg(RC);
395     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
396     unsigned TempReg2 =
397         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
398     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
399     return DestReg;
400   }
401   return 0;
402 }
403 
404 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
405   // For now 32-bit only.
406   if (VT != MVT::i32)
407     return 0;
408   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
409   Register DestReg = createResultReg(RC);
410   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
411   bool IsThreadLocal = GVar && GVar->isThreadLocal();
412   // TLS not supported at this time.
413   if (IsThreadLocal)
414     return 0;
415   emitInst(Mips::LW, DestReg)
416       .addReg(MFI->getGlobalBaseReg(*MF))
417       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
418   if ((GV->hasInternalLinkage() ||
419        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
420     Register TempReg = createResultReg(RC);
421     emitInst(Mips::ADDiu, TempReg)
422         .addReg(DestReg)
423         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
424     DestReg = TempReg;
425   }
426   return DestReg;
427 }
428 
429 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
430   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
431   Register DestReg = createResultReg(RC);
432   emitInst(Mips::LW, DestReg)
433       .addReg(MFI->getGlobalBaseReg(*MF))
434       .addSym(Sym, MipsII::MO_GOT);
435   return DestReg;
436 }
437 
438 // Materialize a constant into a register, and return the register
439 // number (or zero if we failed to handle it).
440 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
441   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
442 
443   // Only handle simple types.
444   if (!CEVT.isSimple())
445     return 0;
446   MVT VT = CEVT.getSimpleVT();
447 
448   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
449     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
450   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
451     return materializeGV(GV, VT);
452   else if (isa<ConstantInt>(C))
453     return materializeInt(C, VT);
454 
455   return 0;
456 }
457 
458 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
459   const User *U = nullptr;
460   unsigned Opcode = Instruction::UserOp1;
461   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
462     // Don't walk into other basic blocks unless the object is an alloca from
463     // another block, otherwise it may not have a virtual register assigned.
464     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
465         FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) {
466       Opcode = I->getOpcode();
467       U = I;
468     }
469   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
470     Opcode = C->getOpcode();
471     U = C;
472   }
473   switch (Opcode) {
474   default:
475     break;
476   case Instruction::BitCast:
477     // Look through bitcasts.
478     return computeAddress(U->getOperand(0), Addr);
479   case Instruction::GetElementPtr: {
480     Address SavedAddr = Addr;
481     int64_t TmpOffset = Addr.getOffset();
482     // Iterate through the GEP folding the constants into offsets where
483     // we can.
484     gep_type_iterator GTI = gep_type_begin(U);
485     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
486          ++i, ++GTI) {
487       const Value *Op = *i;
488       if (StructType *STy = GTI.getStructTypeOrNull()) {
489         const StructLayout *SL = DL.getStructLayout(STy);
490         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
491         TmpOffset += SL->getElementOffset(Idx);
492       } else {
493         uint64_t S = GTI.getSequentialElementStride(DL);
494         while (true) {
495           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
496             // Constant-offset addressing.
497             TmpOffset += CI->getSExtValue() * S;
498             break;
499           }
500           if (canFoldAddIntoGEP(U, Op)) {
501             // A compatible add with a constant operand. Fold the constant.
502             ConstantInt *CI =
503                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
504             TmpOffset += CI->getSExtValue() * S;
505             // Iterate on the other operand.
506             Op = cast<AddOperator>(Op)->getOperand(0);
507             continue;
508           }
509           // Unsupported
510           goto unsupported_gep;
511         }
512       }
513     }
514     // Try to grab the base operand now.
515     Addr.setOffset(TmpOffset);
516     if (computeAddress(U->getOperand(0), Addr))
517       return true;
518     // We failed, restore everything and try the other options.
519     Addr = SavedAddr;
520   unsupported_gep:
521     break;
522   }
523   case Instruction::Alloca: {
524     const AllocaInst *AI = cast<AllocaInst>(Obj);
525     DenseMap<const AllocaInst *, int>::iterator SI =
526         FuncInfo.StaticAllocaMap.find(AI);
527     if (SI != FuncInfo.StaticAllocaMap.end()) {
528       Addr.setKind(Address::FrameIndexBase);
529       Addr.setFI(SI->second);
530       return true;
531     }
532     break;
533   }
534   }
535   Addr.setReg(getRegForValue(Obj));
536   return Addr.getReg() != 0;
537 }
538 
539 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
540   const User *U = nullptr;
541   unsigned Opcode = Instruction::UserOp1;
542 
543   if (const auto *I = dyn_cast<Instruction>(V)) {
544     // Check if the value is defined in the same basic block. This information
545     // is crucial to know whether or not folding an operand is valid.
546     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
547       Opcode = I->getOpcode();
548       U = I;
549     }
550   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
551     Opcode = C->getOpcode();
552     U = C;
553   }
554 
555   switch (Opcode) {
556   default:
557     break;
558   case Instruction::BitCast:
559     // Look past bitcasts if its operand is in the same BB.
560       return computeCallAddress(U->getOperand(0), Addr);
561     break;
562   case Instruction::IntToPtr:
563     // Look past no-op inttoptrs if its operand is in the same BB.
564     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
565         TLI.getPointerTy(DL))
566       return computeCallAddress(U->getOperand(0), Addr);
567     break;
568   case Instruction::PtrToInt:
569     // Look past no-op ptrtoints if its operand is in the same BB.
570     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
571       return computeCallAddress(U->getOperand(0), Addr);
572     break;
573   }
574 
575   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
576     Addr.setGlobalValue(GV);
577     return true;
578   }
579 
580   // If all else fails, try to materialize the value in a register.
581   if (!Addr.getGlobalValue()) {
582     Addr.setReg(getRegForValue(V));
583     return Addr.getReg() != 0;
584   }
585 
586   return false;
587 }
588 
589 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
590   EVT evt = TLI.getValueType(DL, Ty, true);
591   // Only handle simple types.
592   if (evt == MVT::Other || !evt.isSimple())
593     return false;
594   VT = evt.getSimpleVT();
595 
596   // Handle all legal types, i.e. a register that will directly hold this
597   // value.
598   return TLI.isTypeLegal(VT);
599 }
600 
601 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
602   if (Ty->isVectorTy())
603     return false;
604 
605   if (isTypeLegal(Ty, VT))
606     return true;
607 
608   // If this is a type than can be sign or zero-extended to a basic operation
609   // go ahead and accept it now.
610   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
611     return true;
612 
613   return false;
614 }
615 
616 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
617   if (isTypeLegal(Ty, VT))
618     return true;
619   // We will extend this in a later patch:
620   //   If this is a type than can be sign or zero-extended to a basic operation
621   //   go ahead and accept it now.
622   if (VT == MVT::i8 || VT == MVT::i16)
623     return true;
624   return false;
625 }
626 
627 // Because of how EmitCmp is called with fast-isel, you can
628 // end up with redundant "andi" instructions after the sequences emitted below.
629 // We should try and solve this issue in the future.
630 //
631 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
632   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
633   bool IsUnsigned = CI->isUnsigned();
634   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
635   if (LeftReg == 0)
636     return false;
637   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
638   if (RightReg == 0)
639     return false;
640   CmpInst::Predicate P = CI->getPredicate();
641 
642   switch (P) {
643   default:
644     return false;
645   case CmpInst::ICMP_EQ: {
646     Register TempReg = createResultReg(&Mips::GPR32RegClass);
647     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
648     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
649     break;
650   }
651   case CmpInst::ICMP_NE: {
652     Register TempReg = createResultReg(&Mips::GPR32RegClass);
653     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
654     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
655     break;
656   }
657   case CmpInst::ICMP_UGT:
658     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
659     break;
660   case CmpInst::ICMP_ULT:
661     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
662     break;
663   case CmpInst::ICMP_UGE: {
664     Register TempReg = createResultReg(&Mips::GPR32RegClass);
665     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
666     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
667     break;
668   }
669   case CmpInst::ICMP_ULE: {
670     Register TempReg = createResultReg(&Mips::GPR32RegClass);
671     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
672     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
673     break;
674   }
675   case CmpInst::ICMP_SGT:
676     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
677     break;
678   case CmpInst::ICMP_SLT:
679     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
680     break;
681   case CmpInst::ICMP_SGE: {
682     Register TempReg = createResultReg(&Mips::GPR32RegClass);
683     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
684     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
685     break;
686   }
687   case CmpInst::ICMP_SLE: {
688     Register TempReg = createResultReg(&Mips::GPR32RegClass);
689     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
690     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
691     break;
692   }
693   case CmpInst::FCMP_OEQ:
694   case CmpInst::FCMP_UNE:
695   case CmpInst::FCMP_OLT:
696   case CmpInst::FCMP_OLE:
697   case CmpInst::FCMP_OGT:
698   case CmpInst::FCMP_OGE: {
699     if (UnsupportedFPMode)
700       return false;
701     bool IsFloat = Left->getType()->isFloatTy();
702     bool IsDouble = Left->getType()->isDoubleTy();
703     if (!IsFloat && !IsDouble)
704       return false;
705     unsigned Opc, CondMovOpc;
706     switch (P) {
707     case CmpInst::FCMP_OEQ:
708       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
709       CondMovOpc = Mips::MOVT_I;
710       break;
711     case CmpInst::FCMP_UNE:
712       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
713       CondMovOpc = Mips::MOVF_I;
714       break;
715     case CmpInst::FCMP_OLT:
716       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
717       CondMovOpc = Mips::MOVT_I;
718       break;
719     case CmpInst::FCMP_OLE:
720       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
721       CondMovOpc = Mips::MOVT_I;
722       break;
723     case CmpInst::FCMP_OGT:
724       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
725       CondMovOpc = Mips::MOVF_I;
726       break;
727     case CmpInst::FCMP_OGE:
728       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
729       CondMovOpc = Mips::MOVF_I;
730       break;
731     default:
732       llvm_unreachable("Only switching of a subset of CCs.");
733     }
734     Register RegWithZero = createResultReg(&Mips::GPR32RegClass);
735     Register RegWithOne = createResultReg(&Mips::GPR32RegClass);
736     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
737     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
738     emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
739                  .addReg(RightReg);
740     emitInst(CondMovOpc, ResultReg)
741         .addReg(RegWithOne)
742         .addReg(Mips::FCC0)
743         .addReg(RegWithZero);
744     break;
745   }
746   }
747   return true;
748 }
749 
750 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr) {
751   //
752   // more cases will be handled here in following patches.
753   //
754   unsigned Opc;
755   switch (VT.SimpleTy) {
756   case MVT::i32:
757     ResultReg = createResultReg(&Mips::GPR32RegClass);
758     Opc = Mips::LW;
759     break;
760   case MVT::i16:
761     ResultReg = createResultReg(&Mips::GPR32RegClass);
762     Opc = Mips::LHu;
763     break;
764   case MVT::i8:
765     ResultReg = createResultReg(&Mips::GPR32RegClass);
766     Opc = Mips::LBu;
767     break;
768   case MVT::f32:
769     if (UnsupportedFPMode)
770       return false;
771     ResultReg = createResultReg(&Mips::FGR32RegClass);
772     Opc = Mips::LWC1;
773     break;
774   case MVT::f64:
775     if (UnsupportedFPMode)
776       return false;
777     ResultReg = createResultReg(&Mips::AFGR64RegClass);
778     Opc = Mips::LDC1;
779     break;
780   default:
781     return false;
782   }
783   if (Addr.isRegBase()) {
784     simplifyAddress(Addr);
785     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
786     return true;
787   }
788   if (Addr.isFIBase()) {
789     unsigned FI = Addr.getFI();
790     int64_t Offset = Addr.getOffset();
791     MachineFrameInfo &MFI = MF->getFrameInfo();
792     MachineMemOperand *MMO = MF->getMachineMemOperand(
793         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
794         MFI.getObjectSize(FI), Align(4));
795     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
796         .addFrameIndex(FI)
797         .addImm(Offset)
798         .addMemOperand(MMO);
799     return true;
800   }
801   return false;
802 }
803 
804 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr) {
805   //
806   // more cases will be handled here in following patches.
807   //
808   unsigned Opc;
809   switch (VT.SimpleTy) {
810   case MVT::i8:
811     Opc = Mips::SB;
812     break;
813   case MVT::i16:
814     Opc = Mips::SH;
815     break;
816   case MVT::i32:
817     Opc = Mips::SW;
818     break;
819   case MVT::f32:
820     if (UnsupportedFPMode)
821       return false;
822     Opc = Mips::SWC1;
823     break;
824   case MVT::f64:
825     if (UnsupportedFPMode)
826       return false;
827     Opc = Mips::SDC1;
828     break;
829   default:
830     return false;
831   }
832   if (Addr.isRegBase()) {
833     simplifyAddress(Addr);
834     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
835     return true;
836   }
837   if (Addr.isFIBase()) {
838     unsigned FI = Addr.getFI();
839     int64_t Offset = Addr.getOffset();
840     MachineFrameInfo &MFI = MF->getFrameInfo();
841     MachineMemOperand *MMO = MF->getMachineMemOperand(
842         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
843         MFI.getObjectSize(FI), Align(4));
844     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
845         .addReg(SrcReg)
846         .addFrameIndex(FI)
847         .addImm(Offset)
848         .addMemOperand(MMO);
849     return true;
850   }
851   return false;
852 }
853 
854 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
855   MVT VT;
856   if (!isTypeSupported(I->getType(), VT))
857     return false;
858 
859   unsigned ResultReg;
860   switch (I->getOpcode()) {
861   default:
862     llvm_unreachable("Unexpected instruction.");
863   case Instruction::And:
864     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
865     break;
866   case Instruction::Or:
867     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
868     break;
869   case Instruction::Xor:
870     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
871     break;
872   }
873 
874   if (!ResultReg)
875     return false;
876 
877   updateValueMap(I, ResultReg);
878   return true;
879 }
880 
881 bool MipsFastISel::selectLoad(const Instruction *I) {
882   const LoadInst *LI = cast<LoadInst>(I);
883 
884   // Atomic loads need special handling.
885   if (LI->isAtomic())
886     return false;
887 
888   // Verify we have a legal type before going any further.
889   MVT VT;
890   if (!isLoadTypeLegal(LI->getType(), VT))
891     return false;
892 
893   // Underaligned loads need special handling.
894   if (LI->getAlign() < VT.getFixedSizeInBits() / 8 &&
895       !Subtarget->systemSupportsUnalignedAccess())
896     return false;
897 
898   // See if we can handle this address.
899   Address Addr;
900   if (!computeAddress(LI->getOperand(0), Addr))
901     return false;
902 
903   unsigned ResultReg;
904   if (!emitLoad(VT, ResultReg, Addr))
905     return false;
906   updateValueMap(LI, ResultReg);
907   return true;
908 }
909 
910 bool MipsFastISel::selectStore(const Instruction *I) {
911   const StoreInst *SI = cast<StoreInst>(I);
912 
913   Value *Op0 = SI->getOperand(0);
914   unsigned SrcReg = 0;
915 
916   // Atomic stores need special handling.
917   if (SI->isAtomic())
918     return false;
919 
920   // Verify we have a legal type before going any further.
921   MVT VT;
922   if (!isLoadTypeLegal(SI->getOperand(0)->getType(), VT))
923     return false;
924 
925   // Underaligned stores need special handling.
926   if (SI->getAlign() < VT.getFixedSizeInBits() / 8 &&
927       !Subtarget->systemSupportsUnalignedAccess())
928     return false;
929 
930   // Get the value to be stored into a register.
931   SrcReg = getRegForValue(Op0);
932   if (SrcReg == 0)
933     return false;
934 
935   // See if we can handle this address.
936   Address Addr;
937   if (!computeAddress(SI->getOperand(1), Addr))
938     return false;
939 
940   if (!emitStore(VT, SrcReg, Addr))
941     return false;
942   return true;
943 }
944 
945 // This can cause a redundant sltiu to be generated.
946 // FIXME: try and eliminate this in a future patch.
947 bool MipsFastISel::selectBranch(const Instruction *I) {
948   const BranchInst *BI = cast<BranchInst>(I);
949   MachineBasicBlock *BrBB = FuncInfo.MBB;
950   //
951   // TBB is the basic block for the case where the comparison is true.
952   // FBB is the basic block for the case where the comparison is false.
953   // if (cond) goto TBB
954   // goto FBB
955   // TBB:
956   //
957   MachineBasicBlock *TBB = FuncInfo.getMBB(BI->getSuccessor(0));
958   MachineBasicBlock *FBB = FuncInfo.getMBB(BI->getSuccessor(1));
959 
960   // Fold the common case of a conditional branch with a comparison
961   // in the same block.
962   unsigned ZExtCondReg = 0;
963   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
964     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
965       ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
966       if (!emitCmp(ZExtCondReg, CI))
967         return false;
968     }
969   }
970 
971   // For the general case, we need to mask with 1.
972   if (ZExtCondReg == 0) {
973     Register CondReg = getRegForValue(BI->getCondition());
974     if (CondReg == 0)
975       return false;
976 
977     ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
978     if (ZExtCondReg == 0)
979       return false;
980   }
981 
982   BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::BGTZ))
983       .addReg(ZExtCondReg)
984       .addMBB(TBB);
985   finishCondBranch(BI->getParent(), TBB, FBB);
986   return true;
987 }
988 
989 bool MipsFastISel::selectCmp(const Instruction *I) {
990   const CmpInst *CI = cast<CmpInst>(I);
991   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
992   if (!emitCmp(ResultReg, CI))
993     return false;
994   updateValueMap(I, ResultReg);
995   return true;
996 }
997 
998 // Attempt to fast-select a floating-point extend instruction.
999 bool MipsFastISel::selectFPExt(const Instruction *I) {
1000   if (UnsupportedFPMode)
1001     return false;
1002   Value *Src = I->getOperand(0);
1003   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1004   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1005 
1006   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1007     return false;
1008 
1009   Register SrcReg =
1010       getRegForValue(Src); // this must be a 32bit floating point register class
1011                            // maybe we should handle this differently
1012   if (!SrcReg)
1013     return false;
1014 
1015   Register DestReg = createResultReg(&Mips::AFGR64RegClass);
1016   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1017   updateValueMap(I, DestReg);
1018   return true;
1019 }
1020 
1021 bool MipsFastISel::selectSelect(const Instruction *I) {
1022   assert(isa<SelectInst>(I) && "Expected a select instruction.");
1023 
1024   LLVM_DEBUG(dbgs() << "selectSelect\n");
1025 
1026   MVT VT;
1027   if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1028     LLVM_DEBUG(
1029         dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1030     return false;
1031   }
1032 
1033   unsigned CondMovOpc;
1034   const TargetRegisterClass *RC;
1035 
1036   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1037     CondMovOpc = Mips::MOVN_I_I;
1038     RC = &Mips::GPR32RegClass;
1039   } else if (VT == MVT::f32) {
1040     CondMovOpc = Mips::MOVN_I_S;
1041     RC = &Mips::FGR32RegClass;
1042   } else if (VT == MVT::f64) {
1043     CondMovOpc = Mips::MOVN_I_D32;
1044     RC = &Mips::AFGR64RegClass;
1045   } else
1046     return false;
1047 
1048   const SelectInst *SI = cast<SelectInst>(I);
1049   const Value *Cond = SI->getCondition();
1050   Register Src1Reg = getRegForValue(SI->getTrueValue());
1051   Register Src2Reg = getRegForValue(SI->getFalseValue());
1052   Register CondReg = getRegForValue(Cond);
1053 
1054   if (!Src1Reg || !Src2Reg || !CondReg)
1055     return false;
1056 
1057   Register ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1058   if (!ZExtCondReg)
1059     return false;
1060 
1061   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1062     return false;
1063 
1064   Register ResultReg = createResultReg(RC);
1065   Register TempReg = createResultReg(RC);
1066 
1067   if (!ResultReg || !TempReg)
1068     return false;
1069 
1070   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1071   emitInst(CondMovOpc, ResultReg)
1072     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1073   updateValueMap(I, ResultReg);
1074   return true;
1075 }
1076 
1077 // Attempt to fast-select a floating-point truncate instruction.
1078 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1079   if (UnsupportedFPMode)
1080     return false;
1081   Value *Src = I->getOperand(0);
1082   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1083   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1084 
1085   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1086     return false;
1087 
1088   Register SrcReg = getRegForValue(Src);
1089   if (!SrcReg)
1090     return false;
1091 
1092   Register DestReg = createResultReg(&Mips::FGR32RegClass);
1093   if (!DestReg)
1094     return false;
1095 
1096   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1097   updateValueMap(I, DestReg);
1098   return true;
1099 }
1100 
1101 // Attempt to fast-select a floating-point-to-integer conversion.
1102 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1103   if (UnsupportedFPMode)
1104     return false;
1105   MVT DstVT, SrcVT;
1106   if (!IsSigned)
1107     return false; // We don't handle this case yet. There is no native
1108                   // instruction for this but it can be synthesized.
1109   Type *DstTy = I->getType();
1110   if (!isTypeLegal(DstTy, DstVT))
1111     return false;
1112 
1113   if (DstVT != MVT::i32)
1114     return false;
1115 
1116   Value *Src = I->getOperand(0);
1117   Type *SrcTy = Src->getType();
1118   if (!isTypeLegal(SrcTy, SrcVT))
1119     return false;
1120 
1121   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1122     return false;
1123 
1124   Register SrcReg = getRegForValue(Src);
1125   if (SrcReg == 0)
1126     return false;
1127 
1128   // Determine the opcode for the conversion, which takes place
1129   // entirely within FPRs.
1130   Register DestReg = createResultReg(&Mips::GPR32RegClass);
1131   Register TempReg = createResultReg(&Mips::FGR32RegClass);
1132   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1133 
1134   // Generate the convert.
1135   emitInst(Opc, TempReg).addReg(SrcReg);
1136   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1137 
1138   updateValueMap(I, DestReg);
1139   return true;
1140 }
1141 
1142 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1143                                    SmallVectorImpl<MVT> &OutVTs,
1144                                    unsigned &NumBytes) {
1145   CallingConv::ID CC = CLI.CallConv;
1146   SmallVector<CCValAssign, 16> ArgLocs;
1147   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1148   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1149   // Get a count of how many bytes are to be pushed on the stack.
1150   NumBytes = CCInfo.getStackSize();
1151   // This is the minimum argument area used for A0-A3.
1152   if (NumBytes < 16)
1153     NumBytes = 16;
1154 
1155   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1156   // Process the args.
1157   MVT firstMVT;
1158   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1159     CCValAssign &VA = ArgLocs[i];
1160     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1161     MVT ArgVT = OutVTs[VA.getValNo()];
1162 
1163     if (i == 0) {
1164       firstMVT = ArgVT;
1165       if (ArgVT == MVT::f32) {
1166         VA.convertToReg(Mips::F12);
1167       } else if (ArgVT == MVT::f64) {
1168         if (Subtarget->isFP64bit())
1169           VA.convertToReg(Mips::D6_64);
1170         else
1171           VA.convertToReg(Mips::D6);
1172       }
1173     } else if (i == 1) {
1174       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1175         if (ArgVT == MVT::f32) {
1176           VA.convertToReg(Mips::F14);
1177         } else if (ArgVT == MVT::f64) {
1178           if (Subtarget->isFP64bit())
1179             VA.convertToReg(Mips::D7_64);
1180           else
1181             VA.convertToReg(Mips::D7);
1182         }
1183       }
1184     }
1185     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1186          (ArgVT == MVT::i8)) &&
1187         VA.isMemLoc()) {
1188       switch (VA.getLocMemOffset()) {
1189       case 0:
1190         VA.convertToReg(Mips::A0);
1191         break;
1192       case 4:
1193         VA.convertToReg(Mips::A1);
1194         break;
1195       case 8:
1196         VA.convertToReg(Mips::A2);
1197         break;
1198       case 12:
1199         VA.convertToReg(Mips::A3);
1200         break;
1201       default:
1202         break;
1203       }
1204     }
1205     Register ArgReg = getRegForValue(ArgVal);
1206     if (!ArgReg)
1207       return false;
1208 
1209     // Handle arg promotion: SExt, ZExt, AExt.
1210     switch (VA.getLocInfo()) {
1211     case CCValAssign::Full:
1212       break;
1213     case CCValAssign::AExt:
1214     case CCValAssign::SExt: {
1215       MVT DestVT = VA.getLocVT();
1216       MVT SrcVT = ArgVT;
1217       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1218       if (!ArgReg)
1219         return false;
1220       break;
1221     }
1222     case CCValAssign::ZExt: {
1223       MVT DestVT = VA.getLocVT();
1224       MVT SrcVT = ArgVT;
1225       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1226       if (!ArgReg)
1227         return false;
1228       break;
1229     }
1230     default:
1231       llvm_unreachable("Unknown arg promotion!");
1232     }
1233 
1234     // Now copy/store arg to correct locations.
1235     if (VA.isRegLoc() && !VA.needsCustom()) {
1236       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1237               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1238       CLI.OutRegs.push_back(VA.getLocReg());
1239     } else if (VA.needsCustom()) {
1240       llvm_unreachable("Mips does not use custom args.");
1241       return false;
1242     } else {
1243       //
1244       // FIXME: This path will currently return false. It was copied
1245       // from the AArch64 port and should be essentially fine for Mips too.
1246       // The work to finish up this path will be done in a follow-on patch.
1247       //
1248       assert(VA.isMemLoc() && "Assuming store on stack.");
1249       // Don't emit stores for undef values.
1250       if (isa<UndefValue>(ArgVal))
1251         continue;
1252 
1253       // Need to store on the stack.
1254       // FIXME: This alignment is incorrect but this path is disabled
1255       // for now (will return false). We need to determine the right alignment
1256       // based on the normal alignment for the underlying machine type.
1257       //
1258       unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1259 
1260       unsigned BEAlign = 0;
1261       if (ArgSize < 8 && !Subtarget->isLittle())
1262         BEAlign = 8 - ArgSize;
1263 
1264       Address Addr;
1265       Addr.setKind(Address::RegBase);
1266       Addr.setReg(Mips::SP);
1267       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1268 
1269       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
1270       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1271           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1272           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1273       (void)(MMO);
1274       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1275       return false; // can't store on the stack yet.
1276     }
1277   }
1278 
1279   return true;
1280 }
1281 
1282 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1283                               unsigned NumBytes) {
1284   CallingConv::ID CC = CLI.CallConv;
1285   emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1286   if (RetVT != MVT::isVoid) {
1287     SmallVector<CCValAssign, 16> RVLocs;
1288     MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1289 
1290     CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1291                              CLI.Symbol ? CLI.Symbol->getName().data()
1292                                         : nullptr);
1293 
1294     // Only handle a single return value.
1295     if (RVLocs.size() != 1)
1296       return false;
1297     // Copy all of the result registers out of their specified physreg.
1298     MVT CopyVT = RVLocs[0].getValVT();
1299     // Special handling for extended integers.
1300     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1301       CopyVT = MVT::i32;
1302 
1303     Register ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1304     if (!ResultReg)
1305       return false;
1306     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1307             TII.get(TargetOpcode::COPY),
1308             ResultReg).addReg(RVLocs[0].getLocReg());
1309     CLI.InRegs.push_back(RVLocs[0].getLocReg());
1310 
1311     CLI.ResultReg = ResultReg;
1312     CLI.NumResultRegs = 1;
1313   }
1314   return true;
1315 }
1316 
1317 bool MipsFastISel::fastLowerArguments() {
1318   LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1319 
1320   if (!FuncInfo.CanLowerReturn) {
1321     LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1322     return false;
1323   }
1324 
1325   const Function *F = FuncInfo.Fn;
1326   if (F->isVarArg()) {
1327     LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1328     return false;
1329   }
1330 
1331   CallingConv::ID CC = F->getCallingConv();
1332   if (CC != CallingConv::C) {
1333     LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1334     return false;
1335   }
1336 
1337   std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1338                                            Mips::A3}};
1339   std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1340   std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1341   auto NextGPR32 = GPR32ArgRegs.begin();
1342   auto NextFGR32 = FGR32ArgRegs.begin();
1343   auto NextAFGR64 = AFGR64ArgRegs.begin();
1344 
1345   struct AllocatedReg {
1346     const TargetRegisterClass *RC;
1347     unsigned Reg;
1348     AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1349         : RC(RC), Reg(Reg) {}
1350   };
1351 
1352   // Only handle simple cases. i.e. All arguments are directly mapped to
1353   // registers of the appropriate type.
1354   SmallVector<AllocatedReg, 4> Allocation;
1355   for (const auto &FormalArg : F->args()) {
1356     if (FormalArg.hasAttribute(Attribute::InReg) ||
1357         FormalArg.hasAttribute(Attribute::StructRet) ||
1358         FormalArg.hasAttribute(Attribute::ByVal)) {
1359       LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1360       return false;
1361     }
1362 
1363     Type *ArgTy = FormalArg.getType();
1364     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1365       LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1366       return false;
1367     }
1368 
1369     EVT ArgVT = TLI.getValueType(DL, ArgTy);
1370     LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1371                       << ArgVT << "\n");
1372     if (!ArgVT.isSimple()) {
1373       LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1374       return false;
1375     }
1376 
1377     switch (ArgVT.getSimpleVT().SimpleTy) {
1378     case MVT::i1:
1379     case MVT::i8:
1380     case MVT::i16:
1381       if (!FormalArg.hasAttribute(Attribute::SExt) &&
1382           !FormalArg.hasAttribute(Attribute::ZExt)) {
1383         // It must be any extend, this shouldn't happen for clang-generated IR
1384         // so just fall back on SelectionDAG.
1385         LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1386         return false;
1387       }
1388 
1389       if (NextGPR32 == GPR32ArgRegs.end()) {
1390         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1391         return false;
1392       }
1393 
1394       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1395       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1396 
1397       // Allocating any GPR32 prohibits further use of floating point arguments.
1398       NextFGR32 = FGR32ArgRegs.end();
1399       NextAFGR64 = AFGR64ArgRegs.end();
1400       break;
1401 
1402     case MVT::i32:
1403       if (FormalArg.hasAttribute(Attribute::ZExt)) {
1404         // The O32 ABI does not permit a zero-extended i32.
1405         LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1406         return false;
1407       }
1408 
1409       if (NextGPR32 == GPR32ArgRegs.end()) {
1410         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1411         return false;
1412       }
1413 
1414       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1415       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1416 
1417       // Allocating any GPR32 prohibits further use of floating point arguments.
1418       NextFGR32 = FGR32ArgRegs.end();
1419       NextAFGR64 = AFGR64ArgRegs.end();
1420       break;
1421 
1422     case MVT::f32:
1423       if (UnsupportedFPMode) {
1424         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1425         return false;
1426       }
1427       if (NextFGR32 == FGR32ArgRegs.end()) {
1428         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1429         return false;
1430       }
1431       LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1432       Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1433       // Allocating an FGR32 also allocates the super-register AFGR64, and
1434       // ABI rules require us to skip the corresponding GPR32.
1435       if (NextGPR32 != GPR32ArgRegs.end())
1436         NextGPR32++;
1437       if (NextAFGR64 != AFGR64ArgRegs.end())
1438         NextAFGR64++;
1439       break;
1440 
1441     case MVT::f64:
1442       if (UnsupportedFPMode) {
1443         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1444         return false;
1445       }
1446       if (NextAFGR64 == AFGR64ArgRegs.end()) {
1447         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1448         return false;
1449       }
1450       LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1451       Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1452       // Allocating an FGR32 also allocates the super-register AFGR64, and
1453       // ABI rules require us to skip the corresponding GPR32 pair.
1454       if (NextGPR32 != GPR32ArgRegs.end())
1455         NextGPR32++;
1456       if (NextGPR32 != GPR32ArgRegs.end())
1457         NextGPR32++;
1458       if (NextFGR32 != FGR32ArgRegs.end())
1459         NextFGR32++;
1460       break;
1461 
1462     default:
1463       LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1464       return false;
1465     }
1466   }
1467 
1468   for (const auto &FormalArg : F->args()) {
1469     unsigned ArgNo = FormalArg.getArgNo();
1470     unsigned SrcReg = Allocation[ArgNo].Reg;
1471     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1472     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1473     // Without this, EmitLiveInCopies may eliminate the livein if its only
1474     // use is a bitcast (which isn't turned into an instruction).
1475     Register ResultReg = createResultReg(Allocation[ArgNo].RC);
1476     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1477             TII.get(TargetOpcode::COPY), ResultReg)
1478         .addReg(DstReg, getKillRegState(true));
1479     updateValueMap(&FormalArg, ResultReg);
1480   }
1481 
1482   // Calculate the size of the incoming arguments area.
1483   // We currently reject all the cases where this would be non-zero.
1484   unsigned IncomingArgSizeInBytes = 0;
1485 
1486   // Account for the reserved argument area on ABI's that have one (O32).
1487   // It seems strange to do this on the caller side but it's necessary in
1488   // SelectionDAG's implementation.
1489   IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1490                                     IncomingArgSizeInBytes);
1491 
1492   MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1493                                                     false);
1494 
1495   return true;
1496 }
1497 
1498 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1499   CallingConv::ID CC = CLI.CallConv;
1500   bool IsTailCall = CLI.IsTailCall;
1501   bool IsVarArg = CLI.IsVarArg;
1502   const Value *Callee = CLI.Callee;
1503   MCSymbol *Symbol = CLI.Symbol;
1504 
1505   // Do not handle FastCC.
1506   if (CC == CallingConv::Fast)
1507     return false;
1508 
1509   // Allow SelectionDAG isel to handle tail calls.
1510   if (IsTailCall)
1511     return false;
1512 
1513   // Let SDISel handle vararg functions.
1514   if (IsVarArg)
1515     return false;
1516 
1517   // FIXME: Only handle *simple* calls for now.
1518   MVT RetVT;
1519   if (CLI.RetTy->isVoidTy())
1520     RetVT = MVT::isVoid;
1521   else if (!isTypeSupported(CLI.RetTy, RetVT))
1522     return false;
1523 
1524   for (auto Flag : CLI.OutFlags)
1525     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1526       return false;
1527 
1528   // Set up the argument vectors.
1529   SmallVector<MVT, 16> OutVTs;
1530   OutVTs.reserve(CLI.OutVals.size());
1531 
1532   for (auto *Val : CLI.OutVals) {
1533     MVT VT;
1534     if (!isTypeLegal(Val->getType(), VT) &&
1535         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1536       return false;
1537 
1538     // We don't handle vector parameters yet.
1539     if (VT.isVector() || VT.getSizeInBits() > 64)
1540       return false;
1541 
1542     OutVTs.push_back(VT);
1543   }
1544 
1545   Address Addr;
1546   if (!computeCallAddress(Callee, Addr))
1547     return false;
1548 
1549   // Handle the arguments now that we've gotten them.
1550   unsigned NumBytes;
1551   if (!processCallArgs(CLI, OutVTs, NumBytes))
1552     return false;
1553 
1554   if (!Addr.getGlobalValue())
1555     return false;
1556 
1557   // Issue the call.
1558   unsigned DestAddress;
1559   if (Symbol)
1560     DestAddress = materializeExternalCallSym(Symbol);
1561   else
1562     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1563   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1564   MachineInstrBuilder MIB =
1565       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::JALR),
1566               Mips::RA).addReg(Mips::T9);
1567 
1568   // Add implicit physical register uses to the call.
1569   for (auto Reg : CLI.OutRegs)
1570     MIB.addReg(Reg, RegState::Implicit);
1571 
1572   // Add a register mask with the call-preserved registers.
1573   // Proper defs for return values will be added by setPhysRegsDeadExcept().
1574   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1575 
1576   CLI.Call = MIB;
1577 
1578   if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1579     // Attach callee address to the instruction, let asm printer emit
1580     // .reloc R_MIPS_JALR.
1581     if (Symbol)
1582       MIB.addSym(Symbol, MipsII::MO_JALR);
1583     else
1584       MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1585 	                   Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1586   }
1587 
1588   // Finish off the call including any return values.
1589   return finishCall(CLI, RetVT, NumBytes);
1590 }
1591 
1592 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1593   switch (II->getIntrinsicID()) {
1594   default:
1595     return false;
1596   case Intrinsic::bswap: {
1597     Type *RetTy = II->getCalledFunction()->getReturnType();
1598 
1599     MVT VT;
1600     if (!isTypeSupported(RetTy, VT))
1601       return false;
1602 
1603     Register SrcReg = getRegForValue(II->getOperand(0));
1604     if (SrcReg == 0)
1605       return false;
1606     Register DestReg = createResultReg(&Mips::GPR32RegClass);
1607     if (DestReg == 0)
1608       return false;
1609     if (VT == MVT::i16) {
1610       if (Subtarget->hasMips32r2()) {
1611         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1612         updateValueMap(II, DestReg);
1613         return true;
1614       } else {
1615         unsigned TempReg[3];
1616         for (unsigned &R : TempReg) {
1617           R = createResultReg(&Mips::GPR32RegClass);
1618           if (R == 0)
1619             return false;
1620         }
1621         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1622         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1623         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[1]).addImm(0xFF);
1624         emitInst(Mips::OR, DestReg).addReg(TempReg[0]).addReg(TempReg[2]);
1625         updateValueMap(II, DestReg);
1626         return true;
1627       }
1628     } else if (VT == MVT::i32) {
1629       if (Subtarget->hasMips32r2()) {
1630         Register TempReg = createResultReg(&Mips::GPR32RegClass);
1631         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1632         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1633         updateValueMap(II, DestReg);
1634         return true;
1635       } else {
1636         unsigned TempReg[8];
1637         for (unsigned &R : TempReg) {
1638           R = createResultReg(&Mips::GPR32RegClass);
1639           if (R == 0)
1640             return false;
1641         }
1642 
1643         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1644         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1645         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1646         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1647 
1648         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1649         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1650 
1651         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1652         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1653         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1654         updateValueMap(II, DestReg);
1655         return true;
1656       }
1657     }
1658     return false;
1659   }
1660   case Intrinsic::memcpy:
1661   case Intrinsic::memmove: {
1662     const auto *MTI = cast<MemTransferInst>(II);
1663     // Don't handle volatile.
1664     if (MTI->isVolatile())
1665       return false;
1666     if (!MTI->getLength()->getType()->isIntegerTy(32))
1667       return false;
1668     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1669     return lowerCallTo(II, IntrMemName, II->arg_size() - 1);
1670   }
1671   case Intrinsic::memset: {
1672     const MemSetInst *MSI = cast<MemSetInst>(II);
1673     // Don't handle volatile.
1674     if (MSI->isVolatile())
1675       return false;
1676     if (!MSI->getLength()->getType()->isIntegerTy(32))
1677       return false;
1678     return lowerCallTo(II, "memset", II->arg_size() - 1);
1679   }
1680   }
1681   return false;
1682 }
1683 
1684 bool MipsFastISel::selectRet(const Instruction *I) {
1685   const Function &F = *I->getParent()->getParent();
1686   const ReturnInst *Ret = cast<ReturnInst>(I);
1687 
1688   LLVM_DEBUG(dbgs() << "selectRet\n");
1689 
1690   if (!FuncInfo.CanLowerReturn)
1691     return false;
1692 
1693   // Build a list of return value registers.
1694   SmallVector<unsigned, 4> RetRegs;
1695 
1696   if (Ret->getNumOperands() > 0) {
1697     CallingConv::ID CC = F.getCallingConv();
1698 
1699     // Do not handle FastCC.
1700     if (CC == CallingConv::Fast)
1701       return false;
1702 
1703     SmallVector<ISD::OutputArg, 4> Outs;
1704     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1705 
1706     // Analyze operands of the call, assigning locations to each operand.
1707     SmallVector<CCValAssign, 16> ValLocs;
1708     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1709                        I->getContext());
1710     CCAssignFn *RetCC = RetCC_Mips;
1711     CCInfo.AnalyzeReturn(Outs, RetCC);
1712 
1713     // Only handle a single return value for now.
1714     if (ValLocs.size() != 1)
1715       return false;
1716 
1717     CCValAssign &VA = ValLocs[0];
1718     const Value *RV = Ret->getOperand(0);
1719 
1720     // Don't bother handling odd stuff for now.
1721     if ((VA.getLocInfo() != CCValAssign::Full) &&
1722         (VA.getLocInfo() != CCValAssign::BCvt))
1723       return false;
1724 
1725     // Only handle register returns for now.
1726     if (!VA.isRegLoc())
1727       return false;
1728 
1729     Register Reg = getRegForValue(RV);
1730     if (Reg == 0)
1731       return false;
1732 
1733     unsigned SrcReg = Reg + VA.getValNo();
1734     Register DestReg = VA.getLocReg();
1735     // Avoid a cross-class copy. This is very unlikely.
1736     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1737       return false;
1738 
1739     EVT RVEVT = TLI.getValueType(DL, RV->getType());
1740     if (!RVEVT.isSimple())
1741       return false;
1742 
1743     if (RVEVT.isVector())
1744       return false;
1745 
1746     MVT RVVT = RVEVT.getSimpleVT();
1747     if (RVVT == MVT::f128)
1748       return false;
1749 
1750     // Do not handle FGR64 returns for now.
1751     if (RVVT == MVT::f64 && UnsupportedFPMode) {
1752       LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1753       return false;
1754     }
1755 
1756     MVT DestVT = VA.getValVT();
1757     // Special handling for extended integers.
1758     if (RVVT != DestVT) {
1759       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1760         return false;
1761 
1762       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1763         bool IsZExt = Outs[0].Flags.isZExt();
1764         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1765         if (SrcReg == 0)
1766           return false;
1767       }
1768     }
1769 
1770     // Make the copy.
1771     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1772             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1773 
1774     // Add register to return instruction.
1775     RetRegs.push_back(VA.getLocReg());
1776   }
1777   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1778   for (unsigned Reg : RetRegs)
1779     MIB.addReg(Reg, RegState::Implicit);
1780   return true;
1781 }
1782 
1783 bool MipsFastISel::selectTrunc(const Instruction *I) {
1784   // The high bits for a type smaller than the register size are assumed to be
1785   // undefined.
1786   Value *Op = I->getOperand(0);
1787 
1788   EVT SrcVT, DestVT;
1789   SrcVT = TLI.getValueType(DL, Op->getType(), true);
1790   DestVT = TLI.getValueType(DL, I->getType(), true);
1791 
1792   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1793     return false;
1794   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1795     return false;
1796 
1797   Register SrcReg = getRegForValue(Op);
1798   if (!SrcReg)
1799     return false;
1800 
1801   // Because the high bits are undefined, a truncate doesn't generate
1802   // any code.
1803   updateValueMap(I, SrcReg);
1804   return true;
1805 }
1806 
1807 bool MipsFastISel::selectIntExt(const Instruction *I) {
1808   Type *DestTy = I->getType();
1809   Value *Src = I->getOperand(0);
1810   Type *SrcTy = Src->getType();
1811 
1812   bool isZExt = isa<ZExtInst>(I);
1813   Register SrcReg = getRegForValue(Src);
1814   if (!SrcReg)
1815     return false;
1816 
1817   EVT SrcEVT, DestEVT;
1818   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1819   DestEVT = TLI.getValueType(DL, DestTy, true);
1820   if (!SrcEVT.isSimple())
1821     return false;
1822   if (!DestEVT.isSimple())
1823     return false;
1824 
1825   MVT SrcVT = SrcEVT.getSimpleVT();
1826   MVT DestVT = DestEVT.getSimpleVT();
1827   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1828 
1829   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1830     return false;
1831   updateValueMap(I, ResultReg);
1832   return true;
1833 }
1834 
1835 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1836                                    unsigned DestReg) {
1837   unsigned ShiftAmt;
1838   switch (SrcVT.SimpleTy) {
1839   default:
1840     return false;
1841   case MVT::i8:
1842     ShiftAmt = 24;
1843     break;
1844   case MVT::i16:
1845     ShiftAmt = 16;
1846     break;
1847   }
1848   Register TempReg = createResultReg(&Mips::GPR32RegClass);
1849   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1850   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1851   return true;
1852 }
1853 
1854 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1855                                    unsigned DestReg) {
1856   switch (SrcVT.SimpleTy) {
1857   default:
1858     return false;
1859   case MVT::i8:
1860     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1861     break;
1862   case MVT::i16:
1863     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1864     break;
1865   }
1866   return true;
1867 }
1868 
1869 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1870                                unsigned DestReg) {
1871   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1872     return false;
1873   if (Subtarget->hasMips32r2())
1874     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1875   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1876 }
1877 
1878 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1879                                unsigned DestReg) {
1880   int64_t Imm;
1881 
1882   switch (SrcVT.SimpleTy) {
1883   default:
1884     return false;
1885   case MVT::i1:
1886     Imm = 1;
1887     break;
1888   case MVT::i8:
1889     Imm = 0xff;
1890     break;
1891   case MVT::i16:
1892     Imm = 0xffff;
1893     break;
1894   }
1895 
1896   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1897   return true;
1898 }
1899 
1900 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1901                               unsigned DestReg, bool IsZExt) {
1902   // FastISel does not have plumbing to deal with extensions where the SrcVT or
1903   // DestVT are odd things, so test to make sure that they are both types we can
1904   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1905   // bail out to SelectionDAG.
1906   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1907       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1908     return false;
1909   if (IsZExt)
1910     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1911   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1912 }
1913 
1914 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1915                                   bool isZExt) {
1916   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1917   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1918   return Success ? DestReg : 0;
1919 }
1920 
1921 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1922   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1923   if (!DestEVT.isSimple())
1924     return false;
1925 
1926   MVT DestVT = DestEVT.getSimpleVT();
1927   if (DestVT != MVT::i32)
1928     return false;
1929 
1930   unsigned DivOpc;
1931   switch (ISDOpcode) {
1932   default:
1933     return false;
1934   case ISD::SDIV:
1935   case ISD::SREM:
1936     DivOpc = Mips::SDIV;
1937     break;
1938   case ISD::UDIV:
1939   case ISD::UREM:
1940     DivOpc = Mips::UDIV;
1941     break;
1942   }
1943 
1944   Register Src0Reg = getRegForValue(I->getOperand(0));
1945   Register Src1Reg = getRegForValue(I->getOperand(1));
1946   if (!Src0Reg || !Src1Reg)
1947     return false;
1948 
1949   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1950   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1951 
1952   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1953   if (!ResultReg)
1954     return false;
1955 
1956   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1957                        ? Mips::MFHI
1958                        : Mips::MFLO;
1959   emitInst(MFOpc, ResultReg);
1960 
1961   updateValueMap(I, ResultReg);
1962   return true;
1963 }
1964 
1965 bool MipsFastISel::selectShift(const Instruction *I) {
1966   MVT RetVT;
1967 
1968   if (!isTypeSupported(I->getType(), RetVT))
1969     return false;
1970 
1971   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1972   if (!ResultReg)
1973     return false;
1974 
1975   unsigned Opcode = I->getOpcode();
1976   const Value *Op0 = I->getOperand(0);
1977   Register Op0Reg = getRegForValue(Op0);
1978   if (!Op0Reg)
1979     return false;
1980 
1981   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1982   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1983     Register TempReg = createResultReg(&Mips::GPR32RegClass);
1984     if (!TempReg)
1985       return false;
1986 
1987     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1988     bool IsZExt = Opcode == Instruction::LShr;
1989     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1990       return false;
1991 
1992     Op0Reg = TempReg;
1993   }
1994 
1995   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1996     uint64_t ShiftVal = C->getZExtValue();
1997 
1998     switch (Opcode) {
1999     default:
2000       llvm_unreachable("Unexpected instruction.");
2001     case Instruction::Shl:
2002       Opcode = Mips::SLL;
2003       break;
2004     case Instruction::AShr:
2005       Opcode = Mips::SRA;
2006       break;
2007     case Instruction::LShr:
2008       Opcode = Mips::SRL;
2009       break;
2010     }
2011 
2012     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2013     updateValueMap(I, ResultReg);
2014     return true;
2015   }
2016 
2017   Register Op1Reg = getRegForValue(I->getOperand(1));
2018   if (!Op1Reg)
2019     return false;
2020 
2021   switch (Opcode) {
2022   default:
2023     llvm_unreachable("Unexpected instruction.");
2024   case Instruction::Shl:
2025     Opcode = Mips::SLLV;
2026     break;
2027   case Instruction::AShr:
2028     Opcode = Mips::SRAV;
2029     break;
2030   case Instruction::LShr:
2031     Opcode = Mips::SRLV;
2032     break;
2033   }
2034 
2035   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2036   updateValueMap(I, ResultReg);
2037   return true;
2038 }
2039 
2040 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2041   switch (I->getOpcode()) {
2042   default:
2043     break;
2044   case Instruction::Load:
2045     return selectLoad(I);
2046   case Instruction::Store:
2047     return selectStore(I);
2048   case Instruction::SDiv:
2049     if (!selectBinaryOp(I, ISD::SDIV))
2050       return selectDivRem(I, ISD::SDIV);
2051     return true;
2052   case Instruction::UDiv:
2053     if (!selectBinaryOp(I, ISD::UDIV))
2054       return selectDivRem(I, ISD::UDIV);
2055     return true;
2056   case Instruction::SRem:
2057     if (!selectBinaryOp(I, ISD::SREM))
2058       return selectDivRem(I, ISD::SREM);
2059     return true;
2060   case Instruction::URem:
2061     if (!selectBinaryOp(I, ISD::UREM))
2062       return selectDivRem(I, ISD::UREM);
2063     return true;
2064   case Instruction::Shl:
2065   case Instruction::LShr:
2066   case Instruction::AShr:
2067     return selectShift(I);
2068   case Instruction::And:
2069   case Instruction::Or:
2070   case Instruction::Xor:
2071     return selectLogicalOp(I);
2072   case Instruction::Br:
2073     return selectBranch(I);
2074   case Instruction::Ret:
2075     return selectRet(I);
2076   case Instruction::Trunc:
2077     return selectTrunc(I);
2078   case Instruction::ZExt:
2079   case Instruction::SExt:
2080     return selectIntExt(I);
2081   case Instruction::FPTrunc:
2082     return selectFPTrunc(I);
2083   case Instruction::FPExt:
2084     return selectFPExt(I);
2085   case Instruction::FPToSI:
2086     return selectFPToInt(I, /*isSigned*/ true);
2087   case Instruction::FPToUI:
2088     return selectFPToInt(I, /*isSigned*/ false);
2089   case Instruction::ICmp:
2090   case Instruction::FCmp:
2091     return selectCmp(I);
2092   case Instruction::Select:
2093     return selectSelect(I);
2094   }
2095   return false;
2096 }
2097 
2098 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2099                                                            bool IsUnsigned) {
2100   Register VReg = getRegForValue(V);
2101   if (VReg == 0)
2102     return 0;
2103   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2104 
2105   if (VMVT == MVT::i1)
2106     return 0;
2107 
2108   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2109     Register TempReg = createResultReg(&Mips::GPR32RegClass);
2110     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2111       return 0;
2112     VReg = TempReg;
2113   }
2114   return VReg;
2115 }
2116 
2117 void MipsFastISel::simplifyAddress(Address &Addr) {
2118   if (!isInt<16>(Addr.getOffset())) {
2119     unsigned TempReg =
2120         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2121     Register DestReg = createResultReg(&Mips::GPR32RegClass);
2122     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2123     Addr.setReg(DestReg);
2124     Addr.setOffset(0);
2125   }
2126 }
2127 
2128 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2129                                        const TargetRegisterClass *RC,
2130                                        unsigned Op0, unsigned Op1) {
2131   // We treat the MUL instruction in a special way because it clobbers
2132   // the HI0 & LO0 registers. The TableGen definition of this instruction can
2133   // mark these registers only as implicitly defined. As a result, the
2134   // register allocator runs out of registers when this instruction is
2135   // followed by another instruction that defines the same registers too.
2136   // We can fix this by explicitly marking those registers as dead.
2137   if (MachineInstOpcode == Mips::MUL) {
2138     Register ResultReg = createResultReg(RC);
2139     const MCInstrDesc &II = TII.get(MachineInstOpcode);
2140     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2141     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2142     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2143       .addReg(Op0)
2144       .addReg(Op1)
2145       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2146       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2147     return ResultReg;
2148   }
2149 
2150   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op1);
2151 }
2152 
2153 namespace llvm {
2154 
2155 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2156                                const TargetLibraryInfo *libInfo) {
2157   return new MipsFastISel(funcInfo, libInfo);
2158 }
2159 
2160 } // end namespace llvm
2161