1 //===-- M68kISelLowering.cpp - M68k DAG Lowering Impl -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file defines the interfaces that M68k uses to lower LLVM code into a 11 /// selection DAG. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "M68kISelLowering.h" 16 #include "M68kCallingConv.h" 17 #include "M68kMachineFunction.h" 18 #include "M68kSubtarget.h" 19 #include "M68kTargetMachine.h" 20 #include "M68kTargetObjectFile.h" 21 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/ValueTypes.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "M68k-isel" 43 44 STATISTIC(NumTailCalls, "Number of tail calls"); 45 46 M68kTargetLowering::M68kTargetLowering(const M68kTargetMachine &TM, 47 const M68kSubtarget &STI) 48 : TargetLowering(TM), Subtarget(STI), TM(TM) { 49 50 MVT PtrVT = MVT::i32; 51 52 setBooleanContents(ZeroOrOneBooleanContent); 53 54 auto *RegInfo = Subtarget.getRegisterInfo(); 55 setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); 56 57 // Set up the register classes. 58 addRegisterClass(MVT::i8, &M68k::DR8RegClass); 59 addRegisterClass(MVT::i16, &M68k::XR16RegClass); 60 addRegisterClass(MVT::i32, &M68k::XR32RegClass); 61 62 for (auto VT : MVT::integer_valuetypes()) { 63 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 64 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 65 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 66 } 67 68 // We don't accept any truncstore of integer registers. 69 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 70 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 71 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 72 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 73 setTruncStoreAction(MVT::i32, MVT::i8, Expand); 74 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 75 76 setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i8, Promote); 77 setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i16, Legal); 78 if (Subtarget.atLeastM68020()) 79 setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i32, Legal); 80 else 81 setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i32, LibCall); 82 setOperationAction(ISD::MUL, MVT::i64, LibCall); 83 84 for (auto OP : 85 {ISD::SREM, ISD::UREM, ISD::UDIVREM, ISD::SDIVREM, 86 ISD::MULHS, ISD::MULHU, ISD::UMUL_LOHI, ISD::SMUL_LOHI}) { 87 setOperationAction(OP, MVT::i8, Promote); 88 setOperationAction(OP, MVT::i16, Legal); 89 setOperationAction(OP, MVT::i32, LibCall); 90 } 91 92 for (auto OP : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) { 93 setOperationAction(OP, MVT::i8, Expand); 94 setOperationAction(OP, MVT::i16, Expand); 95 } 96 97 for (auto OP : {ISD::SMULO, ISD::UMULO}) { 98 setOperationAction(OP, MVT::i8, Custom); 99 setOperationAction(OP, MVT::i16, Custom); 100 setOperationAction(OP, MVT::i32, Custom); 101 } 102 103 for (auto OP : {ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}) 104 setOperationAction(OP, MVT::i32, Custom); 105 106 // Add/Sub overflow ops with MVT::Glues are lowered to CCR dependences. 107 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) { 108 setOperationAction(ISD::ADDC, VT, Custom); 109 setOperationAction(ISD::ADDE, VT, Custom); 110 setOperationAction(ISD::SUBC, VT, Custom); 111 setOperationAction(ISD::SUBE, VT, Custom); 112 } 113 114 // SADDO and friends are legal with this setup, i hope 115 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) { 116 setOperationAction(ISD::SADDO, VT, Custom); 117 setOperationAction(ISD::UADDO, VT, Custom); 118 setOperationAction(ISD::SSUBO, VT, Custom); 119 setOperationAction(ISD::USUBO, VT, Custom); 120 } 121 122 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 123 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 124 125 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) { 126 setOperationAction(ISD::BR_CC, VT, Expand); 127 setOperationAction(ISD::SELECT, VT, Custom); 128 setOperationAction(ISD::SELECT_CC, VT, Expand); 129 setOperationAction(ISD::SETCC, VT, Custom); 130 setOperationAction(ISD::SETCCCARRY, VT, Custom); 131 } 132 133 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) { 134 setOperationAction(ISD::BSWAP, VT, Expand); 135 setOperationAction(ISD::CTTZ, VT, Expand); 136 setOperationAction(ISD::CTLZ, VT, Expand); 137 setOperationAction(ISD::CTPOP, VT, Expand); 138 } 139 140 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 141 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 142 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 143 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 144 setOperationAction(ISD::ExternalSymbol, MVT::i32, Custom); 145 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 146 147 setOperationAction(ISD::VASTART, MVT::Other, Custom); 148 setOperationAction(ISD::VAEND, MVT::Other, Expand); 149 setOperationAction(ISD::VAARG, MVT::Other, Expand); 150 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 151 152 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 153 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 154 155 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 156 157 computeRegisterProperties(STI.getRegisterInfo()); 158 159 // We lower the `atomic-compare-and-swap` to `__sync_val_compare_and_swap` 160 // for subtarget < M68020 161 setMaxAtomicSizeInBitsSupported(32); 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i8, MVT::i16, MVT::i32}, 163 Subtarget.atLeastM68020() ? Legal : LibCall); 164 165 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 166 167 // M68k does not have native read-modify-write support, so expand all of them 168 // to `__sync_fetch_*` for target < M68020, otherwise expand to CmpxChg. 169 // See `shouldExpandAtomicRMWInIR` below. 170 setOperationAction( 171 { 172 ISD::ATOMIC_LOAD_ADD, 173 ISD::ATOMIC_LOAD_SUB, 174 ISD::ATOMIC_LOAD_AND, 175 ISD::ATOMIC_LOAD_OR, 176 ISD::ATOMIC_LOAD_XOR, 177 ISD::ATOMIC_LOAD_NAND, 178 ISD::ATOMIC_LOAD_MIN, 179 ISD::ATOMIC_LOAD_MAX, 180 ISD::ATOMIC_LOAD_UMIN, 181 ISD::ATOMIC_LOAD_UMAX, 182 ISD::ATOMIC_SWAP, 183 }, 184 {MVT::i8, MVT::i16, MVT::i32}, LibCall); 185 186 setMinFunctionAlignment(Align(2)); 187 } 188 189 TargetLoweringBase::AtomicExpansionKind 190 M68kTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 191 return Subtarget.atLeastM68020() 192 ? TargetLoweringBase::AtomicExpansionKind::CmpXChg 193 : TargetLoweringBase::AtomicExpansionKind::None; 194 } 195 196 Register 197 M68kTargetLowering::getExceptionPointerRegister(const Constant *) const { 198 return M68k::D0; 199 } 200 201 Register 202 M68kTargetLowering::getExceptionSelectorRegister(const Constant *) const { 203 return M68k::D1; 204 } 205 206 InlineAsm::ConstraintCode 207 M68kTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 208 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode) 209 .Case("Q", InlineAsm::ConstraintCode::Q) 210 // We borrow ConstraintCode::Um for 'U'. 211 .Case("U", InlineAsm::ConstraintCode::Um) 212 .Default(TargetLowering::getInlineAsmMemConstraint(ConstraintCode)); 213 } 214 215 EVT M68kTargetLowering::getSetCCResultType(const DataLayout &DL, 216 LLVMContext &Context, EVT VT) const { 217 // M68k SETcc producess either 0x00 or 0xFF 218 return MVT::i8; 219 } 220 221 MVT M68kTargetLowering::getScalarShiftAmountTy(const DataLayout &DL, 222 EVT Ty) const { 223 if (Ty.isSimple()) { 224 return Ty.getSimpleVT(); 225 } 226 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 227 } 228 229 #include "M68kGenCallingConv.inc" 230 231 enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn }; 232 233 static StructReturnType 234 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { 235 if (Outs.empty()) 236 return NotStructReturn; 237 238 const ISD::ArgFlagsTy &Flags = Outs[0].Flags; 239 if (!Flags.isSRet()) 240 return NotStructReturn; 241 if (Flags.isInReg()) 242 return RegStructReturn; 243 return StackStructReturn; 244 } 245 246 /// Determines whether a function uses struct return semantics. 247 static StructReturnType 248 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { 249 if (Ins.empty()) 250 return NotStructReturn; 251 252 const ISD::ArgFlagsTy &Flags = Ins[0].Flags; 253 if (!Flags.isSRet()) 254 return NotStructReturn; 255 if (Flags.isInReg()) 256 return RegStructReturn; 257 return StackStructReturn; 258 } 259 260 /// Make a copy of an aggregate at address specified by "Src" to address 261 /// "Dst" with size and alignment information specified by the specific 262 /// parameter attribute. The copy will be passed as a byval function parameter. 263 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 264 SDValue Chain, ISD::ArgFlagsTy Flags, 265 SelectionDAG &DAG, const SDLoc &DL) { 266 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32); 267 268 return DAG.getMemcpy( 269 Chain, DL, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(), 270 /*isVolatile=*/false, /*AlwaysInline=*/true, 271 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo()); 272 } 273 274 /// Return true if the calling convention is one that we can guarantee TCO for. 275 static bool canGuaranteeTCO(CallingConv::ID CC) { return false; } 276 277 /// Return true if we might ever do TCO for calls with this calling convention. 278 static bool mayTailCallThisCC(CallingConv::ID CC) { 279 switch (CC) { 280 // C calling conventions: 281 case CallingConv::C: 282 return true; 283 default: 284 return canGuaranteeTCO(CC); 285 } 286 } 287 288 /// Return true if the function is being made into a tailcall target by 289 /// changing its ABI. 290 static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { 291 return GuaranteedTailCallOpt && canGuaranteeTCO(CC); 292 } 293 294 /// Return true if the given stack call argument is already available in the 295 /// same position (relatively) of the caller's incoming argument stack. 296 static bool MatchingStackOffset(SDValue Arg, unsigned Offset, 297 ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI, 298 const MachineRegisterInfo *MRI, 299 const M68kInstrInfo *TII, 300 const CCValAssign &VA) { 301 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 302 303 for (;;) { 304 // Look through nodes that don't alter the bits of the incoming value. 305 unsigned Op = Arg.getOpcode(); 306 if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) { 307 Arg = Arg.getOperand(0); 308 continue; 309 } 310 if (Op == ISD::TRUNCATE) { 311 const SDValue &TruncInput = Arg.getOperand(0); 312 if (TruncInput.getOpcode() == ISD::AssertZext && 313 cast<VTSDNode>(TruncInput.getOperand(1))->getVT() == 314 Arg.getValueType()) { 315 Arg = TruncInput.getOperand(0); 316 continue; 317 } 318 } 319 break; 320 } 321 322 int FI = INT_MAX; 323 if (Arg.getOpcode() == ISD::CopyFromReg) { 324 Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 325 if (!Register::isVirtualRegister(VR)) 326 return false; 327 MachineInstr *Def = MRI->getVRegDef(VR); 328 if (!Def) 329 return false; 330 if (!Flags.isByVal()) { 331 if (!TII->isLoadFromStackSlot(*Def, FI)) 332 return false; 333 } else { 334 unsigned Opcode = Def->getOpcode(); 335 if ((Opcode == M68k::LEA32p || Opcode == M68k::LEA32f) && 336 Def->getOperand(1).isFI()) { 337 FI = Def->getOperand(1).getIndex(); 338 Bytes = Flags.getByValSize(); 339 } else 340 return false; 341 } 342 } else if (auto *Ld = dyn_cast<LoadSDNode>(Arg)) { 343 if (Flags.isByVal()) 344 // ByVal argument is passed in as a pointer but it's now being 345 // dereferenced. e.g. 346 // define @foo(%struct.X* %A) { 347 // tail call @bar(%struct.X* byval %A) 348 // } 349 return false; 350 SDValue Ptr = Ld->getBasePtr(); 351 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 352 if (!FINode) 353 return false; 354 FI = FINode->getIndex(); 355 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { 356 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); 357 FI = FINode->getIndex(); 358 Bytes = Flags.getByValSize(); 359 } else 360 return false; 361 362 assert(FI != INT_MAX); 363 if (!MFI.isFixedObjectIndex(FI)) 364 return false; 365 366 if (Offset != MFI.getObjectOffset(FI)) 367 return false; 368 369 if (VA.getLocVT().getSizeInBits() > Arg.getValueType().getSizeInBits()) { 370 // If the argument location is wider than the argument type, check that any 371 // extension flags match. 372 if (Flags.isZExt() != MFI.isObjectZExt(FI) || 373 Flags.isSExt() != MFI.isObjectSExt(FI)) { 374 return false; 375 } 376 } 377 378 return Bytes == MFI.getObjectSize(FI); 379 } 380 381 SDValue 382 M68kTargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 383 MachineFunction &MF = DAG.getMachineFunction(); 384 M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>(); 385 int ReturnAddrIndex = FuncInfo->getRAIndex(); 386 387 if (ReturnAddrIndex == 0) { 388 // Set up a frame object for the return address. 389 unsigned SlotSize = Subtarget.getSlotSize(); 390 ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject( 391 SlotSize, -(int64_t)SlotSize, false); 392 FuncInfo->setRAIndex(ReturnAddrIndex); 393 } 394 395 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); 396 } 397 398 SDValue M68kTargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 399 SDValue &OutRetAddr, 400 SDValue Chain, 401 bool IsTailCall, int FPDiff, 402 const SDLoc &DL) const { 403 EVT VT = getPointerTy(DAG.getDataLayout()); 404 OutRetAddr = getReturnAddressFrameIndex(DAG); 405 406 // Load the "old" Return address. 407 OutRetAddr = DAG.getLoad(VT, DL, Chain, OutRetAddr, MachinePointerInfo()); 408 return SDValue(OutRetAddr.getNode(), 1); 409 } 410 411 SDValue M68kTargetLowering::EmitTailCallStoreRetAddr( 412 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetFI, 413 EVT PtrVT, unsigned SlotSize, int FPDiff, const SDLoc &DL) const { 414 if (!FPDiff) 415 return Chain; 416 417 // Calculate the new stack slot for the return address. 418 int NewFO = MF.getFrameInfo().CreateFixedObject( 419 SlotSize, (int64_t)FPDiff - SlotSize, false); 420 421 SDValue NewFI = DAG.getFrameIndex(NewFO, PtrVT); 422 // Store the return address to the appropriate stack slot. 423 Chain = DAG.getStore( 424 Chain, DL, RetFI, NewFI, 425 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFO)); 426 return Chain; 427 } 428 429 SDValue 430 M68kTargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, 431 const SmallVectorImpl<ISD::InputArg> &Ins, 432 const SDLoc &DL, SelectionDAG &DAG, 433 const CCValAssign &VA, 434 MachineFrameInfo &MFI, 435 unsigned ArgIdx) const { 436 // Create the nodes corresponding to a load from this parameter slot. 437 ISD::ArgFlagsTy Flags = Ins[ArgIdx].Flags; 438 EVT ValVT; 439 440 // If value is passed by pointer we have address passed instead of the value 441 // itself. 442 if (VA.getLocInfo() == CCValAssign::Indirect) 443 ValVT = VA.getLocVT(); 444 else 445 ValVT = VA.getValVT(); 446 447 // Because we are dealing with BE architecture we need to offset loading of 448 // partial types 449 int Offset = VA.getLocMemOffset(); 450 if (VA.getValVT() == MVT::i8) { 451 Offset += 3; 452 } else if (VA.getValVT() == MVT::i16) { 453 Offset += 2; 454 } 455 456 // TODO Interrupt handlers 457 // Calculate SP offset of interrupt parameter, re-arrange the slot normally 458 // taken by a return address. 459 460 // FIXME For now, all byval parameter objects are marked mutable. This can 461 // be changed with more analysis. In case of tail call optimization mark all 462 // arguments mutable. Since they could be overwritten by lowering of arguments 463 // in case of a tail call. 464 bool AlwaysUseMutable = shouldGuaranteeTCO( 465 CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); 466 bool IsImmutable = !AlwaysUseMutable && !Flags.isByVal(); 467 468 if (Flags.isByVal()) { 469 unsigned Bytes = Flags.getByValSize(); 470 if (Bytes == 0) 471 Bytes = 1; // Don't create zero-sized stack objects. 472 int FI = MFI.CreateFixedObject(Bytes, Offset, IsImmutable); 473 // TODO Interrupt handlers 474 // Adjust SP offset of interrupt parameter. 475 return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 476 } else { 477 int FI = 478 MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, Offset, IsImmutable); 479 480 // Set SExt or ZExt flag. 481 if (VA.getLocInfo() == CCValAssign::ZExt) { 482 MFI.setObjectZExt(FI, true); 483 } else if (VA.getLocInfo() == CCValAssign::SExt) { 484 MFI.setObjectSExt(FI, true); 485 } 486 487 // TODO Interrupt handlers 488 // Adjust SP offset of interrupt parameter. 489 490 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 491 SDValue Val = DAG.getLoad( 492 ValVT, DL, Chain, FIN, 493 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 494 return VA.isExtInLoc() ? DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val) 495 : Val; 496 } 497 } 498 499 SDValue M68kTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, 500 SDValue Arg, const SDLoc &DL, 501 SelectionDAG &DAG, 502 const CCValAssign &VA, 503 ISD::ArgFlagsTy Flags) const { 504 unsigned LocMemOffset = VA.getLocMemOffset(); 505 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, DL); 506 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), 507 StackPtr, PtrOff); 508 if (Flags.isByVal()) 509 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, DL); 510 511 return DAG.getStore( 512 Chain, DL, Arg, PtrOff, 513 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset)); 514 } 515 516 //===----------------------------------------------------------------------===// 517 // Call 518 //===----------------------------------------------------------------------===// 519 520 SDValue M68kTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 521 SmallVectorImpl<SDValue> &InVals) const { 522 SelectionDAG &DAG = CLI.DAG; 523 SDLoc &DL = CLI.DL; 524 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 525 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 526 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 527 SDValue Chain = CLI.Chain; 528 SDValue Callee = CLI.Callee; 529 CallingConv::ID CallConv = CLI.CallConv; 530 bool &IsTailCall = CLI.IsTailCall; 531 bool IsVarArg = CLI.IsVarArg; 532 533 MachineFunction &MF = DAG.getMachineFunction(); 534 StructReturnType SR = callIsStructReturn(Outs); 535 bool IsSibcall = false; 536 M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>(); 537 // const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo(); 538 539 if (CallConv == CallingConv::M68k_INTR) 540 report_fatal_error("M68k interrupts may not be called directly"); 541 542 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls"); 543 if (Attr.getValueAsBool()) 544 IsTailCall = false; 545 546 // FIXME Add tailcalls support 547 548 bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall(); 549 if (IsMustTail) { 550 // Force this to be a tail call. The verifier rules are enough to ensure 551 // that we can lower this successfully without moving the return address 552 // around. 553 IsTailCall = true; 554 } else if (IsTailCall) { 555 // Check if it's really possible to do a tail call. 556 IsTailCall = IsEligibleForTailCallOptimization( 557 Callee, CallConv, IsVarArg, SR != NotStructReturn, 558 MF.getFunction().hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins, 559 DAG); 560 561 // Sibcalls are automatically detected tailcalls which do not require 562 // ABI changes. 563 if (!MF.getTarget().Options.GuaranteedTailCallOpt && IsTailCall) 564 IsSibcall = true; 565 566 if (IsTailCall) 567 ++NumTailCalls; 568 } 569 570 assert(!(IsVarArg && canGuaranteeTCO(CallConv)) && 571 "Var args not supported with calling convention fastcc"); 572 573 // Analyze operands of the call, assigning locations to each operand. 574 SmallVector<CCValAssign, 16> ArgLocs; 575 SmallVector<Type *, 4> ArgTypes; 576 for (const auto &Arg : CLI.getArgs()) 577 ArgTypes.emplace_back(Arg.Ty); 578 M68kCCState CCInfo(ArgTypes, CallConv, IsVarArg, MF, ArgLocs, 579 *DAG.getContext()); 580 CCInfo.AnalyzeCallOperands(Outs, CC_M68k); 581 582 // Get a count of how many bytes are to be pushed on the stack. 583 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 584 if (IsSibcall) { 585 // This is a sibcall. The memory operands are available in caller's 586 // own caller's stack. 587 NumBytes = 0; 588 } else if (MF.getTarget().Options.GuaranteedTailCallOpt && 589 canGuaranteeTCO(CallConv)) { 590 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 591 } 592 593 int FPDiff = 0; 594 if (IsTailCall && !IsSibcall && !IsMustTail) { 595 // Lower arguments at fp - stackoffset + fpdiff. 596 unsigned NumBytesCallerPushed = MFI->getBytesToPopOnReturn(); 597 598 FPDiff = NumBytesCallerPushed - NumBytes; 599 600 // Set the delta of movement of the returnaddr stackslot. 601 // But only set if delta is greater than previous delta. 602 if (FPDiff < MFI->getTCReturnAddrDelta()) 603 MFI->setTCReturnAddrDelta(FPDiff); 604 } 605 606 unsigned NumBytesToPush = NumBytes; 607 unsigned NumBytesToPop = NumBytes; 608 609 // If we have an inalloca argument, all stack space has already been allocated 610 // for us and be right at the top of the stack. We don't support multiple 611 // arguments passed in memory when using inalloca. 612 if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { 613 NumBytesToPush = 0; 614 if (!ArgLocs.back().isMemLoc()) 615 report_fatal_error("cannot use inalloca attribute on a register " 616 "parameter"); 617 if (ArgLocs.back().getLocMemOffset() != 0) 618 report_fatal_error("any parameter with the inalloca attribute must be " 619 "the only memory argument"); 620 } 621 622 if (!IsSibcall) 623 Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush, 624 NumBytes - NumBytesToPush, DL); 625 626 SDValue RetFI; 627 // Load return address for tail calls. 628 if (IsTailCall && FPDiff) 629 Chain = EmitTailCallLoadRetAddr(DAG, RetFI, Chain, IsTailCall, FPDiff, DL); 630 631 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 632 SmallVector<SDValue, 8> MemOpChains; 633 SDValue StackPtr; 634 635 // Walk the register/memloc assignments, inserting copies/loads. In the case 636 // of tail call optimization arguments are handle later. 637 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 639 ISD::ArgFlagsTy Flags = Outs[i].Flags; 640 641 // Skip inalloca arguments, they have already been written. 642 if (Flags.isInAlloca()) 643 continue; 644 645 CCValAssign &VA = ArgLocs[i]; 646 EVT RegVT = VA.getLocVT(); 647 SDValue Arg = OutVals[i]; 648 bool IsByVal = Flags.isByVal(); 649 650 // Promote the value if needed. 651 switch (VA.getLocInfo()) { 652 default: 653 llvm_unreachable("Unknown loc info!"); 654 case CCValAssign::Full: 655 break; 656 case CCValAssign::SExt: 657 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg); 658 break; 659 case CCValAssign::ZExt: 660 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg); 661 break; 662 case CCValAssign::AExt: 663 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg); 664 break; 665 case CCValAssign::BCvt: 666 Arg = DAG.getBitcast(RegVT, Arg); 667 break; 668 case CCValAssign::Indirect: { 669 // Store the argument. 670 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 671 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 672 Chain = DAG.getStore( 673 Chain, DL, Arg, SpillSlot, 674 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)); 675 Arg = SpillSlot; 676 break; 677 } 678 } 679 680 if (VA.isRegLoc()) { 681 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 682 } else if (!IsSibcall && (!IsTailCall || IsByVal)) { 683 assert(VA.isMemLoc()); 684 if (!StackPtr.getNode()) { 685 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(), 686 getPointerTy(DAG.getDataLayout())); 687 } 688 MemOpChains.push_back( 689 LowerMemOpCallTo(Chain, StackPtr, Arg, DL, DAG, VA, Flags)); 690 } 691 } 692 693 if (!MemOpChains.empty()) 694 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 695 696 // FIXME Make sure PIC style GOT works as expected 697 // The only time GOT is really needed is for Medium-PIC static data 698 // otherwise we are happy with pc-rel or static references 699 700 if (IsVarArg && IsMustTail) { 701 const auto &Forwards = MFI->getForwardedMustTailRegParms(); 702 for (const auto &F : Forwards) { 703 SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); 704 RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); 705 } 706 } 707 708 // For tail calls lower the arguments to the 'real' stack slots. Sibcalls 709 // don't need this because the eligibility check rejects calls that require 710 // shuffling arguments passed in memory. 711 if (!IsSibcall && IsTailCall) { 712 // Force all the incoming stack arguments to be loaded from the stack 713 // before any new outgoing arguments are stored to the stack, because the 714 // outgoing stack slots may alias the incoming argument stack slots, and 715 // the alias isn't otherwise explicit. This is slightly more conservative 716 // than necessary, because it means that each store effectively depends 717 // on every argument instead of just those arguments it would clobber. 718 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); 719 720 SmallVector<SDValue, 8> MemOpChains2; 721 SDValue FIN; 722 int FI = 0; 723 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 724 CCValAssign &VA = ArgLocs[i]; 725 if (VA.isRegLoc()) 726 continue; 727 assert(VA.isMemLoc()); 728 SDValue Arg = OutVals[i]; 729 ISD::ArgFlagsTy Flags = Outs[i].Flags; 730 // Skip inalloca arguments. They don't require any work. 731 if (Flags.isInAlloca()) 732 continue; 733 // Create frame index. 734 int32_t Offset = VA.getLocMemOffset() + FPDiff; 735 uint32_t OpSize = (VA.getLocVT().getSizeInBits() + 7) / 8; 736 FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 737 FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 738 739 if (Flags.isByVal()) { 740 // Copy relative to framepointer. 741 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), DL); 742 if (!StackPtr.getNode()) { 743 StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(), 744 getPointerTy(DAG.getDataLayout())); 745 } 746 Source = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), 747 StackPtr, Source); 748 749 MemOpChains2.push_back( 750 CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, DL)); 751 } else { 752 // Store relative to framepointer. 753 MemOpChains2.push_back(DAG.getStore( 754 ArgChain, DL, Arg, FIN, 755 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 756 } 757 } 758 759 if (!MemOpChains2.empty()) 760 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains2); 761 762 // Store the return address to the appropriate stack slot. 763 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetFI, 764 getPointerTy(DAG.getDataLayout()), 765 Subtarget.getSlotSize(), FPDiff, DL); 766 } 767 768 // Build a sequence of copy-to-reg nodes chained together with token chain 769 // and flag operands which copy the outgoing args into registers. 770 SDValue InGlue; 771 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 772 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 773 RegsToPass[i].second, InGlue); 774 InGlue = Chain.getValue(1); 775 } 776 777 if (Callee->getOpcode() == ISD::GlobalAddress) { 778 // If the callee is a GlobalAddress node (quite common, every direct call 779 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack 780 // it. 781 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 782 783 // We should use extra load for direct calls to dllimported functions in 784 // non-JIT mode. 785 const GlobalValue *GV = G->getGlobal(); 786 if (!GV->hasDLLImportStorageClass()) { 787 unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV); 788 789 Callee = DAG.getTargetGlobalAddress( 790 GV, DL, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); 791 792 if (OpFlags == M68kII::MO_GOTPCREL) { 793 794 // Add a wrapper. 795 Callee = DAG.getNode(M68kISD::WrapperPC, DL, 796 getPointerTy(DAG.getDataLayout()), Callee); 797 798 // Add extra indirection 799 Callee = DAG.getLoad( 800 getPointerTy(DAG.getDataLayout()), DL, DAG.getEntryNode(), Callee, 801 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 802 } 803 } 804 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 805 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 806 unsigned char OpFlags = 807 Subtarget.classifyGlobalFunctionReference(nullptr, *Mod); 808 809 Callee = DAG.getTargetExternalSymbol( 810 S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); 811 } 812 813 SmallVector<SDValue, 8> Ops; 814 815 if (!IsSibcall && IsTailCall) { 816 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, 0, InGlue, DL); 817 InGlue = Chain.getValue(1); 818 } 819 820 Ops.push_back(Chain); 821 Ops.push_back(Callee); 822 823 if (IsTailCall) 824 Ops.push_back(DAG.getConstant(FPDiff, DL, MVT::i32)); 825 826 // Add argument registers to the end of the list so that they are known live 827 // into the call. 828 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 829 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 830 RegsToPass[i].second.getValueType())); 831 832 // Add a register mask operand representing the call-preserved registers. 833 const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv); 834 assert(Mask && "Missing call preserved mask for calling convention"); 835 836 Ops.push_back(DAG.getRegisterMask(Mask)); 837 838 if (InGlue.getNode()) 839 Ops.push_back(InGlue); 840 841 if (IsTailCall) { 842 MF.getFrameInfo().setHasTailCall(); 843 return DAG.getNode(M68kISD::TC_RETURN, DL, MVT::Other, Ops); 844 } 845 846 // Returns a chain & a flag for retval copy to use. 847 Chain = DAG.getNode(M68kISD::CALL, DL, {MVT::Other, MVT::Glue}, Ops); 848 InGlue = Chain.getValue(1); 849 850 // Create the CALLSEQ_END node. 851 unsigned NumBytesForCalleeToPop; 852 if (M68k::isCalleePop(CallConv, IsVarArg, 853 DAG.getTarget().Options.GuaranteedTailCallOpt)) { 854 NumBytesForCalleeToPop = NumBytes; // Callee pops everything 855 } else if (!canGuaranteeTCO(CallConv) && SR == StackStructReturn) { 856 // If this is a call to a struct-return function, the callee 857 // pops the hidden struct pointer, so we have to push it back. 858 NumBytesForCalleeToPop = 4; 859 } else { 860 NumBytesForCalleeToPop = 0; // Callee pops nothing. 861 } 862 863 if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) { 864 // No need to reset the stack after the call if the call doesn't return. To 865 // make the MI verify, we'll pretend the callee does it for us. 866 NumBytesForCalleeToPop = NumBytes; 867 } 868 869 // Returns a flag for retval copy to use. 870 if (!IsSibcall) { 871 Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, NumBytesForCalleeToPop, 872 InGlue, DL); 873 InGlue = Chain.getValue(1); 874 } 875 876 // Handle result values, copying them out of physregs into vregs that we 877 // return. 878 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 879 InVals); 880 } 881 882 SDValue M68kTargetLowering::LowerCallResult( 883 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 884 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 885 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 886 887 // Assign locations to each value returned by this call. 888 SmallVector<CCValAssign, 16> RVLocs; 889 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 890 *DAG.getContext()); 891 CCInfo.AnalyzeCallResult(Ins, RetCC_M68k); 892 893 // Copy all of the result registers out of their specified physreg. 894 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 895 CCValAssign &VA = RVLocs[i]; 896 EVT CopyVT = VA.getLocVT(); 897 898 /// ??? is this correct? 899 Chain = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), CopyVT, InGlue) 900 .getValue(1); 901 SDValue Val = Chain.getValue(0); 902 903 if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1) 904 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); 905 906 InGlue = Chain.getValue(2); 907 InVals.push_back(Val); 908 } 909 910 return Chain; 911 } 912 913 //===----------------------------------------------------------------------===// 914 // Formal Arguments Calling Convention Implementation 915 //===----------------------------------------------------------------------===// 916 917 SDValue M68kTargetLowering::LowerFormalArguments( 918 SDValue Chain, CallingConv::ID CCID, bool IsVarArg, 919 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 920 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 921 MachineFunction &MF = DAG.getMachineFunction(); 922 M68kMachineFunctionInfo *MMFI = MF.getInfo<M68kMachineFunctionInfo>(); 923 // const TargetFrameLowering &TFL = *Subtarget.getFrameLowering(); 924 925 MachineFrameInfo &MFI = MF.getFrameInfo(); 926 927 // Assign locations to all of the incoming arguments. 928 SmallVector<CCValAssign, 16> ArgLocs; 929 SmallVector<Type *, 4> ArgTypes; 930 for (const Argument &Arg : MF.getFunction().args()) 931 ArgTypes.emplace_back(Arg.getType()); 932 M68kCCState CCInfo(ArgTypes, CCID, IsVarArg, MF, ArgLocs, *DAG.getContext()); 933 934 CCInfo.AnalyzeFormalArguments(Ins, CC_M68k); 935 936 unsigned LastVal = ~0U; 937 SDValue ArgValue; 938 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 939 CCValAssign &VA = ArgLocs[i]; 940 assert(VA.getValNo() != LastVal && "Same value in different locations"); 941 (void)LastVal; 942 943 LastVal = VA.getValNo(); 944 945 if (VA.isRegLoc()) { 946 EVT RegVT = VA.getLocVT(); 947 const TargetRegisterClass *RC; 948 if (RegVT == MVT::i32) 949 RC = &M68k::XR32RegClass; 950 else 951 llvm_unreachable("Unknown argument type!"); 952 953 Register Reg = MF.addLiveIn(VA.getLocReg(), RC); 954 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 955 956 // If this is an 8 or 16-bit value, it is really passed promoted to 32 957 // bits. Insert an assert[sz]ext to capture this, then truncate to the 958 // right size. 959 if (VA.getLocInfo() == CCValAssign::SExt) { 960 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 961 DAG.getValueType(VA.getValVT())); 962 } else if (VA.getLocInfo() == CCValAssign::ZExt) { 963 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 964 DAG.getValueType(VA.getValVT())); 965 } else if (VA.getLocInfo() == CCValAssign::BCvt) { 966 ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); 967 } 968 969 if (VA.isExtInLoc()) { 970 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 971 } 972 } else { 973 assert(VA.isMemLoc()); 974 ArgValue = LowerMemArgument(Chain, CCID, Ins, DL, DAG, VA, MFI, i); 975 } 976 977 // If value is passed via pointer - do a load. 978 // TODO Make sure this handling on indirect arguments is correct 979 if (VA.getLocInfo() == CCValAssign::Indirect) 980 ArgValue = 981 DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo()); 982 983 InVals.push_back(ArgValue); 984 } 985 986 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 987 // Swift calling convention does not require we copy the sret argument 988 // into %D0 for the return. We don't set SRetReturnReg for Swift. 989 if (CCID == CallingConv::Swift) 990 continue; 991 992 // ABI require that for returning structs by value we copy the sret argument 993 // into %D0 for the return. Save the argument into a virtual register so 994 // that we can access it from the return points. 995 if (Ins[i].Flags.isSRet()) { 996 unsigned Reg = MMFI->getSRetReturnReg(); 997 if (!Reg) { 998 MVT PtrTy = getPointerTy(DAG.getDataLayout()); 999 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); 1000 MMFI->setSRetReturnReg(Reg); 1001 } 1002 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); 1003 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 1004 break; 1005 } 1006 } 1007 1008 unsigned StackSize = CCInfo.getStackSize(); 1009 // Align stack specially for tail calls. 1010 if (shouldGuaranteeTCO(CCID, MF.getTarget().Options.GuaranteedTailCallOpt)) 1011 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1012 1013 // If the function takes variable number of arguments, make a frame index for 1014 // the start of the first vararg value... for expansion of llvm.va_start. We 1015 // can skip this if there are no va_start calls. 1016 if (MFI.hasVAStart()) { 1017 MMFI->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1018 } 1019 1020 if (IsVarArg && MFI.hasMustTailInVarArgFunc()) { 1021 // We forward some GPRs and some vector types. 1022 SmallVector<MVT, 2> RegParmTypes; 1023 MVT IntVT = MVT::i32; 1024 RegParmTypes.push_back(IntVT); 1025 1026 // Compute the set of forwarded registers. The rest are scratch. 1027 // ??? what is this for? 1028 SmallVectorImpl<ForwardedRegister> &Forwards = 1029 MMFI->getForwardedMustTailRegParms(); 1030 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_M68k); 1031 1032 // Copy all forwards from physical to virtual registers. 1033 for (ForwardedRegister &F : Forwards) { 1034 // FIXME Can we use a less constrained schedule? 1035 SDValue RegVal = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); 1036 F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); 1037 Chain = DAG.getCopyToReg(Chain, DL, F.VReg, RegVal); 1038 } 1039 } 1040 1041 // Some CCs need callee pop. 1042 if (M68k::isCalleePop(CCID, IsVarArg, 1043 MF.getTarget().Options.GuaranteedTailCallOpt)) { 1044 MMFI->setBytesToPopOnReturn(StackSize); // Callee pops everything. 1045 } else { 1046 MMFI->setBytesToPopOnReturn(0); // Callee pops nothing. 1047 // If this is an sret function, the return should pop the hidden pointer. 1048 if (!canGuaranteeTCO(CCID) && argsAreStructReturn(Ins) == StackStructReturn) 1049 MMFI->setBytesToPopOnReturn(4); 1050 } 1051 1052 MMFI->setArgumentStackSize(StackSize); 1053 1054 return Chain; 1055 } 1056 1057 //===----------------------------------------------------------------------===// 1058 // Return Value Calling Convention Implementation 1059 //===----------------------------------------------------------------------===// 1060 1061 bool M68kTargetLowering::CanLowerReturn( 1062 CallingConv::ID CCID, MachineFunction &MF, bool IsVarArg, 1063 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, 1064 const Type *RetTy) const { 1065 SmallVector<CCValAssign, 16> RVLocs; 1066 CCState CCInfo(CCID, IsVarArg, MF, RVLocs, Context); 1067 return CCInfo.CheckReturn(Outs, RetCC_M68k); 1068 } 1069 1070 SDValue 1071 M68kTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CCID, 1072 bool IsVarArg, 1073 const SmallVectorImpl<ISD::OutputArg> &Outs, 1074 const SmallVectorImpl<SDValue> &OutVals, 1075 const SDLoc &DL, SelectionDAG &DAG) const { 1076 MachineFunction &MF = DAG.getMachineFunction(); 1077 M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>(); 1078 1079 SmallVector<CCValAssign, 16> RVLocs; 1080 CCState CCInfo(CCID, IsVarArg, MF, RVLocs, *DAG.getContext()); 1081 CCInfo.AnalyzeReturn(Outs, RetCC_M68k); 1082 1083 SDValue Glue; 1084 SmallVector<SDValue, 6> RetOps; 1085 // Operand #0 = Chain (updated below) 1086 RetOps.push_back(Chain); 1087 // Operand #1 = Bytes To Pop 1088 RetOps.push_back( 1089 DAG.getTargetConstant(MFI->getBytesToPopOnReturn(), DL, MVT::i32)); 1090 1091 // Copy the result values into the output registers. 1092 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 1093 CCValAssign &VA = RVLocs[i]; 1094 assert(VA.isRegLoc() && "Can only return in registers!"); 1095 SDValue ValToCopy = OutVals[i]; 1096 EVT ValVT = ValToCopy.getValueType(); 1097 1098 // Promote values to the appropriate types. 1099 if (VA.getLocInfo() == CCValAssign::SExt) 1100 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy); 1101 else if (VA.getLocInfo() == CCValAssign::ZExt) 1102 ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), ValToCopy); 1103 else if (VA.getLocInfo() == CCValAssign::AExt) { 1104 if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) 1105 ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy); 1106 else 1107 ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), ValToCopy); 1108 } else if (VA.getLocInfo() == CCValAssign::BCvt) 1109 ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); 1110 1111 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), ValToCopy, Glue); 1112 Glue = Chain.getValue(1); 1113 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 1114 } 1115 1116 // Swift calling convention does not require we copy the sret argument 1117 // into %d0 for the return, and SRetReturnReg is not set for Swift. 1118 1119 // ABI require that for returning structs by value we copy the sret argument 1120 // into %D0 for the return. Save the argument into a virtual register so that 1121 // we can access it from the return points. 1122 // 1123 // Checking Function.hasStructRetAttr() here is insufficient because the IR 1124 // may not have an explicit sret argument. If MFI.CanLowerReturn is 1125 // false, then an sret argument may be implicitly inserted in the SelDAG. In 1126 // either case MFI->setSRetReturnReg() will have been called. 1127 if (unsigned SRetReg = MFI->getSRetReturnReg()) { 1128 // ??? Can i just move this to the top and escape this explanation? 1129 // When we have both sret and another return value, we should use the 1130 // original Chain stored in RetOps[0], instead of the current Chain updated 1131 // in the above loop. If we only have sret, RetOps[0] equals to Chain. 1132 1133 // For the case of sret and another return value, we have 1134 // Chain_0 at the function entry 1135 // Chain_1 = getCopyToReg(Chain_0) in the above loop 1136 // If we use Chain_1 in getCopyFromReg, we will have 1137 // Val = getCopyFromReg(Chain_1) 1138 // Chain_2 = getCopyToReg(Chain_1, Val) from below 1139 1140 // getCopyToReg(Chain_0) will be glued together with 1141 // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be 1142 // in Unit B, and we will have cyclic dependency between Unit A and Unit B: 1143 // Data dependency from Unit B to Unit A due to usage of Val in 1144 // getCopyToReg(Chain_1, Val) 1145 // Chain dependency from Unit A to Unit B 1146 1147 // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg. 1148 SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, 1149 getPointerTy(MF.getDataLayout())); 1150 1151 // ??? How will this work if CC does not use registers for args passing? 1152 // ??? What if I return multiple structs? 1153 unsigned RetValReg = M68k::D0; 1154 Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Glue); 1155 Glue = Chain.getValue(1); 1156 1157 RetOps.push_back( 1158 DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); 1159 } 1160 1161 RetOps[0] = Chain; // Update chain. 1162 1163 // Add the glue if we have it. 1164 if (Glue.getNode()) 1165 RetOps.push_back(Glue); 1166 1167 return DAG.getNode(M68kISD::RET, DL, MVT::Other, RetOps); 1168 } 1169 1170 //===----------------------------------------------------------------------===// 1171 // Fast Calling Convention (tail call) implementation 1172 //===----------------------------------------------------------------------===// 1173 1174 // Like std call, callee cleans arguments, convention except that ECX is 1175 // reserved for storing the tail called function address. Only 2 registers are 1176 // free for argument passing (inreg). Tail call optimization is performed 1177 // provided: 1178 // * tailcallopt is enabled 1179 // * caller/callee are fastcc 1180 // On M68k_64 architecture with GOT-style position independent code only 1181 // local (within module) calls are supported at the moment. To keep the stack 1182 // aligned according to platform abi the function GetAlignedArgumentStackSize 1183 // ensures that argument delta is always multiples of stack alignment. (Dynamic 1184 // linkers need this - darwin's dyld for example) If a tail called function 1185 // callee has more arguments than the caller the caller needs to make sure that 1186 // there is room to move the RETADDR to. This is achieved by reserving an area 1187 // the size of the argument delta right after the original RETADDR, but before 1188 // the saved framepointer or the spilled registers e.g. caller(arg1, arg2) 1189 // calls callee(arg1, arg2,arg3,arg4) stack layout: 1190 // arg1 1191 // arg2 1192 // RETADDR 1193 // [ new RETADDR 1194 // move area ] 1195 // (possible EBP) 1196 // ESI 1197 // EDI 1198 // local1 .. 1199 1200 /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align 1201 /// requirement. 1202 unsigned 1203 M68kTargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 1204 SelectionDAG &DAG) const { 1205 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); 1206 unsigned StackAlignment = TFI.getStackAlignment(); 1207 uint64_t AlignMask = StackAlignment - 1; 1208 int64_t Offset = StackSize; 1209 unsigned SlotSize = Subtarget.getSlotSize(); 1210 if ((Offset & AlignMask) <= (StackAlignment - SlotSize)) { 1211 // Number smaller than 12 so just add the difference. 1212 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 1213 } else { 1214 // Mask out lower bits, add stackalignment once plus the 12 bytes. 1215 Offset = 1216 ((~AlignMask) & Offset) + StackAlignment + (StackAlignment - SlotSize); 1217 } 1218 return Offset; 1219 } 1220 1221 /// Check whether the call is eligible for tail call optimization. Targets 1222 /// that want to do tail call optimization should implement this function. 1223 bool M68kTargetLowering::IsEligibleForTailCallOptimization( 1224 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, 1225 bool IsCalleeStructRet, bool IsCallerStructRet, Type *RetTy, 1226 const SmallVectorImpl<ISD::OutputArg> &Outs, 1227 const SmallVectorImpl<SDValue> &OutVals, 1228 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 1229 if (!mayTailCallThisCC(CalleeCC)) 1230 return false; 1231 1232 // If -tailcallopt is specified, make fastcc functions tail-callable. 1233 MachineFunction &MF = DAG.getMachineFunction(); 1234 const auto &CallerF = MF.getFunction(); 1235 1236 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1237 bool CCMatch = CallerCC == CalleeCC; 1238 1239 if (DAG.getTarget().Options.GuaranteedTailCallOpt) { 1240 if (canGuaranteeTCO(CalleeCC) && CCMatch) 1241 return true; 1242 return false; 1243 } 1244 1245 // Look for obvious safe cases to perform tail call optimization that do not 1246 // require ABI changes. This is what gcc calls sibcall. 1247 1248 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to 1249 // emit a special epilogue. 1250 const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1251 if (RegInfo->hasStackRealignment(MF)) 1252 return false; 1253 1254 // Also avoid sibcall optimization if either caller or callee uses struct 1255 // return semantics. 1256 if (IsCalleeStructRet || IsCallerStructRet) 1257 return false; 1258 1259 // Do not sibcall optimize vararg calls unless all arguments are passed via 1260 // registers. 1261 LLVMContext &C = *DAG.getContext(); 1262 if (IsVarArg && !Outs.empty()) { 1263 1264 SmallVector<CCValAssign, 16> ArgLocs; 1265 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C); 1266 1267 CCInfo.AnalyzeCallOperands(Outs, CC_M68k); 1268 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) 1269 if (!ArgLocs[i].isRegLoc()) 1270 return false; 1271 } 1272 1273 // Check that the call results are passed in the same way. 1274 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, RetCC_M68k, 1275 RetCC_M68k)) 1276 return false; 1277 1278 // The callee has to preserve all registers the caller needs to preserve. 1279 const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1280 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1281 if (!CCMatch) { 1282 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1283 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1284 return false; 1285 } 1286 1287 unsigned StackArgsSize = 0; 1288 1289 // If the callee takes no arguments then go on to check the results of the 1290 // call. 1291 if (!Outs.empty()) { 1292 // Check if stack adjustment is needed. For now, do not do this if any 1293 // argument is passed on the stack. 1294 SmallVector<CCValAssign, 16> ArgLocs; 1295 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C); 1296 1297 CCInfo.AnalyzeCallOperands(Outs, CC_M68k); 1298 StackArgsSize = CCInfo.getStackSize(); 1299 1300 if (StackArgsSize) { 1301 // Check if the arguments are already laid out in the right way as 1302 // the caller's fixed stack objects. 1303 MachineFrameInfo &MFI = MF.getFrameInfo(); 1304 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 1305 const M68kInstrInfo *TII = Subtarget.getInstrInfo(); 1306 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1307 CCValAssign &VA = ArgLocs[i]; 1308 SDValue Arg = OutVals[i]; 1309 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1310 if (VA.getLocInfo() == CCValAssign::Indirect) 1311 return false; 1312 if (!VA.isRegLoc()) { 1313 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI, 1314 TII, VA)) 1315 return false; 1316 } 1317 } 1318 } 1319 1320 bool PositionIndependent = isPositionIndependent(); 1321 // If the tailcall address may be in a register, then make sure it's 1322 // possible to register allocate for it. The call address can 1323 // only target %A0 or %A1 since the tail call must be scheduled after 1324 // callee-saved registers are restored. These happen to be the same 1325 // registers used to pass 'inreg' arguments so watch out for those. 1326 if ((!isa<GlobalAddressSDNode>(Callee) && 1327 !isa<ExternalSymbolSDNode>(Callee)) || 1328 PositionIndependent) { 1329 unsigned NumInRegs = 0; 1330 // In PIC we need an extra register to formulate the address computation 1331 // for the callee. 1332 unsigned MaxInRegs = PositionIndependent ? 1 : 2; 1333 1334 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1335 CCValAssign &VA = ArgLocs[i]; 1336 if (!VA.isRegLoc()) 1337 continue; 1338 Register Reg = VA.getLocReg(); 1339 switch (Reg) { 1340 default: 1341 break; 1342 case M68k::A0: 1343 case M68k::A1: 1344 if (++NumInRegs == MaxInRegs) 1345 return false; 1346 break; 1347 } 1348 } 1349 } 1350 1351 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1352 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) 1353 return false; 1354 } 1355 1356 bool CalleeWillPop = M68k::isCalleePop( 1357 CalleeCC, IsVarArg, MF.getTarget().Options.GuaranteedTailCallOpt); 1358 1359 if (unsigned BytesToPop = 1360 MF.getInfo<M68kMachineFunctionInfo>()->getBytesToPopOnReturn()) { 1361 // If we have bytes to pop, the callee must pop them. 1362 bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; 1363 if (!CalleePopMatches) 1364 return false; 1365 } else if (CalleeWillPop && StackArgsSize > 0) { 1366 // If we don't have bytes to pop, make sure the callee doesn't pop any. 1367 return false; 1368 } 1369 1370 return true; 1371 } 1372 1373 //===----------------------------------------------------------------------===// 1374 // Custom Lower 1375 //===----------------------------------------------------------------------===// 1376 1377 SDValue M68kTargetLowering::LowerOperation(SDValue Op, 1378 SelectionDAG &DAG) const { 1379 switch (Op.getOpcode()) { 1380 default: 1381 llvm_unreachable("Should not custom lower this!"); 1382 case ISD::SADDO: 1383 case ISD::UADDO: 1384 case ISD::SSUBO: 1385 case ISD::USUBO: 1386 case ISD::SMULO: 1387 case ISD::UMULO: 1388 return LowerXALUO(Op, DAG); 1389 case ISD::SETCC: 1390 return LowerSETCC(Op, DAG); 1391 case ISD::SETCCCARRY: 1392 return LowerSETCCCARRY(Op, DAG); 1393 case ISD::SELECT: 1394 return LowerSELECT(Op, DAG); 1395 case ISD::BRCOND: 1396 return LowerBRCOND(Op, DAG); 1397 case ISD::ADDC: 1398 case ISD::ADDE: 1399 case ISD::SUBC: 1400 case ISD::SUBE: 1401 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 1402 case ISD::ConstantPool: 1403 return LowerConstantPool(Op, DAG); 1404 case ISD::GlobalAddress: 1405 return LowerGlobalAddress(Op, DAG); 1406 case ISD::ExternalSymbol: 1407 return LowerExternalSymbol(Op, DAG); 1408 case ISD::BlockAddress: 1409 return LowerBlockAddress(Op, DAG); 1410 case ISD::JumpTable: 1411 return LowerJumpTable(Op, DAG); 1412 case ISD::VASTART: 1413 return LowerVASTART(Op, DAG); 1414 case ISD::DYNAMIC_STACKALLOC: 1415 return LowerDYNAMIC_STACKALLOC(Op, DAG); 1416 case ISD::SHL_PARTS: 1417 return LowerShiftLeftParts(Op, DAG); 1418 case ISD::SRA_PARTS: 1419 return LowerShiftRightParts(Op, DAG, true); 1420 case ISD::SRL_PARTS: 1421 return LowerShiftRightParts(Op, DAG, false); 1422 case ISD::ATOMIC_FENCE: 1423 return LowerATOMICFENCE(Op, DAG); 1424 case ISD::GlobalTLSAddress: 1425 return LowerGlobalTLSAddress(Op, DAG); 1426 } 1427 } 1428 1429 SDValue M68kTargetLowering::LowerExternalSymbolCall(SelectionDAG &DAG, 1430 SDLoc Loc, 1431 llvm::StringRef SymbolName, 1432 ArgListTy &&ArgList) const { 1433 PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0); 1434 CallLoweringInfo CLI(DAG); 1435 CLI.setDebugLoc(Loc) 1436 .setChain(DAG.getEntryNode()) 1437 .setLibCallee(CallingConv::C, PtrTy, 1438 DAG.getExternalSymbol(SymbolName.data(), 1439 getPointerMemTy(DAG.getDataLayout())), 1440 std::move(ArgList)); 1441 return LowerCallTo(CLI).first; 1442 } 1443 1444 SDValue M68kTargetLowering::getTLSGetAddr(GlobalAddressSDNode *GA, 1445 SelectionDAG &DAG, 1446 unsigned TargetFlags) const { 1447 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); 1448 SDValue TGA = DAG.getTargetGlobalAddress( 1449 GA->getGlobal(), GA, GA->getValueType(0), GA->getOffset(), TargetFlags); 1450 SDValue Arg = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, GOT, TGA); 1451 1452 PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0); 1453 1454 ArgListTy Args; 1455 ArgListEntry Entry; 1456 Entry.Node = Arg; 1457 Entry.Ty = PtrTy; 1458 Args.push_back(Entry); 1459 return LowerExternalSymbolCall(DAG, SDLoc(GA), "__tls_get_addr", 1460 std::move(Args)); 1461 } 1462 1463 SDValue M68kTargetLowering::getM68kReadTp(SDLoc Loc, SelectionDAG &DAG) const { 1464 return LowerExternalSymbolCall(DAG, Loc, "__m68k_read_tp", ArgListTy()); 1465 } 1466 1467 SDValue M68kTargetLowering::LowerTLSGeneralDynamic(GlobalAddressSDNode *GA, 1468 SelectionDAG &DAG) const { 1469 return getTLSGetAddr(GA, DAG, M68kII::MO_TLSGD); 1470 } 1471 1472 SDValue M68kTargetLowering::LowerTLSLocalDynamic(GlobalAddressSDNode *GA, 1473 SelectionDAG &DAG) const { 1474 SDValue Addr = getTLSGetAddr(GA, DAG, M68kII::MO_TLSLDM); 1475 SDValue TGA = 1476 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0), 1477 GA->getOffset(), M68kII::MO_TLSLD); 1478 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Addr); 1479 } 1480 1481 SDValue M68kTargetLowering::LowerTLSInitialExec(GlobalAddressSDNode *GA, 1482 SelectionDAG &DAG) const { 1483 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); 1484 SDValue Tp = getM68kReadTp(SDLoc(GA), DAG); 1485 SDValue TGA = 1486 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0), 1487 GA->getOffset(), M68kII::MO_TLSIE); 1488 SDValue Addr = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, GOT); 1489 SDValue Offset = 1490 DAG.getLoad(MVT::i32, SDLoc(GA), DAG.getEntryNode(), Addr, 1491 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1492 1493 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, Offset, Tp); 1494 } 1495 1496 SDValue M68kTargetLowering::LowerTLSLocalExec(GlobalAddressSDNode *GA, 1497 SelectionDAG &DAG) const { 1498 SDValue Tp = getM68kReadTp(SDLoc(GA), DAG); 1499 SDValue TGA = 1500 DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0), 1501 GA->getOffset(), M68kII::MO_TLSLE); 1502 return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Tp); 1503 } 1504 1505 SDValue M68kTargetLowering::LowerGlobalTLSAddress(SDValue Op, 1506 SelectionDAG &DAG) const { 1507 assert(Subtarget.isTargetELF()); 1508 1509 auto *GA = cast<GlobalAddressSDNode>(Op); 1510 TLSModel::Model AccessModel = DAG.getTarget().getTLSModel(GA->getGlobal()); 1511 1512 switch (AccessModel) { 1513 case TLSModel::GeneralDynamic: 1514 return LowerTLSGeneralDynamic(GA, DAG); 1515 case TLSModel::LocalDynamic: 1516 return LowerTLSLocalDynamic(GA, DAG); 1517 case TLSModel::InitialExec: 1518 return LowerTLSInitialExec(GA, DAG); 1519 case TLSModel::LocalExec: 1520 return LowerTLSLocalExec(GA, DAG); 1521 } 1522 1523 llvm_unreachable("Unexpected TLS access model type"); 1524 } 1525 1526 bool M68kTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 1527 SDValue C) const { 1528 // Shifts and add instructions in M68000 and M68010 support 1529 // up to 32 bits, but mul only has 16-bit variant. So it's almost 1530 // certainly beneficial to lower 8/16/32-bit mul to their 1531 // add / shifts counterparts. But for 64-bits mul, it might be 1532 // safer to just leave it to compiler runtime implementations. 1533 return VT.bitsLE(MVT::i32) || Subtarget.atLeastM68020(); 1534 } 1535 1536 static bool isOverflowArithmetic(unsigned Opcode) { 1537 switch (Opcode) { 1538 case ISD::UADDO: 1539 case ISD::SADDO: 1540 case ISD::USUBO: 1541 case ISD::SSUBO: 1542 case ISD::UMULO: 1543 case ISD::SMULO: 1544 return true; 1545 default: 1546 return false; 1547 } 1548 } 1549 1550 static void lowerOverflowArithmetic(SDValue Op, SelectionDAG &DAG, 1551 SDValue &Result, SDValue &CCR, 1552 unsigned &CC) { 1553 SDNode *N = Op.getNode(); 1554 EVT VT = N->getValueType(0); 1555 SDValue LHS = N->getOperand(0); 1556 SDValue RHS = N->getOperand(1); 1557 SDLoc DL(Op); 1558 1559 unsigned TruncOp = 0; 1560 auto PromoteMULO = [&](unsigned ExtOp) { 1561 // We don't have 8-bit multiplications, so promote i8 version of U/SMULO 1562 // to i16. 1563 // Ideally this should be done by legalizer but sadly there is no promotion 1564 // rule for U/SMULO at this moment. 1565 if (VT == MVT::i8) { 1566 LHS = DAG.getNode(ExtOp, DL, MVT::i16, LHS); 1567 RHS = DAG.getNode(ExtOp, DL, MVT::i16, RHS); 1568 VT = MVT::i16; 1569 TruncOp = ISD::TRUNCATE; 1570 } 1571 }; 1572 1573 bool NoOverflow = false; 1574 unsigned BaseOp = 0; 1575 switch (Op.getOpcode()) { 1576 default: 1577 llvm_unreachable("Unknown ovf instruction!"); 1578 case ISD::SADDO: 1579 BaseOp = M68kISD::ADD; 1580 CC = M68k::COND_VS; 1581 break; 1582 case ISD::UADDO: 1583 BaseOp = M68kISD::ADD; 1584 CC = M68k::COND_CS; 1585 break; 1586 case ISD::SSUBO: 1587 BaseOp = M68kISD::SUB; 1588 CC = M68k::COND_VS; 1589 break; 1590 case ISD::USUBO: 1591 BaseOp = M68kISD::SUB; 1592 CC = M68k::COND_CS; 1593 break; 1594 case ISD::UMULO: 1595 PromoteMULO(ISD::ZERO_EXTEND); 1596 NoOverflow = VT != MVT::i32; 1597 BaseOp = NoOverflow ? ISD::MUL : M68kISD::UMUL; 1598 CC = M68k::COND_VS; 1599 break; 1600 case ISD::SMULO: 1601 PromoteMULO(ISD::SIGN_EXTEND); 1602 NoOverflow = VT != MVT::i32; 1603 BaseOp = NoOverflow ? ISD::MUL : M68kISD::SMUL; 1604 CC = M68k::COND_VS; 1605 break; 1606 } 1607 1608 SDVTList VTs; 1609 if (NoOverflow) 1610 VTs = DAG.getVTList(VT); 1611 else 1612 // Also sets CCR. 1613 VTs = DAG.getVTList(VT, MVT::i8); 1614 1615 SDValue Arith = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 1616 Result = Arith.getValue(0); 1617 if (TruncOp) 1618 // Right now the only place to truncate is from i16 to i8. 1619 Result = DAG.getNode(TruncOp, DL, MVT::i8, Arith); 1620 1621 if (NoOverflow) 1622 CCR = DAG.getConstant(0, DL, N->getValueType(1)); 1623 else 1624 CCR = Arith.getValue(1); 1625 } 1626 1627 SDValue M68kTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { 1628 SDNode *N = Op.getNode(); 1629 SDLoc DL(Op); 1630 1631 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus 1632 // a "setcc" instruction that checks the overflow flag. 1633 SDValue Result, CCR; 1634 unsigned CC; 1635 lowerOverflowArithmetic(Op, DAG, Result, CCR, CC); 1636 1637 SDValue Overflow; 1638 if (isa<ConstantSDNode>(CCR)) { 1639 // It's likely a result of operations that will not overflow 1640 // hence no setcc is needed. 1641 Overflow = CCR; 1642 } else { 1643 // Generate a M68kISD::SETCC. 1644 Overflow = DAG.getNode(M68kISD::SETCC, DL, N->getValueType(1), 1645 DAG.getConstant(CC, DL, MVT::i8), CCR); 1646 } 1647 1648 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Overflow); 1649 } 1650 1651 /// Create a BTST (Bit Test) node - Test bit \p BitNo in \p Src and set 1652 /// condition according to equal/not-equal condition code \p CC. 1653 static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC, 1654 const SDLoc &DL, SelectionDAG &DAG) { 1655 // If Src is i8, promote it to i32 with any_extend. There is no i8 BTST 1656 // instruction. Since the shift amount is in-range-or-undefined, we know 1657 // that doing a bittest on the i32 value is ok. 1658 if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16) 1659 Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src); 1660 1661 // If the operand types disagree, extend the shift amount to match. Since 1662 // BTST ignores high bits (like shifts) we can use anyextend. 1663 if (Src.getValueType() != BitNo.getValueType()) 1664 BitNo = DAG.getNode(ISD::ANY_EXTEND, DL, Src.getValueType(), BitNo); 1665 1666 SDValue BTST = DAG.getNode(M68kISD::BTST, DL, MVT::i32, Src, BitNo); 1667 1668 // NOTE BTST sets CCR.Z flag 1669 M68k::CondCode Cond = CC == ISD::SETEQ ? M68k::COND_NE : M68k::COND_EQ; 1670 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8, 1671 DAG.getConstant(Cond, DL, MVT::i8), BTST); 1672 } 1673 1674 /// Result of 'and' is compared against zero. Change to a BTST node if possible. 1675 static SDValue LowerAndToBTST(SDValue And, ISD::CondCode CC, const SDLoc &DL, 1676 SelectionDAG &DAG) { 1677 SDValue Op0 = And.getOperand(0); 1678 SDValue Op1 = And.getOperand(1); 1679 if (Op0.getOpcode() == ISD::TRUNCATE) 1680 Op0 = Op0.getOperand(0); 1681 if (Op1.getOpcode() == ISD::TRUNCATE) 1682 Op1 = Op1.getOperand(0); 1683 1684 SDValue LHS, RHS; 1685 if (Op1.getOpcode() == ISD::SHL) 1686 std::swap(Op0, Op1); 1687 if (Op0.getOpcode() == ISD::SHL) { 1688 if (isOneConstant(Op0.getOperand(0))) { 1689 // If we looked past a truncate, check that it's only truncating away 1690 // known zeros. 1691 unsigned BitWidth = Op0.getValueSizeInBits(); 1692 unsigned AndBitWidth = And.getValueSizeInBits(); 1693 if (BitWidth > AndBitWidth) { 1694 auto Known = DAG.computeKnownBits(Op0); 1695 if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth) 1696 return SDValue(); 1697 } 1698 LHS = Op1; 1699 RHS = Op0.getOperand(1); 1700 } 1701 } else if (auto *AndRHS = dyn_cast<ConstantSDNode>(Op1)) { 1702 uint64_t AndRHSVal = AndRHS->getZExtValue(); 1703 SDValue AndLHS = Op0; 1704 1705 if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { 1706 LHS = AndLHS.getOperand(0); 1707 RHS = AndLHS.getOperand(1); 1708 } 1709 1710 // Use BTST if the immediate can't be encoded in a TEST instruction. 1711 if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { 1712 LHS = AndLHS; 1713 RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), DL, LHS.getValueType()); 1714 } 1715 } 1716 1717 if (LHS.getNode()) 1718 return getBitTestCondition(LHS, RHS, CC, DL, DAG); 1719 1720 return SDValue(); 1721 } 1722 1723 static M68k::CondCode TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode) { 1724 switch (SetCCOpcode) { 1725 default: 1726 llvm_unreachable("Invalid integer condition!"); 1727 case ISD::SETEQ: 1728 return M68k::COND_EQ; 1729 case ISD::SETGT: 1730 return M68k::COND_GT; 1731 case ISD::SETGE: 1732 return M68k::COND_GE; 1733 case ISD::SETLT: 1734 return M68k::COND_LT; 1735 case ISD::SETLE: 1736 return M68k::COND_LE; 1737 case ISD::SETNE: 1738 return M68k::COND_NE; 1739 case ISD::SETULT: 1740 return M68k::COND_CS; 1741 case ISD::SETUGE: 1742 return M68k::COND_CC; 1743 case ISD::SETUGT: 1744 return M68k::COND_HI; 1745 case ISD::SETULE: 1746 return M68k::COND_LS; 1747 } 1748 } 1749 1750 /// Do a one-to-one translation of a ISD::CondCode to the M68k-specific 1751 /// condition code, returning the condition code and the LHS/RHS of the 1752 /// comparison to make. 1753 static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode, const SDLoc &DL, 1754 bool IsFP, SDValue &LHS, SDValue &RHS, 1755 SelectionDAG &DAG) { 1756 if (!IsFP) { 1757 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1758 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnes()) { 1759 // X > -1 -> X == 0, jump !sign. 1760 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1761 return M68k::COND_PL; 1762 } 1763 if (SetCCOpcode == ISD::SETLT && RHSC->isZero()) { 1764 // X < 0 -> X == 0, jump on sign. 1765 return M68k::COND_MI; 1766 } 1767 if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { 1768 // X < 1 -> X <= 0 1769 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 1770 return M68k::COND_LE; 1771 } 1772 } 1773 1774 return TranslateIntegerM68kCC(SetCCOpcode); 1775 } 1776 1777 // First determine if it is required or is profitable to flip the operands. 1778 1779 // If LHS is a foldable load, but RHS is not, flip the condition. 1780 if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) { 1781 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); 1782 std::swap(LHS, RHS); 1783 } 1784 1785 switch (SetCCOpcode) { 1786 default: 1787 break; 1788 case ISD::SETOLT: 1789 case ISD::SETOLE: 1790 case ISD::SETUGT: 1791 case ISD::SETUGE: 1792 std::swap(LHS, RHS); 1793 break; 1794 } 1795 1796 // On a floating point condition, the flags are set as follows: 1797 // ZF PF CF op 1798 // 0 | 0 | 0 | X > Y 1799 // 0 | 0 | 1 | X < Y 1800 // 1 | 0 | 0 | X == Y 1801 // 1 | 1 | 1 | unordered 1802 switch (SetCCOpcode) { 1803 default: 1804 llvm_unreachable("Condcode should be pre-legalized away"); 1805 case ISD::SETUEQ: 1806 case ISD::SETEQ: 1807 return M68k::COND_EQ; 1808 case ISD::SETOLT: // flipped 1809 case ISD::SETOGT: 1810 case ISD::SETGT: 1811 return M68k::COND_HI; 1812 case ISD::SETOLE: // flipped 1813 case ISD::SETOGE: 1814 case ISD::SETGE: 1815 return M68k::COND_CC; 1816 case ISD::SETUGT: // flipped 1817 case ISD::SETULT: 1818 case ISD::SETLT: 1819 return M68k::COND_CS; 1820 case ISD::SETUGE: // flipped 1821 case ISD::SETULE: 1822 case ISD::SETLE: 1823 return M68k::COND_LS; 1824 case ISD::SETONE: 1825 case ISD::SETNE: 1826 return M68k::COND_NE; 1827 case ISD::SETOEQ: 1828 case ISD::SETUNE: 1829 return M68k::COND_INVALID; 1830 } 1831 } 1832 1833 // Convert (truncate (srl X, N) to i1) to (bt X, N) 1834 static SDValue LowerTruncateToBTST(SDValue Op, ISD::CondCode CC, 1835 const SDLoc &DL, SelectionDAG &DAG) { 1836 1837 assert(Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1 && 1838 "Expected TRUNCATE to i1 node"); 1839 1840 if (Op.getOperand(0).getOpcode() != ISD::SRL) 1841 return SDValue(); 1842 1843 SDValue ShiftRight = Op.getOperand(0); 1844 return getBitTestCondition(ShiftRight.getOperand(0), ShiftRight.getOperand(1), 1845 CC, DL, DAG); 1846 } 1847 1848 /// \brief return true if \c Op has a use that doesn't just read flags. 1849 static bool hasNonFlagsUse(SDValue Op) { 1850 for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; 1851 ++UI) { 1852 SDNode *User = UI->getUser(); 1853 unsigned UOpNo = UI->getOperandNo(); 1854 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { 1855 // Look past truncate. 1856 UOpNo = User->use_begin()->getOperandNo(); 1857 User = User->use_begin()->getUser(); 1858 } 1859 1860 if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && 1861 !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) 1862 return true; 1863 } 1864 return false; 1865 } 1866 1867 SDValue M68kTargetLowering::EmitTest(SDValue Op, unsigned M68kCC, 1868 const SDLoc &DL, SelectionDAG &DAG) const { 1869 1870 // CF and OF aren't always set the way we want. Determine which 1871 // of these we need. 1872 bool NeedCF = false; 1873 bool NeedOF = false; 1874 switch (M68kCC) { 1875 default: 1876 break; 1877 case M68k::COND_HI: 1878 case M68k::COND_CC: 1879 case M68k::COND_CS: 1880 case M68k::COND_LS: 1881 NeedCF = true; 1882 break; 1883 case M68k::COND_GT: 1884 case M68k::COND_GE: 1885 case M68k::COND_LT: 1886 case M68k::COND_LE: 1887 case M68k::COND_VS: 1888 case M68k::COND_VC: { 1889 // Check if we really need to set the 1890 // Overflow flag. If NoSignedWrap is present 1891 // that is not actually needed. 1892 switch (Op->getOpcode()) { 1893 case ISD::ADD: 1894 case ISD::SUB: 1895 case ISD::MUL: 1896 case ISD::SHL: { 1897 if (Op.getNode()->getFlags().hasNoSignedWrap()) 1898 break; 1899 [[fallthrough]]; 1900 } 1901 default: 1902 NeedOF = true; 1903 break; 1904 } 1905 break; 1906 } 1907 } 1908 // See if we can use the CCR value from the operand instead of 1909 // doing a separate TEST. TEST always sets OF and CF to 0, so unless 1910 // we prove that the arithmetic won't overflow, we can't use OF or CF. 1911 if (Op.getResNo() != 0 || NeedOF || NeedCF) { 1912 // Emit a CMP with 0, which is the TEST pattern. 1913 return DAG.getNode(M68kISD::CMP, DL, MVT::i8, 1914 DAG.getConstant(0, DL, Op.getValueType()), Op); 1915 } 1916 unsigned Opcode = 0; 1917 unsigned NumOperands = 0; 1918 1919 // Truncate operations may prevent the merge of the SETCC instruction 1920 // and the arithmetic instruction before it. Attempt to truncate the operands 1921 // of the arithmetic instruction and use a reduced bit-width instruction. 1922 bool NeedTruncation = false; 1923 SDValue ArithOp = Op; 1924 if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { 1925 SDValue Arith = Op->getOperand(0); 1926 // Both the trunc and the arithmetic op need to have one user each. 1927 if (Arith->hasOneUse()) 1928 switch (Arith.getOpcode()) { 1929 default: 1930 break; 1931 case ISD::ADD: 1932 case ISD::SUB: 1933 case ISD::AND: 1934 case ISD::OR: 1935 case ISD::XOR: { 1936 NeedTruncation = true; 1937 ArithOp = Arith; 1938 } 1939 } 1940 } 1941 1942 // NOTICE: In the code below we use ArithOp to hold the arithmetic operation 1943 // which may be the result of a CAST. We use the variable 'Op', which is the 1944 // non-casted variable when we check for possible users. 1945 switch (ArithOp.getOpcode()) { 1946 case ISD::ADD: 1947 Opcode = M68kISD::ADD; 1948 NumOperands = 2; 1949 break; 1950 case ISD::SHL: 1951 case ISD::SRL: 1952 // If we have a constant logical shift that's only used in a comparison 1953 // against zero turn it into an equivalent AND. This allows turning it into 1954 // a TEST instruction later. 1955 if ((M68kCC == M68k::COND_EQ || M68kCC == M68k::COND_NE) && 1956 Op->hasOneUse() && isa<ConstantSDNode>(Op->getOperand(1)) && 1957 !hasNonFlagsUse(Op)) { 1958 EVT VT = Op.getValueType(); 1959 unsigned BitWidth = VT.getSizeInBits(); 1960 unsigned ShAmt = Op->getConstantOperandVal(1); 1961 if (ShAmt >= BitWidth) // Avoid undefined shifts. 1962 break; 1963 APInt Mask = ArithOp.getOpcode() == ISD::SRL 1964 ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) 1965 : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); 1966 if (!Mask.isSignedIntN(32)) // Avoid large immediates. 1967 break; 1968 Op = DAG.getNode(ISD::AND, DL, VT, Op->getOperand(0), 1969 DAG.getConstant(Mask, DL, VT)); 1970 } 1971 break; 1972 1973 case ISD::AND: 1974 // If the primary 'and' result isn't used, don't bother using 1975 // M68kISD::AND, because a TEST instruction will be better. 1976 if (!hasNonFlagsUse(Op)) { 1977 SDValue Op0 = ArithOp->getOperand(0); 1978 SDValue Op1 = ArithOp->getOperand(1); 1979 EVT VT = ArithOp.getValueType(); 1980 bool IsAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1); 1981 bool IsLegalAndnType = VT == MVT::i32 || VT == MVT::i64; 1982 1983 // But if we can combine this into an ANDN operation, then create an AND 1984 // now and allow it to be pattern matched into an ANDN. 1985 if (/*!Subtarget.hasBMI() ||*/ !IsAndn || !IsLegalAndnType) 1986 break; 1987 } 1988 [[fallthrough]]; 1989 case ISD::SUB: 1990 case ISD::OR: 1991 case ISD::XOR: 1992 // Due to the ISEL shortcoming noted above, be conservative if this op is 1993 // likely to be selected as part of a load-modify-store instruction. 1994 for (const auto *U : Op.getNode()->users()) 1995 if (U->getOpcode() == ISD::STORE) 1996 goto default_case; 1997 1998 // Otherwise use a regular CCR-setting instruction. 1999 switch (ArithOp.getOpcode()) { 2000 default: 2001 llvm_unreachable("unexpected operator!"); 2002 case ISD::SUB: 2003 Opcode = M68kISD::SUB; 2004 break; 2005 case ISD::XOR: 2006 Opcode = M68kISD::XOR; 2007 break; 2008 case ISD::AND: 2009 Opcode = M68kISD::AND; 2010 break; 2011 case ISD::OR: 2012 Opcode = M68kISD::OR; 2013 break; 2014 } 2015 2016 NumOperands = 2; 2017 break; 2018 case M68kISD::ADD: 2019 case M68kISD::SUB: 2020 case M68kISD::OR: 2021 case M68kISD::XOR: 2022 case M68kISD::AND: 2023 return SDValue(Op.getNode(), 1); 2024 default: 2025 default_case: 2026 break; 2027 } 2028 2029 // If we found that truncation is beneficial, perform the truncation and 2030 // update 'Op'. 2031 if (NeedTruncation) { 2032 EVT VT = Op.getValueType(); 2033 SDValue WideVal = Op->getOperand(0); 2034 EVT WideVT = WideVal.getValueType(); 2035 unsigned ConvertedOp = 0; 2036 // Use a target machine opcode to prevent further DAGCombine 2037 // optimizations that may separate the arithmetic operations 2038 // from the setcc node. 2039 switch (WideVal.getOpcode()) { 2040 default: 2041 break; 2042 case ISD::ADD: 2043 ConvertedOp = M68kISD::ADD; 2044 break; 2045 case ISD::SUB: 2046 ConvertedOp = M68kISD::SUB; 2047 break; 2048 case ISD::AND: 2049 ConvertedOp = M68kISD::AND; 2050 break; 2051 case ISD::OR: 2052 ConvertedOp = M68kISD::OR; 2053 break; 2054 case ISD::XOR: 2055 ConvertedOp = M68kISD::XOR; 2056 break; 2057 } 2058 2059 if (ConvertedOp) { 2060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2061 if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { 2062 SDValue V0 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(0)); 2063 SDValue V1 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(1)); 2064 Op = DAG.getNode(ConvertedOp, DL, VT, V0, V1); 2065 } 2066 } 2067 } 2068 2069 if (Opcode == 0) { 2070 // Emit a CMP with 0, which is the TEST pattern. 2071 return DAG.getNode(M68kISD::CMP, DL, MVT::i8, 2072 DAG.getConstant(0, DL, Op.getValueType()), Op); 2073 } 2074 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i8); 2075 SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); 2076 2077 SDValue New = DAG.getNode(Opcode, DL, VTs, Ops); 2078 DAG.ReplaceAllUsesWith(Op, New); 2079 return SDValue(New.getNode(), 1); 2080 } 2081 2082 /// \brief Return true if the condition is an unsigned comparison operation. 2083 static bool isM68kCCUnsigned(unsigned M68kCC) { 2084 switch (M68kCC) { 2085 default: 2086 llvm_unreachable("Invalid integer condition!"); 2087 case M68k::COND_EQ: 2088 case M68k::COND_NE: 2089 case M68k::COND_CS: 2090 case M68k::COND_HI: 2091 case M68k::COND_LS: 2092 case M68k::COND_CC: 2093 return true; 2094 case M68k::COND_GT: 2095 case M68k::COND_GE: 2096 case M68k::COND_LT: 2097 case M68k::COND_LE: 2098 return false; 2099 } 2100 } 2101 2102 SDValue M68kTargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned M68kCC, 2103 const SDLoc &DL, SelectionDAG &DAG) const { 2104 if (isNullConstant(Op1)) 2105 return EmitTest(Op0, M68kCC, DL, DAG); 2106 2107 assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) && 2108 "Unexpected comparison operation for MVT::i1 operands"); 2109 2110 if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || 2111 Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { 2112 // Only promote the compare up to I32 if it is a 16 bit operation 2113 // with an immediate. 16 bit immediates are to be avoided. 2114 if ((Op0.getValueType() == MVT::i16 && 2115 (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) && 2116 !DAG.getMachineFunction().getFunction().hasMinSize()) { 2117 unsigned ExtendOp = 2118 isM68kCCUnsigned(M68kCC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; 2119 Op0 = DAG.getNode(ExtendOp, DL, MVT::i32, Op0); 2120 Op1 = DAG.getNode(ExtendOp, DL, MVT::i32, Op1); 2121 } 2122 // Use SUB instead of CMP to enable CSE between SUB and CMP. 2123 SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i8); 2124 SDValue Sub = DAG.getNode(M68kISD::SUB, DL, VTs, Op0, Op1); 2125 return SDValue(Sub.getNode(), 1); 2126 } 2127 return DAG.getNode(M68kISD::CMP, DL, MVT::i8, Op0, Op1); 2128 } 2129 2130 /// Result of 'and' or 'trunc to i1' is compared against zero. 2131 /// Change to a BTST node if possible. 2132 SDValue M68kTargetLowering::LowerToBTST(SDValue Op, ISD::CondCode CC, 2133 const SDLoc &DL, 2134 SelectionDAG &DAG) const { 2135 if (Op.getOpcode() == ISD::AND) 2136 return LowerAndToBTST(Op, CC, DL, DAG); 2137 if (Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1) 2138 return LowerTruncateToBTST(Op, CC, DL, DAG); 2139 return SDValue(); 2140 } 2141 2142 SDValue M68kTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 2143 MVT VT = Op.getSimpleValueType(); 2144 assert(VT == MVT::i8 && "SetCC type must be 8-bit integer"); 2145 2146 SDValue Op0 = Op.getOperand(0); 2147 SDValue Op1 = Op.getOperand(1); 2148 SDLoc DL(Op); 2149 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2150 2151 // Optimize to BTST if possible. 2152 // Lower (X & (1 << N)) == 0 to BTST(X, N). 2153 // Lower ((X >>u N) & 1) != 0 to BTST(X, N). 2154 // Lower ((X >>s N) & 1) != 0 to BTST(X, N). 2155 // Lower (trunc (X >> N) to i1) to BTST(X, N). 2156 if (Op0.hasOneUse() && isNullConstant(Op1) && 2157 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2158 if (SDValue NewSetCC = LowerToBTST(Op0, CC, DL, DAG)) { 2159 if (VT == MVT::i1) 2160 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, NewSetCC); 2161 return NewSetCC; 2162 } 2163 } 2164 2165 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of 2166 // these. 2167 if ((isOneConstant(Op1) || isNullConstant(Op1)) && 2168 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2169 2170 // If the input is a setcc, then reuse the input setcc or use a new one with 2171 // the inverted condition. 2172 if (Op0.getOpcode() == M68kISD::SETCC) { 2173 M68k::CondCode CCode = (M68k::CondCode)Op0.getConstantOperandVal(0); 2174 bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1); 2175 if (!Invert) 2176 return Op0; 2177 2178 CCode = M68k::GetOppositeBranchCondition(CCode); 2179 SDValue SetCC = 2180 DAG.getNode(M68kISD::SETCC, DL, MVT::i8, 2181 DAG.getConstant(CCode, DL, MVT::i8), Op0.getOperand(1)); 2182 if (VT == MVT::i1) 2183 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 2184 return SetCC; 2185 } 2186 } 2187 if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 2188 if (isOneConstant(Op1)) { 2189 ISD::CondCode NewCC = ISD::GlobalISel::getSetCCInverse(CC, true); 2190 return DAG.getSetCC(DL, VT, Op0, DAG.getConstant(0, DL, MVT::i1), NewCC); 2191 } 2192 if (!isNullConstant(Op1)) { 2193 SDValue Xor = DAG.getNode(ISD::XOR, DL, MVT::i1, Op0, Op1); 2194 return DAG.getSetCC(DL, VT, Xor, DAG.getConstant(0, DL, MVT::i1), CC); 2195 } 2196 } 2197 2198 bool IsFP = Op1.getSimpleValueType().isFloatingPoint(); 2199 unsigned M68kCC = TranslateM68kCC(CC, DL, IsFP, Op0, Op1, DAG); 2200 if (M68kCC == M68k::COND_INVALID) 2201 return SDValue(); 2202 2203 SDValue CCR = EmitCmp(Op0, Op1, M68kCC, DL, DAG); 2204 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8, 2205 DAG.getConstant(M68kCC, DL, MVT::i8), CCR); 2206 } 2207 2208 SDValue M68kTargetLowering::LowerSETCCCARRY(SDValue Op, 2209 SelectionDAG &DAG) const { 2210 SDValue LHS = Op.getOperand(0); 2211 SDValue RHS = Op.getOperand(1); 2212 SDValue Carry = Op.getOperand(2); 2213 SDValue Cond = Op.getOperand(3); 2214 SDLoc DL(Op); 2215 2216 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only."); 2217 M68k::CondCode CC = TranslateIntegerM68kCC(cast<CondCodeSDNode>(Cond)->get()); 2218 2219 EVT CarryVT = Carry.getValueType(); 2220 APInt NegOne = APInt::getAllOnes(CarryVT.getScalarSizeInBits()); 2221 Carry = DAG.getNode(M68kISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), Carry, 2222 DAG.getConstant(NegOne, DL, CarryVT)); 2223 2224 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); 2225 SDValue Cmp = 2226 DAG.getNode(M68kISD::SUBX, DL, VTs, LHS, RHS, Carry.getValue(1)); 2227 2228 return DAG.getNode(M68kISD::SETCC, DL, MVT::i8, 2229 DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1)); 2230 } 2231 2232 /// Return true if opcode is a M68k logical comparison. 2233 static bool isM68kLogicalCmp(SDValue Op) { 2234 unsigned Opc = Op.getNode()->getOpcode(); 2235 if (Opc == M68kISD::CMP) 2236 return true; 2237 if (Op.getResNo() == 1 && 2238 (Opc == M68kISD::ADD || Opc == M68kISD::SUB || Opc == M68kISD::ADDX || 2239 Opc == M68kISD::SUBX || Opc == M68kISD::SMUL || Opc == M68kISD::UMUL || 2240 Opc == M68kISD::OR || Opc == M68kISD::XOR || Opc == M68kISD::AND)) 2241 return true; 2242 2243 if (Op.getResNo() == 2 && Opc == M68kISD::UMUL) 2244 return true; 2245 2246 return false; 2247 } 2248 2249 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { 2250 if (V.getOpcode() != ISD::TRUNCATE) 2251 return false; 2252 2253 SDValue VOp0 = V.getOperand(0); 2254 unsigned InBits = VOp0.getValueSizeInBits(); 2255 unsigned Bits = V.getValueSizeInBits(); 2256 return DAG.MaskedValueIsZero(VOp0, 2257 APInt::getHighBitsSet(InBits, InBits - Bits)); 2258 } 2259 2260 SDValue M68kTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2261 bool addTest = true; 2262 SDValue Cond = Op.getOperand(0); 2263 SDValue Op1 = Op.getOperand(1); 2264 SDValue Op2 = Op.getOperand(2); 2265 SDLoc DL(Op); 2266 SDValue CC; 2267 2268 if (Cond.getOpcode() == ISD::SETCC) { 2269 if (SDValue NewCond = LowerSETCC(Cond, DAG)) 2270 Cond = NewCond; 2271 } 2272 2273 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y 2274 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y 2275 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y 2276 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y 2277 if (Cond.getOpcode() == M68kISD::SETCC && 2278 Cond.getOperand(1).getOpcode() == M68kISD::CMP && 2279 isNullConstant(Cond.getOperand(1).getOperand(0))) { 2280 SDValue Cmp = Cond.getOperand(1); 2281 2282 unsigned CondCode = Cond.getConstantOperandVal(0); 2283 2284 if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && 2285 (CondCode == M68k::COND_EQ || CondCode == M68k::COND_NE)) { 2286 SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2; 2287 2288 SDValue CmpOp0 = Cmp.getOperand(1); 2289 // Apply further optimizations for special cases 2290 // (select (x != 0), -1, 0) -> neg & sbb 2291 // (select (x == 0), 0, -1) -> neg & sbb 2292 if (isNullConstant(Y) && 2293 (isAllOnesConstant(Op1) == (CondCode == M68k::COND_NE))) { 2294 2295 SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); 2296 2297 SDValue Neg = 2298 DAG.getNode(M68kISD::SUB, DL, VTs, 2299 DAG.getConstant(0, DL, CmpOp0.getValueType()), CmpOp0); 2300 2301 SDValue Res = DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(), 2302 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), 2303 SDValue(Neg.getNode(), 1)); 2304 return Res; 2305 } 2306 2307 Cmp = DAG.getNode(M68kISD::CMP, DL, MVT::i8, 2308 DAG.getConstant(1, DL, CmpOp0.getValueType()), CmpOp0); 2309 2310 SDValue Res = // Res = 0 or -1. 2311 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(), 2312 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cmp); 2313 2314 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_EQ)) 2315 Res = DAG.getNOT(DL, Res, Res.getValueType()); 2316 2317 if (!isNullConstant(Op2)) 2318 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); 2319 return Res; 2320 } 2321 } 2322 2323 // Look past (and (setcc_carry (cmp ...)), 1). 2324 if (Cond.getOpcode() == ISD::AND && 2325 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY && 2326 isOneConstant(Cond.getOperand(1))) 2327 Cond = Cond.getOperand(0); 2328 2329 // If condition flag is set by a M68kISD::CMP, then use it as the condition 2330 // setting operand in place of the M68kISD::SETCC. 2331 unsigned CondOpcode = Cond.getOpcode(); 2332 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) { 2333 CC = Cond.getOperand(0); 2334 2335 SDValue Cmp = Cond.getOperand(1); 2336 unsigned Opc = Cmp.getOpcode(); 2337 2338 bool IllegalFPCMov = false; 2339 2340 if ((isM68kLogicalCmp(Cmp) && !IllegalFPCMov) || Opc == M68kISD::BTST) { 2341 Cond = Cmp; 2342 addTest = false; 2343 } 2344 } else if (isOverflowArithmetic(CondOpcode)) { 2345 // Result is unused here. 2346 SDValue Result; 2347 unsigned CCode; 2348 lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode); 2349 CC = DAG.getConstant(CCode, DL, MVT::i8); 2350 addTest = false; 2351 } 2352 2353 if (addTest) { 2354 // Look past the truncate if the high bits are known zero. 2355 if (isTruncWithZeroHighBitsInput(Cond, DAG)) 2356 Cond = Cond.getOperand(0); 2357 2358 // We know the result of AND is compared against zero. Try to match 2359 // it to BT. 2360 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { 2361 if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) { 2362 CC = NewSetCC.getOperand(0); 2363 Cond = NewSetCC.getOperand(1); 2364 addTest = false; 2365 } 2366 } 2367 } 2368 2369 if (addTest) { 2370 CC = DAG.getConstant(M68k::COND_NE, DL, MVT::i8); 2371 Cond = EmitTest(Cond, M68k::COND_NE, DL, DAG); 2372 } 2373 2374 // a < b ? -1 : 0 -> RES = ~setcc_carry 2375 // a < b ? 0 : -1 -> RES = setcc_carry 2376 // a >= b ? -1 : 0 -> RES = setcc_carry 2377 // a >= b ? 0 : -1 -> RES = ~setcc_carry 2378 if (Cond.getOpcode() == M68kISD::SUB) { 2379 unsigned CondCode = CC->getAsZExtVal(); 2380 2381 if ((CondCode == M68k::COND_CC || CondCode == M68k::COND_CS) && 2382 (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && 2383 (isNullConstant(Op1) || isNullConstant(Op2))) { 2384 SDValue Res = 2385 DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(), 2386 DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cond); 2387 if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_CS)) 2388 return DAG.getNOT(DL, Res, Res.getValueType()); 2389 return Res; 2390 } 2391 } 2392 2393 // M68k doesn't have an i8 cmov. If both operands are the result of a 2394 // truncate widen the cmov and push the truncate through. This avoids 2395 // introducing a new branch during isel and doesn't add any extensions. 2396 if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE && 2397 Op2.getOpcode() == ISD::TRUNCATE) { 2398 SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); 2399 if (T1.getValueType() == T2.getValueType() && 2400 // Block CopyFromReg so partial register stalls are avoided. 2401 T1.getOpcode() != ISD::CopyFromReg && 2402 T2.getOpcode() != ISD::CopyFromReg) { 2403 SDValue Cmov = 2404 DAG.getNode(M68kISD::CMOV, DL, T1.getValueType(), T2, T1, CC, Cond); 2405 return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); 2406 } 2407 } 2408 2409 // Simple optimization when Cond is a constant to avoid generating 2410 // M68kISD::CMOV if possible. 2411 // TODO: Generalize this to use SelectionDAG::computeKnownBits. 2412 if (auto *Const = dyn_cast<ConstantSDNode>(Cond.getNode())) { 2413 const APInt &C = Const->getAPIntValue(); 2414 if (C.countr_zero() >= 5) 2415 return Op2; 2416 else if (C.countr_one() >= 5) 2417 return Op1; 2418 } 2419 2420 // M68kISD::CMOV means set the result (which is operand 1) to the RHS if 2421 // condition is true. 2422 SDValue Ops[] = {Op2, Op1, CC, Cond}; 2423 return DAG.getNode(M68kISD::CMOV, DL, Op.getValueType(), Ops); 2424 } 2425 2426 /// Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes 2427 /// each of which has no other use apart from the AND / OR. 2428 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { 2429 Opc = Op.getOpcode(); 2430 if (Opc != ISD::OR && Opc != ISD::AND) 2431 return false; 2432 return (M68k::IsSETCC(Op.getOperand(0).getOpcode()) && 2433 Op.getOperand(0).hasOneUse() && 2434 M68k::IsSETCC(Op.getOperand(1).getOpcode()) && 2435 Op.getOperand(1).hasOneUse()); 2436 } 2437 2438 /// Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the 2439 /// SETCC node has a single use. 2440 static bool isXor1OfSetCC(SDValue Op) { 2441 if (Op.getOpcode() != ISD::XOR) 2442 return false; 2443 if (isOneConstant(Op.getOperand(1))) 2444 return Op.getOperand(0).getOpcode() == M68kISD::SETCC && 2445 Op.getOperand(0).hasOneUse(); 2446 return false; 2447 } 2448 2449 SDValue M68kTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2450 bool AddTest = true; 2451 SDValue Chain = Op.getOperand(0); 2452 SDValue Cond = Op.getOperand(1); 2453 SDValue Dest = Op.getOperand(2); 2454 SDLoc DL(Op); 2455 SDValue CC; 2456 bool Inverted = false; 2457 2458 if (Cond.getOpcode() == ISD::SETCC) { 2459 // Check for setcc([su]{add,sub}o == 0). 2460 if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && 2461 isNullConstant(Cond.getOperand(1)) && 2462 Cond.getOperand(0).getResNo() == 1 && 2463 (Cond.getOperand(0).getOpcode() == ISD::SADDO || 2464 Cond.getOperand(0).getOpcode() == ISD::UADDO || 2465 Cond.getOperand(0).getOpcode() == ISD::SSUBO || 2466 Cond.getOperand(0).getOpcode() == ISD::USUBO)) { 2467 Inverted = true; 2468 Cond = Cond.getOperand(0); 2469 } else { 2470 if (SDValue NewCond = LowerSETCC(Cond, DAG)) 2471 Cond = NewCond; 2472 } 2473 } 2474 2475 // Look pass (and (setcc_carry (cmp ...)), 1). 2476 if (Cond.getOpcode() == ISD::AND && 2477 Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY && 2478 isOneConstant(Cond.getOperand(1))) 2479 Cond = Cond.getOperand(0); 2480 2481 // If condition flag is set by a M68kISD::CMP, then use it as the condition 2482 // setting operand in place of the M68kISD::SETCC. 2483 unsigned CondOpcode = Cond.getOpcode(); 2484 if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) { 2485 CC = Cond.getOperand(0); 2486 2487 SDValue Cmp = Cond.getOperand(1); 2488 unsigned Opc = Cmp.getOpcode(); 2489 2490 if (isM68kLogicalCmp(Cmp) || Opc == M68kISD::BTST) { 2491 Cond = Cmp; 2492 AddTest = false; 2493 } else { 2494 switch (CC->getAsZExtVal()) { 2495 default: 2496 break; 2497 case M68k::COND_VS: 2498 case M68k::COND_CS: 2499 // These can only come from an arithmetic instruction with overflow, 2500 // e.g. SADDO, UADDO. 2501 Cond = Cond.getNode()->getOperand(1); 2502 AddTest = false; 2503 break; 2504 } 2505 } 2506 } 2507 CondOpcode = Cond.getOpcode(); 2508 if (isOverflowArithmetic(CondOpcode)) { 2509 SDValue Result; 2510 unsigned CCode; 2511 lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode); 2512 2513 if (Inverted) 2514 CCode = M68k::GetOppositeBranchCondition((M68k::CondCode)CCode); 2515 CC = DAG.getConstant(CCode, DL, MVT::i8); 2516 2517 AddTest = false; 2518 } else { 2519 unsigned CondOpc; 2520 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { 2521 SDValue Cmp = Cond.getOperand(0).getOperand(1); 2522 if (CondOpc == ISD::OR) { 2523 // Also, recognize the pattern generated by an FCMP_UNE. We can emit 2524 // two branches instead of an explicit OR instruction with a 2525 // separate test. 2526 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp)) { 2527 CC = Cond.getOperand(0).getOperand(0); 2528 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, 2529 Dest, CC, Cmp); 2530 CC = Cond.getOperand(1).getOperand(0); 2531 Cond = Cmp; 2532 AddTest = false; 2533 } 2534 } else { // ISD::AND 2535 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit 2536 // two branches instead of an explicit AND instruction with a 2537 // separate test. However, we only do this if this block doesn't 2538 // have a fall-through edge, because this requires an explicit 2539 // jmp when the condition is false. 2540 if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp) && 2541 Op.getNode()->hasOneUse()) { 2542 M68k::CondCode CCode = 2543 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0); 2544 CCode = M68k::GetOppositeBranchCondition(CCode); 2545 CC = DAG.getConstant(CCode, DL, MVT::i8); 2546 SDNode *User = *Op.getNode()->user_begin(); 2547 // Look for an unconditional branch following this conditional branch. 2548 // We need this because we need to reverse the successors in order 2549 // to implement FCMP_OEQ. 2550 if (User->getOpcode() == ISD::BR) { 2551 SDValue FalseBB = User->getOperand(1); 2552 SDNode *NewBR = 2553 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); 2554 assert(NewBR == User); 2555 (void)NewBR; 2556 Dest = FalseBB; 2557 2558 Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, 2559 Dest, CC, Cmp); 2560 M68k::CondCode CCode = 2561 (M68k::CondCode)Cond.getOperand(1).getConstantOperandVal(0); 2562 CCode = M68k::GetOppositeBranchCondition(CCode); 2563 CC = DAG.getConstant(CCode, DL, MVT::i8); 2564 Cond = Cmp; 2565 AddTest = false; 2566 } 2567 } 2568 } 2569 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { 2570 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. 2571 // It should be transformed during dag combiner except when the condition 2572 // is set by a arithmetics with overflow node. 2573 M68k::CondCode CCode = 2574 (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0); 2575 CCode = M68k::GetOppositeBranchCondition(CCode); 2576 CC = DAG.getConstant(CCode, DL, MVT::i8); 2577 Cond = Cond.getOperand(0).getOperand(1); 2578 AddTest = false; 2579 } 2580 } 2581 2582 if (AddTest) { 2583 // Look pass the truncate if the high bits are known zero. 2584 if (isTruncWithZeroHighBitsInput(Cond, DAG)) 2585 Cond = Cond.getOperand(0); 2586 2587 // We know the result is compared against zero. Try to match it to BT. 2588 if (Cond.hasOneUse()) { 2589 if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) { 2590 CC = NewSetCC.getOperand(0); 2591 Cond = NewSetCC.getOperand(1); 2592 AddTest = false; 2593 } 2594 } 2595 } 2596 2597 if (AddTest) { 2598 M68k::CondCode MxCond = Inverted ? M68k::COND_EQ : M68k::COND_NE; 2599 CC = DAG.getConstant(MxCond, DL, MVT::i8); 2600 Cond = EmitTest(Cond, MxCond, DL, DAG); 2601 } 2602 return DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, Dest, CC, 2603 Cond); 2604 } 2605 2606 SDValue M68kTargetLowering::LowerADDC_ADDE_SUBC_SUBE(SDValue Op, 2607 SelectionDAG &DAG) const { 2608 MVT VT = Op.getNode()->getSimpleValueType(0); 2609 2610 // Let legalize expand this if it isn't a legal type yet. 2611 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 2612 return SDValue(); 2613 2614 SDVTList VTs = DAG.getVTList(VT, MVT::i8); 2615 2616 unsigned Opc; 2617 bool ExtraOp = false; 2618 switch (Op.getOpcode()) { 2619 default: 2620 llvm_unreachable("Invalid code"); 2621 case ISD::ADDC: 2622 Opc = M68kISD::ADD; 2623 break; 2624 case ISD::ADDE: 2625 Opc = M68kISD::ADDX; 2626 ExtraOp = true; 2627 break; 2628 case ISD::SUBC: 2629 Opc = M68kISD::SUB; 2630 break; 2631 case ISD::SUBE: 2632 Opc = M68kISD::SUBX; 2633 ExtraOp = true; 2634 break; 2635 } 2636 2637 if (!ExtraOp) 2638 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); 2639 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), 2640 Op.getOperand(2)); 2641 } 2642 2643 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 2644 // their target countpart wrapped in the M68kISD::Wrapper node. Suppose N is 2645 // one of the above mentioned nodes. It has to be wrapped because otherwise 2646 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 2647 // be used to form addressing mode. These wrapped nodes will be selected 2648 // into MOV32ri. 2649 SDValue M68kTargetLowering::LowerConstantPool(SDValue Op, 2650 SelectionDAG &DAG) const { 2651 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2652 2653 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the 2654 // global base reg. 2655 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); 2656 2657 unsigned WrapperKind = M68kISD::Wrapper; 2658 if (M68kII::isPCRelGlobalReference(OpFlag)) { 2659 WrapperKind = M68kISD::WrapperPC; 2660 } 2661 2662 MVT PtrVT = getPointerTy(DAG.getDataLayout()); 2663 SDValue Result = DAG.getTargetConstantPool( 2664 CP->getConstVal(), PtrVT, CP->getAlign(), CP->getOffset(), OpFlag); 2665 2666 SDLoc DL(CP); 2667 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); 2668 2669 // With PIC, the address is actually $g + Offset. 2670 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) { 2671 Result = DAG.getNode(ISD::ADD, DL, PtrVT, 2672 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT), 2673 Result); 2674 } 2675 2676 return Result; 2677 } 2678 2679 SDValue M68kTargetLowering::LowerExternalSymbol(SDValue Op, 2680 SelectionDAG &DAG) const { 2681 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 2682 2683 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the 2684 // global base reg. 2685 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 2686 unsigned char OpFlag = Subtarget.classifyExternalReference(*Mod); 2687 2688 unsigned WrapperKind = M68kISD::Wrapper; 2689 if (M68kII::isPCRelGlobalReference(OpFlag)) { 2690 WrapperKind = M68kISD::WrapperPC; 2691 } 2692 2693 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2694 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); 2695 2696 SDLoc DL(Op); 2697 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); 2698 2699 // With PIC, the address is actually $g + Offset. 2700 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) { 2701 Result = DAG.getNode(ISD::ADD, DL, PtrVT, 2702 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT), 2703 Result); 2704 } 2705 2706 // For symbols that require a load from a stub to get the address, emit the 2707 // load. 2708 if (M68kII::isGlobalStubReference(OpFlag)) { 2709 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2710 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2711 } 2712 2713 return Result; 2714 } 2715 2716 SDValue M68kTargetLowering::LowerBlockAddress(SDValue Op, 2717 SelectionDAG &DAG) const { 2718 unsigned char OpFlags = Subtarget.classifyBlockAddressReference(); 2719 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 2720 int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); 2721 SDLoc DL(Op); 2722 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2723 2724 // Create the TargetBlockAddressAddress node. 2725 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); 2726 2727 if (M68kII::isPCRelBlockReference(OpFlags)) { 2728 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result); 2729 } else { 2730 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result); 2731 } 2732 2733 // With PIC, the address is actually $g + Offset. 2734 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) { 2735 Result = 2736 DAG.getNode(ISD::ADD, DL, PtrVT, 2737 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result); 2738 } 2739 2740 return Result; 2741 } 2742 2743 SDValue M68kTargetLowering::LowerGlobalAddress(const GlobalValue *GV, 2744 const SDLoc &DL, int64_t Offset, 2745 SelectionDAG &DAG) const { 2746 unsigned char OpFlags = Subtarget.classifyGlobalReference(GV); 2747 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2748 2749 // Create the TargetGlobalAddress node, folding in the constant 2750 // offset if it is legal. 2751 SDValue Result; 2752 if (M68kII::isDirectGlobalReference(OpFlags)) { 2753 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset); 2754 Offset = 0; 2755 } else { 2756 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 2757 } 2758 2759 if (M68kII::isPCRelGlobalReference(OpFlags)) 2760 Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result); 2761 else 2762 Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result); 2763 2764 // With PIC, the address is actually $g + Offset. 2765 if (M68kII::isGlobalRelativeToPICBase(OpFlags)) { 2766 Result = 2767 DAG.getNode(ISD::ADD, DL, PtrVT, 2768 DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result); 2769 } 2770 2771 // For globals that require a load from a stub to get the address, emit the 2772 // load. 2773 if (M68kII::isGlobalStubReference(OpFlags)) { 2774 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2775 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2776 } 2777 2778 // If there was a non-zero offset that we didn't fold, create an explicit 2779 // addition for it. 2780 if (Offset != 0) { 2781 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2782 DAG.getConstant(Offset, DL, PtrVT)); 2783 } 2784 2785 return Result; 2786 } 2787 2788 SDValue M68kTargetLowering::LowerGlobalAddress(SDValue Op, 2789 SelectionDAG &DAG) const { 2790 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2791 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 2792 return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); 2793 } 2794 2795 //===----------------------------------------------------------------------===// 2796 // Custom Lower Jump Table 2797 //===----------------------------------------------------------------------===// 2798 2799 SDValue M68kTargetLowering::LowerJumpTable(SDValue Op, 2800 SelectionDAG &DAG) const { 2801 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2802 2803 // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the 2804 // global base reg. 2805 unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr); 2806 2807 unsigned WrapperKind = M68kISD::Wrapper; 2808 if (M68kII::isPCRelGlobalReference(OpFlag)) { 2809 WrapperKind = M68kISD::WrapperPC; 2810 } 2811 2812 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2813 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); 2814 SDLoc DL(JT); 2815 Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); 2816 2817 // With PIC, the address is actually $g + Offset. 2818 if (M68kII::isGlobalRelativeToPICBase(OpFlag)) { 2819 Result = DAG.getNode(ISD::ADD, DL, PtrVT, 2820 DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT), 2821 Result); 2822 } 2823 2824 return Result; 2825 } 2826 2827 unsigned M68kTargetLowering::getJumpTableEncoding() const { 2828 return Subtarget.getJumpTableEncoding(); 2829 } 2830 2831 const MCExpr *M68kTargetLowering::LowerCustomJumpTableEntry( 2832 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, 2833 unsigned uid, MCContext &Ctx) const { 2834 return MCSymbolRefExpr::create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF, 2835 Ctx); 2836 } 2837 2838 SDValue M68kTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2839 SelectionDAG &DAG) const { 2840 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_Custom32) 2841 return DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), 2842 getPointerTy(DAG.getDataLayout())); 2843 2844 // MachineJumpTableInfo::EK_LabelDifference32 entry 2845 return Table; 2846 } 2847 2848 // NOTE This only used for MachineJumpTableInfo::EK_LabelDifference32 entries 2849 const MCExpr *M68kTargetLowering::getPICJumpTableRelocBaseExpr( 2850 const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const { 2851 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 2852 } 2853 2854 M68kTargetLowering::ConstraintType 2855 M68kTargetLowering::getConstraintType(StringRef Constraint) const { 2856 if (Constraint.size() > 0) { 2857 switch (Constraint[0]) { 2858 case 'a': 2859 case 'd': 2860 return C_RegisterClass; 2861 case 'I': 2862 case 'J': 2863 case 'K': 2864 case 'L': 2865 case 'M': 2866 case 'N': 2867 case 'O': 2868 case 'P': 2869 return C_Immediate; 2870 case 'C': 2871 if (Constraint.size() == 2) 2872 switch (Constraint[1]) { 2873 case '0': 2874 case 'i': 2875 case 'j': 2876 return C_Immediate; 2877 default: 2878 break; 2879 } 2880 break; 2881 case 'Q': 2882 case 'U': 2883 return C_Memory; 2884 default: 2885 break; 2886 } 2887 } 2888 2889 return TargetLowering::getConstraintType(Constraint); 2890 } 2891 2892 void M68kTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2893 StringRef Constraint, 2894 std::vector<SDValue> &Ops, 2895 SelectionDAG &DAG) const { 2896 SDValue Result; 2897 2898 if (Constraint.size() == 1) { 2899 // Constant constraints 2900 switch (Constraint[0]) { 2901 case 'I': 2902 case 'J': 2903 case 'K': 2904 case 'L': 2905 case 'M': 2906 case 'N': 2907 case 'O': 2908 case 'P': { 2909 auto *C = dyn_cast<ConstantSDNode>(Op); 2910 if (!C) 2911 return; 2912 2913 int64_t Val = C->getSExtValue(); 2914 switch (Constraint[0]) { 2915 case 'I': // constant integer in the range [1,8] 2916 if (Val > 0 && Val <= 8) 2917 break; 2918 return; 2919 case 'J': // constant signed 16-bit integer 2920 if (isInt<16>(Val)) 2921 break; 2922 return; 2923 case 'K': // constant that is NOT in the range of [-0x80, 0x80) 2924 if (Val < -0x80 || Val >= 0x80) 2925 break; 2926 return; 2927 case 'L': // constant integer in the range [-8,-1] 2928 if (Val < 0 && Val >= -8) 2929 break; 2930 return; 2931 case 'M': // constant that is NOT in the range of [-0x100, 0x100] 2932 if (Val < -0x100 || Val >= 0x100) 2933 break; 2934 return; 2935 case 'N': // constant integer in the range [24,31] 2936 if (Val >= 24 && Val <= 31) 2937 break; 2938 return; 2939 case 'O': // constant integer 16 2940 if (Val == 16) 2941 break; 2942 return; 2943 case 'P': // constant integer in the range [8,15] 2944 if (Val >= 8 && Val <= 15) 2945 break; 2946 return; 2947 default: 2948 llvm_unreachable("Unhandled constant constraint"); 2949 } 2950 2951 Result = DAG.getSignedTargetConstant(Val, SDLoc(Op), Op.getValueType()); 2952 break; 2953 } 2954 default: 2955 break; 2956 } 2957 } 2958 2959 if (Constraint.size() == 2) { 2960 switch (Constraint[0]) { 2961 case 'C': 2962 // Constant constraints start with 'C' 2963 switch (Constraint[1]) { 2964 case '0': 2965 case 'i': 2966 case 'j': { 2967 auto *C = dyn_cast<ConstantSDNode>(Op); 2968 if (!C) 2969 break; 2970 2971 int64_t Val = C->getSExtValue(); 2972 switch (Constraint[1]) { 2973 case '0': // constant integer 0 2974 if (!Val) 2975 break; 2976 return; 2977 case 'i': // constant integer 2978 break; 2979 case 'j': // integer constant that doesn't fit in 16 bits 2980 if (!isInt<16>(C->getSExtValue())) 2981 break; 2982 return; 2983 default: 2984 llvm_unreachable("Unhandled constant constraint"); 2985 } 2986 2987 Result = DAG.getSignedTargetConstant(Val, SDLoc(Op), Op.getValueType()); 2988 break; 2989 } 2990 default: 2991 break; 2992 } 2993 break; 2994 default: 2995 break; 2996 } 2997 } 2998 2999 if (Result.getNode()) { 3000 Ops.push_back(Result); 3001 return; 3002 } 3003 3004 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3005 } 3006 3007 std::pair<unsigned, const TargetRegisterClass *> 3008 M68kTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3009 StringRef Constraint, 3010 MVT VT) const { 3011 if (Constraint.size() == 1) { 3012 switch (Constraint[0]) { 3013 case 'r': 3014 case 'd': 3015 switch (VT.SimpleTy) { 3016 case MVT::i8: 3017 return std::make_pair(0U, &M68k::DR8RegClass); 3018 case MVT::i16: 3019 return std::make_pair(0U, &M68k::DR16RegClass); 3020 case MVT::i32: 3021 return std::make_pair(0U, &M68k::DR32RegClass); 3022 default: 3023 break; 3024 } 3025 break; 3026 case 'a': 3027 switch (VT.SimpleTy) { 3028 case MVT::i16: 3029 return std::make_pair(0U, &M68k::AR16RegClass); 3030 case MVT::i32: 3031 return std::make_pair(0U, &M68k::AR32RegClass); 3032 default: 3033 break; 3034 } 3035 break; 3036 default: 3037 break; 3038 } 3039 } 3040 3041 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3042 } 3043 3044 /// Determines whether the callee is required to pop its own arguments. 3045 /// Callee pop is necessary to support tail calls. 3046 bool M68k::isCalleePop(CallingConv::ID CC, bool IsVarArg, bool GuaranteeTCO) { 3047 return CC == CallingConv::M68k_RTD && !IsVarArg; 3048 } 3049 3050 // Return true if it is OK for this CMOV pseudo-opcode to be cascaded 3051 // together with other CMOV pseudo-opcodes into a single basic-block with 3052 // conditional jump around it. 3053 static bool isCMOVPseudo(MachineInstr &MI) { 3054 switch (MI.getOpcode()) { 3055 case M68k::CMOV8d: 3056 case M68k::CMOV16d: 3057 case M68k::CMOV32r: 3058 return true; 3059 3060 default: 3061 return false; 3062 } 3063 } 3064 3065 // The CCR operand of SelectItr might be missing a kill marker 3066 // because there were multiple uses of CCR, and ISel didn't know 3067 // which to mark. Figure out whether SelectItr should have had a 3068 // kill marker, and set it if it should. Returns the correct kill 3069 // marker value. 3070 static bool checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr, 3071 MachineBasicBlock *BB, 3072 const TargetRegisterInfo *TRI) { 3073 // Scan forward through BB for a use/def of CCR. 3074 MachineBasicBlock::iterator miI(std::next(SelectItr)); 3075 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { 3076 const MachineInstr &mi = *miI; 3077 if (mi.readsRegister(M68k::CCR, /*TRI=*/nullptr)) 3078 return false; 3079 if (mi.definesRegister(M68k::CCR, /*TRI=*/nullptr)) 3080 break; // Should have kill-flag - update below. 3081 } 3082 3083 // If we hit the end of the block, check whether CCR is live into a 3084 // successor. 3085 if (miI == BB->end()) 3086 for (const auto *SBB : BB->successors()) 3087 if (SBB->isLiveIn(M68k::CCR)) 3088 return false; 3089 3090 // We found a def, or hit the end of the basic block and CCR wasn't live 3091 // out. SelectMI should have a kill flag on CCR. 3092 SelectItr->addRegisterKilled(M68k::CCR, TRI); 3093 return true; 3094 } 3095 3096 MachineBasicBlock * 3097 M68kTargetLowering::EmitLoweredSelect(MachineInstr &MI, 3098 MachineBasicBlock *MBB) const { 3099 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3100 DebugLoc DL = MI.getDebugLoc(); 3101 3102 // To "insert" a SELECT_CC instruction, we actually have to insert the 3103 // diamond control-flow pattern. The incoming instruction knows the 3104 // destination vreg to set, the condition code register to branch on, the 3105 // true/false values to select between, and a branch opcode to use. 3106 const BasicBlock *BB = MBB->getBasicBlock(); 3107 MachineFunction::iterator It = ++MBB->getIterator(); 3108 3109 // ThisMBB: 3110 // ... 3111 // TrueVal = ... 3112 // cmp ccX, r1, r2 3113 // bcc Copy1MBB 3114 // fallthrough --> Copy0MBB 3115 MachineBasicBlock *ThisMBB = MBB; 3116 MachineFunction *F = MBB->getParent(); 3117 3118 // This code lowers all pseudo-CMOV instructions. Generally it lowers these 3119 // as described above, by inserting a MBB, and then making a PHI at the join 3120 // point to select the true and false operands of the CMOV in the PHI. 3121 // 3122 // The code also handles two different cases of multiple CMOV opcodes 3123 // in a row. 3124 // 3125 // Case 1: 3126 // In this case, there are multiple CMOVs in a row, all which are based on 3127 // the same condition setting (or the exact opposite condition setting). 3128 // In this case we can lower all the CMOVs using a single inserted MBB, and 3129 // then make a number of PHIs at the join point to model the CMOVs. The only 3130 // trickiness here, is that in a case like: 3131 // 3132 // t2 = CMOV cond1 t1, f1 3133 // t3 = CMOV cond1 t2, f2 3134 // 3135 // when rewriting this into PHIs, we have to perform some renaming on the 3136 // temps since you cannot have a PHI operand refer to a PHI result earlier 3137 // in the same block. The "simple" but wrong lowering would be: 3138 // 3139 // t2 = PHI t1(BB1), f1(BB2) 3140 // t3 = PHI t2(BB1), f2(BB2) 3141 // 3142 // but clearly t2 is not defined in BB1, so that is incorrect. The proper 3143 // renaming is to note that on the path through BB1, t2 is really just a 3144 // copy of t1, and do that renaming, properly generating: 3145 // 3146 // t2 = PHI t1(BB1), f1(BB2) 3147 // t3 = PHI t1(BB1), f2(BB2) 3148 // 3149 // Case 2, we lower cascaded CMOVs such as 3150 // 3151 // (CMOV (CMOV F, T, cc1), T, cc2) 3152 // 3153 // to two successives branches. 3154 MachineInstr *CascadedCMOV = nullptr; 3155 MachineInstr *LastCMOV = &MI; 3156 M68k::CondCode CC = M68k::CondCode(MI.getOperand(3).getImm()); 3157 M68k::CondCode OppCC = M68k::GetOppositeBranchCondition(CC); 3158 MachineBasicBlock::iterator NextMIIt = 3159 std::next(MachineBasicBlock::iterator(MI)); 3160 3161 // Check for case 1, where there are multiple CMOVs with the same condition 3162 // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the 3163 // number of jumps the most. 3164 3165 if (isCMOVPseudo(MI)) { 3166 // See if we have a string of CMOVS with the same condition. 3167 while (NextMIIt != MBB->end() && isCMOVPseudo(*NextMIIt) && 3168 (NextMIIt->getOperand(3).getImm() == CC || 3169 NextMIIt->getOperand(3).getImm() == OppCC)) { 3170 LastCMOV = &*NextMIIt; 3171 ++NextMIIt; 3172 } 3173 } 3174 3175 // This checks for case 2, but only do this if we didn't already find 3176 // case 1, as indicated by LastCMOV == MI. 3177 if (LastCMOV == &MI && NextMIIt != MBB->end() && 3178 NextMIIt->getOpcode() == MI.getOpcode() && 3179 NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() && 3180 NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() && 3181 NextMIIt->getOperand(1).isKill()) { 3182 CascadedCMOV = &*NextMIIt; 3183 } 3184 3185 MachineBasicBlock *Jcc1MBB = nullptr; 3186 3187 // If we have a cascaded CMOV, we lower it to two successive branches to 3188 // the same block. CCR is used by both, so mark it as live in the second. 3189 if (CascadedCMOV) { 3190 Jcc1MBB = F->CreateMachineBasicBlock(BB); 3191 F->insert(It, Jcc1MBB); 3192 Jcc1MBB->addLiveIn(M68k::CCR); 3193 } 3194 3195 MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(BB); 3196 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); 3197 F->insert(It, Copy0MBB); 3198 F->insert(It, SinkMBB); 3199 3200 // Set the call frame size on entry to the new basic blocks. 3201 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI); 3202 Copy0MBB->setCallFrameSize(CallFrameSize); 3203 SinkMBB->setCallFrameSize(CallFrameSize); 3204 3205 // If the CCR register isn't dead in the terminator, then claim that it's 3206 // live into the sink and copy blocks. 3207 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3208 3209 MachineInstr *LastCCRSUser = CascadedCMOV ? CascadedCMOV : LastCMOV; 3210 if (!LastCCRSUser->killsRegister(M68k::CCR, /*TRI=*/nullptr) && 3211 !checkAndUpdateCCRKill(LastCCRSUser, MBB, TRI)) { 3212 Copy0MBB->addLiveIn(M68k::CCR); 3213 SinkMBB->addLiveIn(M68k::CCR); 3214 } 3215 3216 // Transfer the remainder of MBB and its successor edges to SinkMBB. 3217 SinkMBB->splice(SinkMBB->begin(), MBB, 3218 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); 3219 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 3220 3221 // Add the true and fallthrough blocks as its successors. 3222 if (CascadedCMOV) { 3223 // The fallthrough block may be Jcc1MBB, if we have a cascaded CMOV. 3224 MBB->addSuccessor(Jcc1MBB); 3225 3226 // In that case, Jcc1MBB will itself fallthrough the Copy0MBB, and 3227 // jump to the SinkMBB. 3228 Jcc1MBB->addSuccessor(Copy0MBB); 3229 Jcc1MBB->addSuccessor(SinkMBB); 3230 } else { 3231 MBB->addSuccessor(Copy0MBB); 3232 } 3233 3234 // The true block target of the first (or only) branch is always SinkMBB. 3235 MBB->addSuccessor(SinkMBB); 3236 3237 // Create the conditional branch instruction. 3238 unsigned Opc = M68k::GetCondBranchFromCond(CC); 3239 BuildMI(MBB, DL, TII->get(Opc)).addMBB(SinkMBB); 3240 3241 if (CascadedCMOV) { 3242 unsigned Opc2 = M68k::GetCondBranchFromCond( 3243 (M68k::CondCode)CascadedCMOV->getOperand(3).getImm()); 3244 BuildMI(Jcc1MBB, DL, TII->get(Opc2)).addMBB(SinkMBB); 3245 } 3246 3247 // Copy0MBB: 3248 // %FalseValue = ... 3249 // # fallthrough to SinkMBB 3250 Copy0MBB->addSuccessor(SinkMBB); 3251 3252 // SinkMBB: 3253 // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ] 3254 // ... 3255 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 3256 MachineBasicBlock::iterator MIItEnd = 3257 std::next(MachineBasicBlock::iterator(LastCMOV)); 3258 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 3259 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 3260 MachineInstrBuilder MIB; 3261 3262 // As we are creating the PHIs, we have to be careful if there is more than 3263 // one. Later CMOVs may reference the results of earlier CMOVs, but later 3264 // PHIs have to reference the individual true/false inputs from earlier PHIs. 3265 // That also means that PHI construction must work forward from earlier to 3266 // later, and that the code must maintain a mapping from earlier PHI's 3267 // destination registers, and the registers that went into the PHI. 3268 3269 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 3270 Register DestReg = MIIt->getOperand(0).getReg(); 3271 Register Op1Reg = MIIt->getOperand(1).getReg(); 3272 Register Op2Reg = MIIt->getOperand(2).getReg(); 3273 3274 // If this CMOV we are generating is the opposite condition from 3275 // the jump we generated, then we have to swap the operands for the 3276 // PHI that is going to be generated. 3277 if (MIIt->getOperand(3).getImm() == OppCC) 3278 std::swap(Op1Reg, Op2Reg); 3279 3280 if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) 3281 Op1Reg = RegRewriteTable[Op1Reg].first; 3282 3283 if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) 3284 Op2Reg = RegRewriteTable[Op2Reg].second; 3285 3286 MIB = 3287 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(M68k::PHI), DestReg) 3288 .addReg(Op1Reg) 3289 .addMBB(Copy0MBB) 3290 .addReg(Op2Reg) 3291 .addMBB(ThisMBB); 3292 3293 // Add this PHI to the rewrite table. 3294 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); 3295 } 3296 3297 // If we have a cascaded CMOV, the second Jcc provides the same incoming 3298 // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes). 3299 if (CascadedCMOV) { 3300 MIB.addReg(MI.getOperand(2).getReg()).addMBB(Jcc1MBB); 3301 // Copy the PHI result to the register defined by the second CMOV. 3302 BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), 3303 DL, TII->get(TargetOpcode::COPY), 3304 CascadedCMOV->getOperand(0).getReg()) 3305 .addReg(MI.getOperand(0).getReg()); 3306 CascadedCMOV->eraseFromParent(); 3307 } 3308 3309 // Now remove the CMOV(s). 3310 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) 3311 (MIIt++)->eraseFromParent(); 3312 3313 return SinkMBB; 3314 } 3315 3316 MachineBasicBlock * 3317 M68kTargetLowering::EmitLoweredSegAlloca(MachineInstr &MI, 3318 MachineBasicBlock *BB) const { 3319 llvm_unreachable("Cannot lower Segmented Stack Alloca with stack-split on"); 3320 } 3321 3322 MachineBasicBlock * 3323 M68kTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3324 MachineBasicBlock *BB) const { 3325 switch (MI.getOpcode()) { 3326 default: 3327 llvm_unreachable("Unexpected instr type to insert"); 3328 case M68k::CMOV8d: 3329 case M68k::CMOV16d: 3330 case M68k::CMOV32r: 3331 return EmitLoweredSelect(MI, BB); 3332 case M68k::SALLOCA: 3333 return EmitLoweredSegAlloca(MI, BB); 3334 } 3335 } 3336 3337 SDValue M68kTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3338 MachineFunction &MF = DAG.getMachineFunction(); 3339 auto PtrVT = getPointerTy(MF.getDataLayout()); 3340 M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>(); 3341 3342 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3343 SDLoc DL(Op); 3344 3345 // vastart just stores the address of the VarArgsFrameIndex slot into the 3346 // memory location argument. 3347 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3348 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3349 MachinePointerInfo(SV)); 3350 } 3351 3352 SDValue M68kTargetLowering::LowerATOMICFENCE(SDValue Op, 3353 SelectionDAG &DAG) const { 3354 // Lower to a memory barrier created from inline asm. 3355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3356 LLVMContext &Ctx = *DAG.getContext(); 3357 3358 const unsigned Flags = InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore | 3359 InlineAsm::Extra_HasSideEffects; 3360 const SDValue AsmOperands[4] = { 3361 Op.getOperand(0), // Input chain 3362 DAG.getTargetExternalSymbol( 3363 "", TLI.getProgramPointerTy( 3364 DAG.getDataLayout())), // Empty inline asm string 3365 DAG.getMDNode(MDNode::get(Ctx, {})), // (empty) srcloc 3366 DAG.getTargetConstant(Flags, SDLoc(Op), 3367 TLI.getPointerTy(DAG.getDataLayout())), // Flags 3368 }; 3369 3370 return DAG.getNode(ISD::INLINEASM, SDLoc(Op), 3371 DAG.getVTList(MVT::Other, MVT::Glue), AsmOperands); 3372 } 3373 3374 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 3375 // Calls to _alloca are needed to probe the stack when allocating more than 4k 3376 // bytes in one go. Touching the stack at 4K increments is necessary to ensure 3377 // that the guard pages used by the OS virtual memory manager are allocated in 3378 // correct sequence. 3379 SDValue M68kTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 3380 SelectionDAG &DAG) const { 3381 MachineFunction &MF = DAG.getMachineFunction(); 3382 bool SplitStack = MF.shouldSplitStack(); 3383 3384 SDLoc DL(Op); 3385 3386 // Get the inputs. 3387 SDNode *Node = Op.getNode(); 3388 SDValue Chain = Op.getOperand(0); 3389 SDValue Size = Op.getOperand(1); 3390 unsigned Align = Op.getConstantOperandVal(2); 3391 EVT VT = Node->getValueType(0); 3392 3393 // Chain the dynamic stack allocation so that it doesn't modify the stack 3394 // pointer when other instructions are using the stack. 3395 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); 3396 3397 SDValue Result; 3398 if (SplitStack) { 3399 auto &MRI = MF.getRegInfo(); 3400 auto SPTy = getPointerTy(DAG.getDataLayout()); 3401 auto *ARClass = getRegClassFor(SPTy); 3402 Register Vreg = MRI.createVirtualRegister(ARClass); 3403 Chain = DAG.getCopyToReg(Chain, DL, Vreg, Size); 3404 Result = DAG.getNode(M68kISD::SEG_ALLOCA, DL, SPTy, Chain, 3405 DAG.getRegister(Vreg, SPTy)); 3406 } else { 3407 auto &TLI = DAG.getTargetLoweringInfo(); 3408 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 3409 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 3410 " not tell us which reg is the stack pointer!"); 3411 3412 SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT); 3413 Chain = SP.getValue(1); 3414 const TargetFrameLowering &TFI = *Subtarget.getFrameLowering(); 3415 unsigned StackAlign = TFI.getStackAlignment(); 3416 Result = DAG.getNode(ISD::SUB, DL, VT, SP, Size); // Value 3417 if (Align > StackAlign) 3418 Result = DAG.getNode(ISD::AND, DL, VT, Result, 3419 DAG.getSignedConstant(-(uint64_t)Align, DL, VT)); 3420 Chain = DAG.getCopyToReg(Chain, DL, SPReg, Result); // Output chain 3421 } 3422 3423 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL); 3424 3425 SDValue Ops[2] = {Result, Chain}; 3426 return DAG.getMergeValues(Ops, DL); 3427 } 3428 3429 SDValue M68kTargetLowering::LowerShiftLeftParts(SDValue Op, 3430 SelectionDAG &DAG) const { 3431 SDLoc DL(Op); 3432 SDValue Lo = Op.getOperand(0); 3433 SDValue Hi = Op.getOperand(1); 3434 SDValue Shamt = Op.getOperand(2); 3435 EVT VT = Lo.getValueType(); 3436 3437 // if Shamt - register size < 0: // Shamt < register size 3438 // Lo = Lo << Shamt 3439 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (register size - 1 ^ Shamt)) 3440 // else: 3441 // Lo = 0 3442 // Hi = Lo << (Shamt - register size) 3443 3444 SDValue Zero = DAG.getConstant(0, DL, VT); 3445 SDValue One = DAG.getConstant(1, DL, VT); 3446 SDValue MinusRegisterSize = DAG.getSignedConstant(-32, DL, VT); 3447 SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT); 3448 SDValue ShamtMinusRegisterSize = 3449 DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize); 3450 SDValue RegisterSizeMinus1Shamt = 3451 DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt); 3452 3453 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 3454 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 3455 SDValue ShiftRightLo = 3456 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, RegisterSizeMinus1Shamt); 3457 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 3458 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 3459 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusRegisterSize); 3460 3461 SDValue CC = 3462 DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT); 3463 3464 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 3465 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3466 3467 return DAG.getMergeValues({Lo, Hi}, DL); 3468 } 3469 3470 SDValue M68kTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 3471 bool IsSRA) const { 3472 SDLoc DL(Op); 3473 SDValue Lo = Op.getOperand(0); 3474 SDValue Hi = Op.getOperand(1); 3475 SDValue Shamt = Op.getOperand(2); 3476 EVT VT = Lo.getValueType(); 3477 3478 // SRA expansion: 3479 // if Shamt - register size < 0: // Shamt < register size 3480 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt)) 3481 // Hi = Hi >>s Shamt 3482 // else: 3483 // Lo = Hi >>s (Shamt - register size); 3484 // Hi = Hi >>s (register size - 1) 3485 // 3486 // SRL expansion: 3487 // if Shamt - register size < 0: // Shamt < register size 3488 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt)) 3489 // Hi = Hi >>u Shamt 3490 // else: 3491 // Lo = Hi >>u (Shamt - register size); 3492 // Hi = 0; 3493 3494 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 3495 3496 SDValue Zero = DAG.getConstant(0, DL, VT); 3497 SDValue One = DAG.getConstant(1, DL, VT); 3498 SDValue MinusRegisterSize = DAG.getSignedConstant(-32, DL, VT); 3499 SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT); 3500 SDValue ShamtMinusRegisterSize = 3501 DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize); 3502 SDValue RegisterSizeMinus1Shamt = 3503 DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt); 3504 3505 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 3506 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 3507 SDValue ShiftLeftHi = 3508 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, RegisterSizeMinus1Shamt); 3509 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 3510 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 3511 SDValue LoFalse = 3512 DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusRegisterSize); 3513 SDValue HiFalse = 3514 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, RegisterSizeMinus1) : Zero; 3515 3516 SDValue CC = 3517 DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT); 3518 3519 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 3520 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 3521 3522 return DAG.getMergeValues({Lo, Hi}, DL); 3523 } 3524 3525 //===----------------------------------------------------------------------===// 3526 // DAG Combine 3527 //===----------------------------------------------------------------------===// 3528 3529 static SDValue getSETCC(M68k::CondCode Cond, SDValue CCR, const SDLoc &dl, 3530 SelectionDAG &DAG) { 3531 return DAG.getNode(M68kISD::SETCC, dl, MVT::i8, 3532 DAG.getConstant(Cond, dl, MVT::i8), CCR); 3533 } 3534 // When legalizing carry, we create carries via add X, -1 3535 // If that comes from an actual carry, via setcc, we use the 3536 // carry directly. 3537 static SDValue combineCarryThroughADD(SDValue CCR) { 3538 if (CCR.getOpcode() == M68kISD::ADD) { 3539 if (isAllOnesConstant(CCR.getOperand(1))) { 3540 SDValue Carry = CCR.getOperand(0); 3541 while (Carry.getOpcode() == ISD::TRUNCATE || 3542 Carry.getOpcode() == ISD::ZERO_EXTEND || 3543 Carry.getOpcode() == ISD::SIGN_EXTEND || 3544 Carry.getOpcode() == ISD::ANY_EXTEND || 3545 (Carry.getOpcode() == ISD::AND && 3546 isOneConstant(Carry.getOperand(1)))) 3547 Carry = Carry.getOperand(0); 3548 if (Carry.getOpcode() == M68kISD::SETCC || 3549 Carry.getOpcode() == M68kISD::SETCC_CARRY) { 3550 if (Carry.getConstantOperandVal(0) == M68k::COND_CS) 3551 return Carry.getOperand(1); 3552 } 3553 } 3554 } 3555 3556 return SDValue(); 3557 } 3558 3559 /// Optimize a CCR definition used according to the condition code \p CC into 3560 /// a simpler CCR value, potentially returning a new \p CC and replacing uses 3561 /// of chain values. 3562 static SDValue combineSetCCCCR(SDValue CCR, M68k::CondCode &CC, 3563 SelectionDAG &DAG, 3564 const M68kSubtarget &Subtarget) { 3565 if (CC == M68k::COND_CS) 3566 if (SDValue Flags = combineCarryThroughADD(CCR)) 3567 return Flags; 3568 3569 return SDValue(); 3570 } 3571 3572 // Optimize RES = M68kISD::SETCC CONDCODE, CCR_INPUT 3573 static SDValue combineM68kSetCC(SDNode *N, SelectionDAG &DAG, 3574 const M68kSubtarget &Subtarget) { 3575 SDLoc DL(N); 3576 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(0)); 3577 SDValue CCR = N->getOperand(1); 3578 3579 // Try to simplify the CCR and condition code operands. 3580 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget)) 3581 return getSETCC(CC, Flags, DL, DAG); 3582 3583 return SDValue(); 3584 } 3585 static SDValue combineM68kBrCond(SDNode *N, SelectionDAG &DAG, 3586 const M68kSubtarget &Subtarget) { 3587 SDLoc DL(N); 3588 M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(2)); 3589 SDValue CCR = N->getOperand(3); 3590 3591 // Try to simplify the CCR and condition code operands. 3592 // Make sure to not keep references to operands, as combineSetCCCCR can 3593 // RAUW them under us. 3594 if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget)) { 3595 SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); 3596 return DAG.getNode(M68kISD::BRCOND, DL, N->getVTList(), N->getOperand(0), 3597 N->getOperand(1), Cond, Flags); 3598 } 3599 3600 return SDValue(); 3601 } 3602 3603 static SDValue combineSUBX(SDNode *N, SelectionDAG &DAG) { 3604 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { 3605 MVT VT = N->getSimpleValueType(0); 3606 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3607 return DAG.getNode(M68kISD::SUBX, SDLoc(N), VTs, N->getOperand(0), 3608 N->getOperand(1), Flags); 3609 } 3610 3611 return SDValue(); 3612 } 3613 3614 // Optimize RES, CCR = M68kISD::ADDX LHS, RHS, CCR 3615 static SDValue combineADDX(SDNode *N, SelectionDAG &DAG, 3616 TargetLowering::DAGCombinerInfo &DCI) { 3617 if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) { 3618 MVT VT = N->getSimpleValueType(0); 3619 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3620 return DAG.getNode(M68kISD::ADDX, SDLoc(N), VTs, N->getOperand(0), 3621 N->getOperand(1), Flags); 3622 } 3623 3624 return SDValue(); 3625 } 3626 3627 SDValue M68kTargetLowering::PerformDAGCombine(SDNode *N, 3628 DAGCombinerInfo &DCI) const { 3629 SelectionDAG &DAG = DCI.DAG; 3630 switch (N->getOpcode()) { 3631 case M68kISD::SUBX: 3632 return combineSUBX(N, DAG); 3633 case M68kISD::ADDX: 3634 return combineADDX(N, DAG, DCI); 3635 case M68kISD::SETCC: 3636 return combineM68kSetCC(N, DAG, Subtarget); 3637 case M68kISD::BRCOND: 3638 return combineM68kBrCond(N, DAG, Subtarget); 3639 } 3640 3641 return SDValue(); 3642 } 3643 3644 //===----------------------------------------------------------------------===// 3645 // M68kISD Node Names 3646 //===----------------------------------------------------------------------===// 3647 const char *M68kTargetLowering::getTargetNodeName(unsigned Opcode) const { 3648 switch (Opcode) { 3649 case M68kISD::CALL: 3650 return "M68kISD::CALL"; 3651 case M68kISD::TAIL_CALL: 3652 return "M68kISD::TAIL_CALL"; 3653 case M68kISD::RET: 3654 return "M68kISD::RET"; 3655 case M68kISD::TC_RETURN: 3656 return "M68kISD::TC_RETURN"; 3657 case M68kISD::ADD: 3658 return "M68kISD::ADD"; 3659 case M68kISD::SUB: 3660 return "M68kISD::SUB"; 3661 case M68kISD::ADDX: 3662 return "M68kISD::ADDX"; 3663 case M68kISD::SUBX: 3664 return "M68kISD::SUBX"; 3665 case M68kISD::SMUL: 3666 return "M68kISD::SMUL"; 3667 case M68kISD::UMUL: 3668 return "M68kISD::UMUL"; 3669 case M68kISD::OR: 3670 return "M68kISD::OR"; 3671 case M68kISD::XOR: 3672 return "M68kISD::XOR"; 3673 case M68kISD::AND: 3674 return "M68kISD::AND"; 3675 case M68kISD::CMP: 3676 return "M68kISD::CMP"; 3677 case M68kISD::BTST: 3678 return "M68kISD::BTST"; 3679 case M68kISD::SELECT: 3680 return "M68kISD::SELECT"; 3681 case M68kISD::CMOV: 3682 return "M68kISD::CMOV"; 3683 case M68kISD::BRCOND: 3684 return "M68kISD::BRCOND"; 3685 case M68kISD::SETCC: 3686 return "M68kISD::SETCC"; 3687 case M68kISD::SETCC_CARRY: 3688 return "M68kISD::SETCC_CARRY"; 3689 case M68kISD::GLOBAL_BASE_REG: 3690 return "M68kISD::GLOBAL_BASE_REG"; 3691 case M68kISD::Wrapper: 3692 return "M68kISD::Wrapper"; 3693 case M68kISD::WrapperPC: 3694 return "M68kISD::WrapperPC"; 3695 case M68kISD::SEG_ALLOCA: 3696 return "M68kISD::SEG_ALLOCA"; 3697 default: 3698 return NULL; 3699 } 3700 } 3701 3702 CCAssignFn *M68kTargetLowering::getCCAssignFn(CallingConv::ID CC, bool Return, 3703 bool IsVarArg) const { 3704 if (Return) 3705 return RetCC_M68k_C; 3706 else 3707 return CC_M68k_C; 3708 } 3709