1 //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LanaiTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LanaiISelLowering.h" 14 #include "LanaiCondCode.h" 15 #include "LanaiMachineFunctionInfo.h" 16 #include "LanaiSubtarget.h" 17 #include "LanaiTargetObjectFile.h" 18 #include "MCTargetDesc/LanaiBaseInfo.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/StringSwitch.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SelectionDAG.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetCallingConv.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/CodeGenTypes/MachineValueType.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CodeGen.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/KnownBits.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include <cassert> 48 #include <cmath> 49 #include <cstdint> 50 #include <cstdlib> 51 #include <utility> 52 53 #define DEBUG_TYPE "lanai-lower" 54 55 using namespace llvm; 56 57 // Limit on number of instructions the lowered multiplication may have before a 58 // call to the library function should be generated instead. The threshold is 59 // currently set to 14 as this was the smallest threshold that resulted in all 60 // constant multiplications being lowered. A threshold of 5 covered all cases 61 // except for one multiplication which required 14. mulsi3 requires 16 62 // instructions (including the prologue and epilogue but excluding instructions 63 // at call site). Until we can inline mulsi3, generating at most 14 instructions 64 // will be faster than invoking mulsi3. 65 static cl::opt<int> LanaiLowerConstantMulThreshold( 66 "lanai-constant-mul-threshold", cl::Hidden, 67 cl::desc("Maximum number of instruction to generate when lowering constant " 68 "multiplication instead of calling library function [default=14]"), 69 cl::init(14)); 70 71 LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, 72 const LanaiSubtarget &STI) 73 : TargetLowering(TM) { 74 // Set up the register classes. 75 addRegisterClass(MVT::i32, &Lanai::GPRRegClass); 76 77 // Compute derived properties from the register classes 78 TRI = STI.getRegisterInfo(); 79 computeRegisterProperties(TRI); 80 81 setStackPointerRegisterToSaveRestore(Lanai::SP); 82 83 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 84 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 85 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 86 setOperationAction(ISD::SETCC, MVT::i32, Custom); 87 setOperationAction(ISD::SELECT, MVT::i32, Expand); 88 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 89 90 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 91 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 92 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 93 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 94 95 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 96 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 97 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 98 99 setOperationAction(ISD::VASTART, MVT::Other, Custom); 100 setOperationAction(ISD::VAARG, MVT::Other, Expand); 101 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 102 setOperationAction(ISD::VAEND, MVT::Other, Expand); 103 104 setOperationAction(ISD::SDIV, MVT::i32, Expand); 105 setOperationAction(ISD::UDIV, MVT::i32, Expand); 106 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 107 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 108 setOperationAction(ISD::SREM, MVT::i32, Expand); 109 setOperationAction(ISD::UREM, MVT::i32, Expand); 110 111 setOperationAction(ISD::MUL, MVT::i32, Custom); 112 setOperationAction(ISD::MULHU, MVT::i32, Expand); 113 setOperationAction(ISD::MULHS, MVT::i32, Expand); 114 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 115 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 116 117 setOperationAction(ISD::ROTR, MVT::i32, Expand); 118 setOperationAction(ISD::ROTL, MVT::i32, Expand); 119 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 120 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 121 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 122 123 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 124 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 125 setOperationAction(ISD::CTLZ, MVT::i32, Legal); 126 setOperationAction(ISD::CTTZ, MVT::i32, Legal); 127 128 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 129 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 131 132 // Extended load operations for i1 types must be promoted 133 for (MVT VT : MVT::integer_valuetypes()) { 134 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 135 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 137 } 138 139 setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR}); 140 141 // Function alignments 142 setMinFunctionAlignment(Align(4)); 143 setPrefFunctionAlignment(Align(4)); 144 145 setJumpIsExpensive(true); 146 147 // TODO: Setting the minimum jump table entries needed before a 148 // switch is transformed to a jump table to 100 to avoid creating jump tables 149 // as this was causing bad performance compared to a large group of if 150 // statements. Re-evaluate this on new benchmarks. 151 setMinimumJumpTableEntries(100); 152 153 // Use fast calling convention for library functions. 154 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { 155 setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); 156 } 157 158 MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 159 MaxStoresPerMemsetOptSize = 8; 160 MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 161 MaxStoresPerMemcpyOptSize = 8; 162 MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores 163 MaxStoresPerMemmoveOptSize = 8; 164 165 // Booleans always contain 0 or 1. 166 setBooleanContents(ZeroOrOneBooleanContent); 167 168 setMaxAtomicSizeInBitsSupported(0); 169 } 170 171 SDValue LanaiTargetLowering::LowerOperation(SDValue Op, 172 SelectionDAG &DAG) const { 173 switch (Op.getOpcode()) { 174 case ISD::MUL: 175 return LowerMUL(Op, DAG); 176 case ISD::BR_CC: 177 return LowerBR_CC(Op, DAG); 178 case ISD::ConstantPool: 179 return LowerConstantPool(Op, DAG); 180 case ISD::GlobalAddress: 181 return LowerGlobalAddress(Op, DAG); 182 case ISD::BlockAddress: 183 return LowerBlockAddress(Op, DAG); 184 case ISD::JumpTable: 185 return LowerJumpTable(Op, DAG); 186 case ISD::SELECT_CC: 187 return LowerSELECT_CC(Op, DAG); 188 case ISD::SETCC: 189 return LowerSETCC(Op, DAG); 190 case ISD::SHL_PARTS: 191 return LowerSHL_PARTS(Op, DAG); 192 case ISD::SRL_PARTS: 193 return LowerSRL_PARTS(Op, DAG); 194 case ISD::VASTART: 195 return LowerVASTART(Op, DAG); 196 case ISD::DYNAMIC_STACKALLOC: 197 return LowerDYNAMIC_STACKALLOC(Op, DAG); 198 case ISD::RETURNADDR: 199 return LowerRETURNADDR(Op, DAG); 200 case ISD::FRAMEADDR: 201 return LowerFRAMEADDR(Op, DAG); 202 default: 203 llvm_unreachable("unimplemented operand"); 204 } 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Lanai Inline Assembly Support 209 //===----------------------------------------------------------------------===// 210 211 Register LanaiTargetLowering::getRegisterByName( 212 const char *RegName, LLT /*VT*/, 213 const MachineFunction & /*MF*/) const { 214 // Only unallocatable registers should be matched here. 215 Register Reg = StringSwitch<unsigned>(RegName) 216 .Case("pc", Lanai::PC) 217 .Case("sp", Lanai::SP) 218 .Case("fp", Lanai::FP) 219 .Case("rr1", Lanai::RR1) 220 .Case("r10", Lanai::R10) 221 .Case("rr2", Lanai::RR2) 222 .Case("r11", Lanai::R11) 223 .Case("rca", Lanai::RCA) 224 .Default(0); 225 226 if (Reg) 227 return Reg; 228 report_fatal_error("Invalid register name global variable"); 229 } 230 231 std::pair<unsigned, const TargetRegisterClass *> 232 LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 233 StringRef Constraint, 234 MVT VT) const { 235 if (Constraint.size() == 1) 236 // GCC Constraint Letters 237 switch (Constraint[0]) { 238 case 'r': // GENERAL_REGS 239 return std::make_pair(0U, &Lanai::GPRRegClass); 240 default: 241 break; 242 } 243 244 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 245 } 246 247 // Examine constraint type and operand type and determine a weight value. 248 // This object must already have been set up with the operand type 249 // and the current alternative constraint selected. 250 TargetLowering::ConstraintWeight 251 LanaiTargetLowering::getSingleConstraintMatchWeight( 252 AsmOperandInfo &Info, const char *Constraint) const { 253 ConstraintWeight Weight = CW_Invalid; 254 Value *CallOperandVal = Info.CallOperandVal; 255 // If we don't have a value, we can't do a match, 256 // but allow it at the lowest weight. 257 if (CallOperandVal == nullptr) 258 return CW_Default; 259 // Look at the constraint type. 260 switch (*Constraint) { 261 case 'I': // signed 16 bit immediate 262 case 'J': // integer zero 263 case 'K': // unsigned 16 bit immediate 264 case 'L': // immediate in the range 0 to 31 265 case 'M': // signed 32 bit immediate where lower 16 bits are 0 266 case 'N': // signed 26 bit immediate 267 case 'O': // integer zero 268 if (isa<ConstantInt>(CallOperandVal)) 269 Weight = CW_Constant; 270 break; 271 default: 272 Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); 273 break; 274 } 275 return Weight; 276 } 277 278 // LowerAsmOperandForConstraint - Lower the specified operand into the Ops 279 // vector. If it is invalid, don't add anything to Ops. 280 void LanaiTargetLowering::LowerAsmOperandForConstraint( 281 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 282 SelectionDAG &DAG) const { 283 SDValue Result; 284 285 // Only support length 1 constraints for now. 286 if (Constraint.size() > 1) 287 return; 288 289 char ConstraintLetter = Constraint[0]; 290 switch (ConstraintLetter) { 291 case 'I': // Signed 16 bit constant 292 // If this fails, the parent routine will give an error 293 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 294 if (isInt<16>(C->getSExtValue())) { 295 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 296 Op.getValueType()); 297 break; 298 } 299 } 300 return; 301 case 'J': // integer zero 302 case 'O': 303 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 304 if (C->getZExtValue() == 0) { 305 Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); 306 break; 307 } 308 } 309 return; 310 case 'K': // unsigned 16 bit immediate 311 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 312 if (isUInt<16>(C->getZExtValue())) { 313 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), 314 Op.getValueType()); 315 break; 316 } 317 } 318 return; 319 case 'L': // immediate in the range 0 to 31 320 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 321 if (C->getZExtValue() <= 31) { 322 Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), 323 Op.getValueType()); 324 break; 325 } 326 } 327 return; 328 case 'M': // signed 32 bit immediate where lower 16 bits are 0 329 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 330 int64_t Val = C->getSExtValue(); 331 if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { 332 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 333 break; 334 } 335 } 336 return; 337 case 'N': // signed 26 bit immediate 338 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 339 int64_t Val = C->getSExtValue(); 340 if ((Val >= -33554432) && (Val <= 33554431)) { 341 Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); 342 break; 343 } 344 } 345 return; 346 default: 347 break; // This will fall through to the generic implementation 348 } 349 350 if (Result.getNode()) { 351 Ops.push_back(Result); 352 return; 353 } 354 355 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 356 } 357 358 //===----------------------------------------------------------------------===// 359 // Calling Convention Implementation 360 //===----------------------------------------------------------------------===// 361 362 #include "LanaiGenCallingConv.inc" 363 364 static unsigned NumFixedArgs; 365 static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, 366 CCValAssign::LocInfo LocInfo, 367 ISD::ArgFlagsTy ArgFlags, CCState &State) { 368 // Handle fixed arguments with default CC. 369 // Note: Both the default and fast CC handle VarArg the same and hence the 370 // calling convention of the function is not considered here. 371 if (ValNo < NumFixedArgs) { 372 return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); 373 } 374 375 // Promote i8/i16 args to i32 376 if (LocVT == MVT::i8 || LocVT == MVT::i16) { 377 LocVT = MVT::i32; 378 if (ArgFlags.isSExt()) 379 LocInfo = CCValAssign::SExt; 380 else if (ArgFlags.isZExt()) 381 LocInfo = CCValAssign::ZExt; 382 else 383 LocInfo = CCValAssign::AExt; 384 } 385 386 // VarArgs get passed on stack 387 unsigned Offset = State.AllocateStack(4, Align(4)); 388 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 389 return false; 390 } 391 392 SDValue LanaiTargetLowering::LowerFormalArguments( 393 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 394 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 395 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 396 switch (CallConv) { 397 case CallingConv::C: 398 case CallingConv::Fast: 399 return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); 400 default: 401 report_fatal_error("Unsupported calling convention"); 402 } 403 } 404 405 SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 406 SmallVectorImpl<SDValue> &InVals) const { 407 SelectionDAG &DAG = CLI.DAG; 408 SDLoc &DL = CLI.DL; 409 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 410 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 411 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 412 SDValue Chain = CLI.Chain; 413 SDValue Callee = CLI.Callee; 414 bool &IsTailCall = CLI.IsTailCall; 415 CallingConv::ID CallConv = CLI.CallConv; 416 bool IsVarArg = CLI.IsVarArg; 417 418 // Lanai target does not yet support tail call optimization. 419 IsTailCall = false; 420 421 switch (CallConv) { 422 case CallingConv::Fast: 423 case CallingConv::C: 424 return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, 425 OutVals, Ins, DL, DAG, InVals); 426 default: 427 report_fatal_error("Unsupported calling convention"); 428 } 429 } 430 431 // LowerCCCArguments - transform physical registers into virtual registers and 432 // generate load operations for arguments places on the stack. 433 SDValue LanaiTargetLowering::LowerCCCArguments( 434 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 435 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 436 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 437 MachineFunction &MF = DAG.getMachineFunction(); 438 MachineFrameInfo &MFI = MF.getFrameInfo(); 439 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 440 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 441 442 // Assign locations to all of the incoming arguments. 443 SmallVector<CCValAssign, 16> ArgLocs; 444 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 445 *DAG.getContext()); 446 if (CallConv == CallingConv::Fast) { 447 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); 448 } else { 449 CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); 450 } 451 452 for (const CCValAssign &VA : ArgLocs) { 453 if (VA.isRegLoc()) { 454 // Arguments passed in registers 455 EVT RegVT = VA.getLocVT(); 456 switch (RegVT.getSimpleVT().SimpleTy) { 457 case MVT::i32: { 458 Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); 459 RegInfo.addLiveIn(VA.getLocReg(), VReg); 460 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); 461 462 // If this is an 8/16-bit value, it is really passed promoted to 32 463 // bits. Insert an assert[sz]ext to capture this, then truncate to the 464 // right size. 465 if (VA.getLocInfo() == CCValAssign::SExt) 466 ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, 467 DAG.getValueType(VA.getValVT())); 468 else if (VA.getLocInfo() == CCValAssign::ZExt) 469 ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, 470 DAG.getValueType(VA.getValVT())); 471 472 if (VA.getLocInfo() != CCValAssign::Full) 473 ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); 474 475 InVals.push_back(ArgValue); 476 break; 477 } 478 default: 479 LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " 480 << RegVT << "\n"); 481 llvm_unreachable("unhandled argument type"); 482 } 483 } else { 484 // Only arguments passed on the stack should make it here. 485 assert(VA.isMemLoc()); 486 // Load the argument to a virtual register 487 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 488 // Check that the argument fits in stack slot 489 if (ObjSize > 4) { 490 errs() << "LowerFormalArguments Unhandled argument type: " 491 << VA.getLocVT() << "\n"; 492 } 493 // Create the frame index object for this incoming parameter... 494 int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 495 496 // Create the SelectionDAG nodes corresponding to a load 497 // from this parameter 498 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 499 InVals.push_back(DAG.getLoad( 500 VA.getLocVT(), DL, Chain, FIN, 501 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 502 } 503 } 504 505 // The Lanai ABI for returning structs by value requires that we copy 506 // the sret argument into rv for the return. Save the argument into 507 // a virtual register so that we can access it from the return points. 508 if (MF.getFunction().hasStructRetAttr()) { 509 Register Reg = LanaiMFI->getSRetReturnReg(); 510 if (!Reg) { 511 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); 512 LanaiMFI->setSRetReturnReg(Reg); 513 } 514 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); 515 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); 516 } 517 518 if (IsVarArg) { 519 // Record the frame index of the first variable argument 520 // which is a value necessary to VASTART. 521 int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true); 522 LanaiMFI->setVarArgsFrameIndex(FI); 523 } 524 525 return Chain; 526 } 527 528 bool LanaiTargetLowering::CanLowerReturn( 529 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 530 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, 531 const Type *RetTy) const { 532 SmallVector<CCValAssign, 16> RVLocs; 533 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 534 535 return CCInfo.CheckReturn(Outs, RetCC_Lanai32); 536 } 537 538 SDValue 539 LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 540 bool IsVarArg, 541 const SmallVectorImpl<ISD::OutputArg> &Outs, 542 const SmallVectorImpl<SDValue> &OutVals, 543 const SDLoc &DL, SelectionDAG &DAG) const { 544 // CCValAssign - represent the assignment of the return value to a location 545 SmallVector<CCValAssign, 16> RVLocs; 546 547 // CCState - Info about the registers and stack slot. 548 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 549 *DAG.getContext()); 550 551 // Analize return values. 552 CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); 553 554 SDValue Glue; 555 SmallVector<SDValue, 4> RetOps(1, Chain); 556 557 // Copy the result values into the output registers. 558 for (unsigned i = 0; i != RVLocs.size(); ++i) { 559 CCValAssign &VA = RVLocs[i]; 560 assert(VA.isRegLoc() && "Can only return in registers!"); 561 562 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue); 563 564 // Guarantee that all emitted copies are stuck together with flags. 565 Glue = Chain.getValue(1); 566 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 567 } 568 569 // The Lanai ABI for returning structs by value requires that we copy 570 // the sret argument into rv for the return. We saved the argument into 571 // a virtual register in the entry block, so now we copy the value out 572 // and into rv. 573 if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { 574 MachineFunction &MF = DAG.getMachineFunction(); 575 LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); 576 Register Reg = LanaiMFI->getSRetReturnReg(); 577 assert(Reg && 578 "SRetReturnReg should have been set in LowerFormalArguments()."); 579 SDValue Val = 580 DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); 581 582 Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue); 583 Glue = Chain.getValue(1); 584 RetOps.push_back( 585 DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); 586 } 587 588 RetOps[0] = Chain; // Update chain 589 590 unsigned Opc = LanaiISD::RET_GLUE; 591 if (Glue.getNode()) 592 RetOps.push_back(Glue); 593 594 // Return Void 595 return DAG.getNode(Opc, DL, MVT::Other, 596 ArrayRef<SDValue>(&RetOps[0], RetOps.size())); 597 } 598 599 // LowerCCCCallTo - functions arguments are copied from virtual regs to 600 // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 601 SDValue LanaiTargetLowering::LowerCCCCallTo( 602 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, 603 bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, 604 const SmallVectorImpl<SDValue> &OutVals, 605 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 606 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 607 // Analyze operands of the call, assigning locations to each operand. 608 SmallVector<CCValAssign, 16> ArgLocs; 609 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 610 *DAG.getContext()); 611 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 612 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 613 614 NumFixedArgs = 0; 615 if (IsVarArg && G) { 616 const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); 617 if (CalleeFn) 618 NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); 619 } 620 if (NumFixedArgs) 621 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); 622 else { 623 if (CallConv == CallingConv::Fast) 624 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); 625 else 626 CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); 627 } 628 629 // Get a count of how many bytes are to be pushed on the stack. 630 unsigned NumBytes = CCInfo.getStackSize(); 631 632 // Create local copies for byval args. 633 SmallVector<SDValue, 8> ByValArgs; 634 for (unsigned I = 0, E = Outs.size(); I != E; ++I) { 635 ISD::ArgFlagsTy Flags = Outs[I].Flags; 636 if (!Flags.isByVal()) 637 continue; 638 639 SDValue Arg = OutVals[I]; 640 unsigned Size = Flags.getByValSize(); 641 Align Alignment = Flags.getNonZeroByValAlign(); 642 643 int FI = MFI.CreateStackObject(Size, Alignment, false); 644 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 645 SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); 646 647 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 648 /*IsVolatile=*/false, 649 /*AlwaysInline=*/false, 650 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), 651 MachinePointerInfo()); 652 ByValArgs.push_back(FIPtr); 653 } 654 655 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 656 657 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 658 SmallVector<SDValue, 12> MemOpChains; 659 SDValue StackPtr; 660 661 // Walk the register/memloc assignments, inserting copies/loads. 662 for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { 663 CCValAssign &VA = ArgLocs[I]; 664 SDValue Arg = OutVals[I]; 665 ISD::ArgFlagsTy Flags = Outs[I].Flags; 666 667 // Promote the value if needed. 668 switch (VA.getLocInfo()) { 669 case CCValAssign::Full: 670 break; 671 case CCValAssign::SExt: 672 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 673 break; 674 case CCValAssign::ZExt: 675 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 676 break; 677 case CCValAssign::AExt: 678 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 679 break; 680 default: 681 llvm_unreachable("Unknown loc info!"); 682 } 683 684 // Use local copy if it is a byval arg. 685 if (Flags.isByVal()) 686 Arg = ByValArgs[J++]; 687 688 // Arguments that can be passed on register must be kept at RegsToPass 689 // vector 690 if (VA.isRegLoc()) { 691 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 692 } else { 693 assert(VA.isMemLoc()); 694 695 if (StackPtr.getNode() == nullptr) 696 StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, 697 getPointerTy(DAG.getDataLayout())); 698 699 SDValue PtrOff = 700 DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, 701 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 702 703 MemOpChains.push_back( 704 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 705 } 706 } 707 708 // Transform all store nodes into one single node because all store nodes are 709 // independent of each other. 710 if (!MemOpChains.empty()) 711 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 712 ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); 713 714 SDValue InGlue; 715 716 // Build a sequence of copy-to-reg nodes chained together with token chain and 717 // flag operands which copy the outgoing args into registers. The InGlue in 718 // necessary since all emitted instructions must be stuck together. 719 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 720 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 721 RegsToPass[I].second, InGlue); 722 InGlue = Chain.getValue(1); 723 } 724 725 // If the callee is a GlobalAddress node (quite common, every direct call is) 726 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 727 // Likewise ExternalSymbol -> TargetExternalSymbol. 728 uint8_t OpFlag = LanaiII::MO_NO_FLAG; 729 if (G) { 730 Callee = DAG.getTargetGlobalAddress( 731 G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); 732 } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 733 Callee = DAG.getTargetExternalSymbol( 734 E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); 735 } 736 737 // Returns a chain & a flag for retval copy to use. 738 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 739 SmallVector<SDValue, 8> Ops; 740 Ops.push_back(Chain); 741 Ops.push_back(Callee); 742 743 // Add a register mask operand representing the call-preserved registers. 744 // TODO: Should return-twice functions be handled? 745 const uint32_t *Mask = 746 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 747 assert(Mask && "Missing call preserved mask for calling convention"); 748 Ops.push_back(DAG.getRegisterMask(Mask)); 749 750 // Add argument registers to the end of the list so that they are 751 // known live into the call. 752 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 753 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 754 RegsToPass[I].second.getValueType())); 755 756 if (InGlue.getNode()) 757 Ops.push_back(InGlue); 758 759 Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, 760 ArrayRef<SDValue>(&Ops[0], Ops.size())); 761 InGlue = Chain.getValue(1); 762 763 // Create the CALLSEQ_END node. 764 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL); 765 InGlue = Chain.getValue(1); 766 767 // Handle result values, copying them out of physregs into vregs that we 768 // return. 769 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG, 770 InVals); 771 } 772 773 // LowerCallResult - Lower the result values of a call into the 774 // appropriate copies out of appropriate physical registers. 775 SDValue LanaiTargetLowering::LowerCallResult( 776 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg, 777 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 778 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 779 // Assign locations to each value returned by this call. 780 SmallVector<CCValAssign, 16> RVLocs; 781 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 782 *DAG.getContext()); 783 784 CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); 785 786 // Copy all of the result registers out of their specified physreg. 787 for (unsigned I = 0; I != RVLocs.size(); ++I) { 788 Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), 789 RVLocs[I].getValVT(), InGlue) 790 .getValue(1); 791 InGlue = Chain.getValue(2); 792 InVals.push_back(Chain.getValue(0)); 793 } 794 795 return Chain; 796 } 797 798 //===----------------------------------------------------------------------===// 799 // Custom Lowerings 800 //===----------------------------------------------------------------------===// 801 802 static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, 803 SDValue &RHS, SelectionDAG &DAG) { 804 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 805 806 // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, 807 // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) 808 // and Lanai only supports integer comparisons, so only provide definitions 809 // for them. 810 switch (SetCCOpcode) { 811 case ISD::SETEQ: 812 return LPCC::ICC_EQ; 813 case ISD::SETGT: 814 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 815 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 816 // X > -1 -> X >= 0 -> is_plus(X) 817 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 818 return LPCC::ICC_PL; 819 } 820 return LPCC::ICC_GT; 821 case ISD::SETUGT: 822 return LPCC::ICC_UGT; 823 case ISD::SETLT: 824 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 825 if (RHSC->getZExtValue() == 0) 826 // X < 0 -> is_minus(X) 827 return LPCC::ICC_MI; 828 return LPCC::ICC_LT; 829 case ISD::SETULT: 830 return LPCC::ICC_ULT; 831 case ISD::SETLE: 832 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 833 if (RHSC->getZExtValue() == 0xFFFFFFFF) { 834 // X <= -1 -> X < 0 -> is_minus(X) 835 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 836 return LPCC::ICC_MI; 837 } 838 return LPCC::ICC_LE; 839 case ISD::SETULE: 840 return LPCC::ICC_ULE; 841 case ISD::SETGE: 842 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) 843 if (RHSC->getZExtValue() == 0) 844 // X >= 0 -> is_plus(X) 845 return LPCC::ICC_PL; 846 return LPCC::ICC_GE; 847 case ISD::SETUGE: 848 return LPCC::ICC_UGE; 849 case ISD::SETNE: 850 return LPCC::ICC_NE; 851 case ISD::SETONE: 852 case ISD::SETUNE: 853 case ISD::SETOGE: 854 case ISD::SETOLE: 855 case ISD::SETOLT: 856 case ISD::SETOGT: 857 case ISD::SETOEQ: 858 case ISD::SETUEQ: 859 case ISD::SETO: 860 case ISD::SETUO: 861 llvm_unreachable("Unsupported comparison."); 862 default: 863 llvm_unreachable("Unknown integer condition code!"); 864 } 865 } 866 867 SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 868 SDValue Chain = Op.getOperand(0); 869 SDValue Cond = Op.getOperand(1); 870 SDValue LHS = Op.getOperand(2); 871 SDValue RHS = Op.getOperand(3); 872 SDValue Dest = Op.getOperand(4); 873 SDLoc DL(Op); 874 875 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 876 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 877 SDValue Glue = DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS); 878 879 return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, 880 TargetCC, Glue); 881 } 882 883 SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 884 EVT VT = Op->getValueType(0); 885 if (VT != MVT::i32) 886 return SDValue(); 887 888 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); 889 if (!C) 890 return SDValue(); 891 892 int64_t MulAmt = C->getSExtValue(); 893 int32_t HighestOne = -1; 894 uint32_t NonzeroEntries = 0; 895 int SignedDigit[32] = {0}; 896 897 // Convert to non-adjacent form (NAF) signed-digit representation. 898 // NAF is a signed-digit form where no adjacent digits are non-zero. It is the 899 // minimal Hamming weight representation of a number (on average 1/3 of the 900 // digits will be non-zero vs 1/2 for regular binary representation). And as 901 // the non-zero digits will be the only digits contributing to the instruction 902 // count, this is desirable. The next loop converts it to NAF (following the 903 // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by 904 // choosing the non-zero coefficients such that the resulting quotient is 905 // divisible by 2 which will cause the next coefficient to be zero. 906 int64_t E = std::abs(MulAmt); 907 int S = (MulAmt < 0 ? -1 : 1); 908 int I = 0; 909 while (E > 0) { 910 int ZI = 0; 911 if (E % 2 == 1) { 912 ZI = 2 - (E % 4); 913 if (ZI != 0) 914 ++NonzeroEntries; 915 } 916 SignedDigit[I] = S * ZI; 917 if (SignedDigit[I] == 1) 918 HighestOne = I; 919 E = (E - ZI) / 2; 920 ++I; 921 } 922 923 // Compute number of instructions required. Due to differences in lowering 924 // between the different processors this count is not exact. 925 // Start by assuming a shift and a add/sub for every non-zero entry (hence 926 // every non-zero entry requires 1 shift and 1 add/sub except for the first 927 // entry). 928 int32_t InstrRequired = 2 * NonzeroEntries - 1; 929 // Correct possible over-adding due to shift by 0 (which is not emitted). 930 if (std::abs(MulAmt) % 2 == 1) 931 --InstrRequired; 932 // Return if the form generated would exceed the instruction threshold. 933 if (InstrRequired > LanaiLowerConstantMulThreshold) 934 return SDValue(); 935 936 SDValue Res; 937 SDLoc DL(Op); 938 SDValue V = Op->getOperand(0); 939 940 // Initialize the running sum. Set the running sum to the maximal shifted 941 // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a 942 // term NAF). 943 if (HighestOne == -1) 944 Res = DAG.getConstant(0, DL, MVT::i32); 945 else { 946 Res = DAG.getNode(ISD::SHL, DL, VT, V, 947 DAG.getConstant(HighestOne, DL, MVT::i32)); 948 SignedDigit[HighestOne] = 0; 949 } 950 951 // Assemble multiplication from shift, add, sub using NAF form and running 952 // sum. 953 for (unsigned int I = 0; I < std::size(SignedDigit); ++I) { 954 if (SignedDigit[I] == 0) 955 continue; 956 957 // Shifted multiplicand (v<<i). 958 SDValue Op = 959 DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); 960 if (SignedDigit[I] == 1) 961 Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); 962 else if (SignedDigit[I] == -1) 963 Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); 964 } 965 return Res; 966 } 967 968 SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 969 SDValue LHS = Op.getOperand(0); 970 SDValue RHS = Op.getOperand(1); 971 SDValue Cond = Op.getOperand(2); 972 SDLoc DL(Op); 973 974 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 975 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 976 SDValue Glue = DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS); 977 978 return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue); 979 } 980 981 SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, 982 SelectionDAG &DAG) const { 983 SDValue LHS = Op.getOperand(0); 984 SDValue RHS = Op.getOperand(1); 985 SDValue TrueV = Op.getOperand(2); 986 SDValue FalseV = Op.getOperand(3); 987 SDValue Cond = Op.getOperand(4); 988 SDLoc DL(Op); 989 990 LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); 991 SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); 992 SDValue Glue = DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS); 993 994 return DAG.getNode(LanaiISD::SELECT_CC, DL, Op.getValueType(), TrueV, FalseV, 995 TargetCC, Glue); 996 } 997 998 SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 999 MachineFunction &MF = DAG.getMachineFunction(); 1000 LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); 1001 1002 SDLoc DL(Op); 1003 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 1004 getPointerTy(DAG.getDataLayout())); 1005 1006 // vastart just stores the address of the VarArgsFrameIndex slot into the 1007 // memory location argument. 1008 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1009 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 1010 MachinePointerInfo(SV)); 1011 } 1012 1013 SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 1014 SelectionDAG &DAG) const { 1015 SDValue Chain = Op.getOperand(0); 1016 SDValue Size = Op.getOperand(1); 1017 SDLoc DL(Op); 1018 1019 Register SPReg = getStackPointerRegisterToSaveRestore(); 1020 1021 // Get a reference to the stack pointer. 1022 SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); 1023 1024 // Subtract the dynamic size from the actual stack size to 1025 // obtain the new stack size. 1026 SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); 1027 1028 // For Lanai, the outgoing memory arguments area should be on top of the 1029 // alloca area on the stack i.e., the outgoing memory arguments should be 1030 // at a lower address than the alloca area. Move the alloca area down the 1031 // stack by adding back the space reserved for outgoing arguments to SP 1032 // here. 1033 // 1034 // We do not know what the size of the outgoing args is at this point. 1035 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the 1036 // stack pointer. We replace this instruction with on that has the correct, 1037 // known offset in emitPrologue(). 1038 SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); 1039 1040 // The Sub result contains the new stack start address, so it 1041 // must be placed in the stack pointer register. 1042 SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); 1043 1044 SDValue Ops[2] = {ArgAdjust, CopyChain}; 1045 return DAG.getMergeValues(Ops, DL); 1046 } 1047 1048 SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, 1049 SelectionDAG &DAG) const { 1050 MachineFunction &MF = DAG.getMachineFunction(); 1051 MachineFrameInfo &MFI = MF.getFrameInfo(); 1052 MFI.setReturnAddressIsTaken(true); 1053 1054 EVT VT = Op.getValueType(); 1055 SDLoc DL(Op); 1056 unsigned Depth = Op.getConstantOperandVal(0); 1057 if (Depth) { 1058 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1059 const unsigned Offset = -4; 1060 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1061 DAG.getIntPtrConstant(Offset, DL)); 1062 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1063 } 1064 1065 // Return the link register, which contains the return address. 1066 // Mark it an implicit live-in. 1067 Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); 1068 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 1069 } 1070 1071 SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, 1072 SelectionDAG &DAG) const { 1073 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1074 MFI.setFrameAddressIsTaken(true); 1075 1076 EVT VT = Op.getValueType(); 1077 SDLoc DL(Op); 1078 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); 1079 unsigned Depth = Op.getConstantOperandVal(0); 1080 while (Depth--) { 1081 const unsigned Offset = -8; 1082 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 1083 DAG.getIntPtrConstant(Offset, DL)); 1084 FrameAddr = 1085 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 1086 } 1087 return FrameAddr; 1088 } 1089 1090 const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { 1091 switch (Opcode) { 1092 case LanaiISD::ADJDYNALLOC: 1093 return "LanaiISD::ADJDYNALLOC"; 1094 case LanaiISD::RET_GLUE: 1095 return "LanaiISD::RET_GLUE"; 1096 case LanaiISD::CALL: 1097 return "LanaiISD::CALL"; 1098 case LanaiISD::SELECT_CC: 1099 return "LanaiISD::SELECT_CC"; 1100 case LanaiISD::SETCC: 1101 return "LanaiISD::SETCC"; 1102 case LanaiISD::SUBBF: 1103 return "LanaiISD::SUBBF"; 1104 case LanaiISD::SET_FLAG: 1105 return "LanaiISD::SET_FLAG"; 1106 case LanaiISD::BR_CC: 1107 return "LanaiISD::BR_CC"; 1108 case LanaiISD::Wrapper: 1109 return "LanaiISD::Wrapper"; 1110 case LanaiISD::HI: 1111 return "LanaiISD::HI"; 1112 case LanaiISD::LO: 1113 return "LanaiISD::LO"; 1114 case LanaiISD::SMALL: 1115 return "LanaiISD::SMALL"; 1116 default: 1117 return nullptr; 1118 } 1119 } 1120 1121 SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, 1122 SelectionDAG &DAG) const { 1123 SDLoc DL(Op); 1124 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 1125 const Constant *C = N->getConstVal(); 1126 const LanaiTargetObjectFile *TLOF = 1127 static_cast<const LanaiTargetObjectFile *>( 1128 getTargetMachine().getObjFileLowering()); 1129 1130 // If the code model is small or constant will be placed in the small section, 1131 // then assume address will fit in 21-bits. 1132 if (getTargetMachine().getCodeModel() == CodeModel::Small || 1133 TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { 1134 SDValue Small = DAG.getTargetConstantPool( 1135 C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG); 1136 return DAG.getNode(ISD::OR, DL, MVT::i32, 1137 DAG.getRegister(Lanai::R0, MVT::i32), 1138 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1139 } else { 1140 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1141 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1142 1143 SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1144 N->getOffset(), OpFlagHi); 1145 SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(), 1146 N->getOffset(), OpFlagLo); 1147 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1148 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1149 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1150 return Result; 1151 } 1152 } 1153 1154 SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, 1155 SelectionDAG &DAG) const { 1156 SDLoc DL(Op); 1157 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 1158 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 1159 1160 const LanaiTargetObjectFile *TLOF = 1161 static_cast<const LanaiTargetObjectFile *>( 1162 getTargetMachine().getObjFileLowering()); 1163 1164 // If the code model is small or global variable will be placed in the small 1165 // section, then assume address will fit in 21-bits. 1166 const GlobalObject *GO = GV->getAliaseeObject(); 1167 if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { 1168 SDValue Small = DAG.getTargetGlobalAddress( 1169 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); 1170 return DAG.getNode(ISD::OR, DL, MVT::i32, 1171 DAG.getRegister(Lanai::R0, MVT::i32), 1172 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1173 } else { 1174 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1175 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1176 1177 // Create the TargetGlobalAddress node, folding in the constant offset. 1178 SDValue Hi = DAG.getTargetGlobalAddress( 1179 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); 1180 SDValue Lo = DAG.getTargetGlobalAddress( 1181 GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); 1182 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1183 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1184 return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1185 } 1186 } 1187 1188 SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, 1189 SelectionDAG &DAG) const { 1190 SDLoc DL(Op); 1191 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 1192 1193 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1194 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1195 1196 SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); 1197 SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); 1198 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1199 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1200 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1201 return Result; 1202 } 1203 1204 SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, 1205 SelectionDAG &DAG) const { 1206 SDLoc DL(Op); 1207 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1208 1209 // If the code model is small assume address will fit in 21-bits. 1210 if (getTargetMachine().getCodeModel() == CodeModel::Small) { 1211 SDValue Small = DAG.getTargetJumpTable( 1212 JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); 1213 return DAG.getNode(ISD::OR, DL, MVT::i32, 1214 DAG.getRegister(Lanai::R0, MVT::i32), 1215 DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); 1216 } else { 1217 uint8_t OpFlagHi = LanaiII::MO_ABS_HI; 1218 uint8_t OpFlagLo = LanaiII::MO_ABS_LO; 1219 1220 SDValue Hi = DAG.getTargetJumpTable( 1221 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); 1222 SDValue Lo = DAG.getTargetJumpTable( 1223 JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); 1224 Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); 1225 Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); 1226 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); 1227 return Result; 1228 } 1229 } 1230 1231 SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, 1232 SelectionDAG &DAG) const { 1233 EVT VT = Op.getValueType(); 1234 unsigned VTBits = VT.getSizeInBits(); 1235 SDLoc dl(Op); 1236 assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); 1237 SDValue ShOpLo = Op.getOperand(0); 1238 SDValue ShOpHi = Op.getOperand(1); 1239 SDValue ShAmt = Op.getOperand(2); 1240 1241 // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: 1242 // LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) 1243 // HiBitsForHi = ShOpHi << ShAmt 1244 // Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) 1245 // Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) 1246 // return (Hi << 32) | Lo; 1247 1248 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 1249 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1250 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 1251 1252 // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We 1253 // wanted 0, so CSEL it directly. 1254 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1255 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1256 LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); 1257 1258 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 1259 DAG.getConstant(VTBits, dl, MVT::i32)); 1260 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 1261 SDValue HiForNormalShift = 1262 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); 1263 1264 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 1265 1266 SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); 1267 SDValue Hi = 1268 DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); 1269 1270 // Lanai shifts of larger than register sizes are wrapped rather than 1271 // clamped, so we can't just emit "lo << b" if b is too big. 1272 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 1273 SDValue Lo = DAG.getSelect( 1274 dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); 1275 1276 SDValue Ops[2] = {Lo, Hi}; 1277 return DAG.getMergeValues(Ops, dl); 1278 } 1279 1280 SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, 1281 SelectionDAG &DAG) const { 1282 MVT VT = Op.getSimpleValueType(); 1283 unsigned VTBits = VT.getSizeInBits(); 1284 SDLoc dl(Op); 1285 SDValue ShOpLo = Op.getOperand(0); 1286 SDValue ShOpHi = Op.getOperand(1); 1287 SDValue ShAmt = Op.getOperand(2); 1288 1289 // Performs the following for a >> b: 1290 // unsigned r_high = a_high >> b; 1291 // r_high = (32 - b <= 0) ? 0 : r_high; 1292 // 1293 // unsigned r_low = a_low >> b; 1294 // r_low = (32 - b <= 0) ? r_high : r_low; 1295 // r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); 1296 // return (unsigned long long)r_high << 32 | r_low; 1297 // Note: This takes advantage of Lanai's shift behavior to avoid needing to 1298 // mask the shift amount. 1299 1300 SDValue Zero = DAG.getConstant(0, dl, MVT::i32); 1301 SDValue NegatedPlus32 = DAG.getNode( 1302 ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 1303 SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); 1304 1305 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); 1306 Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); 1307 1308 SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); 1309 Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); 1310 SDValue CarryBits = 1311 DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); 1312 SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); 1313 Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, 1314 DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); 1315 1316 SDValue Ops[2] = {Lo, Hi}; 1317 return DAG.getMergeValues(Ops, dl); 1318 } 1319 1320 // Helper function that checks if N is a null or all ones constant. 1321 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 1322 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 1323 } 1324 1325 // Return true if N is conditionally 0 or all ones. 1326 // Detects these expressions where cc is an i1 value: 1327 // 1328 // (select cc 0, y) [AllOnes=0] 1329 // (select cc y, 0) [AllOnes=0] 1330 // (zext cc) [AllOnes=0] 1331 // (sext cc) [AllOnes=0/1] 1332 // (select cc -1, y) [AllOnes=1] 1333 // (select cc y, -1) [AllOnes=1] 1334 // 1335 // * AllOnes determines whether to check for an all zero (AllOnes false) or an 1336 // all ones operand (AllOnes true). 1337 // * Invert is set when N is the all zero/ones constant when CC is false. 1338 // * OtherOp is set to the alternative value of N. 1339 // 1340 // For example, for (select cc X, Y) and AllOnes = 0 if: 1341 // * X = 0, Invert = False and OtherOp = Y 1342 // * Y = 0, Invert = True and OtherOp = X 1343 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, 1344 bool &Invert, SDValue &OtherOp, 1345 SelectionDAG &DAG) { 1346 switch (N->getOpcode()) { 1347 default: 1348 return false; 1349 case ISD::SELECT: { 1350 CC = N->getOperand(0); 1351 SDValue N1 = N->getOperand(1); 1352 SDValue N2 = N->getOperand(2); 1353 if (isZeroOrAllOnes(N1, AllOnes)) { 1354 Invert = false; 1355 OtherOp = N2; 1356 return true; 1357 } 1358 if (isZeroOrAllOnes(N2, AllOnes)) { 1359 Invert = true; 1360 OtherOp = N1; 1361 return true; 1362 } 1363 return false; 1364 } 1365 case ISD::ZERO_EXTEND: { 1366 // (zext cc) can never be the all ones value. 1367 if (AllOnes) 1368 return false; 1369 CC = N->getOperand(0); 1370 if (CC.getValueType() != MVT::i1) 1371 return false; 1372 SDLoc dl(N); 1373 EVT VT = N->getValueType(0); 1374 OtherOp = DAG.getConstant(1, dl, VT); 1375 Invert = true; 1376 return true; 1377 } 1378 case ISD::SIGN_EXTEND: { 1379 CC = N->getOperand(0); 1380 if (CC.getValueType() != MVT::i1) 1381 return false; 1382 SDLoc dl(N); 1383 EVT VT = N->getValueType(0); 1384 Invert = !AllOnes; 1385 if (AllOnes) 1386 // When looking for an AllOnes constant, N is an sext, and the 'other' 1387 // value is 0. 1388 OtherOp = DAG.getConstant(0, dl, VT); 1389 else 1390 OtherOp = DAG.getAllOnesConstant(dl, VT); 1391 return true; 1392 } 1393 } 1394 } 1395 1396 // Combine a constant select operand into its use: 1397 // 1398 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 1399 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1400 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 1401 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 1402 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 1403 // 1404 // The transform is rejected if the select doesn't have a constant operand that 1405 // is null, or all ones when AllOnes is set. 1406 // 1407 // Also recognize sext/zext from i1: 1408 // 1409 // (add (zext cc), x) -> (select cc (add x, 1), x) 1410 // (add (sext cc), x) -> (select cc (add x, -1), x) 1411 // 1412 // These transformations eventually create predicated instructions. 1413 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 1414 TargetLowering::DAGCombinerInfo &DCI, 1415 bool AllOnes) { 1416 SelectionDAG &DAG = DCI.DAG; 1417 EVT VT = N->getValueType(0); 1418 SDValue NonConstantVal; 1419 SDValue CCOp; 1420 bool SwapSelectOps; 1421 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 1422 NonConstantVal, DAG)) 1423 return SDValue(); 1424 1425 // Slct is now know to be the desired identity constant when CC is true. 1426 SDValue TrueVal = OtherOp; 1427 SDValue FalseVal = 1428 DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 1429 // Unless SwapSelectOps says CC should be false. 1430 if (SwapSelectOps) 1431 std::swap(TrueVal, FalseVal); 1432 1433 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); 1434 } 1435 1436 // Attempt combineSelectAndUse on each operand of a commutative operator N. 1437 static SDValue 1438 combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 1439 bool AllOnes) { 1440 SDValue N0 = N->getOperand(0); 1441 SDValue N1 = N->getOperand(1); 1442 if (N0.getNode()->hasOneUse()) 1443 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) 1444 return Result; 1445 if (N1.getNode()->hasOneUse()) 1446 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) 1447 return Result; 1448 return SDValue(); 1449 } 1450 1451 // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 1452 static SDValue PerformSUBCombine(SDNode *N, 1453 TargetLowering::DAGCombinerInfo &DCI) { 1454 SDValue N0 = N->getOperand(0); 1455 SDValue N1 = N->getOperand(1); 1456 1457 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 1458 if (N1.getNode()->hasOneUse()) 1459 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) 1460 return Result; 1461 1462 return SDValue(); 1463 } 1464 1465 SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, 1466 DAGCombinerInfo &DCI) const { 1467 switch (N->getOpcode()) { 1468 default: 1469 break; 1470 case ISD::ADD: 1471 case ISD::OR: 1472 case ISD::XOR: 1473 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); 1474 case ISD::AND: 1475 return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); 1476 case ISD::SUB: 1477 return PerformSUBCombine(N, DCI); 1478 } 1479 1480 return SDValue(); 1481 } 1482 1483 void LanaiTargetLowering::computeKnownBitsForTargetNode( 1484 const SDValue Op, KnownBits &Known, const APInt &DemandedElts, 1485 const SelectionDAG &DAG, unsigned Depth) const { 1486 unsigned BitWidth = Known.getBitWidth(); 1487 switch (Op.getOpcode()) { 1488 default: 1489 break; 1490 case LanaiISD::SETCC: 1491 Known = KnownBits(BitWidth); 1492 Known.Zero.setBits(1, BitWidth); 1493 break; 1494 case LanaiISD::SELECT_CC: 1495 KnownBits Known2; 1496 Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); 1497 Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); 1498 Known = Known.intersectWith(Known2); 1499 break; 1500 } 1501 } 1502