1 //===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the checking of insns inside a bundle according to the 10 // packet constraint rules of the Hexagon ISA. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/HexagonMCChecker.h" 15 #include "MCTargetDesc/HexagonBaseInfo.h" 16 #include "MCTargetDesc/HexagonMCInstrInfo.h" 17 #include "MCTargetDesc/HexagonMCShuffler.h" 18 #include "MCTargetDesc/HexagonMCTargetDesc.h" 19 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCInst.h" 23 #include "llvm/MC/MCInstrDesc.h" 24 #include "llvm/MC/MCRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/SourceMgr.h" 27 #include <cassert> 28 29 using namespace llvm; 30 31 static cl::opt<bool> 32 RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore, 33 cl::Hidden, cl::desc("Relax checks of new-value validity")); 34 35 const HexagonMCChecker::PredSense 36 HexagonMCChecker::Unconditional(Hexagon::NoRegister, false); 37 38 void HexagonMCChecker::init() { 39 // Initialize read-only registers set. 40 ReadOnly.insert(Hexagon::PC); 41 ReadOnly.insert(Hexagon::C9_8); 42 43 // Figure out the loop-registers definitions. 44 if (HexagonMCInstrInfo::isInnerLoop(MCB)) { 45 Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0? 46 Defs[Hexagon::LC0].insert(Unconditional); 47 } 48 if (HexagonMCInstrInfo::isOuterLoop(MCB)) { 49 Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0? 50 Defs[Hexagon::LC1].insert(Unconditional); 51 } 52 53 if (HexagonMCInstrInfo::isBundle(MCB)) 54 // Unfurl a bundle. 55 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) { 56 MCInst const &Inst = *I.getInst(); 57 if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) { 58 init(*Inst.getOperand(0).getInst()); 59 init(*Inst.getOperand(1).getInst()); 60 } else 61 init(Inst); 62 } 63 else 64 init(MCB); 65 } 66 67 void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg, 68 bool &isTrue) { 69 if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && 70 HexagonMCInstrInfo::isPredReg(RI, R)) { 71 // Note an used predicate register. 72 PredReg = R; 73 isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI); 74 75 // Note use of new predicate register. 76 if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) 77 NewPreds.insert(PredReg); 78 } else 79 // Note register use. Super-registers are not tracked directly, 80 // but their components. 81 for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); 82 SRI.isValid(); ++SRI) 83 if (!MCSubRegIterator(*SRI, &RI).isValid()) 84 // Skip super-registers used indirectly. 85 Uses.insert(*SRI); 86 87 if (HexagonMCInstrInfo::IsReverseVecRegPair(R)) 88 ReversePairs.insert(R); 89 } 90 91 void HexagonMCChecker::init(MCInst const &MCI) { 92 const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI); 93 unsigned PredReg = Hexagon::NoRegister; 94 bool isTrue = false; 95 96 // Get used registers. 97 for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) 98 if (MCI.getOperand(i).isReg()) 99 initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue); 100 for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i) 101 initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue); 102 103 const bool IgnoreTmpDst = (HexagonMCInstrInfo::hasTmpDst(MCII, MCI) || 104 HexagonMCInstrInfo::hasHvxTmp(MCII, MCI)) && 105 STI.getFeatureBits()[Hexagon::ArchV69]; 106 107 // Get implicit register definitions. 108 if (const MCPhysReg *ImpDef = MCID.getImplicitDefs()) 109 for (; *ImpDef; ++ImpDef) { 110 unsigned R = *ImpDef; 111 112 if (Hexagon::R31 != R && MCID.isCall()) 113 // Any register other than the LR and the PC are actually volatile ones 114 // as defined by the ABI, not modified implicitly by the call insn. 115 continue; 116 if (Hexagon::PC == R) 117 // Branches are the only insns that can change the PC, 118 // otherwise a read-only register. 119 continue; 120 121 if (Hexagon::USR_OVF == R) 122 // Many insns change the USR implicitly, but only one or another flag. 123 // The instruction table models the USR.OVF flag, which can be 124 // implicitly modified more than once, but cannot be modified in the 125 // same packet with an instruction that modifies is explicitly. Deal 126 // with such situations individually. 127 SoftDefs.insert(R); 128 else if (HexagonMCInstrInfo::isPredReg(RI, R) && 129 HexagonMCInstrInfo::isPredicateLate(MCII, MCI)) 130 // Include implicit late predicates. 131 LatePreds.insert(R); 132 else if (!IgnoreTmpDst) 133 Defs[R].insert(PredSense(PredReg, isTrue)); 134 } 135 136 // Figure out explicit register definitions. 137 for (unsigned i = 0; i < MCID.getNumDefs(); ++i) { 138 unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister; 139 // USR has subregisters (while C8 does not for technical reasons), so 140 // reset R to USR, since we know how to handle multiple defs of USR, 141 // taking into account its subregisters. 142 if (R == Hexagon::C8) 143 R = Hexagon::USR; 144 145 if (HexagonMCInstrInfo::IsReverseVecRegPair(R)) 146 ReversePairs.insert(R); 147 148 // Note register definitions, direct ones as well as indirect side-effects. 149 // Super-registers are not tracked directly, but their components. 150 for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid()); 151 SRI.isValid(); ++SRI) { 152 if (MCSubRegIterator(*SRI, &RI).isValid()) 153 // Skip super-registers defined indirectly. 154 continue; 155 156 if (R == *SRI) { 157 if (S == R) 158 // Avoid scoring the defined register multiple times. 159 continue; 160 else 161 // Note that the defined register has already been scored. 162 S = R; 163 } 164 165 if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI) 166 // P3:0 is a special case, since multiple predicate register definitions 167 // in a packet is allowed as the equivalent of their logical "and". 168 // Only an explicit definition of P3:0 is noted as such; if a 169 // side-effect, then note as a soft definition. 170 SoftDefs.insert(*SRI); 171 else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && 172 HexagonMCInstrInfo::isPredReg(RI, *SRI)) 173 // Some insns produce predicates too late to be used in the same packet. 174 LatePreds.insert(*SRI); 175 else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) == 176 HexagonII::TypeCVI_VM_TMP_LD) 177 // Temporary loads should be used in the same packet, but don't commit 178 // results, so it should be disregarded if another insn changes the same 179 // register. 180 // TODO: relies on the impossibility of a current and a temporary loads 181 // in the same packet. 182 TmpDefs.insert(*SRI); 183 else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) 184 // vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and 185 // destination registers with this instruction. same for vdeal(Vx,Vy,Rx) 186 Uses.insert(*SRI); 187 else if (!IgnoreTmpDst) 188 Defs[*SRI].insert(PredSense(PredReg, isTrue)); 189 } 190 } 191 192 // Figure out definitions of new predicate registers. 193 if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) 194 for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i) 195 if (MCI.getOperand(i).isReg()) { 196 unsigned P = MCI.getOperand(i).getReg(); 197 198 if (HexagonMCInstrInfo::isPredReg(RI, P)) 199 NewPreds.insert(P); 200 } 201 } 202 203 HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII, 204 MCSubtargetInfo const &STI, MCInst &mcb, 205 MCRegisterInfo const &ri, bool ReportErrors) 206 : Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI), 207 ReportErrors(ReportErrors), ReversePairs() { 208 init(); 209 } 210 211 HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other, 212 MCSubtargetInfo const &STI, 213 bool CopyReportErrors) 214 : Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII), 215 STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false), 216 ReversePairs() { 217 init(); 218 } 219 220 bool HexagonMCChecker::check(bool FullCheck) { 221 bool chkP = checkPredicates(); 222 bool chkNV = checkNewValues(); 223 bool chkR = checkRegisters(); 224 bool chkRRO = checkRegistersReadOnly(); 225 checkRegisterCurDefs(); 226 bool chkS = checkSolo(); 227 bool chkSh = true; 228 if (FullCheck) 229 chkSh = checkShuffle(); 230 bool chkSl = true; 231 if (FullCheck) 232 chkSl = checkSlots(); 233 bool chkAXOK = checkAXOK(); 234 bool chkCofMax1 = checkCOFMax1(); 235 bool chkHWLoop = checkHWLoop(); 236 bool chkValidTmpDst = FullCheck ? checkValidTmpDst() : true; 237 bool chkLegalVecRegPair = checkLegalVecRegPair(); 238 bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl && 239 chkAXOK && chkCofMax1 && chkHWLoop && chkValidTmpDst && 240 chkLegalVecRegPair; 241 242 return chk; 243 } 244 245 static bool isDuplexAGroup(unsigned Opcode) { 246 switch (Opcode) { 247 case Hexagon::SA1_addi: 248 case Hexagon::SA1_addrx: 249 case Hexagon::SA1_addsp: 250 case Hexagon::SA1_and1: 251 case Hexagon::SA1_clrf: 252 case Hexagon::SA1_clrfnew: 253 case Hexagon::SA1_clrt: 254 case Hexagon::SA1_clrtnew: 255 case Hexagon::SA1_cmpeqi: 256 case Hexagon::SA1_combine0i: 257 case Hexagon::SA1_combine1i: 258 case Hexagon::SA1_combine2i: 259 case Hexagon::SA1_combine3i: 260 case Hexagon::SA1_combinerz: 261 case Hexagon::SA1_combinezr: 262 case Hexagon::SA1_dec: 263 case Hexagon::SA1_inc: 264 case Hexagon::SA1_seti: 265 case Hexagon::SA1_setin1: 266 case Hexagon::SA1_sxtb: 267 case Hexagon::SA1_sxth: 268 case Hexagon::SA1_tfr: 269 case Hexagon::SA1_zxtb: 270 case Hexagon::SA1_zxth: 271 return true; 272 break; 273 default: 274 return false; 275 } 276 } 277 278 static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) { 279 unsigned Result = 0; 280 unsigned Type = HexagonMCInstrInfo::getType(MCII, ID); 281 if (Type == HexagonII::TypeDUPLEX) { 282 unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode(); 283 unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode(); 284 Result += !isDuplexAGroup(subInst0Opcode); 285 Result += !isDuplexAGroup(subInst1Opcode); 286 } else 287 Result += 288 Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op && 289 Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op && 290 Type != HexagonII::TypeS_3op && 291 (Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID)); 292 return Result != 0; 293 } 294 295 bool HexagonMCChecker::checkAXOK() { 296 MCInst const *HasSoloAXInst = nullptr; 297 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 298 if (HexagonMCInstrInfo::isSoloAX(MCII, I)) { 299 HasSoloAXInst = &I; 300 } 301 } 302 if (!HasSoloAXInst) 303 return true; 304 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 305 if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) { 306 reportError( 307 HasSoloAXInst->getLoc(), 308 Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE " 309 "instructions")); 310 reportError(I.getLoc(), 311 Twine("Not an ALU or non-FPU XTYPE instruction")); 312 return false; 313 } 314 } 315 return true; 316 } 317 318 void HexagonMCChecker::reportBranchErrors() { 319 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 320 if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) 321 reportNote(I.getLoc(), "Branching instruction"); 322 } 323 } 324 325 bool HexagonMCChecker::checkHWLoop() { 326 if (!HexagonMCInstrInfo::isInnerLoop(MCB) && 327 !HexagonMCInstrInfo::isOuterLoop(MCB)) 328 return true; 329 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 330 if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) { 331 reportError(MCB.getLoc(), 332 "Branches cannot be in a packet with hardware loops"); 333 reportBranchErrors(); 334 return false; 335 } 336 } 337 return true; 338 } 339 340 bool HexagonMCChecker::checkCOFMax1() { 341 SmallVector<MCInst const *, 2> BranchLocations; 342 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 343 if (HexagonMCInstrInfo::IsABranchingInst(MCII, STI, I)) 344 BranchLocations.push_back(&I); 345 } 346 for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) { 347 MCInst const &I = *BranchLocations[J]; 348 if (HexagonMCInstrInfo::isCofMax1(MCII, I)) { 349 bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I); 350 bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I); 351 if (N > 1 && !Relax1 && !Relax2) { 352 reportError(I.getLoc(), 353 "Instruction may not be in a packet with other branches"); 354 reportBranchErrors(); 355 return false; 356 } 357 if (N > 1 && J == 0 && !Relax1) { 358 reportError(I.getLoc(), 359 "Instruction may not be the first branch in packet"); 360 reportBranchErrors(); 361 return false; 362 } 363 if (N > 1 && J == 1 && !Relax2) { 364 reportError(I.getLoc(), 365 "Instruction may not be the second branch in packet"); 366 reportBranchErrors(); 367 return false; 368 } 369 } 370 } 371 return true; 372 } 373 374 bool HexagonMCChecker::checkSlots() { 375 unsigned slotsUsed = 0; 376 for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { 377 MCInst const &MCI = *HMI.getInst(); 378 if (HexagonMCInstrInfo::isImmext(MCI)) 379 continue; 380 if (HexagonMCInstrInfo::isDuplex(MCII, MCI)) 381 slotsUsed += 2; 382 else 383 ++slotsUsed; 384 } 385 386 if (slotsUsed > HEXAGON_PACKET_SIZE) { 387 reportError("invalid instruction packet: out of slots"); 388 return false; 389 } 390 return true; 391 } 392 393 // Check legal use of predicate registers. 394 bool HexagonMCChecker::checkPredicates() { 395 // Check for proper use of new predicate registers. 396 for (const auto &I : NewPreds) { 397 unsigned P = I; 398 399 if (!Defs.count(P) || LatePreds.count(P) || Defs.count(Hexagon::P3_0)) { 400 // Error out if the new predicate register is not defined, 401 // or defined "late" 402 // (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }"). 403 reportErrorNewValue(P); 404 return false; 405 } 406 } 407 408 // Check for proper use of auto-anded of predicate registers. 409 for (const auto &I : LatePreds) { 410 unsigned P = I; 411 412 if (LatePreds.count(P) > 1 || Defs.count(P)) { 413 // Error out if predicate register defined "late" multiple times or 414 // defined late and regularly defined 415 // (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }". 416 reportErrorRegisters(P); 417 return false; 418 } 419 } 420 421 return true; 422 } 423 424 // Check legal use of new values. 425 bool HexagonMCChecker::checkNewValues() { 426 for (auto const &ConsumerInst : 427 HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 428 if (!HexagonMCInstrInfo::isNewValue(MCII, ConsumerInst)) 429 continue; 430 431 const HexagonMCInstrInfo::PredicateInfo ConsumerPredInfo = 432 HexagonMCInstrInfo::predicateInfo(MCII, ConsumerInst); 433 434 bool Branch = HexagonMCInstrInfo::getDesc(MCII, ConsumerInst).isBranch(); 435 MCOperand const &Op = 436 HexagonMCInstrInfo::getNewValueOperand(MCII, ConsumerInst); 437 assert(Op.isReg()); 438 439 auto Producer = registerProducer(Op.getReg(), ConsumerPredInfo); 440 const MCInst *const ProducerInst = std::get<0>(Producer); 441 const HexagonMCInstrInfo::PredicateInfo ProducerPredInfo = 442 std::get<2>(Producer); 443 444 if (ProducerInst == nullptr) { 445 reportError(ConsumerInst.getLoc(), 446 "New value register consumer has no producer"); 447 return false; 448 } 449 if (!RelaxNVChecks) { 450 // Checks that statically prove correct new value consumption 451 if (ProducerPredInfo.isPredicated() && 452 (!ConsumerPredInfo.isPredicated() || 453 llvm::HexagonMCInstrInfo::getType(MCII, ConsumerInst) == 454 HexagonII::TypeNCJ)) { 455 reportNote( 456 ProducerInst->getLoc(), 457 "Register producer is predicated and consumer is unconditional"); 458 reportError(ConsumerInst.getLoc(), 459 "Instruction does not have a valid new register producer"); 460 return false; 461 } 462 if (ProducerPredInfo.Register != Hexagon::NoRegister && 463 ProducerPredInfo.Register != ConsumerPredInfo.Register) { 464 reportNote(ProducerInst->getLoc(), 465 "Register producer does not use the same predicate " 466 "register as the consumer"); 467 reportError(ConsumerInst.getLoc(), 468 "Instruction does not have a valid new register producer"); 469 return false; 470 } 471 } 472 if (ProducerPredInfo.Register == ConsumerPredInfo.Register && 473 ConsumerPredInfo.PredicatedTrue != ProducerPredInfo.PredicatedTrue) { 474 reportNote( 475 ProducerInst->getLoc(), 476 "Register producer has the opposite predicate sense as consumer"); 477 reportError(ConsumerInst.getLoc(), 478 "Instruction does not have a valid new register producer"); 479 return false; 480 } 481 482 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, *ProducerInst); 483 const unsigned ProducerOpIndex = std::get<1>(Producer); 484 485 if (Desc.OpInfo[ProducerOpIndex].RegClass == 486 Hexagon::DoubleRegsRegClassID) { 487 reportNote(ProducerInst->getLoc(), 488 "Double registers cannot be new-value producers"); 489 reportError(ConsumerInst.getLoc(), 490 "Instruction does not have a valid new register producer"); 491 return false; 492 } 493 494 // The ProducerOpIsMemIndex logic checks for the index of the producer 495 // register operand. Z-reg load instructions have an implicit operand 496 // that's not encoded, so the producer won't appear as the 1-th def, it 497 // will be at the 0-th. 498 const unsigned ProducerOpSearchIndex = 499 (HexagonMCInstrInfo::getType(MCII, *ProducerInst) == 500 HexagonII::TypeCVI_ZW) 501 ? 0 502 : 1; 503 504 const bool ProducerOpIsMemIndex = 505 ((Desc.mayLoad() && ProducerOpIndex == ProducerOpSearchIndex) || 506 (Desc.mayStore() && ProducerOpIndex == 0)); 507 508 if (ProducerOpIsMemIndex) { 509 unsigned Mode = HexagonMCInstrInfo::getAddrMode(MCII, *ProducerInst); 510 511 StringRef ModeError; 512 if (Mode == HexagonII::AbsoluteSet) 513 ModeError = "Absolute-set"; 514 if (Mode == HexagonII::PostInc) 515 ModeError = "Auto-increment"; 516 if (!ModeError.empty()) { 517 reportNote(ProducerInst->getLoc(), 518 ModeError + " registers cannot be a new-value " 519 "producer"); 520 reportError(ConsumerInst.getLoc(), 521 "Instruction does not have a valid new register producer"); 522 return false; 523 } 524 } 525 if (Branch && HexagonMCInstrInfo::isFloat(MCII, *ProducerInst)) { 526 reportNote(ProducerInst->getLoc(), 527 "FPU instructions cannot be new-value producers for jumps"); 528 reportError(ConsumerInst.getLoc(), 529 "Instruction does not have a valid new register producer"); 530 return false; 531 } 532 } 533 return true; 534 } 535 536 bool HexagonMCChecker::checkRegistersReadOnly() { 537 for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) { 538 MCInst const &Inst = *I.getInst(); 539 unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs(); 540 for (unsigned j = 0; j < Defs; ++j) { 541 MCOperand const &Operand = Inst.getOperand(j); 542 assert(Operand.isReg() && "Def is not a register"); 543 unsigned Register = Operand.getReg(); 544 if (ReadOnly.find(Register) != ReadOnly.end()) { 545 reportError(Inst.getLoc(), "Cannot write to read-only register `" + 546 Twine(RI.getName(Register)) + "'"); 547 return false; 548 } 549 } 550 } 551 return true; 552 } 553 554 bool HexagonMCChecker::registerUsed(unsigned Register) { 555 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) 556 for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(), 557 n = I.getNumOperands(); 558 j < n; ++j) { 559 MCOperand const &Operand = I.getOperand(j); 560 if (Operand.isReg() && Operand.getReg() == Register) 561 return true; 562 } 563 return false; 564 } 565 566 std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> 567 HexagonMCChecker::registerProducer( 568 unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) { 569 std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo> 570 WrongSense; 571 572 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 573 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I); 574 auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I); 575 576 for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J) 577 for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true); 578 K.isValid(); ++K) 579 if (*K == Register) { 580 if (RelaxNVChecks || 581 (ProducerPredicate.Register == ConsumerPredicate.Register && 582 (ProducerPredicate.Register == Hexagon::NoRegister || 583 ProducerPredicate.PredicatedTrue == 584 ConsumerPredicate.PredicatedTrue))) 585 return std::make_tuple(&I, J, ProducerPredicate); 586 std::get<0>(WrongSense) = &I; 587 std::get<1>(WrongSense) = J; 588 std::get<2>(WrongSense) = ProducerPredicate; 589 } 590 if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I)) 591 return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo()); 592 } 593 return WrongSense; 594 } 595 596 void HexagonMCChecker::checkRegisterCurDefs() { 597 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 598 if (HexagonMCInstrInfo::isCVINew(MCII, I) && 599 HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) { 600 const unsigned RegDef = I.getOperand(0).getReg(); 601 602 bool HasRegDefUse = false; 603 for (MCRegAliasIterator Alias(RegDef, &RI, true); Alias.isValid(); 604 ++Alias) 605 HasRegDefUse = HasRegDefUse || registerUsed(*Alias); 606 607 if (!HasRegDefUse) 608 reportWarning("Register `" + Twine(RI.getName(RegDef)) + 609 "' used with `.cur' " 610 "but not used in the same packet"); 611 } 612 } 613 } 614 615 // Check for legal register uses and definitions. 616 bool HexagonMCChecker::checkRegisters() { 617 // Check for proper register definitions. 618 for (const auto &I : Defs) { 619 unsigned R = I.first; 620 621 if (isLoopRegister(R) && Defs.count(R) > 1 && 622 (HexagonMCInstrInfo::isInnerLoop(MCB) || 623 HexagonMCInstrInfo::isOuterLoop(MCB))) { 624 // Error out for definitions of loop registers at the end of a loop. 625 reportError("loop-setup and some branch instructions " 626 "cannot be in the same packet"); 627 return false; 628 } 629 if (SoftDefs.count(R)) { 630 // Error out for explicit changes to registers also weakly defined 631 // (e.g., "{ usr = r0; r0 = sfadd(...) }"). 632 unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:. 633 unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; 634 reportErrorRegisters(BadR); 635 return false; 636 } 637 if (!HexagonMCInstrInfo::isPredReg(RI, R) && Defs[R].size() > 1) { 638 // Check for multiple register definitions. 639 PredSet &PM = Defs[R]; 640 641 // Check for multiple unconditional register definitions. 642 if (PM.count(Unconditional)) { 643 // Error out on an unconditional change when there are any other 644 // changes, conditional or not. 645 unsigned UsrR = Hexagon::USR; 646 unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R; 647 reportErrorRegisters(BadR); 648 return false; 649 } 650 // Check for multiple conditional register definitions. 651 for (const auto &J : PM) { 652 PredSense P = J; 653 654 // Check for multiple uses of the same condition. 655 if (PM.count(P) > 1) { 656 // Error out on conditional changes based on the same predicate 657 // (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }"). 658 reportErrorRegisters(R); 659 return false; 660 } 661 // Check for the use of the complementary condition. 662 P.second = !P.second; 663 if (PM.count(P) && PM.size() > 2) { 664 // Error out on conditional changes based on the same predicate 665 // multiple times 666 // (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =..."). 667 reportErrorRegisters(R); 668 return false; 669 } 670 } 671 } 672 } 673 674 // Check for use of temporary definitions. 675 for (const auto &I : TmpDefs) { 676 unsigned R = I; 677 678 if (!Uses.count(R)) { 679 // special case for vhist 680 bool vHistFound = false; 681 for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) { 682 if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == 683 HexagonII::TypeCVI_HIST) { 684 vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp 685 break; 686 } 687 } 688 // Warn on an unused temporary definition. 689 if (!vHistFound) { 690 reportWarning("register `" + Twine(RI.getName(R)) + 691 "' used with `.tmp' but not used in the same packet"); 692 return true; 693 } 694 } 695 } 696 697 return true; 698 } 699 700 // Check for legal use of solo insns. 701 bool HexagonMCChecker::checkSolo() { 702 if (HexagonMCInstrInfo::bundleSize(MCB) > 1) 703 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) { 704 if (HexagonMCInstrInfo::isSolo(MCII, I)) { 705 reportError(I.getLoc(), "Instruction is marked `isSolo' and " 706 "cannot have other instructions in " 707 "the same packet"); 708 return false; 709 } 710 } 711 712 return true; 713 } 714 715 bool HexagonMCChecker::checkShuffle() { 716 HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB); 717 return MCSDX.check(); 718 } 719 720 bool HexagonMCChecker::checkValidTmpDst() { 721 if (!STI.getFeatureBits()[Hexagon::ArchV69]) { 722 return true; 723 } 724 auto HasTmp = [&](MCInst const &I) { 725 return HexagonMCInstrInfo::hasTmpDst(MCII, I) || 726 HexagonMCInstrInfo::hasHvxTmp(MCII, I); 727 }; 728 unsigned HasTmpCount = 729 llvm::count_if(HexagonMCInstrInfo::bundleInstructions(MCII, MCB), HasTmp); 730 731 if (HasTmpCount > 1) { 732 reportError( 733 MCB.getLoc(), 734 "this packet has more than one HVX vtmp/.tmp destination instruction"); 735 736 for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) 737 if (HasTmp(I)) 738 reportNote(I.getLoc(), 739 "this is an HVX vtmp/.tmp destination instruction"); 740 741 return false; 742 } 743 return true; 744 } 745 746 void HexagonMCChecker::compoundRegisterMap(unsigned &Register) { 747 switch (Register) { 748 default: 749 break; 750 case Hexagon::R15: 751 Register = Hexagon::R23; 752 break; 753 case Hexagon::R14: 754 Register = Hexagon::R22; 755 break; 756 case Hexagon::R13: 757 Register = Hexagon::R21; 758 break; 759 case Hexagon::R12: 760 Register = Hexagon::R20; 761 break; 762 case Hexagon::R11: 763 Register = Hexagon::R19; 764 break; 765 case Hexagon::R10: 766 Register = Hexagon::R18; 767 break; 768 case Hexagon::R9: 769 Register = Hexagon::R17; 770 break; 771 case Hexagon::R8: 772 Register = Hexagon::R16; 773 break; 774 } 775 } 776 777 void HexagonMCChecker::reportErrorRegisters(unsigned Register) { 778 reportError("register `" + Twine(RI.getName(Register)) + 779 "' modified more than once"); 780 } 781 782 void HexagonMCChecker::reportErrorNewValue(unsigned Register) { 783 reportError("register `" + Twine(RI.getName(Register)) + 784 "' used with `.new' " 785 "but not validly modified in the same packet"); 786 } 787 788 void HexagonMCChecker::reportError(Twine const &Msg) { 789 reportError(MCB.getLoc(), Msg); 790 } 791 792 void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) { 793 if (ReportErrors) 794 Context.reportError(Loc, Msg); 795 } 796 797 void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) { 798 if (ReportErrors) { 799 auto SM = Context.getSourceManager(); 800 if (SM) 801 SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg); 802 } 803 } 804 805 void HexagonMCChecker::reportWarning(Twine const &Msg) { 806 if (ReportErrors) 807 Context.reportWarning(MCB.getLoc(), Msg); 808 } 809 810 bool HexagonMCChecker::checkLegalVecRegPair() { 811 const bool IsPermitted = STI.getFeatureBits()[Hexagon::ArchV67]; 812 const bool HasReversePairs = ReversePairs.size() != 0; 813 814 if (!IsPermitted && HasReversePairs) { 815 for (auto R : ReversePairs) 816 reportError("register pair `" + Twine(RI.getName(R)) + 817 "' is not permitted for this architecture"); 818 return false; 819 } 820 return true; 821 } 822