1 //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "HexagonISelDAGToDAG.h" 10 #include "HexagonISelLowering.h" 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "llvm/IR/Intrinsics.h" 15 #include "llvm/IR/IntrinsicsHexagon.h" 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/MathExtras.h" 18 19 #include <algorithm> 20 #include <cmath> 21 #include <deque> 22 #include <functional> 23 #include <map> 24 #include <optional> 25 #include <set> 26 #include <unordered_map> 27 #include <utility> 28 #include <vector> 29 30 #define DEBUG_TYPE "hexagon-isel" 31 using namespace llvm; 32 33 namespace { 34 35 // -------------------------------------------------------------------- 36 // Implementation of permutation networks. 37 38 // Implementation of the node routing through butterfly networks: 39 // - Forward delta. 40 // - Reverse delta. 41 // - Benes. 42 // 43 // 44 // Forward delta network consists of log(N) steps, where N is the number 45 // of inputs. In each step, an input can stay in place, or it can get 46 // routed to another position[1]. The step after that consists of two 47 // networks, each half in size in terms of the number of nodes. In those 48 // terms, in the given step, an input can go to either the upper or the 49 // lower network in the next step. 50 // 51 // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both 52 // positions as long as there is no conflict. 53 54 // Here's a delta network for 8 inputs, only the switching routes are 55 // shown: 56 // 57 // Steps: 58 // |- 1 ---------------|- 2 -----|- 3 -| 59 // 60 // Inp[0] *** *** *** *** Out[0] 61 // \ / \ / \ / 62 // \ / \ / X 63 // \ / \ / / \ 64 // Inp[1] *** \ / *** X *** *** Out[1] 65 // \ \ / / \ / \ / 66 // \ \ / / X X 67 // \ \ / / / \ / \ 68 // Inp[2] *** \ \ / / *** X *** *** Out[2] 69 // \ \ X / / / \ \ / 70 // \ \ / \ / / / \ X 71 // \ X X / / \ / \ 72 // Inp[3] *** \ / \ / \ / *** *** *** Out[3] 73 // \ X X X / 74 // \ / \ / \ / \ / 75 // X X X X 76 // / \ / \ / \ / \ 77 // / X X X \ 78 // Inp[4] *** / \ / \ / \ *** *** *** Out[4] 79 // / X X \ \ / \ / 80 // / / \ / \ \ \ / X 81 // / / X \ \ \ / / \ 82 // Inp[5] *** / / \ \ *** X *** *** Out[5] 83 // / / \ \ \ / \ / 84 // / / \ \ X X 85 // / / \ \ / \ / \ 86 // Inp[6] *** / \ *** X *** *** Out[6] 87 // / \ / \ \ / 88 // / \ / \ X 89 // / \ / \ / \ 90 // Inp[7] *** *** *** *** Out[7] 91 // 92 // 93 // Reverse delta network is same as delta network, with the steps in 94 // the opposite order. 95 // 96 // 97 // Benes network is a forward delta network immediately followed by 98 // a reverse delta network. 99 100 enum class ColorKind { None, Red, Black }; 101 102 // Graph coloring utility used to partition nodes into two groups: 103 // they will correspond to nodes routed to the upper and lower networks. 104 struct Coloring { 105 using Node = int; 106 using MapType = std::map<Node, ColorKind>; 107 static constexpr Node Ignore = Node(-1); 108 109 Coloring(ArrayRef<Node> Ord) : Order(Ord) { 110 build(); 111 if (!color()) 112 Colors.clear(); 113 } 114 115 const MapType &colors() const { 116 return Colors; 117 } 118 119 ColorKind other(ColorKind Color) { 120 if (Color == ColorKind::None) 121 return ColorKind::Red; 122 return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; 123 } 124 125 LLVM_DUMP_METHOD void dump() const; 126 127 private: 128 ArrayRef<Node> Order; 129 MapType Colors; 130 std::set<Node> Needed; 131 132 using NodeSet = std::set<Node>; 133 std::map<Node,NodeSet> Edges; 134 135 Node conj(Node Pos) { 136 Node Num = Order.size(); 137 return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; 138 } 139 140 ColorKind getColor(Node N) { 141 auto F = Colors.find(N); 142 return F != Colors.end() ? F->second : ColorKind::None; 143 } 144 145 std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); 146 147 void build(); 148 bool color(); 149 }; 150 } // namespace 151 152 std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { 153 auto Color = ColorKind::None; 154 for (Node N : Nodes) { 155 ColorKind ColorN = getColor(N); 156 if (ColorN == ColorKind::None) 157 continue; 158 if (Color == ColorKind::None) 159 Color = ColorN; 160 else if (Color != ColorKind::None && Color != ColorN) 161 return { false, ColorKind::None }; 162 } 163 return { true, Color }; 164 } 165 166 void Coloring::build() { 167 // Add Order[P] and Order[conj(P)] to Edges. 168 for (unsigned P = 0; P != Order.size(); ++P) { 169 Node I = Order[P]; 170 if (I != Ignore) { 171 Needed.insert(I); 172 Node PC = Order[conj(P)]; 173 if (PC != Ignore && PC != I) 174 Edges[I].insert(PC); 175 } 176 } 177 // Add I and conj(I) to Edges. 178 for (unsigned I = 0; I != Order.size(); ++I) { 179 if (!Needed.count(I)) 180 continue; 181 Node C = conj(I); 182 // This will create an entry in the edge table, even if I is not 183 // connected to any other node. This is necessary, because it still 184 // needs to be colored. 185 NodeSet &Is = Edges[I]; 186 if (Needed.count(C)) 187 Is.insert(C); 188 } 189 } 190 191 bool Coloring::color() { 192 SetVector<Node> FirstQ; 193 auto Enqueue = [this,&FirstQ] (Node N) { 194 SetVector<Node> Q; 195 Q.insert(N); 196 for (unsigned I = 0; I != Q.size(); ++I) { 197 NodeSet &Ns = Edges[Q[I]]; 198 Q.insert(Ns.begin(), Ns.end()); 199 } 200 FirstQ.insert(Q.begin(), Q.end()); 201 }; 202 for (Node N : Needed) 203 Enqueue(N); 204 205 for (Node N : FirstQ) { 206 if (Colors.count(N)) 207 continue; 208 NodeSet &Ns = Edges[N]; 209 auto P = getUniqueColor(Ns); 210 if (!P.first) 211 return false; 212 Colors[N] = other(P.second); 213 } 214 215 // First, color nodes that don't have any dups. 216 for (auto E : Edges) { 217 Node N = E.first; 218 if (!Needed.count(conj(N)) || Colors.count(N)) 219 continue; 220 auto P = getUniqueColor(E.second); 221 if (!P.first) 222 return false; 223 Colors[N] = other(P.second); 224 } 225 226 // Now, nodes that are still uncolored. Since the graph can be modified 227 // in this step, create a work queue. 228 std::vector<Node> WorkQ; 229 for (auto E : Edges) { 230 Node N = E.first; 231 if (!Colors.count(N)) 232 WorkQ.push_back(N); 233 } 234 235 for (Node N : WorkQ) { 236 NodeSet &Ns = Edges[N]; 237 auto P = getUniqueColor(Ns); 238 if (P.first) { 239 Colors[N] = other(P.second); 240 continue; 241 } 242 243 // Coloring failed. Split this node. 244 Node C = conj(N); 245 ColorKind ColorN = other(ColorKind::None); 246 ColorKind ColorC = other(ColorN); 247 NodeSet &Cs = Edges[C]; 248 NodeSet CopyNs = Ns; 249 for (Node M : CopyNs) { 250 ColorKind ColorM = getColor(M); 251 if (ColorM == ColorC) { 252 // Connect M with C, disconnect M from N. 253 Cs.insert(M); 254 Edges[M].insert(C); 255 Ns.erase(M); 256 Edges[M].erase(N); 257 } 258 } 259 Colors[N] = ColorN; 260 Colors[C] = ColorC; 261 } 262 263 // Explicitly assign "None" to all uncolored nodes. 264 for (unsigned I = 0; I != Order.size(); ++I) 265 if (Colors.count(I) == 0) 266 Colors[I] = ColorKind::None; 267 268 return true; 269 } 270 271 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 272 void Coloring::dump() const { 273 dbgs() << "{ Order: {"; 274 for (Node P : Order) { 275 if (P != Ignore) 276 dbgs() << ' ' << P; 277 else 278 dbgs() << " -"; 279 } 280 dbgs() << " }\n"; 281 dbgs() << " Needed: {"; 282 for (Node N : Needed) 283 dbgs() << ' ' << N; 284 dbgs() << " }\n"; 285 286 dbgs() << " Edges: {\n"; 287 for (auto E : Edges) { 288 dbgs() << " " << E.first << " -> {"; 289 for (auto N : E.second) 290 dbgs() << ' ' << N; 291 dbgs() << " }\n"; 292 } 293 dbgs() << " }\n"; 294 295 auto ColorKindToName = [](ColorKind C) { 296 switch (C) { 297 case ColorKind::None: 298 return "None"; 299 case ColorKind::Red: 300 return "Red"; 301 case ColorKind::Black: 302 return "Black"; 303 } 304 llvm_unreachable("all ColorKinds should be handled by the switch above"); 305 }; 306 307 dbgs() << " Colors: {\n"; 308 for (auto C : Colors) 309 dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n"; 310 dbgs() << " }\n}\n"; 311 } 312 #endif 313 314 namespace { 315 // Base class of for reordering networks. They don't strictly need to be 316 // permutations, as outputs with repeated occurrences of an input element 317 // are allowed. 318 struct PermNetwork { 319 using Controls = std::vector<uint8_t>; 320 using ElemType = int; 321 static constexpr ElemType Ignore = ElemType(-1); 322 323 enum : uint8_t { 324 None, 325 Pass, 326 Switch 327 }; 328 enum : uint8_t { 329 Forward, 330 Reverse 331 }; 332 333 PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { 334 Order.assign(Ord.data(), Ord.data()+Ord.size()); 335 Log = 0; 336 337 unsigned S = Order.size(); 338 while (S >>= 1) 339 ++Log; 340 341 Table.resize(Order.size()); 342 for (RowType &Row : Table) 343 Row.resize(Mult*Log, None); 344 } 345 346 void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { 347 unsigned Size = Order.size(); 348 V.resize(Size); 349 for (unsigned I = 0; I != Size; ++I) { 350 unsigned W = 0; 351 for (unsigned L = 0; L != Log; ++L) { 352 unsigned C = ctl(I, StartAt+L) == Switch; 353 if (Dir == Forward) 354 W |= C << (Log-1-L); 355 else 356 W |= C << L; 357 } 358 assert(isUInt<8>(W)); 359 V[I] = uint8_t(W); 360 } 361 } 362 363 uint8_t ctl(ElemType Pos, unsigned Step) const { 364 return Table[Pos][Step]; 365 } 366 unsigned size() const { 367 return Order.size(); 368 } 369 unsigned steps() const { 370 return Log; 371 } 372 373 protected: 374 unsigned Log; 375 std::vector<ElemType> Order; 376 using RowType = std::vector<uint8_t>; 377 std::vector<RowType> Table; 378 }; 379 380 struct ForwardDeltaNetwork : public PermNetwork { 381 ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 382 383 bool run(Controls &V) { 384 if (!route(Order.data(), Table.data(), size(), 0)) 385 return false; 386 getControls(V, 0, Forward); 387 return true; 388 } 389 390 private: 391 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 392 }; 393 394 struct ReverseDeltaNetwork : public PermNetwork { 395 ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 396 397 bool run(Controls &V) { 398 if (!route(Order.data(), Table.data(), size(), 0)) 399 return false; 400 getControls(V, 0, Reverse); 401 return true; 402 } 403 404 private: 405 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 406 }; 407 408 struct BenesNetwork : public PermNetwork { 409 BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} 410 411 bool run(Controls &F, Controls &R) { 412 if (!route(Order.data(), Table.data(), size(), 0)) 413 return false; 414 415 getControls(F, 0, Forward); 416 getControls(R, Log, Reverse); 417 return true; 418 } 419 420 private: 421 bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 422 }; 423 } // namespace 424 425 bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 426 unsigned Step) { 427 bool UseUp = false, UseDown = false; 428 ElemType Num = Size; 429 430 // Cannot use coloring here, because coloring is used to determine 431 // the "big" switch, i.e. the one that changes halves, and in a forward 432 // network, a color can be simultaneously routed to both halves in the 433 // step we're working on. 434 for (ElemType J = 0; J != Num; ++J) { 435 ElemType I = P[J]; 436 // I is the position in the input, 437 // J is the position in the output. 438 if (I == Ignore) 439 continue; 440 uint8_t S; 441 if (I < Num/2) 442 S = (J < Num/2) ? Pass : Switch; 443 else 444 S = (J < Num/2) ? Switch : Pass; 445 446 // U is the element in the table that needs to be updated. 447 ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); 448 if (U < Num/2) 449 UseUp = true; 450 else 451 UseDown = true; 452 if (T[U][Step] != S && T[U][Step] != None) 453 return false; 454 T[U][Step] = S; 455 } 456 457 for (ElemType J = 0; J != Num; ++J) 458 if (P[J] != Ignore && P[J] >= Num/2) 459 P[J] -= Num/2; 460 461 if (Step+1 < Log) { 462 if (UseUp && !route(P, T, Size/2, Step+1)) 463 return false; 464 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 465 return false; 466 } 467 return true; 468 } 469 470 bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 471 unsigned Step) { 472 unsigned Pets = Log-1 - Step; 473 bool UseUp = false, UseDown = false; 474 ElemType Num = Size; 475 476 // In this step half-switching occurs, so coloring can be used. 477 Coloring G({P,Size}); 478 const Coloring::MapType &M = G.colors(); 479 if (M.empty()) 480 return false; 481 482 ColorKind ColorUp = ColorKind::None; 483 for (ElemType J = 0; J != Num; ++J) { 484 ElemType I = P[J]; 485 // I is the position in the input, 486 // J is the position in the output. 487 if (I == Ignore) 488 continue; 489 ColorKind C = M.at(I); 490 if (C == ColorKind::None) 491 continue; 492 // During "Step", inputs cannot switch halves, so if the "up" color 493 // is still unknown, make sure that it is selected in such a way that 494 // "I" will stay in the same half. 495 bool InpUp = I < Num/2; 496 if (ColorUp == ColorKind::None) 497 ColorUp = InpUp ? C : G.other(C); 498 if ((C == ColorUp) != InpUp) { 499 // If I should go to a different half than where is it now, give up. 500 return false; 501 } 502 503 uint8_t S; 504 if (InpUp) { 505 S = (J < Num/2) ? Pass : Switch; 506 UseUp = true; 507 } else { 508 S = (J < Num/2) ? Switch : Pass; 509 UseDown = true; 510 } 511 T[J][Pets] = S; 512 } 513 514 // Reorder the working permutation according to the computed switch table 515 // for the last step (i.e. Pets). 516 for (ElemType J = 0, E = Size / 2; J != E; ++J) { 517 ElemType PJ = P[J]; // Current values of P[J] 518 ElemType PC = P[J+Size/2]; // and P[conj(J)] 519 ElemType QJ = PJ; // New values of P[J] 520 ElemType QC = PC; // and P[conj(J)] 521 if (T[J][Pets] == Switch) 522 QC = PJ; 523 if (T[J+Size/2][Pets] == Switch) 524 QJ = PC; 525 P[J] = QJ; 526 P[J+Size/2] = QC; 527 } 528 529 for (ElemType J = 0; J != Num; ++J) 530 if (P[J] != Ignore && P[J] >= Num/2) 531 P[J] -= Num/2; 532 533 if (Step+1 < Log) { 534 if (UseUp && !route(P, T, Size/2, Step+1)) 535 return false; 536 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 537 return false; 538 } 539 return true; 540 } 541 542 bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, 543 unsigned Step) { 544 Coloring G({P,Size}); 545 const Coloring::MapType &M = G.colors(); 546 if (M.empty()) 547 return false; 548 ElemType Num = Size; 549 550 unsigned Pets = 2*Log-1 - Step; 551 bool UseUp = false, UseDown = false; 552 553 // Both assignments, i.e. Red->Up and Red->Down are valid, but they will 554 // result in different controls. Let's pick the one where the first 555 // control will be "Pass". 556 ColorKind ColorUp = ColorKind::None; 557 for (ElemType J = 0; J != Num; ++J) { 558 ElemType I = P[J]; 559 if (I == Ignore) 560 continue; 561 ColorKind C = M.at(I); 562 if (C == ColorKind::None) 563 continue; 564 if (ColorUp == ColorKind::None) { 565 ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; 566 } 567 unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; 568 if (C == ColorUp) { 569 if (I < Num/2) 570 T[I][Step] = Pass; 571 else 572 T[CI][Step] = Switch; 573 T[J][Pets] = (J < Num/2) ? Pass : Switch; 574 UseUp = true; 575 } else { // Down 576 if (I < Num/2) 577 T[CI][Step] = Switch; 578 else 579 T[I][Step] = Pass; 580 T[J][Pets] = (J < Num/2) ? Switch : Pass; 581 UseDown = true; 582 } 583 } 584 585 // Reorder the working permutation according to the computed switch table 586 // for the last step (i.e. Pets). 587 for (ElemType J = 0; J != Num/2; ++J) { 588 ElemType PJ = P[J]; // Current values of P[J] 589 ElemType PC = P[J+Num/2]; // and P[conj(J)] 590 ElemType QJ = PJ; // New values of P[J] 591 ElemType QC = PC; // and P[conj(J)] 592 if (T[J][Pets] == Switch) 593 QC = PJ; 594 if (T[J+Num/2][Pets] == Switch) 595 QJ = PC; 596 P[J] = QJ; 597 P[J+Num/2] = QC; 598 } 599 600 for (ElemType J = 0; J != Num; ++J) 601 if (P[J] != Ignore && P[J] >= Num/2) 602 P[J] -= Num/2; 603 604 if (Step+1 < Log) { 605 if (UseUp && !route(P, T, Size/2, Step+1)) 606 return false; 607 if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 608 return false; 609 } 610 return true; 611 } 612 613 // -------------------------------------------------------------------- 614 // Support for building selection results (output instructions that are 615 // parts of the final selection). 616 617 namespace { 618 struct OpRef { 619 OpRef(SDValue V) : OpV(V) {} 620 bool isValue() const { return OpV.getNode() != nullptr; } 621 bool isValid() const { return isValue() || !(OpN & Invalid); } 622 bool isUndef() const { return OpN & Undef; } 623 static OpRef res(int N) { return OpRef(Whole | (N & Index)); } 624 static OpRef fail() { return OpRef(Invalid); } 625 626 static OpRef lo(const OpRef &R) { 627 assert(!R.isValue()); 628 return OpRef(R.OpN & (Undef | Index | LoHalf)); 629 } 630 static OpRef hi(const OpRef &R) { 631 assert(!R.isValue()); 632 return OpRef(R.OpN & (Undef | Index | HiHalf)); 633 } 634 static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } 635 636 // Direct value. 637 SDValue OpV = SDValue(); 638 639 // Reference to the operand of the input node: 640 // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the 641 // operand index: 642 // If bit 30 is set, it's the high half of the operand. 643 // If bit 29 is set, it's the low half of the operand. 644 unsigned OpN = 0; 645 646 enum : unsigned { 647 Invalid = 0x10000000, 648 LoHalf = 0x20000000, 649 HiHalf = 0x40000000, 650 Whole = LoHalf | HiHalf, 651 Undef = 0x80000000, 652 Index = 0x0FFFFFFF, // Mask of the index value. 653 IndexBits = 28, 654 }; 655 656 LLVM_DUMP_METHOD 657 void print(raw_ostream &OS, const SelectionDAG &G) const; 658 659 private: 660 OpRef(unsigned N) : OpN(N) {} 661 }; 662 663 struct NodeTemplate { 664 NodeTemplate() = default; 665 unsigned Opc = 0; 666 MVT Ty = MVT::Other; 667 std::vector<OpRef> Ops; 668 669 LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; 670 }; 671 672 struct ResultStack { 673 ResultStack(SDNode *Inp) 674 : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} 675 SDNode *InpNode; 676 MVT InpTy; 677 unsigned push(const NodeTemplate &Res) { 678 List.push_back(Res); 679 return List.size()-1; 680 } 681 unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { 682 NodeTemplate Res; 683 Res.Opc = Opc; 684 Res.Ty = Ty; 685 Res.Ops = Ops; 686 return push(Res); 687 } 688 bool empty() const { return List.empty(); } 689 unsigned size() const { return List.size(); } 690 unsigned top() const { return size()-1; } 691 const NodeTemplate &operator[](unsigned I) const { return List[I]; } 692 unsigned reset(unsigned NewTop) { 693 List.resize(NewTop+1); 694 return NewTop; 695 } 696 697 using BaseType = std::vector<NodeTemplate>; 698 BaseType::iterator begin() { return List.begin(); } 699 BaseType::iterator end() { return List.end(); } 700 BaseType::const_iterator begin() const { return List.begin(); } 701 BaseType::const_iterator end() const { return List.end(); } 702 703 BaseType List; 704 705 LLVM_DUMP_METHOD 706 void print(raw_ostream &OS, const SelectionDAG &G) const; 707 }; 708 } // namespace 709 710 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 711 void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { 712 if (isValue()) { 713 OpV.getNode()->print(OS, &G); 714 return; 715 } 716 if (OpN & Invalid) { 717 OS << "invalid"; 718 return; 719 } 720 if (OpN & Undef) { 721 OS << "undef"; 722 return; 723 } 724 if ((OpN & Whole) != Whole) { 725 assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); 726 if (OpN & LoHalf) 727 OS << "lo "; 728 else 729 OS << "hi "; 730 } 731 OS << '#' << SignExtend32(OpN & Index, IndexBits); 732 } 733 734 void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { 735 const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); 736 OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " " 737 << TII.getName(Opc); 738 bool Comma = false; 739 for (const auto &R : Ops) { 740 if (Comma) 741 OS << ','; 742 Comma = true; 743 OS << ' '; 744 R.print(OS, G); 745 } 746 } 747 748 void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { 749 OS << "Input node:\n"; 750 #ifndef NDEBUG 751 InpNode->dumpr(&G); 752 #endif 753 OS << "Result templates:\n"; 754 for (unsigned I = 0, E = List.size(); I != E; ++I) { 755 OS << '[' << I << "] "; 756 List[I].print(OS, G); 757 OS << '\n'; 758 } 759 } 760 #endif 761 762 namespace { 763 struct ShuffleMask { 764 ShuffleMask(ArrayRef<int> M) : Mask(M) { 765 for (int M : Mask) { 766 if (M == -1) 767 continue; 768 MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); 769 MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); 770 } 771 } 772 773 ArrayRef<int> Mask; 774 int MinSrc = -1, MaxSrc = -1; 775 776 ShuffleMask lo() const { 777 size_t H = Mask.size()/2; 778 return ShuffleMask(Mask.take_front(H)); 779 } 780 ShuffleMask hi() const { 781 size_t H = Mask.size()/2; 782 return ShuffleMask(Mask.take_back(H)); 783 } 784 785 void print(raw_ostream &OS) const { 786 OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; 787 for (int M : Mask) 788 OS << ' ' << M; 789 OS << " }"; 790 } 791 }; 792 793 LLVM_ATTRIBUTE_UNUSED 794 raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { 795 SM.print(OS); 796 return OS; 797 } 798 } // namespace 799 800 namespace shuffles { 801 using MaskT = SmallVector<int, 128>; 802 // Vdd = vshuffvdd(Vu, Vv, Rt) 803 // Vdd = vdealvdd(Vu, Vv, Rt) 804 // Vd = vpack(Vu, Vv, Size, TakeOdd) 805 // Vd = vshuff(Vu, Vv, Size, TakeOdd) 806 // Vd = vdeal(Vu, Vv, Size, TakeOdd) 807 // Vd = vdealb4w(Vu, Vv) 808 809 ArrayRef<int> lo(ArrayRef<int> Vuu) { return Vuu.take_front(Vuu.size() / 2); } 810 ArrayRef<int> hi(ArrayRef<int> Vuu) { return Vuu.take_back(Vuu.size() / 2); } 811 812 MaskT vshuffvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { 813 int Len = Vu.size(); 814 MaskT Vdd(2 * Len); 815 std::copy(Vv.begin(), Vv.end(), Vdd.begin()); 816 std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len); 817 818 auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len); 819 auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len); 820 821 for (int Offset = 1; Offset < Len; Offset *= 2) { 822 if ((Rt & Offset) == 0) 823 continue; 824 for (int i = 0; i != Len; ++i) { 825 if ((i & Offset) == 0) 826 std::swap(Vd1[i], Vd0[i + Offset]); 827 } 828 } 829 return Vdd; 830 } 831 832 MaskT vdealvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { 833 int Len = Vu.size(); 834 MaskT Vdd(2 * Len); 835 std::copy(Vv.begin(), Vv.end(), Vdd.begin()); 836 std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len); 837 838 auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len); 839 auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len); 840 841 for (int Offset = Len / 2; Offset > 0; Offset /= 2) { 842 if ((Rt & Offset) == 0) 843 continue; 844 for (int i = 0; i != Len; ++i) { 845 if ((i & Offset) == 0) 846 std::swap(Vd1[i], Vd0[i + Offset]); 847 } 848 } 849 return Vdd; 850 } 851 852 MaskT vpack(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 853 int Len = Vu.size(); 854 MaskT Vd(Len); 855 auto Odd = static_cast<int>(TakeOdd); 856 for (int i = 0, e = Len / (2 * Size); i != e; ++i) { 857 for (int b = 0; b != static_cast<int>(Size); ++b) { 858 // clang-format off 859 Vd[i * Size + b] = Vv[(2 * i + Odd) * Size + b]; 860 Vd[i * Size + b + Len / 2] = Vu[(2 * i + Odd) * Size + b]; 861 // clang-format on 862 } 863 } 864 return Vd; 865 } 866 867 MaskT vshuff(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 868 int Len = Vu.size(); 869 MaskT Vd(Len); 870 auto Odd = static_cast<int>(TakeOdd); 871 for (int i = 0, e = Len / (2 * Size); i != e; ++i) { 872 for (int b = 0; b != static_cast<int>(Size); ++b) { 873 Vd[(2 * i + 0) * Size + b] = Vv[(2 * i + Odd) * Size + b]; 874 Vd[(2 * i + 1) * Size + b] = Vu[(2 * i + Odd) * Size + b]; 875 } 876 } 877 return Vd; 878 } 879 880 MaskT vdeal(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 881 int Len = Vu.size(); 882 MaskT T = vdealvdd(Vu, Vv, Len - 2 * Size); 883 return vpack(hi(T), lo(T), Size, TakeOdd); 884 } 885 886 MaskT vdealb4w(ArrayRef<int> Vu, ArrayRef<int> Vv) { 887 int Len = Vu.size(); 888 MaskT Vd(Len); 889 for (int i = 0, e = Len / 4; i != e; ++i) { 890 Vd[0 * (Len / 4) + i] = Vv[4 * i + 0]; 891 Vd[1 * (Len / 4) + i] = Vv[4 * i + 2]; 892 Vd[2 * (Len / 4) + i] = Vu[4 * i + 0]; 893 Vd[3 * (Len / 4) + i] = Vu[4 * i + 2]; 894 } 895 return Vd; 896 } 897 898 template <typename ShuffFunc, typename... OptArgs> 899 auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT { 900 MaskT Vu(Length), Vv(Length); 901 std::iota(Vu.begin(), Vu.end(), Length); // High 902 std::iota(Vv.begin(), Vv.end(), 0); // Low 903 return S(Vu, Vv, args...); 904 } 905 906 } // namespace shuffles 907 908 // -------------------------------------------------------------------- 909 // The HvxSelector class. 910 911 static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { 912 return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); 913 } 914 static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { 915 return G.getSubtarget<HexagonSubtarget>(); 916 } 917 918 namespace llvm { 919 struct HvxSelector { 920 const HexagonTargetLowering &Lower; 921 HexagonDAGToDAGISel &ISel; 922 SelectionDAG &DAG; 923 const HexagonSubtarget &HST; 924 const unsigned HwLen; 925 926 HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) 927 : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), 928 HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} 929 930 MVT getSingleVT(MVT ElemTy) const { 931 assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates"); 932 unsigned NumElems = HwLen / (ElemTy.getSizeInBits() / 8); 933 return MVT::getVectorVT(ElemTy, NumElems); 934 } 935 936 MVT getPairVT(MVT ElemTy) const { 937 assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. 938 unsigned NumElems = (2 * HwLen) / (ElemTy.getSizeInBits() / 8); 939 return MVT::getVectorVT(ElemTy, NumElems); 940 } 941 942 MVT getBoolVT() const { 943 // Return HwLen x i1. 944 return MVT::getVectorVT(MVT::i1, HwLen); 945 } 946 947 void selectExtractSubvector(SDNode *N); 948 void selectShuffle(SDNode *N); 949 void selectRor(SDNode *N); 950 void selectVAlign(SDNode *N); 951 952 static SmallVector<uint32_t, 8> getPerfectCompletions(ShuffleMask SM, 953 unsigned Width); 954 static SmallVector<uint32_t, 8> completeToPerfect( 955 ArrayRef<uint32_t> Completions, unsigned Width); 956 static std::optional<int> rotationDistance(ShuffleMask SM, unsigned WrapAt); 957 958 private: 959 void select(SDNode *ISelN); 960 void materialize(const ResultStack &Results); 961 962 SDValue getConst32(int Val, const SDLoc &dl); 963 SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); 964 965 enum : unsigned { 966 None, 967 PackMux, 968 }; 969 OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); 970 OpRef funnels(OpRef Va, OpRef Vb, int Amount, ResultStack &Results); 971 972 OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 973 MutableArrayRef<int> NewMask, unsigned Options = None); 974 OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 975 MutableArrayRef<int> NewMask); 976 OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 977 ResultStack &Results); 978 OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 979 ResultStack &Results); 980 981 OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); 982 OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 983 OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); 984 OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 985 986 OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); 987 OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 988 OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); 989 OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); 990 991 bool selectVectorConstants(SDNode *N); 992 bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, 993 SDValue Va, SDValue Vb, SDNode *N); 994 }; 995 } // namespace llvm 996 997 static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, 998 MutableArrayRef<int> MaskR) { 999 unsigned VecLen = Mask.size(); 1000 assert(MaskL.size() == VecLen && MaskR.size() == VecLen); 1001 for (unsigned I = 0; I != VecLen; ++I) { 1002 int M = Mask[I]; 1003 if (M < 0) { 1004 MaskL[I] = MaskR[I] = -1; 1005 } else if (unsigned(M) < VecLen) { 1006 MaskL[I] = M; 1007 MaskR[I] = -1; 1008 } else { 1009 MaskL[I] = -1; 1010 MaskR[I] = M-VecLen; 1011 } 1012 } 1013 } 1014 1015 static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, 1016 unsigned MaxLen) { 1017 assert(A.size() > 0 && A.size() >= MaxLen); 1018 int F = A[0]; 1019 int E = F; 1020 for (unsigned I = 1; I != MaxLen; ++I) { 1021 if (A[I] - E != Inc) 1022 return { F, I }; 1023 E = A[I]; 1024 } 1025 return { F, MaxLen }; 1026 } 1027 1028 static bool isUndef(ArrayRef<int> Mask) { 1029 for (int Idx : Mask) 1030 if (Idx != -1) 1031 return false; 1032 return true; 1033 } 1034 1035 static bool isIdentity(ArrayRef<int> Mask) { 1036 for (int I = 0, E = Mask.size(); I != E; ++I) { 1037 int M = Mask[I]; 1038 if (M >= 0 && M != I) 1039 return false; 1040 } 1041 return true; 1042 } 1043 1044 static bool isLowHalfOnly(ArrayRef<int> Mask) { 1045 int L = Mask.size(); 1046 assert(L % 2 == 0); 1047 // Check if the second half of the mask is all-undef. 1048 return llvm::all_of(Mask.drop_front(L / 2), [](int M) { return M < 0; }); 1049 } 1050 1051 static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, 1052 unsigned SegLen) { 1053 assert(isPowerOf2_32(SegLen)); 1054 SmallVector<unsigned, 4> SegList; 1055 if (SM.MaxSrc == -1) 1056 return SegList; 1057 1058 unsigned Shift = Log2_32(SegLen); 1059 BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift); 1060 1061 for (int M : SM.Mask) { 1062 if (M >= 0) 1063 Segs.set(M >> Shift); 1064 } 1065 1066 for (unsigned B : Segs.set_bits()) 1067 SegList.push_back(B); 1068 return SegList; 1069 } 1070 1071 static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, 1072 unsigned SegLen) { 1073 // Calculate the layout of the output segments in terms of the input 1074 // segments. 1075 // For example [1,3,1,0] means that the output consists of 4 output 1076 // segments, where the first output segment has only elements of the 1077 // input segment at index 1. The next output segment only has elements 1078 // of the input segment 3, etc. 1079 // If an output segment only has undef elements, the value will be ~0u. 1080 // If an output segment has elements from more than one input segment, 1081 // the corresponding value will be ~1u. 1082 unsigned MaskLen = SM.Mask.size(); 1083 assert(MaskLen % SegLen == 0); 1084 SmallVector<unsigned, 4> Map(MaskLen / SegLen); 1085 1086 for (int S = 0, E = Map.size(); S != E; ++S) { 1087 unsigned Idx = ~0u; 1088 for (int I = 0; I != static_cast<int>(SegLen); ++I) { 1089 int M = SM.Mask[S*SegLen + I]; 1090 if (M < 0) 1091 continue; 1092 unsigned G = M / SegLen; // Input segment of this element. 1093 if (Idx == ~0u) { 1094 Idx = G; 1095 } else if (Idx != G) { 1096 Idx = ~1u; 1097 break; 1098 } 1099 } 1100 Map[S] = Idx; 1101 } 1102 1103 return Map; 1104 } 1105 1106 static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, 1107 unsigned SegLen, MutableArrayRef<int> PackedMask) { 1108 SmallVector<unsigned, 4> InvMap; 1109 for (int I = OutSegMap.size() - 1; I >= 0; --I) { 1110 unsigned S = OutSegMap[I]; 1111 assert(S != ~0u && "Unexpected undef"); 1112 assert(S != ~1u && "Unexpected multi"); 1113 if (InvMap.size() <= S) 1114 InvMap.resize(S+1); 1115 InvMap[S] = I; 1116 } 1117 1118 unsigned Shift = Log2_32(SegLen); 1119 for (int I = 0, E = Mask.size(); I != E; ++I) { 1120 int M = Mask[I]; 1121 if (M >= 0) { 1122 int OutIdx = InvMap[M >> Shift]; 1123 M = (M & (SegLen-1)) + SegLen*OutIdx; 1124 } 1125 PackedMask[I] = M; 1126 } 1127 } 1128 1129 bool HvxSelector::selectVectorConstants(SDNode *N) { 1130 // Constant vectors are generated as loads from constant pools or as 1131 // splats of a constant value. Since they are generated during the 1132 // selection process, the main selection algorithm is not aware of them. 1133 // Select them directly here. 1134 SmallVector<SDNode*,4> Nodes; 1135 SetVector<SDNode*> WorkQ; 1136 1137 // The DAG can change (due to CSE) during selection, so cache all the 1138 // unselected nodes first to avoid traversing a mutating DAG. 1139 WorkQ.insert(N); 1140 for (unsigned i = 0; i != WorkQ.size(); ++i) { 1141 SDNode *W = WorkQ[i]; 1142 if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) 1143 Nodes.push_back(W); 1144 for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) 1145 WorkQ.insert(W->getOperand(j).getNode()); 1146 } 1147 1148 for (SDNode *L : Nodes) 1149 select(L); 1150 1151 return !Nodes.empty(); 1152 } 1153 1154 void HvxSelector::materialize(const ResultStack &Results) { 1155 DEBUG_WITH_TYPE("isel", { 1156 dbgs() << "Materializing\n"; 1157 Results.print(dbgs(), DAG); 1158 }); 1159 if (Results.empty()) 1160 return; 1161 const SDLoc &dl(Results.InpNode); 1162 std::vector<SDValue> Output; 1163 1164 for (unsigned I = 0, E = Results.size(); I != E; ++I) { 1165 const NodeTemplate &Node = Results[I]; 1166 std::vector<SDValue> Ops; 1167 for (const OpRef &R : Node.Ops) { 1168 assert(R.isValid()); 1169 if (R.isValue()) { 1170 Ops.push_back(R.OpV); 1171 continue; 1172 } 1173 if (R.OpN & OpRef::Undef) { 1174 MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); 1175 Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); 1176 continue; 1177 } 1178 // R is an index of a result. 1179 unsigned Part = R.OpN & OpRef::Whole; 1180 int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); 1181 if (Idx < 0) 1182 Idx += I; 1183 assert(Idx >= 0 && unsigned(Idx) < Output.size()); 1184 SDValue Op = Output[Idx]; 1185 MVT OpTy = Op.getValueType().getSimpleVT(); 1186 if (Part != OpRef::Whole) { 1187 assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); 1188 MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), 1189 OpTy.getVectorNumElements()/2); 1190 unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo 1191 : Hexagon::vsub_hi; 1192 Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); 1193 } 1194 Ops.push_back(Op); 1195 } // for (Node : Results) 1196 1197 assert(Node.Ty != MVT::Other); 1198 SDNode *ResN = (Node.Opc == TargetOpcode::COPY) 1199 ? Ops.front().getNode() 1200 : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); 1201 Output.push_back(SDValue(ResN, 0)); 1202 } 1203 1204 SDNode *OutN = Output.back().getNode(); 1205 SDNode *InpN = Results.InpNode; 1206 DEBUG_WITH_TYPE("isel", { 1207 dbgs() << "Generated node:\n"; 1208 OutN->dumpr(&DAG); 1209 }); 1210 1211 ISel.ReplaceNode(InpN, OutN); 1212 selectVectorConstants(OutN); 1213 DAG.RemoveDeadNodes(); 1214 } 1215 1216 OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { 1217 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1218 const SDLoc &dl(Results.InpNode); 1219 Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { 1220 getConst32(Hexagon::HvxWRRegClassID, dl), 1221 Lo, getConst32(Hexagon::vsub_lo, dl), 1222 Hi, getConst32(Hexagon::vsub_hi, dl), 1223 }); 1224 return OpRef::res(Results.top()); 1225 } 1226 1227 OpRef HvxSelector::funnels(OpRef Va, OpRef Vb, int Amount, 1228 ResultStack &Results) { 1229 // Do a funnel shift towards the low end (shift right) by Amount bytes. 1230 // If Amount < 0, treat it as shift left, i.e. do a shift right by 1231 // Amount + HwLen. 1232 auto VecLen = static_cast<int>(HwLen); 1233 1234 if (Amount == 0) 1235 return Va; 1236 if (Amount == VecLen) 1237 return Vb; 1238 1239 MVT Ty = getSingleVT(MVT::i8); 1240 const SDLoc &dl(Results.InpNode); 1241 1242 if (Amount < 0) 1243 Amount += VecLen; 1244 if (Amount > VecLen) { 1245 Amount -= VecLen; 1246 std::swap(Va, Vb); 1247 } 1248 1249 if (isUInt<3>(Amount)) { 1250 SDValue A = getConst32(Amount, dl); 1251 Results.push(Hexagon::V6_valignbi, Ty, {Vb, Va, A}); 1252 } else if (isUInt<3>(VecLen - Amount)) { 1253 SDValue A = getConst32(VecLen - Amount, dl); 1254 Results.push(Hexagon::V6_vlalignbi, Ty, {Vb, Va, A}); 1255 } else { 1256 SDValue A = getConst32(Amount, dl); 1257 Results.push(Hexagon::A2_tfrsi, Ty, {A}); 1258 Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(-1)}); 1259 } 1260 return OpRef::res(Results.top()); 1261 } 1262 1263 // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, 1264 // pack these halves into a single vector, and remap SM into NewMask to use 1265 // the new vector instead. 1266 OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, 1267 ResultStack &Results, MutableArrayRef<int> NewMask, 1268 unsigned Options) { 1269 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1270 if (!Va.isValid() || !Vb.isValid()) 1271 return OpRef::fail(); 1272 1273 if (Vb.isUndef()) { 1274 std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin()); 1275 return Va; 1276 } 1277 if (Va.isUndef()) { 1278 std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin()); 1279 ShuffleVectorSDNode::commuteMask(NewMask); 1280 return Vb; 1281 } 1282 1283 MVT Ty = getSingleVT(MVT::i8); 1284 MVT PairTy = getPairVT(MVT::i8); 1285 OpRef Inp[2] = {Va, Vb}; 1286 unsigned VecLen = SM.Mask.size(); 1287 1288 auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, 1289 ResultStack &Results) { 1290 if (Amt == 0) 1291 return Lo; 1292 const SDLoc &dl(Results.InpNode); 1293 if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) { 1294 bool IsRight = isUInt<3>(Amt); // Right align. 1295 SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl); 1296 unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; 1297 Results.push(Opc, Ty, {Hi, Lo, S}); 1298 return OpRef::res(Results.top()); 1299 } 1300 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)}); 1301 OpRef A = OpRef::res(Results.top()); 1302 Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A}); 1303 return OpRef::res(Results.top()); 1304 }; 1305 1306 // Segment is a vector half. 1307 unsigned SegLen = HwLen / 2; 1308 1309 // Check if we can shuffle vector halves around to get the used elements 1310 // into a single vector. 1311 shuffles::MaskT MaskH(SM.Mask); 1312 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen); 1313 unsigned SegCount = SegList.size(); 1314 SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen); 1315 1316 if (SegList.empty()) 1317 return OpRef::undef(Ty); 1318 1319 // NOTE: 1320 // In the following part of the function, where the segments are rearranged, 1321 // the shuffle mask SM can be of any length that is a multiple of a vector 1322 // (i.e. a multiple of 2*SegLen), and non-zero. 1323 // The output segment map is computed, and it may have any even number of 1324 // entries, but the rearrangement of input segments will be done based only 1325 // on the first two (non-undef) entries in the segment map. 1326 // For example, if the output map is 3, 1, 1, 3 (it can have at most two 1327 // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into 1328 // a single vector V = 3:1. The output mask will then be updated to use 1329 // seg(0,V), seg(1,V), seg(1,V), seg(0,V). 1330 // 1331 // Picking the segments based on the output map is an optimization. For 1332 // correctness it is only necessary that Seg0 and Seg1 are the two input 1333 // segments that are used in the output. 1334 1335 unsigned Seg0 = ~0u, Seg1 = ~0u; 1336 for (unsigned X : SegMap) { 1337 if (X == ~0u) 1338 continue; 1339 if (Seg0 == ~0u) 1340 Seg0 = X; 1341 else if (Seg1 != ~0u) 1342 break; 1343 if (X == ~1u || X != Seg0) 1344 Seg1 = X; 1345 } 1346 1347 if (SegCount == 1) { 1348 unsigned SrcOp = SegList[0] / 2; 1349 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1350 int M = SM.Mask[I]; 1351 if (M >= 0) { 1352 M -= SrcOp * HwLen; 1353 assert(M >= 0); 1354 } 1355 NewMask[I] = M; 1356 } 1357 return Inp[SrcOp]; 1358 } 1359 1360 if (SegCount == 2) { 1361 // Seg0 should not be undef here: this would imply a SegList 1362 // with <= 1 elements, which was checked earlier. 1363 assert(Seg0 != ~0u); 1364 1365 // If Seg0 or Seg1 are "multi-defined", pick them from the input 1366 // segment list instead. 1367 if (Seg0 == ~1u || Seg1 == ~1u) { 1368 if (Seg0 == Seg1) { 1369 Seg0 = SegList[0]; 1370 Seg1 = SegList[1]; 1371 } else if (Seg0 == ~1u) { 1372 Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; 1373 } else { 1374 assert(Seg1 == ~1u); 1375 Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; 1376 } 1377 } 1378 assert(Seg0 != ~1u && Seg1 != ~1u); 1379 1380 assert(Seg0 != Seg1 && "Expecting different segments"); 1381 const SDLoc &dl(Results.InpNode); 1382 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)}); 1383 OpRef HL = OpRef::res(Results.top()); 1384 1385 // Va = AB, Vb = CD 1386 1387 if (Seg0 / 2 == Seg1 / 2) { 1388 // Same input vector. 1389 Va = Inp[Seg0 / 2]; 1390 if (Seg0 > Seg1) { 1391 // Swap halves. 1392 Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL}); 1393 Va = OpRef::res(Results.top()); 1394 } 1395 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1396 } else if (Seg0 % 2 == Seg1 % 2) { 1397 // Picking AC, BD, CA, or DB. 1398 // vshuff(CD,AB,HL) -> BD:AC 1399 // vshuff(AB,CD,HL) -> DB:CA 1400 auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va) // AC or BD 1401 : std::make_pair(Va, Vb); // CA or DB 1402 Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL}); 1403 OpRef P = OpRef::res(Results.top()); 1404 Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P); 1405 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1406 } else { 1407 // Picking AD, BC, CB, or DA. 1408 if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { 1409 // AD or BC: this can be done using vmux. 1410 // Q = V6_pred_scalar2 SegLen 1411 // V = V6_vmux Q, (Va, Vb) or (Vb, Va) 1412 Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL}); 1413 OpRef Qt = OpRef::res(Results.top()); 1414 auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb) // AD 1415 : std::make_pair(Vb, Va); // CB 1416 Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second}); 1417 Va = OpRef::res(Results.top()); 1418 packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1419 } else { 1420 // BC or DA: this could be done via valign by SegLen. 1421 // Do nothing here, because valign (if possible) will be generated 1422 // later on (make sure the Seg0 values are as expected). 1423 assert(Seg0 == 1 || Seg0 == 3); 1424 } 1425 } 1426 } 1427 1428 // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). 1429 // FIXME: maybe remove this? 1430 ShuffleMask SMH(MaskH); 1431 assert(SMH.Mask.size() == VecLen); 1432 shuffles::MaskT MaskA(SMH.Mask); 1433 1434 if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { 1435 // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. 1436 shuffles::MaskT Swapped(SMH.Mask); 1437 ShuffleVectorSDNode::commuteMask(Swapped); 1438 ShuffleMask SW(Swapped); 1439 if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { 1440 MaskA.assign(SW.Mask.begin(), SW.Mask.end()); 1441 std::swap(Va, Vb); 1442 } 1443 } 1444 ShuffleMask SMA(MaskA); 1445 assert(SMA.Mask.size() == VecLen); 1446 1447 if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { 1448 int ShiftR = SMA.MinSrc; 1449 if (ShiftR >= static_cast<int>(HwLen)) { 1450 Va = Vb; 1451 Vb = OpRef::undef(Ty); 1452 ShiftR -= HwLen; 1453 } 1454 OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); 1455 1456 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1457 int M = SMA.Mask[I]; 1458 if (M != -1) 1459 M -= SMA.MinSrc; 1460 NewMask[I] = M; 1461 } 1462 return RetVal; 1463 } 1464 1465 // By here, packing by segment (half-vector) shuffling, and vector alignment 1466 // failed. Try vmux. 1467 // Note: since this is using the original mask, Va and Vb must not have been 1468 // modified. 1469 1470 if (Options & PackMux) { 1471 // If elements picked from Va and Vb have all different (source) indexes 1472 // (relative to the start of the argument), do a mux, and update the mask. 1473 BitVector Picked(HwLen); 1474 SmallVector<uint8_t,128> MuxBytes(HwLen); 1475 bool CanMux = true; 1476 for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1477 int M = SM.Mask[I]; 1478 if (M == -1) 1479 continue; 1480 if (M >= static_cast<int>(HwLen)) 1481 M -= HwLen; 1482 else 1483 MuxBytes[M] = 0xFF; 1484 if (Picked[M]) { 1485 CanMux = false; 1486 break; 1487 } 1488 NewMask[I] = M; 1489 } 1490 if (CanMux) 1491 return vmuxs(MuxBytes, Va, Vb, Results); 1492 } 1493 return OpRef::fail(); 1494 } 1495 1496 // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, 1497 // pack these vectors into a pair, and remap SM into NewMask to use the 1498 // new pair instead. 1499 OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, 1500 ResultStack &Results, MutableArrayRef<int> NewMask) { 1501 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1502 SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen); 1503 if (SegList.empty()) 1504 return OpRef::undef(getPairVT(MVT::i8)); 1505 1506 // If more than two halves are used, bail. 1507 // TODO: be more aggressive here? 1508 unsigned SegCount = SegList.size(); 1509 if (SegCount > 2) 1510 return OpRef::fail(); 1511 1512 MVT HalfTy = getSingleVT(MVT::i8); 1513 1514 OpRef Inp[2] = { Va, Vb }; 1515 OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; 1516 1517 // Really make sure we have at most 2 vectors used in the mask. 1518 assert(SegCount <= 2); 1519 1520 for (int I = 0, E = SegList.size(); I != E; ++I) { 1521 unsigned S = SegList[I]; 1522 OpRef Op = Inp[S / 2]; 1523 Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op); 1524 } 1525 1526 // NOTE: Using SegList as the packing map here (not SegMap). This works, 1527 // because we're not concerned here about the order of the segments (i.e. 1528 // single vectors) in the output pair. Changing the order of vectors is 1529 // free (as opposed to changing the order of vector halves as in packs), 1530 // and so there is no extra cost added in case the order needs to be 1531 // changed later. 1532 packSegmentMask(SM.Mask, SegList, HwLen, NewMask); 1533 return concats(Out[0], Out[1], Results); 1534 } 1535 1536 OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1537 ResultStack &Results) { 1538 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1539 MVT ByteTy = getSingleVT(MVT::i8); 1540 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 1541 const SDLoc &dl(Results.InpNode); 1542 SDValue B = getVectorConstant(Bytes, dl); 1543 Results.push(Hexagon::V6_vd0, ByteTy, {}); 1544 Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); 1545 Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); 1546 return OpRef::res(Results.top()); 1547 } 1548 1549 OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 1550 ResultStack &Results) { 1551 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1552 size_t S = Bytes.size() / 2; 1553 OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); 1554 OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); 1555 return concats(L, H, Results); 1556 } 1557 1558 OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1559 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1560 unsigned VecLen = SM.Mask.size(); 1561 assert(HwLen == VecLen); 1562 (void)VecLen; 1563 assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); 1564 1565 if (isIdentity(SM.Mask)) 1566 return Va; 1567 if (isUndef(SM.Mask)) 1568 return OpRef::undef(getSingleVT(MVT::i8)); 1569 1570 // First, check for rotations. 1571 if (auto Dist = rotationDistance(SM, VecLen)) { 1572 OpRef Rotate = funnels(Va, Va, *Dist, Results); 1573 if (Rotate.isValid()) 1574 return Rotate; 1575 } 1576 unsigned HalfLen = HwLen / 2; 1577 assert(isPowerOf2_32(HalfLen)); 1578 1579 // Handle special case where the output is the same half of the input 1580 // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. 1581 std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen); 1582 if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { 1583 std::pair<int, unsigned> Strip2 = 1584 findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen); 1585 if (Strip1 == Strip2) { 1586 const SDLoc &dl(Results.InpNode); 1587 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)}); 1588 Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8), 1589 {Va, Va, OpRef::res(Results.top())}); 1590 OpRef S = OpRef::res(Results.top()); 1591 return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S); 1592 } 1593 } 1594 1595 OpRef P = perfect(SM, Va, Results); 1596 if (P.isValid()) 1597 return P; 1598 return butterfly(SM, Va, Results); 1599 } 1600 1601 OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, 1602 ResultStack &Results) { 1603 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1604 if (isUndef(SM.Mask)) 1605 return OpRef::undef(getSingleVT(MVT::i8)); 1606 1607 OpRef C = contracting(SM, Va, Vb, Results); 1608 if (C.isValid()) 1609 return C; 1610 1611 int VecLen = SM.Mask.size(); 1612 shuffles::MaskT PackedMask(VecLen); 1613 OpRef P = packs(SM, Va, Vb, Results, PackedMask); 1614 if (P.isValid()) 1615 return shuffs1(ShuffleMask(PackedMask), P, Results); 1616 1617 // TODO: Before we split the mask, try perfect shuffle on concatenated 1618 // operands. 1619 1620 shuffles::MaskT MaskL(VecLen), MaskR(VecLen); 1621 splitMask(SM.Mask, MaskL, MaskR); 1622 1623 OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); 1624 OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); 1625 if (!L.isValid() || !R.isValid()) 1626 return OpRef::fail(); 1627 1628 SmallVector<uint8_t, 128> Bytes(VecLen); 1629 for (int I = 0; I != VecLen; ++I) { 1630 if (MaskL[I] != -1) 1631 Bytes[I] = 0xFF; 1632 } 1633 return vmuxs(Bytes, L, R, Results); 1634 } 1635 1636 OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 1637 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1638 int VecLen = SM.Mask.size(); 1639 1640 if (isIdentity(SM.Mask)) 1641 return Va; 1642 if (isUndef(SM.Mask)) 1643 return OpRef::undef(getPairVT(MVT::i8)); 1644 1645 shuffles::MaskT PackedMask(VecLen); 1646 OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); 1647 if (P.isValid()) { 1648 ShuffleMask PM(PackedMask); 1649 OpRef E = expanding(PM, P, Results); 1650 if (E.isValid()) 1651 return E; 1652 1653 OpRef L = shuffs1(PM.lo(), P, Results); 1654 OpRef H = shuffs1(PM.hi(), P, Results); 1655 if (L.isValid() && H.isValid()) 1656 return concats(L, H, Results); 1657 } 1658 1659 if (!isLowHalfOnly(SM.Mask)) { 1660 // Doing a perfect shuffle on a low-half mask (i.e. where the upper half 1661 // is all-undef) may produce a perfect shuffle that generates legitimate 1662 // upper half. This isn't wrong, but if the perfect shuffle was possible, 1663 // then there is a good chance that a shorter (contracting) code may be 1664 // used as well (e.g. V6_vshuffeb, etc). 1665 OpRef R = perfect(SM, Va, Results); 1666 if (R.isValid()) 1667 return R; 1668 // TODO commute the mask and try the opposite order of the halves. 1669 } 1670 1671 OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); 1672 OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); 1673 if (L.isValid() && H.isValid()) 1674 return concats(L, H, Results); 1675 1676 return OpRef::fail(); 1677 } 1678 1679 OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, 1680 ResultStack &Results) { 1681 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1682 if (isUndef(SM.Mask)) 1683 return OpRef::undef(getPairVT(MVT::i8)); 1684 1685 int VecLen = SM.Mask.size(); 1686 SmallVector<int,256> PackedMask(VecLen); 1687 OpRef P = packp(SM, Va, Vb, Results, PackedMask); 1688 if (P.isValid()) 1689 return shuffp1(ShuffleMask(PackedMask), P, Results); 1690 1691 SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); 1692 splitMask(SM.Mask, MaskL, MaskR); 1693 1694 OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); 1695 OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); 1696 if (!L.isValid() || !R.isValid()) 1697 return OpRef::fail(); 1698 1699 // Mux the results. 1700 SmallVector<uint8_t,256> Bytes(VecLen); 1701 for (int I = 0; I != VecLen; ++I) { 1702 if (MaskL[I] != -1) 1703 Bytes[I] = 0xFF; 1704 } 1705 return vmuxp(Bytes, L, R, Results); 1706 } 1707 1708 namespace { 1709 struct Deleter : public SelectionDAG::DAGNodeDeletedListener { 1710 template <typename T> 1711 Deleter(SelectionDAG &D, T &C) 1712 : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { 1713 C.erase(N); 1714 }) {} 1715 }; 1716 1717 template <typename T> 1718 struct NullifyingVector : public T { 1719 DenseMap<SDNode*, SDNode**> Refs; 1720 NullifyingVector(T &&V) : T(V) { 1721 for (unsigned i = 0, e = T::size(); i != e; ++i) { 1722 SDNode *&N = T::operator[](i); 1723 Refs[N] = &N; 1724 } 1725 } 1726 void erase(SDNode *N) { 1727 auto F = Refs.find(N); 1728 if (F != Refs.end()) 1729 *F->second = nullptr; 1730 } 1731 }; 1732 } 1733 1734 void HvxSelector::select(SDNode *ISelN) { 1735 // What's important here is to select the right set of nodes. The main 1736 // selection algorithm loops over nodes in a topological order, i.e. users 1737 // are visited before their operands. 1738 // 1739 // It is an error to have an unselected node with a selected operand, and 1740 // there is an assertion in the main selector code to enforce that. 1741 // 1742 // Such a situation could occur if we selected a node, which is both a 1743 // subnode of ISelN, and a subnode of an unrelated (and yet unselected) 1744 // node in the DAG. 1745 assert(ISelN->getOpcode() == HexagonISD::ISEL); 1746 SDNode *N0 = ISelN->getOperand(0).getNode(); 1747 1748 // There could have been nodes created (i.e. inserted into the DAG) 1749 // that are now dead. Remove them, in case they use any of the nodes 1750 // to select (and make them look shared). 1751 DAG.RemoveDeadNodes(); 1752 1753 SetVector<SDNode *> SubNodes; 1754 1755 if (!N0->isMachineOpcode()) { 1756 // Don't want to select N0 if it's shared with another node, except if 1757 // it's shared with other ISELs. 1758 auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; 1759 if (llvm::all_of(N0->users(), IsISelN)) 1760 SubNodes.insert(N0); 1761 } 1762 if (SubNodes.empty()) { 1763 ISel.ReplaceNode(ISelN, N0); 1764 return; 1765 } 1766 1767 // Need to manually select the nodes that are dominated by the ISEL. Other 1768 // nodes are reachable from the rest of the DAG, and so will be selected 1769 // by the DAG selection routine. 1770 SetVector<SDNode*> Dom, NonDom; 1771 Dom.insert(N0); 1772 1773 auto IsDomRec = [&Dom, &NonDom] (SDNode *T, auto Rec) -> bool { 1774 if (Dom.count(T)) 1775 return true; 1776 if (T->use_empty() || NonDom.count(T)) 1777 return false; 1778 for (SDNode *U : T->users()) { 1779 // If T is reachable from a known non-dominated node, then T itself 1780 // is non-dominated. 1781 if (!Rec(U, Rec)) { 1782 NonDom.insert(T); 1783 return false; 1784 } 1785 } 1786 Dom.insert(T); 1787 return true; 1788 }; 1789 1790 auto IsDom = [&IsDomRec] (SDNode *T) { return IsDomRec(T, IsDomRec); }; 1791 1792 // Add the rest of nodes dominated by ISEL to SubNodes. 1793 for (unsigned I = 0; I != SubNodes.size(); ++I) { 1794 for (SDValue Op : SubNodes[I]->ops()) { 1795 SDNode *O = Op.getNode(); 1796 if (IsDom(O)) 1797 SubNodes.insert(O); 1798 } 1799 } 1800 1801 // Do a topological sort of nodes from Dom. 1802 SetVector<SDNode*> TmpQ; 1803 1804 std::map<SDNode *, unsigned> OpCount; 1805 for (SDNode *T : Dom) { 1806 unsigned NumDomOps = llvm::count_if(T->ops(), [&Dom](const SDUse &U) { 1807 return Dom.count(U.getNode()); 1808 }); 1809 1810 OpCount.insert({T, NumDomOps}); 1811 if (NumDomOps == 0) 1812 TmpQ.insert(T); 1813 } 1814 1815 for (unsigned I = 0; I != TmpQ.size(); ++I) { 1816 SDNode *S = TmpQ[I]; 1817 for (SDNode *U : S->users()) { 1818 if (U == ISelN) 1819 continue; 1820 auto F = OpCount.find(U); 1821 assert(F != OpCount.end()); 1822 if (F->second > 0 && !--F->second) 1823 TmpQ.insert(F->first); 1824 } 1825 } 1826 1827 // Remove the marker. 1828 ISel.ReplaceNode(ISelN, N0); 1829 1830 assert(SubNodes.size() == TmpQ.size()); 1831 NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); 1832 1833 Deleter DUQ(DAG, Queue); 1834 for (SDNode *S : reverse(Queue)) { 1835 if (S == nullptr) 1836 continue; 1837 DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);}); 1838 ISel.Select(S); 1839 } 1840 } 1841 1842 bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, 1843 MVT ResTy, SDValue Va, SDValue Vb, 1844 SDNode *N) { 1845 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1846 MVT ElemTy = ResTy.getVectorElementType(); 1847 assert(ElemTy == MVT::i8); 1848 unsigned VecLen = Mask.size(); 1849 bool HavePairs = (2*HwLen == VecLen); 1850 MVT SingleTy = getSingleVT(MVT::i8); 1851 1852 // The prior attempts to handle this shuffle may have left a bunch of 1853 // dead nodes in the DAG (such as constants). These nodes will be added 1854 // at the end of DAG's node list, which at that point had already been 1855 // sorted topologically. In the main selection loop, the node list is 1856 // traversed backwards from the root node, which means that any new 1857 // nodes (from the end of the list) will not be visited. 1858 // Scalarization will replace the shuffle node with the scalarized 1859 // expression, and if that expression reused any if the leftoever (dead) 1860 // nodes, these nodes would not be selected (since the "local" selection 1861 // only visits nodes that are not in AllNodes). 1862 // To avoid this issue, remove all dead nodes from the DAG now. 1863 // DAG.RemoveDeadNodes(); 1864 1865 SmallVector<SDValue,128> Ops; 1866 LLVMContext &Ctx = *DAG.getContext(); 1867 MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT(); 1868 for (int I : Mask) { 1869 if (I < 0) { 1870 Ops.push_back(ISel.selectUndef(dl, LegalTy)); 1871 continue; 1872 } 1873 SDValue Vec; 1874 unsigned M = I; 1875 if (M < VecLen) { 1876 Vec = Va; 1877 } else { 1878 Vec = Vb; 1879 M -= VecLen; 1880 } 1881 if (HavePairs) { 1882 if (M < HwLen) { 1883 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); 1884 } else { 1885 Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); 1886 M -= HwLen; 1887 } 1888 } 1889 SDValue Idx = DAG.getConstant(M, dl, MVT::i32); 1890 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx}); 1891 SDValue L = Lower.LowerOperation(Ex, DAG); 1892 assert(L.getNode()); 1893 Ops.push_back(L); 1894 } 1895 1896 SDValue LV; 1897 if (2*HwLen == VecLen) { 1898 SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); 1899 SDValue L0 = Lower.LowerOperation(B0, DAG); 1900 SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); 1901 SDValue L1 = Lower.LowerOperation(B1, DAG); 1902 // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) 1903 // functions may expect to be called only for illegal operations, so 1904 // make sure that they are not called for legal ones. Develop a better 1905 // mechanism for dealing with this. 1906 LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); 1907 } else { 1908 SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); 1909 LV = Lower.LowerOperation(BV, DAG); 1910 } 1911 1912 assert(!N->use_empty()); 1913 SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV); 1914 ISel.ReplaceNode(N, IS.getNode()); 1915 select(IS.getNode()); 1916 DAG.RemoveDeadNodes(); 1917 return true; 1918 } 1919 1920 SmallVector<uint32_t, 8> HvxSelector::getPerfectCompletions(ShuffleMask SM, 1921 unsigned Width) { 1922 auto possibilities = [](ArrayRef<uint8_t> Bs, unsigned Width) -> uint32_t { 1923 unsigned Impossible = ~(1u << Width) + 1; 1924 for (unsigned I = 0, E = Bs.size(); I != E; ++I) { 1925 uint8_t B = Bs[I]; 1926 if (B == 0xff) 1927 continue; 1928 if (~Impossible == 0) 1929 break; 1930 for (unsigned Log = 0; Log != Width; ++Log) { 1931 if (Impossible & (1u << Log)) 1932 continue; 1933 unsigned Expected = (I >> Log) % 2; 1934 if (B != Expected) 1935 Impossible |= (1u << Log); 1936 } 1937 } 1938 return ~Impossible; 1939 }; 1940 1941 SmallVector<uint32_t, 8> Worklist(Width); 1942 1943 for (unsigned BitIdx = 0; BitIdx != Width; ++BitIdx) { 1944 SmallVector<uint8_t> BitValues(SM.Mask.size()); 1945 for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 1946 int M = SM.Mask[i]; 1947 if (M < 0) 1948 BitValues[i] = 0xff; 1949 else 1950 BitValues[i] = (M & (1u << BitIdx)) != 0; 1951 } 1952 Worklist[BitIdx] = possibilities(BitValues, Width); 1953 } 1954 1955 // If there is a word P in Worklist that matches multiple possibilities, 1956 // then if any other word Q matches any of the possibilities matched by P, 1957 // then Q matches all the possibilities matched by P. In fact, P == Q. 1958 // In other words, for each words P, Q, the sets of possibilities matched 1959 // by P and Q are either equal or disjoint (no partial overlap). 1960 // 1961 // Illustration: For 4-bit values there are 4 complete sequences: 1962 // a: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1963 // b: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1964 // c: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1965 // d: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1966 // 1967 // Words containing unknown bits that match two of the complete 1968 // sequences: 1969 // ab: 0 u u 1 0 u u 1 0 u u 1 0 u u 1 1970 // ac: 0 u 0 u u 1 u 1 0 u 0 u u 1 u 1 1971 // ad: 0 u 0 u 0 u 0 u u 1 u 1 u 1 u 1 1972 // bc: 0 0 u u u u 1 1 0 0 u u u u 1 1 1973 // bd: 0 0 u u 0 0 u u u u 1 1 u u 1 1 1974 // cd: 0 0 0 0 u u u u u u u u 1 1 1 1 1975 // 1976 // Proof of the claim above: 1977 // Let P be a word that matches s0 and s1. For that to happen, all known 1978 // bits in P must match s0 and s1 exactly. 1979 // Assume there is Q that matches s1. Note that since P and Q came from 1980 // the same shuffle mask, the positions of unknown bits in P and Q match 1981 // exactly, which makes the indices of known bits be exactly the same 1982 // between P and Q. Since P matches s0 and s1, the known bits of P much 1983 // match both s0 and s1. Also, since Q matches s1, the known bits in Q 1984 // are exactly the same as in s1, which means that they are exactly the 1985 // same as in P. This implies that P == Q. 1986 1987 // There can be a situation where there are more entries with the same 1988 // bits set than there are set bits (e.g. value 9 occuring more than 2 1989 // times). In such cases it will be impossible to complete this to a 1990 // perfect shuffle. 1991 SmallVector<uint32_t, 8> Sorted(Worklist); 1992 llvm::sort(Sorted.begin(), Sorted.end()); 1993 1994 for (unsigned I = 0, E = Sorted.size(); I != E;) { 1995 unsigned P = Sorted[I], Count = 1; 1996 while (++I != E && P == Sorted[I]) 1997 ++Count; 1998 if ((unsigned)llvm::popcount(P) < Count) { 1999 // Reset all occurences of P, if there are more occurrences of P 2000 // than there are bits in P. 2001 llvm::replace(Worklist, P, 0U); 2002 } 2003 } 2004 2005 return Worklist; 2006 } 2007 2008 SmallVector<uint32_t, 8> 2009 HvxSelector::completeToPerfect(ArrayRef<uint32_t> Completions, unsigned Width) { 2010 // Pick a completion if there are multiple possibilities. For now just 2011 // select any valid completion. 2012 SmallVector<uint32_t, 8> Comps(Completions); 2013 2014 for (unsigned I = 0; I != Width; ++I) { 2015 uint32_t P = Comps[I]; 2016 assert(P != 0); 2017 if (isPowerOf2_32(P)) 2018 continue; 2019 // T = least significant bit of P. 2020 uint32_t T = P ^ ((P - 1) & P); 2021 // Clear T in all remaining words matching P. 2022 for (unsigned J = I + 1; J != Width; ++J) { 2023 if (Comps[J] == P) 2024 Comps[J] ^= T; 2025 } 2026 Comps[I] = T; 2027 } 2028 2029 #ifndef NDEBUG 2030 // Check that we have generated a valid completion. 2031 uint32_t OrAll = 0; 2032 for (uint32_t C : Comps) { 2033 assert(isPowerOf2_32(C)); 2034 OrAll |= C; 2035 } 2036 assert(OrAll == (1u << Width) -1); 2037 #endif 2038 2039 return Comps; 2040 } 2041 2042 std::optional<int> HvxSelector::rotationDistance(ShuffleMask SM, 2043 unsigned WrapAt) { 2044 std::optional<int> Dist; 2045 for (int I = 0, E = SM.Mask.size(); I != E; ++I) { 2046 int M = SM.Mask[I]; 2047 if (M < 0) 2048 continue; 2049 if (Dist) { 2050 if ((I + *Dist) % static_cast<int>(WrapAt) != M) 2051 return std::nullopt; 2052 } else { 2053 // Integer a%b operator assumes rounding towards zero by /, so it 2054 // "misbehaves" when a crosses 0 (the remainder also changes sign). 2055 // Add WrapAt in an attempt to keep I+Dist non-negative. 2056 Dist = M - I; 2057 if (Dist < 0) 2058 Dist = *Dist + WrapAt; 2059 } 2060 } 2061 return Dist; 2062 } 2063 2064 OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, 2065 ResultStack &Results) { 2066 DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; }); 2067 if (!Va.isValid() || !Vb.isValid()) 2068 return OpRef::fail(); 2069 2070 // Contracting shuffles, i.e. instructions that always discard some bytes 2071 // from the operand vectors. 2072 // 2073 // Funnel shifts 2074 // V6_vshuff{e,o}b 2075 // V6_vshuf{e,o}h 2076 // V6_vdealb4w 2077 // V6_vpack{e,o}{b,h} 2078 2079 int VecLen = SM.Mask.size(); 2080 2081 // First, check for funnel shifts. 2082 if (auto Dist = rotationDistance(SM, 2 * VecLen)) { 2083 OpRef Funnel = funnels(Va, Vb, *Dist, Results); 2084 if (Funnel.isValid()) 2085 return Funnel; 2086 } 2087 2088 MVT SingleTy = getSingleVT(MVT::i8); 2089 MVT PairTy = getPairVT(MVT::i8); 2090 2091 auto same = [](ArrayRef<int> Mask1, ArrayRef<int> Mask2) -> bool { 2092 return Mask1 == Mask2; 2093 }; 2094 2095 using PackConfig = std::pair<unsigned, bool>; 2096 PackConfig Packs[] = { 2097 {1, false}, // byte, even 2098 {1, true}, // byte, odd 2099 {2, false}, // half, even 2100 {2, true}, // half, odd 2101 }; 2102 2103 { // Check vpack 2104 unsigned Opcodes[] = { 2105 Hexagon::V6_vpackeb, 2106 Hexagon::V6_vpackob, 2107 Hexagon::V6_vpackeh, 2108 Hexagon::V6_vpackoh, 2109 }; 2110 for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2111 auto [Size, Odd] = Packs[i]; 2112 if (same(SM.Mask, shuffles::mask(shuffles::vpack, HwLen, Size, Odd))) { 2113 Results.push(Opcodes[i], SingleTy, {Vb, Va}); 2114 return OpRef::res(Results.top()); 2115 } 2116 } 2117 } 2118 2119 { // Check vshuff 2120 unsigned Opcodes[] = { 2121 Hexagon::V6_vshuffeb, 2122 Hexagon::V6_vshuffob, 2123 Hexagon::V6_vshufeh, 2124 Hexagon::V6_vshufoh, 2125 }; 2126 for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2127 auto [Size, Odd] = Packs[i]; 2128 if (same(SM.Mask, shuffles::mask(shuffles::vshuff, HwLen, Size, Odd))) { 2129 Results.push(Opcodes[i], SingleTy, {Vb, Va}); 2130 return OpRef::res(Results.top()); 2131 } 2132 } 2133 } 2134 2135 { // Check vdeal 2136 // There is no "V6_vdealeb", etc, but the supposed behavior of vdealeb 2137 // is equivalent to "(V6_vpackeb (V6_vdealvdd Vu, Vv, -2))". Other such 2138 // variants of "deal" can be done similarly. 2139 unsigned Opcodes[] = { 2140 Hexagon::V6_vpackeb, 2141 Hexagon::V6_vpackob, 2142 Hexagon::V6_vpackeh, 2143 Hexagon::V6_vpackoh, 2144 }; 2145 const SDLoc &dl(Results.InpNode); 2146 2147 for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2148 auto [Size, Odd] = Packs[i]; 2149 if (same(SM.Mask, shuffles::mask(shuffles::vdeal, HwLen, Size, Odd))) { 2150 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(-2 * Size, dl)}); 2151 Results.push(Hexagon::V6_vdealvdd, PairTy, {Vb, Va, OpRef::res(-1)}); 2152 auto vdeal = OpRef::res(Results.top()); 2153 Results.push(Opcodes[i], SingleTy, 2154 {OpRef::hi(vdeal), OpRef::lo(vdeal)}); 2155 return OpRef::res(Results.top()); 2156 } 2157 } 2158 } 2159 2160 if (same(SM.Mask, shuffles::mask(shuffles::vdealb4w, HwLen))) { 2161 Results.push(Hexagon::V6_vdealb4w, SingleTy, {Vb, Va}); 2162 return OpRef::res(Results.top()); 2163 } 2164 2165 return OpRef::fail(); 2166 } 2167 2168 OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { 2169 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 2170 // Expanding shuffles (using all elements and inserting into larger vector): 2171 // 2172 // V6_vunpacku{b,h} [*] 2173 // 2174 // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. 2175 // 2176 // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so 2177 // they are not shuffles. 2178 // 2179 // The argument is a single vector. 2180 2181 int VecLen = SM.Mask.size(); 2182 assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); 2183 2184 std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 2185 2186 // The patterns for the unpacks, in terms of the starting offsets of the 2187 // consecutive strips (L = length of the strip, N = VecLen): 2188 // 2189 // vunpacku: 0, -1, L, -1, 2L, -1 ... 2190 2191 if (Strip.first != 0) 2192 return OpRef::fail(); 2193 2194 // The vunpackus only handle byte and half-word. 2195 if (Strip.second != 1 && Strip.second != 2) 2196 return OpRef::fail(); 2197 2198 int N = VecLen; 2199 int L = Strip.second; 2200 2201 // First, check the non-ignored strips. 2202 for (int I = 2*L; I < N; I += 2*L) { 2203 auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 2204 if (S.second != unsigned(L)) 2205 return OpRef::fail(); 2206 if (2*S.first != I) 2207 return OpRef::fail(); 2208 } 2209 // Check the -1s. 2210 for (int I = L; I < N; I += 2*L) { 2211 auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); 2212 if (S.first != -1 || S.second != unsigned(L)) 2213 return OpRef::fail(); 2214 } 2215 2216 unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub 2217 : Hexagon::V6_vunpackuh; 2218 Results.push(Opc, getPairVT(MVT::i8), {Va}); 2219 return OpRef::res(Results.top()); 2220 } 2221 2222 OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { 2223 DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; }); 2224 // V6_vdeal{b,h} 2225 // V6_vshuff{b,h} 2226 2227 // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) 2228 // V6_vshuffvdd (V6_vshuff) 2229 // V6_dealvdd (V6_vdeal) 2230 2231 int VecLen = SM.Mask.size(); 2232 assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); 2233 unsigned LogLen = Log2_32(VecLen); 2234 unsigned HwLog = Log2_32(HwLen); 2235 // The result length must be the same as the length of a single vector, 2236 // or a vector pair. 2237 assert(LogLen == HwLog || LogLen == HwLog + 1); 2238 bool HavePairs = LogLen == HwLog + 1; 2239 2240 SmallVector<unsigned, 8> Perm(LogLen); 2241 2242 // Check if this could be a perfect shuffle, or a combination of perfect 2243 // shuffles. 2244 // 2245 // Consider this permutation (using hex digits to make the ASCII diagrams 2246 // easier to read): 2247 // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. 2248 // This is a "deal" operation: divide the input into two halves, and 2249 // create the output by picking elements by alternating between these two 2250 // halves: 2251 // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] 2252 // 8 9 A B C D E F 2253 // 2254 // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides 2255 // a somwehat different mechanism that could be used to perform shuffle/ 2256 // deal operations: a 2x2 transpose. 2257 // Consider the halves of inputs again, they can be interpreted as a 2x8 2258 // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated 2259 // together. Now, when considering 2 elements at a time, it will be a 2x4 2260 // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: 2261 // 01 23 45 67 2262 // 89 AB CD EF 2263 // With groups of 4, this will become a single 2x2 matrix, and so on. 2264 // 2265 // The 2x2 transpose instruction works by transposing each of the 2x2 2266 // matrices (or "sub-matrices"), given a specific group size. For example, 2267 // if the group size is 1 (i.e. each element is its own group), there 2268 // will be four transposes of the four 2x2 matrices that form the 2x8. 2269 // For example, with the inputs as above, the result will be: 2270 // 0 8 2 A 4 C 6 E 2271 // 1 9 3 B 5 D 7 F 2272 // Now, this result can be transposed again, but with the group size of 2: 2273 // 08 19 4C 5D 2274 // 2A 3B 6E 7F 2275 // If we then transpose that result, but with the group size of 4, we get: 2276 // 0819 2A3B 2277 // 4C5D 6E7F 2278 // If we concatenate these two rows, it will be 2279 // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F 2280 // which is the same as the "deal" [*] above. 2281 // 2282 // In general, a "deal" of individual elements is a series of 2x2 transposes, 2283 // with changing group size. HVX has two instructions: 2284 // Vdd = V6_vdealvdd Vu, Vv, Rt 2285 // Vdd = V6_shufvdd Vu, Vv, Rt 2286 // that perform exactly that. The register Rt controls which transposes are 2287 // going to happen: a bit at position n (counting from 0) indicates that a 2288 // transpose with a group size of 2^n will take place. If multiple bits are 2289 // set, multiple transposes will happen: vdealvdd will perform them starting 2290 // with the largest group size, vshuffvdd will do them in the reverse order. 2291 // 2292 // The main observation is that each 2x2 transpose corresponds to swapping 2293 // columns of bits in the binary representation of the values. 2294 // 2295 // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits 2296 // in a given column. The * denote the columns that will be swapped. 2297 // The transpose with the group size 2^n corresponds to swapping columns 2298 // 3 (the highest log) and log2(n): 2299 // 2300 // 3 2 1 0 0 2 1 3 0 2 3 1 2301 // * * * * * * 2302 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2303 // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 2304 // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 2305 // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 2306 // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 2307 // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 2308 // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 2309 // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 2310 // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 2311 // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 2312 // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 2313 // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 2314 // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 2315 // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 2316 // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 2317 // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 2318 2319 // There is one special case that is not a perfect shuffle, but can be 2320 // turned into one easily: when the shuffle operates on a vector pair, 2321 // but the two vectors in the pair are swapped. The code that identifies 2322 // perfect shuffles will reject it, unless the order is reversed. 2323 shuffles::MaskT MaskStorage(SM.Mask); 2324 bool InvertedPair = false; 2325 if (HavePairs && SM.Mask[0] >= int(HwLen)) { 2326 for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 2327 int M = SM.Mask[i]; 2328 MaskStorage[i] = M >= int(HwLen) ? M - HwLen : M + HwLen; 2329 } 2330 InvertedPair = true; 2331 SM = ShuffleMask(MaskStorage); 2332 } 2333 2334 auto Comps = getPerfectCompletions(SM, LogLen); 2335 if (llvm::is_contained(Comps, 0)) 2336 return OpRef::fail(); 2337 2338 auto Pick = completeToPerfect(Comps, LogLen); 2339 for (unsigned I = 0; I != LogLen; ++I) 2340 Perm[I] = Log2_32(Pick[I]); 2341 2342 // Once we have Perm, represent it as cycles. Denote the maximum log2 2343 // (equal to log2(VecLen)-1) as M. The cycle containing M can then be 2344 // written as (M a1 a2 a3 ... an). That cycle can be broken up into 2345 // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition 2346 // order being from left to right. Any (contiguous) segment where the 2347 // values ai, ai+1...aj are either all increasing or all decreasing, 2348 // can be implemented via a single vshuffvdd/vdealvdd respectively. 2349 // 2350 // If there is a cycle (a1 a2 ... an) that does not involve M, it can 2351 // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can 2352 // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure 2353 // can be used to generate a sequence of vshuffvdd/vdealvdd. 2354 // 2355 // Example: 2356 // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written 2357 // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply 2358 // (4 0 1)(4 0)(4 2 3)(4 2). 2359 // It can then be expanded into swaps as 2360 // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), 2361 // and broken up into "increasing" segments as 2362 // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. 2363 // This is equivalent to 2364 // (4 0 1)(4 0 2 3)(4 2), 2365 // which can be implemented as 3 vshufvdd instructions. 2366 2367 using CycleType = SmallVector<unsigned, 8>; 2368 std::set<CycleType> Cycles; 2369 std::set<unsigned> All; 2370 2371 for (unsigned I : Perm) 2372 All.insert(I); 2373 2374 // If the cycle contains LogLen-1, move it to the front of the cycle. 2375 // Otherwise, return the cycle unchanged. 2376 auto canonicalize = [LogLen](const CycleType &C) -> CycleType { 2377 unsigned LogPos, N = C.size(); 2378 for (LogPos = 0; LogPos != N; ++LogPos) 2379 if (C[LogPos] == LogLen - 1) 2380 break; 2381 if (LogPos == N) 2382 return C; 2383 2384 CycleType NewC(C.begin() + LogPos, C.end()); 2385 NewC.append(C.begin(), C.begin() + LogPos); 2386 return NewC; 2387 }; 2388 2389 auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { 2390 // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), 2391 // for bytes zero is included, for halfwords is not. 2392 if (Cs.size() != 1) 2393 return 0u; 2394 const CycleType &C = *Cs.begin(); 2395 if (C[0] != Len - 1) 2396 return 0u; 2397 int D = Len - C.size(); 2398 if (D != 0 && D != 1) 2399 return 0u; 2400 2401 bool IsDeal = true, IsShuff = true; 2402 for (unsigned I = 1; I != Len - D; ++I) { 2403 if (C[I] != Len - 1 - I) 2404 IsDeal = false; 2405 if (C[I] != I - (1 - D)) // I-1, I 2406 IsShuff = false; 2407 } 2408 // At most one, IsDeal or IsShuff, can be non-zero. 2409 assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); 2410 static unsigned Deals[] = {Hexagon::V6_vdealb, Hexagon::V6_vdealh}; 2411 static unsigned Shufs[] = {Hexagon::V6_vshuffb, Hexagon::V6_vshuffh}; 2412 return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); 2413 }; 2414 2415 while (!All.empty()) { 2416 unsigned A = *All.begin(); 2417 All.erase(A); 2418 CycleType C; 2419 C.push_back(A); 2420 for (unsigned B = Perm[A]; B != A; B = Perm[B]) { 2421 C.push_back(B); 2422 All.erase(B); 2423 } 2424 if (C.size() <= 1) 2425 continue; 2426 Cycles.insert(canonicalize(C)); 2427 } 2428 2429 MVT SingleTy = getSingleVT(MVT::i8); 2430 MVT PairTy = getPairVT(MVT::i8); 2431 2432 // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. 2433 if (unsigned(VecLen) == HwLen) { 2434 if (unsigned SingleOpc = pfs(Cycles, LogLen)) { 2435 Results.push(SingleOpc, SingleTy, {Va}); 2436 return OpRef::res(Results.top()); 2437 } 2438 } 2439 2440 // From the cycles, construct the sequence of values that will 2441 // then form the control values for vdealvdd/vshuffvdd, i.e. 2442 // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 2443 // This essentially strips the M value from the cycles where 2444 // it's present, and performs the insertion of M (then stripping) 2445 // for cycles without M (as described in an earlier comment). 2446 SmallVector<unsigned, 8> SwapElems; 2447 // When the input is extended (i.e. single vector becomes a pair), 2448 // this is done by using an "undef" vector as the second input. 2449 // However, then we get 2450 // input 1: GOODBITS 2451 // input 2: ........ 2452 // but we need 2453 // input 1: ....BITS 2454 // input 2: ....GOOD 2455 // Then at the end, this needs to be undone. To accomplish this, 2456 // artificially add "LogLen-1" at both ends of the sequence. 2457 if (!HavePairs) 2458 SwapElems.push_back(LogLen - 1); 2459 for (const CycleType &C : Cycles) { 2460 // Do the transformation: (a1..an) -> (M a1..an)(M a1). 2461 unsigned First = (C[0] == LogLen - 1) ? 1 : 0; 2462 SwapElems.append(C.begin() + First, C.end()); 2463 if (First == 0) 2464 SwapElems.push_back(C[0]); 2465 } 2466 if (!HavePairs) 2467 SwapElems.push_back(LogLen - 1); 2468 2469 const SDLoc &dl(Results.InpNode); 2470 OpRef Arg = HavePairs ? Va : concats(Va, OpRef::undef(SingleTy), Results); 2471 if (InvertedPair) 2472 Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results); 2473 2474 for (unsigned I = 0, E = SwapElems.size(); I != E;) { 2475 bool IsInc = I == E - 1 || SwapElems[I] < SwapElems[I + 1]; 2476 unsigned S = (1u << SwapElems[I]); 2477 if (I < E - 1) { 2478 while (++I < E - 1 && IsInc == (SwapElems[I] < SwapElems[I + 1])) 2479 S |= 1u << SwapElems[I]; 2480 // The above loop will not add a bit for the final SwapElems[I+1], 2481 // so add it here. 2482 S |= 1u << SwapElems[I]; 2483 } 2484 ++I; 2485 2486 NodeTemplate Res; 2487 Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)}); 2488 Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; 2489 Res.Ty = PairTy; 2490 Res.Ops = {OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1)}; 2491 Results.push(Res); 2492 Arg = OpRef::res(Results.top()); 2493 } 2494 2495 return HavePairs ? Arg : OpRef::lo(Arg); 2496 } 2497 2498 OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { 2499 DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 2500 // Butterfly shuffles. 2501 // 2502 // V6_vdelta 2503 // V6_vrdelta 2504 // V6_vror 2505 2506 // The assumption here is that all elements picked by Mask are in the 2507 // first operand to the vector_shuffle. This assumption is enforced 2508 // by the caller. 2509 2510 MVT ResTy = getSingleVT(MVT::i8); 2511 PermNetwork::Controls FC, RC; 2512 const SDLoc &dl(Results.InpNode); 2513 int VecLen = SM.Mask.size(); 2514 2515 for (int M : SM.Mask) { 2516 if (M != -1 && M >= VecLen) 2517 return OpRef::fail(); 2518 } 2519 2520 // Try the deltas/benes for both single vectors and vector pairs. 2521 ForwardDeltaNetwork FN(SM.Mask); 2522 if (FN.run(FC)) { 2523 SDValue Ctl = getVectorConstant(FC, dl); 2524 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); 2525 return OpRef::res(Results.top()); 2526 } 2527 2528 // Try reverse delta. 2529 ReverseDeltaNetwork RN(SM.Mask); 2530 if (RN.run(RC)) { 2531 SDValue Ctl = getVectorConstant(RC, dl); 2532 Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); 2533 return OpRef::res(Results.top()); 2534 } 2535 2536 // Do Benes. 2537 BenesNetwork BN(SM.Mask); 2538 if (BN.run(FC, RC)) { 2539 SDValue CtlF = getVectorConstant(FC, dl); 2540 SDValue CtlR = getVectorConstant(RC, dl); 2541 Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); 2542 Results.push(Hexagon::V6_vrdelta, ResTy, 2543 {OpRef::res(-1), OpRef(CtlR)}); 2544 return OpRef::res(Results.top()); 2545 } 2546 2547 return OpRef::fail(); 2548 } 2549 2550 SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { 2551 return DAG.getTargetConstant(Val, dl, MVT::i32); 2552 } 2553 2554 SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, 2555 const SDLoc &dl) { 2556 SmallVector<SDValue, 128> Elems; 2557 for (uint8_t C : Data) 2558 Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); 2559 MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); 2560 SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); 2561 SDValue LV = Lower.LowerOperation(BV, DAG); 2562 DAG.RemoveDeadNode(BV.getNode()); 2563 return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV); 2564 } 2565 2566 void HvxSelector::selectExtractSubvector(SDNode *N) { 2567 SDValue Inp = N->getOperand(0); 2568 MVT ResTy = N->getValueType(0).getSimpleVT(); 2569 unsigned Idx = N->getConstantOperandVal(1); 2570 2571 [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); 2572 [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); 2573 assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); 2574 assert(2 * ResLen == InpTy.getVectorNumElements()); 2575 assert(Idx == 0 || Idx == ResLen); 2576 2577 unsigned SubReg = Idx == 0 ? Hexagon::vsub_lo : Hexagon::vsub_hi; 2578 SDValue Ext = DAG.getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp); 2579 2580 ISel.ReplaceNode(N, Ext.getNode()); 2581 } 2582 2583 void HvxSelector::selectShuffle(SDNode *N) { 2584 DEBUG_WITH_TYPE("isel", { 2585 dbgs() << "Starting " << __func__ << " on node:\n"; 2586 N->dump(&DAG); 2587 }); 2588 MVT ResTy = N->getValueType(0).getSimpleVT(); 2589 // Assume that vector shuffles operate on vectors of bytes. 2590 assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); 2591 2592 auto *SN = cast<ShuffleVectorSDNode>(N); 2593 std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); 2594 // This shouldn't really be necessary. Is it? 2595 for (int &Idx : Mask) 2596 if (Idx != -1 && Idx < 0) 2597 Idx = -1; 2598 2599 unsigned VecLen = Mask.size(); 2600 bool HavePairs = (2*HwLen == VecLen); 2601 assert(ResTy.getSizeInBits() / 8 == VecLen); 2602 2603 // Vd = vector_shuffle Va, Vb, Mask 2604 // 2605 2606 bool UseLeft = false, UseRight = false; 2607 for (unsigned I = 0; I != VecLen; ++I) { 2608 if (Mask[I] == -1) 2609 continue; 2610 unsigned Idx = Mask[I]; 2611 assert(Idx < 2*VecLen); 2612 if (Idx < VecLen) 2613 UseLeft = true; 2614 else 2615 UseRight = true; 2616 } 2617 2618 DEBUG_WITH_TYPE("isel", { 2619 dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" 2620 << UseLeft << " UseRight=" << UseRight << " HavePairs=" 2621 << HavePairs << '\n'; 2622 }); 2623 // If the mask is all -1's, generate "undef". 2624 if (!UseLeft && !UseRight) { 2625 ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); 2626 return; 2627 } 2628 2629 SDValue Vec0 = N->getOperand(0); 2630 SDValue Vec1 = N->getOperand(1); 2631 assert(Vec0.getValueType() == ResTy && Vec1.getValueType() == ResTy); 2632 2633 ResultStack Results(SN); 2634 OpRef Va = OpRef::undef(ResTy); 2635 OpRef Vb = OpRef::undef(ResTy); 2636 2637 if (!Vec0.isUndef()) { 2638 Results.push(TargetOpcode::COPY, ResTy, {Vec0}); 2639 Va = OpRef::OpRef::res(Results.top()); 2640 } 2641 if (!Vec1.isUndef()) { 2642 Results.push(TargetOpcode::COPY, ResTy, {Vec1}); 2643 Vb = OpRef::res(Results.top()); 2644 } 2645 2646 OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) 2647 : shuffp2(ShuffleMask(Mask), Va, Vb, Results); 2648 2649 bool Done = Res.isValid(); 2650 if (Done) { 2651 // Make sure that Res is on the stack before materializing. 2652 Results.push(TargetOpcode::COPY, ResTy, {Res}); 2653 materialize(Results); 2654 } else { 2655 Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); 2656 } 2657 2658 if (!Done) { 2659 #ifndef NDEBUG 2660 dbgs() << "Unhandled shuffle:\n"; 2661 SN->dumpr(&DAG); 2662 #endif 2663 llvm_unreachable("Failed to select vector shuffle"); 2664 } 2665 } 2666 2667 void HvxSelector::selectRor(SDNode *N) { 2668 // If this is a rotation by less than 8, use V6_valignbi. 2669 MVT Ty = N->getValueType(0).getSimpleVT(); 2670 const SDLoc &dl(N); 2671 SDValue VecV = N->getOperand(0); 2672 SDValue RotV = N->getOperand(1); 2673 SDNode *NewN = nullptr; 2674 2675 if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { 2676 unsigned S = CN->getZExtValue() % HST.getVectorLength(); 2677 if (S == 0) { 2678 NewN = VecV.getNode(); 2679 } else if (isUInt<3>(S)) { 2680 NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, 2681 {VecV, VecV, getConst32(S, dl)}); 2682 } 2683 } 2684 2685 if (!NewN) 2686 NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); 2687 2688 ISel.ReplaceNode(N, NewN); 2689 } 2690 2691 void HvxSelector::selectVAlign(SDNode *N) { 2692 SDValue Vv = N->getOperand(0); 2693 SDValue Vu = N->getOperand(1); 2694 SDValue Rt = N->getOperand(2); 2695 SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), 2696 N->getValueType(0), {Vv, Vu, Rt}); 2697 ISel.ReplaceNode(N, NewN); 2698 DAG.RemoveDeadNode(N); 2699 } 2700 2701 void HexagonDAGToDAGISel::PreprocessHvxISelDAG() { 2702 auto getNodes = [this]() -> std::vector<SDNode *> { 2703 std::vector<SDNode *> T; 2704 T.reserve(CurDAG->allnodes_size()); 2705 for (SDNode &N : CurDAG->allnodes()) 2706 T.push_back(&N); 2707 return T; 2708 }; 2709 2710 ppHvxShuffleOfShuffle(getNodes()); 2711 } 2712 2713 template <> struct std::hash<SDValue> { 2714 std::size_t operator()(SDValue V) const { 2715 return std::hash<const void *>()(V.getNode()) + 2716 std::hash<unsigned>()(V.getResNo()); 2717 }; 2718 }; 2719 2720 void HexagonDAGToDAGISel::ppHvxShuffleOfShuffle(std::vector<SDNode *> &&Nodes) { 2721 // Motivating case: 2722 // t10: v64i32 = ... 2723 // t46: v128i8 = vector_shuffle<...> t44, t45 2724 // t48: v128i8 = vector_shuffle<...> t44, t45 2725 // t42: v128i8 = vector_shuffle<...> t46, t48 2726 // t12: v32i32 = extract_subvector t10, Constant:i32<0> 2727 // t44: v128i8 = bitcast t12 2728 // t15: v32i32 = extract_subvector t10, Constant:i32<32> 2729 // t45: v128i8 = bitcast t15 2730 SelectionDAG &DAG = *CurDAG; 2731 unsigned HwLen = HST->getVectorLength(); 2732 2733 struct SubVectorInfo { 2734 SubVectorInfo(SDValue S, unsigned H) : Src(S), HalfIdx(H) {} 2735 SDValue Src; 2736 unsigned HalfIdx; 2737 }; 2738 2739 using MapType = std::unordered_map<SDValue, unsigned>; 2740 2741 auto getMaskElt = [&](unsigned Idx, ShuffleVectorSDNode *Shuff0, 2742 ShuffleVectorSDNode *Shuff1, 2743 const MapType &OpMap) -> int { 2744 // Treat Shuff0 and Shuff1 as operands to another vector shuffle, and 2745 // Idx as a (non-undef) element of the top level shuffle's mask, that 2746 // is, index into concat(Shuff0, Shuff1). 2747 // Assuming that Shuff0 and Shuff1 both operate on subvectors of the 2748 // same source vector (as described by OpMap), return the index of 2749 // that source vector corresponding to Idx. 2750 ShuffleVectorSDNode *OpShuff = Idx < HwLen ? Shuff0 : Shuff1; 2751 if (Idx >= HwLen) 2752 Idx -= HwLen; 2753 2754 // Get the mask index that M points at in the corresponding operand. 2755 int MaybeN = OpShuff->getMaskElt(Idx); 2756 if (MaybeN < 0) 2757 return -1; 2758 2759 auto N = static_cast<unsigned>(MaybeN); 2760 unsigned SrcBase = N < HwLen ? OpMap.at(OpShuff->getOperand(0)) 2761 : OpMap.at(OpShuff->getOperand(1)); 2762 if (N >= HwLen) 2763 N -= HwLen; 2764 2765 return N + SrcBase; 2766 }; 2767 2768 auto fold3 = [&](SDValue TopShuff, SDValue Inp, MapType &&OpMap) -> SDValue { 2769 // Fold all 3 shuffles into a single one. 2770 auto *This = cast<ShuffleVectorSDNode>(TopShuff); 2771 auto *S0 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(0)); 2772 auto *S1 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(1)); 2773 ArrayRef<int> TopMask = This->getMask(); 2774 // This should be guaranteed by type checks in the caller, and the fact 2775 // that all shuffles should have been promoted to operate on MVT::i8. 2776 assert(TopMask.size() == S0->getMask().size() && 2777 TopMask.size() == S1->getMask().size()); 2778 assert(TopMask.size() == HwLen); 2779 2780 SmallVector<int, 256> FoldedMask(2 * HwLen); 2781 for (unsigned I = 0; I != HwLen; ++I) { 2782 int MaybeM = TopMask[I]; 2783 if (MaybeM >= 0) { 2784 FoldedMask[I] = 2785 getMaskElt(static_cast<unsigned>(MaybeM), S0, S1, OpMap); 2786 } else { 2787 FoldedMask[I] = -1; 2788 } 2789 } 2790 // The second half of the result will be all-undef. 2791 std::fill(FoldedMask.begin() + HwLen, FoldedMask.end(), -1); 2792 2793 // Return 2794 // FoldedShuffle = (Shuffle Inp, undef, FoldedMask) 2795 // (LoHalf FoldedShuffle) 2796 const SDLoc &dl(TopShuff); 2797 MVT SingleTy = MVT::getVectorVT(MVT::i8, HwLen); 2798 MVT PairTy = MVT::getVectorVT(MVT::i8, 2 * HwLen); 2799 SDValue FoldedShuff = 2800 DAG.getVectorShuffle(PairTy, dl, DAG.getBitcast(PairTy, Inp), 2801 DAG.getUNDEF(PairTy), FoldedMask); 2802 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SingleTy, FoldedShuff, 2803 DAG.getConstant(0, dl, MVT::i32)); 2804 }; 2805 2806 auto getSourceInfo = [](SDValue V) -> std::optional<SubVectorInfo> { 2807 while (V.getOpcode() == ISD::BITCAST) 2808 V = V.getOperand(0); 2809 if (V.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2810 return std::nullopt; 2811 return SubVectorInfo(V.getOperand(0), 2812 !cast<ConstantSDNode>(V.getOperand(1))->isZero()); 2813 }; 2814 2815 for (SDNode *N : Nodes) { 2816 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2817 continue; 2818 EVT ResTy = N->getValueType(0); 2819 if (ResTy.getVectorElementType() != MVT::i8) 2820 continue; 2821 if (ResTy.getVectorNumElements() != HwLen) 2822 continue; 2823 2824 SDValue V0 = N->getOperand(0); 2825 SDValue V1 = N->getOperand(1); 2826 if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) 2827 continue; 2828 if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) 2829 continue; 2830 if (V0.getValueType() != ResTy || V1.getValueType() != ResTy) 2831 continue; 2832 2833 // Check if all operands of the two operand shuffles are extract_subvectors 2834 // from the same vector pair. 2835 auto V0A = getSourceInfo(V0.getOperand(0)); 2836 if (!V0A.has_value()) 2837 continue; 2838 auto V0B = getSourceInfo(V0.getOperand(1)); 2839 if (!V0B.has_value() || V0B->Src != V0A->Src) 2840 continue; 2841 auto V1A = getSourceInfo(V1.getOperand(0)); 2842 if (!V1A.has_value() || V1A->Src != V0A->Src) 2843 continue; 2844 auto V1B = getSourceInfo(V1.getOperand(1)); 2845 if (!V1B.has_value() || V1B->Src != V0A->Src) 2846 continue; 2847 2848 // The source must be a pair. This should be guaranteed here, 2849 // but check just in case. 2850 assert(V0A->Src.getValueType().getSizeInBits() == 16 * HwLen); 2851 2852 MapType OpMap = { 2853 {V0.getOperand(0), V0A->HalfIdx * HwLen}, 2854 {V0.getOperand(1), V0B->HalfIdx * HwLen}, 2855 {V1.getOperand(0), V1A->HalfIdx * HwLen}, 2856 {V1.getOperand(1), V1B->HalfIdx * HwLen}, 2857 }; 2858 SDValue NewS = fold3(SDValue(N, 0), V0A->Src, std::move(OpMap)); 2859 ReplaceNode(N, NewS.getNode()); 2860 } 2861 } 2862 2863 void HexagonDAGToDAGISel::SelectHvxExtractSubvector(SDNode *N) { 2864 HvxSelector(*this, *CurDAG).selectExtractSubvector(N); 2865 } 2866 2867 void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { 2868 HvxSelector(*this, *CurDAG).selectShuffle(N); 2869 } 2870 2871 void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { 2872 HvxSelector(*this, *CurDAG).selectRor(N); 2873 } 2874 2875 void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { 2876 HvxSelector(*this, *CurDAG).selectVAlign(N); 2877 } 2878 2879 void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { 2880 const SDLoc &dl(N); 2881 SDValue Chain = N->getOperand(0); 2882 SDValue Address = N->getOperand(2); 2883 SDValue Predicate = N->getOperand(3); 2884 SDValue Base = N->getOperand(4); 2885 SDValue Modifier = N->getOperand(5); 2886 SDValue Offset = N->getOperand(6); 2887 SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 2888 2889 unsigned Opcode; 2890 unsigned IntNo = N->getConstantOperandVal(1); 2891 switch (IntNo) { 2892 default: 2893 llvm_unreachable("Unexpected HVX gather intrinsic."); 2894 case Intrinsic::hexagon_V6_vgathermhq: 2895 case Intrinsic::hexagon_V6_vgathermhq_128B: 2896 Opcode = Hexagon::V6_vgathermhq_pseudo; 2897 break; 2898 case Intrinsic::hexagon_V6_vgathermwq: 2899 case Intrinsic::hexagon_V6_vgathermwq_128B: 2900 Opcode = Hexagon::V6_vgathermwq_pseudo; 2901 break; 2902 case Intrinsic::hexagon_V6_vgathermhwq: 2903 case Intrinsic::hexagon_V6_vgathermhwq_128B: 2904 Opcode = Hexagon::V6_vgathermhwq_pseudo; 2905 break; 2906 } 2907 2908 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2909 SDValue Ops[] = { Address, ImmOperand, 2910 Predicate, Base, Modifier, Offset, Chain }; 2911 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2912 2913 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2914 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2915 2916 ReplaceNode(N, Result); 2917 } 2918 2919 void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { 2920 const SDLoc &dl(N); 2921 SDValue Chain = N->getOperand(0); 2922 SDValue Address = N->getOperand(2); 2923 SDValue Base = N->getOperand(3); 2924 SDValue Modifier = N->getOperand(4); 2925 SDValue Offset = N->getOperand(5); 2926 SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 2927 2928 unsigned Opcode; 2929 unsigned IntNo = N->getConstantOperandVal(1); 2930 switch (IntNo) { 2931 default: 2932 llvm_unreachable("Unexpected HVX gather intrinsic."); 2933 case Intrinsic::hexagon_V6_vgathermh: 2934 case Intrinsic::hexagon_V6_vgathermh_128B: 2935 Opcode = Hexagon::V6_vgathermh_pseudo; 2936 break; 2937 case Intrinsic::hexagon_V6_vgathermw: 2938 case Intrinsic::hexagon_V6_vgathermw_128B: 2939 Opcode = Hexagon::V6_vgathermw_pseudo; 2940 break; 2941 case Intrinsic::hexagon_V6_vgathermhw: 2942 case Intrinsic::hexagon_V6_vgathermhw_128B: 2943 Opcode = Hexagon::V6_vgathermhw_pseudo; 2944 break; 2945 } 2946 2947 SDVTList VTs = CurDAG->getVTList(MVT::Other); 2948 SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain }; 2949 SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 2950 2951 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 2952 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 2953 2954 ReplaceNode(N, Result); 2955 } 2956 2957 void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { 2958 unsigned IID = N->getConstantOperandVal(0); 2959 SDNode *Result; 2960 switch (IID) { 2961 case Intrinsic::hexagon_V6_vaddcarry: { 2962 std::array<SDValue, 3> Ops = { 2963 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2964 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2965 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2966 break; 2967 } 2968 case Intrinsic::hexagon_V6_vaddcarry_128B: { 2969 std::array<SDValue, 3> Ops = { 2970 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2971 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2972 Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 2973 break; 2974 } 2975 case Intrinsic::hexagon_V6_vsubcarry: { 2976 std::array<SDValue, 3> Ops = { 2977 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2978 SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 2979 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2980 break; 2981 } 2982 case Intrinsic::hexagon_V6_vsubcarry_128B: { 2983 std::array<SDValue, 3> Ops = { 2984 {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 2985 SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 2986 Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 2987 break; 2988 } 2989 default: 2990 llvm_unreachable("Unexpected HVX dual output intrinsic."); 2991 } 2992 ReplaceUses(N, Result); 2993 ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); 2994 ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); 2995 CurDAG->RemoveDeadNode(N); 2996 } 2997